newg

APPENDIX H

HYDROGEOLOGY BASELINE

RAINY RIVER GOLD PROJECT HYDROGEOLOGY BASELINE REPORT

Submitted by:

AMEC Environment & Infrastructure, a Division of AMEC Americas Limited 160 Traders Blvd., Suite 110 Mississauga, Ontario L4Z 3K7

On behalf of:

Rainy River Resources Ltd. 1111 Victoria Avenue East Thunder Bay, Ontario P7C 1B7

> March 2013 TC111504

March 22, 2013 TC111504

Mr. Kyle Stanfield, P.Eng Vice President, Environment & Sustainability Rainy River Resources Ltd. 1111 Victoria Avenue East Thunder Bay, Ontario P7C 1B7

Dear Mr. Stanfield,

AMEC Environment & Infrastructure is pleased to submit the attached Hydrogeology Baseline Report for the Rainy River Gold Project.

This Hydrogeology Baseline Study was prepared to describe the current groundwater conditions and update existing hydrogeology information. The report summarizes the hydrogeology baseline data collected by AMEC, which comprises a large groundwater level monitoring network and further hydraulic testing of the overburden material and bedrock. These data have been used to update and improve the previous hydrogeological information.

We greatly appreciate the opportunity to provide support for your Rainy River Gold Project. Should you have any questions regarding the study, please do not hesitate to contact us.

Yours Sincerely,

AMEC Environment & Infrastructure, a division of AMEC Americas Limited

Simon Gautrey, M.Sc. M.B.A. P.Geo. Associate Hydrogeologist

Ship de

Sheila Daniel, M.Sc. P.Geo. Head, Environmental Management Senior Associate Geoscientist

AMEC Environment & Infrastructure, a division of AMEC Americas Limited 160 Traders Blvd. East, Suite 110 Mississauga, Ontario Canada L4Z 3K7 Tel (905) 568-2929 Fax (905) 568-1686 www.amec.com

TABLE OF CONTENTS

<u>Page</u>

Gloss	ary		v		
1.0	INTRO	DUCTION	1		
	1.1	General Approach	1		
	1.2	Secondary Sources - Previous Studies / Documentation			
2.0	ENVIRONMENTAL SETTING				
	2.1	Physiography	6		
	2.2	Geology			
		2.2.1 Regional Overburden Geology 2.2.2 Pleistocene Glacial History 2.2.3 Project Area Overburden Geology 2.2.4 Regional Bedrock Geology 2.2.5 Project Area Bedrock Geology 1 2.2.6 Project Area Structural Geology	6 7 8 2 2		
	2.3	Climate1	3		
		2.3.1Background12.3.2Temperature12.3.3Precipitation12.3.4Evapotranspiration1	4 4		
	2.4	Hydrology1			
	2.5	Aquatic Studies	6		
	2.6	Water Wells1	7		
3.0	HYDRC	DGEOLOGICAL ENVIRONMENTAL BASELINE 2	6		
	3.1	Background and Approach2	6		
	3.2	Hydrogeological Investigations and Testing for the RRGP2	6		
		 3.2.1 Overburden and Shallow Bedrock			
	3.3	Groundwater Level and Flow Conditions	3		
		 3.3.1 Overview of Groundwater Level Monitoring	4 4		
	3.4	Groundwater - Surface Water Interaction	8		
		 3.4.1 Pinewood River Low-flow Conditions			
	3.5	Groundwater Quality	9		
	3.6	Conceptual Model Summary			
4.0	REFER	ENCES	9		

LIST OF TABLES

Table 2-1:	Summary of Expected Project Area Overburden Geology	18
Table 2-2:	Summary of Project Area Bedrock Geology	19
Table 2-3:	Environment Canada Station	20
Table 3-1:	Summary of Hydrostratigraphic Units	43
Table 3-2:	Summary Statistics of Hydraulic Conductivity Data for Overburden and Shallow Bedrock Hydrostratigraphic Units Based on Slug Testing and Pumping Tests	43
Table 3-3:	Summary of Deep Geomechanical / Hydrogeological Boreholes	44
Table 3-4:	Hydraulic Conductivity Data for Shallow, Intermediate	44
	and Deep Bedrock Based on Single Packer Testing	44
Table 3-5	Summer Spot Flow Gauging, Pinewood River and Adjacent Watersheds	45
Table 3-6:	Hydraulic Properties for Hydrostratigraphic Units	46

LIST OF FIGURES

<u>Page</u>

Figure 1-1	Project Location	3
Figure 1-2	Regional Topography, Watershed and Subwatershed Boundaries	4
Figure 1-3	Project Area Location Map	5
Figure 2-1	Regional Geology Map	21
Figure 2-2	Rainy River Overburden Geology Map	22
Figure 2-3	Rainy River Bedrock Geology Map	23
Figure 2-4	Daily Flow in the Pinewood River at Environment Canada Station 05PC023	24
Figure 2-5	Location of Private Water Wells within the Project Area	25
Figure 3-1	Location of AMEC Deep Geomechanical Boreholes at Proposed Open Pit	47
Figure 3-2	Summary of AMEC Packer Test Results According to Depth and Length of Test	
	Interval	48
Figure 3-3	Groundwater Level Contour Map for June, 2012 for Whiteshell Till and Shallow	
	Bedrock	
Figure 3-4	Cross section of Overburden and Shallow Bedrock (North-South)	
Figure 3-5	Cross section of Overburden and Shallow Bedrock (East-West)	
Figure 3-6	Location of Artesian Conditions and Estimates of Vertical Gradients	52
Figure 3-7	Groundwater Level Hydrograph for BH10-05 with Shallow Piezometer in	
	Whitemouth Lake Till	53
Figure 3-8	Groundwater Level Hydrograph for BH10-11 with Nested Piezometer in Whitemouth Lake Till and Whiteshell Till	54
Figure 3-9	Groundwater Level Hydrograph for BH10-09 with Nested Piezometer in Whiteshell	
	Till and Shallow Bedrock	55
Figure 3-10	Length; Dip Angle of -61°)	56
Figure 3-11	Low-flow Spot Gauging, Pinewood River Watershed, End of August, Beginning of September 2011, Pinewood River Watershed	57
Figure 3-12	•	

LIST OF APPENDICES

- Appendix A: AMEC Monitoring Well Logs
- Appendix B: Slug Testing Results for Overburden and Shallow Bedrock
- Appendix C: Packer Testing Results
- Appendix D: Groundwater Level Hydrographs
- Appendix E: Factual Report on AMEC 2011 Low-flow Survey
- Appendix F: Summary of RRR Water Quality Sampling 2011 to 2012
- Appendix G: Estimating Maximum Potential Percolation Rate for the Rainy River Project Area

Glossary

BP °C CEQG EC EFLT GPS km masl mbgs mbbs m MOE m/s m ³ /s mm mm/year PLGD PWQO RRGP RQD RRB	before present degrees Celsius Canadian Environmental Quality Guidelines Environment Canada Eastern Fault Global Positioning System kilometres metres above sea level metres below ground surface metres below bedrock surface metres below bedrock surface metres Ontario Ministry of the Environment metres per second cubic metres per second cubic metres per second millimetres millimetres Pleistocene lower granular deposits Provincial Water Quality Objectives Rainy River Gold Project rock quality designation Rainy River Resources Ltd.
- •	
UTM	Universal Transverse Mercator
WSC	
WWR	Water Survey of Canada water well record
VV VV FK	

1.0 INTRODUCTION

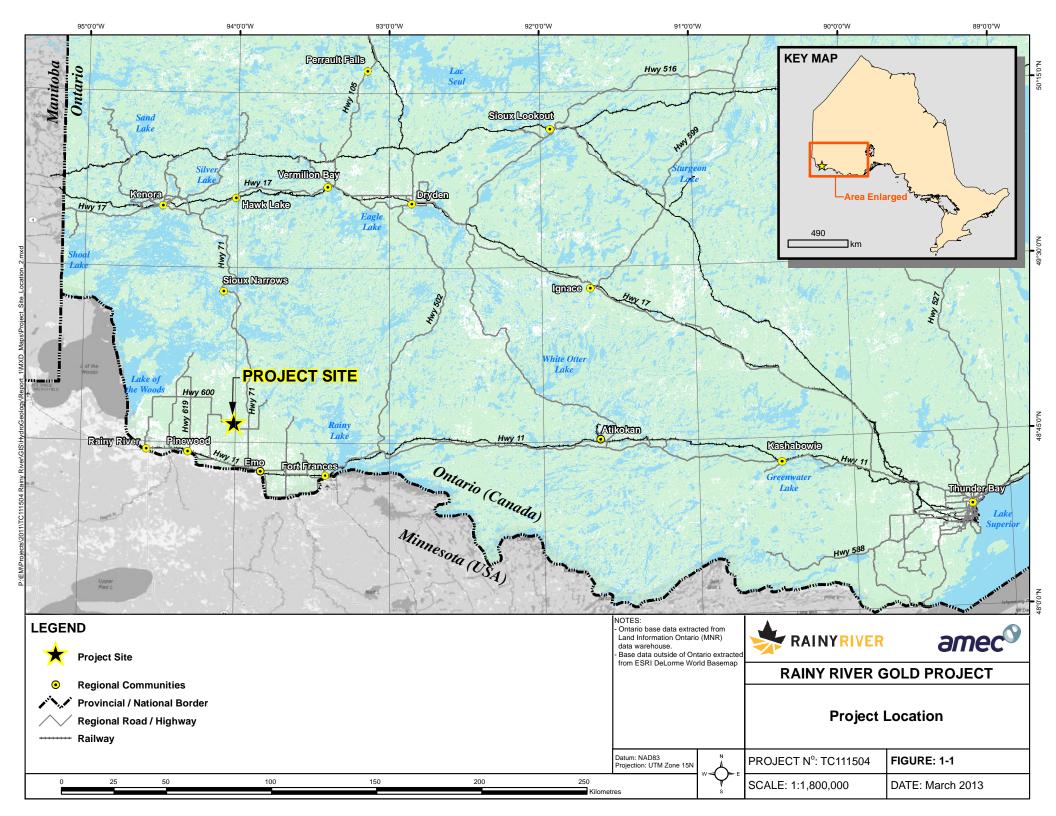
AMEC Environment & Infrastructure (AMEC) was retained by Rainy River Resources Ltd. (RRR) to describe the current groundwater conditions and update existing information for the Rainy River Gold Project (RRGP) located in northwestern Ontario. RRR is planning to develop and operate an open pit and underground mine, the RRGP, in the Township of Chapple located approximately 65 kilometres (km) by road, northwest of Fort Frances, Ontario in northwestern Ontario (Figure 1-1). The proposed mine and project site area defined for the purposes of this report, is positioned within the upper portion of the Pinewood River watershed (Figures 1-2 and 1-3).

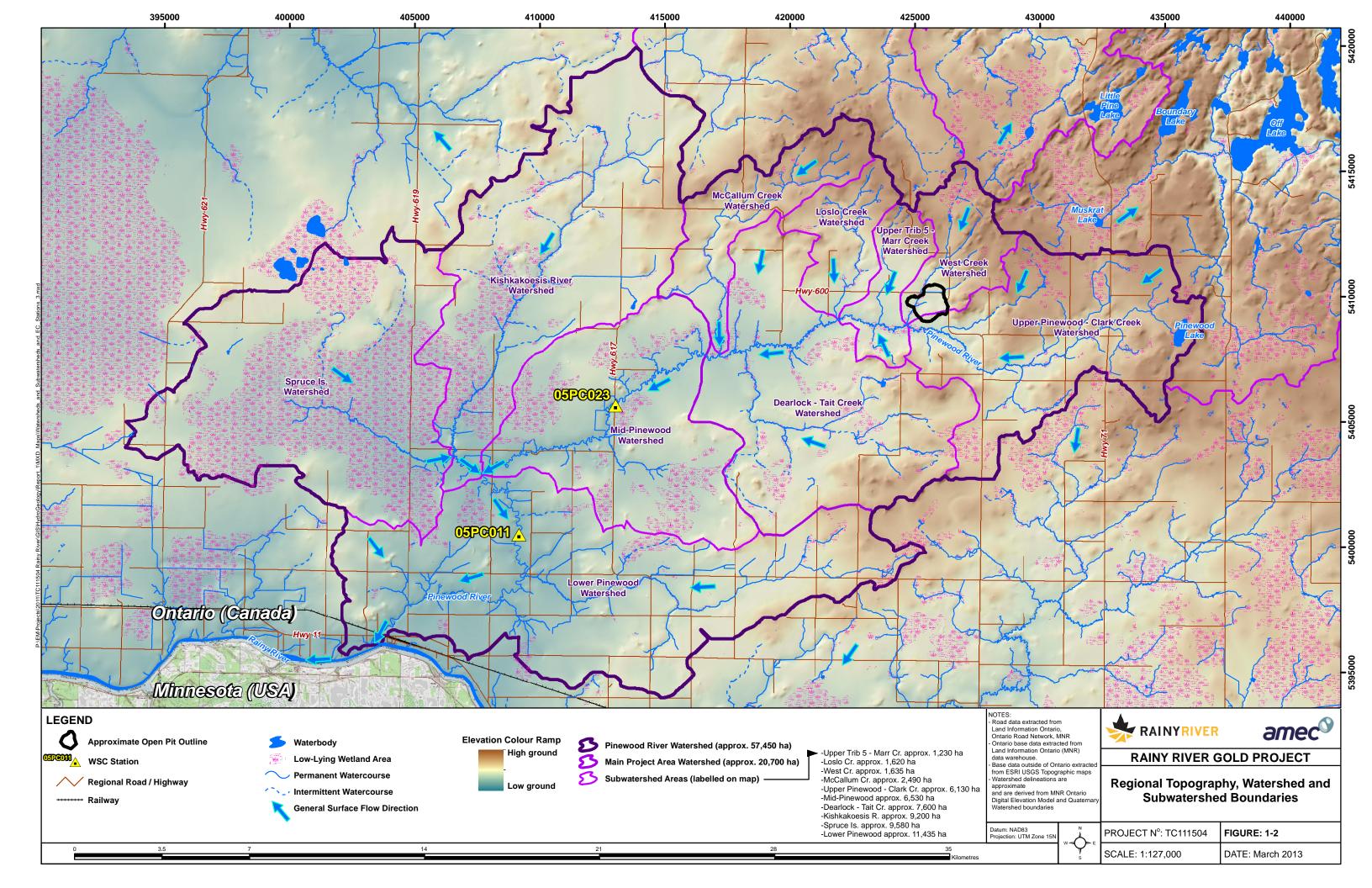
1.1 General Approach

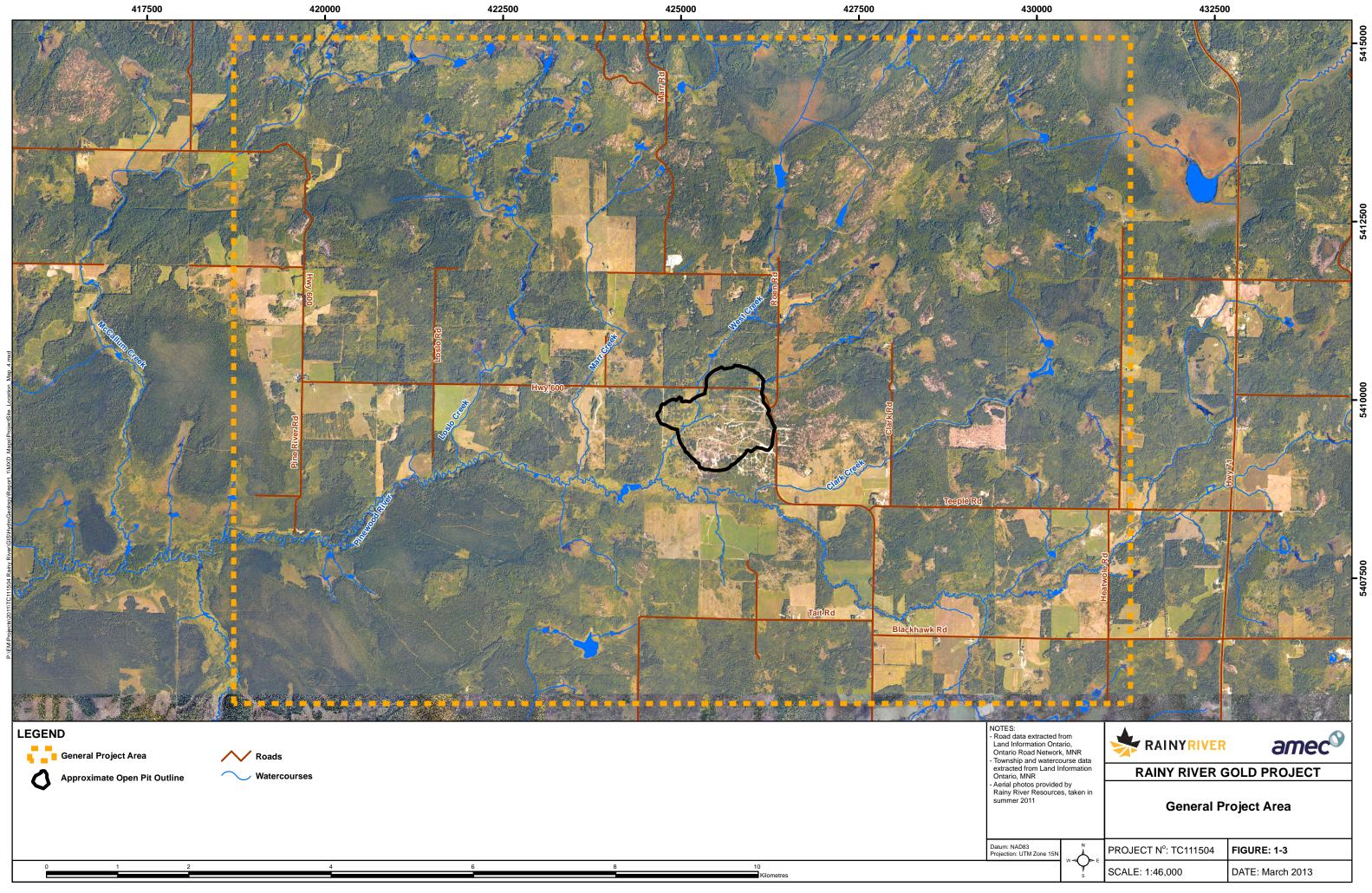
Hydrogeological and relevant other environmental information is available for a localized area relating to the RRGP site as part of previous baseline investigations initiated in 2008 (Klohn Crippen Berger 2011). AMEC conducted a comprehensive gap analysis to determine the extent and quality of existing relevant environmental data in the winter of 2011 to support future mine development. This report focuses on the new information collected by AMEC subsequent to the gap analysis. Previous data have been included to provide a broader context where appropriate.

Baseline data were gathered by AMEC using the standard approaches of literature review, observation and sample collection, data analysis and discussions with people having specific knowledge of the area. Where appropriate, an ecosystem perspective has been used to integrate other baseline data collected for the RRGP into functional relationships with the hydrogeology. It is recognized that the entire physical, chemical and biological system (i.e., the ecosystem) is interconnected. For example, surface water systems are connected to groundwater systems, which are in turn affected by climate, geology, soils and general terrain aspects.

While environmental baseline investigations typically describe environmental conditions as they exist at the time of the investigation, AMEC has found that hydrogeological baseline reports are most useful if a numerical, three-dimensional groundwater flow model is developed of existing conditions. Investigations completed by AMEC have been designed to support the development of such a model. This model can then be used subsequently to support future project design and determination of potential environmental impacts. The previous baseline report (Klohn Crippen Berger 2011) did not produce a groundwater flow model.


1.2 Secondary Sources - Previous Studies / Documentation


A number of investigations were completed in the project area prior to 2011 when AMEC initiated this study. This includes the following sources that provide significant data and information to this report:



- Report 286 of the Ontario Geological Survey produced by A.F. Bajc in 2001, which provides a thorough description of the Quaternary Geology of the Fort Frances-Rainy River Area.
- Rainy River Gold Project Baseline Report 2008 to 2010 produced by Klohn Crippen Berger (KCB) in 2011. This report documents the first groundwater investigation at the Project site and installation of an initial dedicated groundwater level piezometer network.
- Independent Technical Report for the Rainy River Property produced by Caracle Creek in 2008. This document is a primary source of information for the bedrock geology although the detailed geologic interpretations of the project area are being progressively updated by RRR and these interpretations are included in this report.
- Work Report of the 1997 Reverse Circulation Drill Data produced by Nuinsco Resources Limited, which documents an extensive drilling campaign in the overburden. This provides additional information on the bulk overburden stratigraphy, particularly to the west of the proposed open pit. The drilling and cross sections from this report cover south and east of Richardson (Chapple Township); south-eastern corner of Sifton (Morley Township) and the north-western part of Tait (Morley Township) (Figure 1-3).
- Flow gauging data from two of the Environment Canada (EC) Water Survey of Canada (WSC) gauging stations for the Pinewood River.

2.0 ENVIRONMENTAL SETTING

2.1 Physiography

The RRGP site occurs within the Severn Upland Physiographic Subregion of the James Bay Physiographic Region (Bostock 1970) which is generally characterized by gently undulating topography. Topography has been strongly influenced by glaciation, which on higher ground has left bedrock exposed (or with limited overburden cover) and in lower lying areas has thicker sedimentary deposits primarily of glacial origin (till). The final phases of glaciation overrode proglacial lake sediments, which has resulted in the upper parts of the overburden being dominated by clay sediments in the low lying areas, particularly in the southern and western part of the region associated with the widespread glaciolacustrine deposits of Lake Agassiz. Organic deposits (peat) are also common at surface and are associated with the poor drainage in the lower areas where clay deposits dominate the upper overburden. Organic deposits are particularly prevalent in the area west of the proposed open pit.

The project area can be divided into two general physiographic types based on topography and frequency of bedrock outcrops. The north and eastern portions of the project area have numerous bedrock outcrops, with variable overburden cover, which generally occur at elevations above 380 metres above sea level (masl). The southwest and central portions of the project area have thicker and more extensive overburden, with isolated bedrock outcrops. The area of the proposed open pit is largely low lying and is at an elevation of approximately 350 masl, while some small bedrock knolls occur close to the centre of the pit at approximately 360 masl.

2.2 Geology

2.2.1 Regional Overburden Geology

The current understanding of the regional overburden geology was determined by the Ontario Geological Survey (OGS) from a series of field programs started in 1986 to assess the mineral potential of the Rainy River District. This is documented by Bajc (2001), which provides an overview of previous work, including the reports produced by the OGS from their field programs (many of which were authored or co-authored by Bajc). A regional surface geology map of the project area is presented in Figure 2-1.

The overburden (Quaternary) geology can be divided into two general ages: Pleistocene which includes the glacial deposits from >10,000 years before present (BP); and Holocene which is post-glacial and includes deposits from 9,000 to 10,000 years BP. The overburden is typically in the range of 10 to 20 metres (m) thick, with some areas exceeding 40 m and others with no overburden, where bedrock is exposed.

The region has a complex Pleistocene history with multiple glacial advances from two dominant directions resulting in two sets of tills of different origins, with glacial lakes, such as Lake Agassiz, occupying the area in the periods between glaciations. The sediments deposited by the two ice sheets can be distinguished by the mineralogy of the sediments and lithology of the bedrock clasts within the glacial deposits (Bajc 2001) as summarized below.

The center of the Labradorean ice sheet was situated to the northeast of the project area and advanced into the project area from this direction. The bedrock to the northeast of site is of Precambrian age consisting of granitic and metamorphic rocks, with the nearest carbonate and clastic rocks in this direction located approximately 700 km away, in the Paleozoic- to Mesozoic-era bedrock near Hudson Bay. As a result, the tills deposited during advances of the Labradorean ice sheet tend to reflect the predominantly Precambrian source with relatively low carbonate content in tills, generally less than 5%. The Precambrian source is also reflected by the local clay mineralogy, which is generally inactive clays such as illite, chlorite and kaolinite.

The center of the Keewatin ice sheet was situated to the northwest of the project area. It advanced into the project area from the west, where carbonates and clastic rocks of the Williston Basin are located within 200 km from the site. The Keewatin ice sheets traveled over large areas of carbonate rocks and the resulting sediments contain relatively high amounts of carbonate debris. The Keewatin-derived tills generally contain pebbles that are 50 to 60% carbonate pebbles and 20 to 40% carbonate in the matrix. Shales of the Williston basin generally have high amounts of swelling clays, which is reflected by the abundance of smectite, vermiculite and montmorillonite in Keewatin-derived clays.

2.2.2 Pleistocene Glacial History

The earliest Pleistocene sediments in the region are of pre-Late Wisconsinan age and include both Labradorean and Keewatin tills and glaciolacustrine deposits. These deposits are uncommon as they have been largely removed by subsequent glacial advances. The majority of the Pleistocene deposits are of Late Wisconsinan age.

The Late Wisconsinan geological history and associated deposits has been summarized as follows (Bajc 2001):

- An advance by the Labradorean ice sheet from the northeast deposited a silty sand till known as the Whiteshell Till. As the Labradorean ice retreated, glaciofluvial sediments, consisting of sand, gravel and boulders were deposited in some areas.
- Glacial Lake Agassiz occupied much of the area following the retreat of the ice sheet, depositing glaciolacustrine clay, silt and sand of the Wylie Formation.
- The Keewatin ice sheet then advanced over the area from the west resulting in the clayrich Whitemouth Lake Till being deposited. Several depositional facies including sub-

glacial till and sub-aqueous flow till, have been recognized regionally within the Whitemouth Lake Till. These facies indicate a glacial advance and retreat across a lake bed with respective retreat and advance of lacustrine conditions (Bajc 2001). The sub-glacial till is massive, firm to stiff, with features such as strong pebble fabric and ice thrusts, which indicate deposition under grounded active ice possibly by lodgement processes. The flow tills are generally softer, often containing faint stratification and small clasts of glaciolacustrine clay. The flow tills were likely deposited in water at the margin of the ice sheet.

- The sequence of glacial retreat with subsequent glaciofluvial and glaciolacustrine environments and associated deposits was repeated. The sediments deposited from this stage of Lake Agassiz are known as the Brenna Formation and formed on the Lake bottom (clay and silt) and along shorelines and bars (sand, silt and minor gravel). The water level in Lake Agassiz at this time is thought to have been at approximately 370 masl. The beach ridge/bar identified to the east of the proposed open pit (Figure 2-1) is considered to part of this phase of sedimentation (Bajc 2001).
- The Keewatin ice sheet subsequently re-advanced to within 25 km of the project area depositing the Marchand Till to the southwest of the area. Approximately 11,000 years BP Lake Agassiz was partially drained and water levels dropped, leaving the project area subaerially exposed.
- At approximately 10,000 years BP, the water level in Lake Agassiz rose again to approximately 350 to 355 masl depositing the glaciolacustrine deposits of the Sherack Formation. The shore bluff at Deerlock to the west of the open pit is considered part of this phase of sedimentation (Figure 2-1; Bajc 2001). The Sherack Formation consists of highly calcareous clay and silt, with minor sand and includes a distinctive thin red clay bed in the region. At some locations the Sherack Formation contains expansive clays such as smectite.

The Pleistocene sediments are overlain by more recent deposits of Holocene age, such as peat and organic deposits in low-lying wetland areas. Other Holocene sediments include alluvial sand, silt and clay deposited by individual watercourses.

2.2.3 Project Area Overburden Geology

The project area overburden geology is dominated by two formations, the Whiteshell Till and Whitemouth Lake Till of Labradorean and Keewatin origin, respectively. A summary is given in Table 2-1 of the overburden units that occur within the vicinity of the project area briefly described below in order from oldest to youngest. The description of the units is based primarily on Bajc (2001) and the results of AMEC's 2011/2012 geotechnical drilling program (AMEC 2012a). The predominance of the Whiteshell Till and Whitemouth Lake Till is confirmed by the cross sections developed by Nuinsco (1997), particularly in the southern part of Richardson

Township to the west of the proposed open pit. Figure 2-2 shows a refinement of the regional geology map with respect to the overburden within the project area based on site data.

Pre-Late Wisconsinan Deposits

Although these deposits have not been encountered at site to date, it is possible that some older tills and glaciolacustrine deposits may occur locally in places. They could include deposits of both Labradorean and Keewatin origin of variable composition. If present, they would occur above the bedrock and below the younger glacial deposits described below.

Whiteshell Till

The Whiteshell Till is of Labradorean origin and appears throughout the project area below younger units, with the exception of on bedrock topographic highs, where it appears absent. The Whiteshell Till is a predominantly silty sand till, with some gravel and cobbles, trace clay and some boulders. Where observed in an excavation in the proposed open pit area, the till contained numerous angular gravel and cobbles consisting of what appeared to be locally derived metavolcanics. In some places the deposit appears to be crudely bedded. Nuinsco (1997) report sandy till of Labradorean origin in 90% of the boreholes drilled. There is little, if any direct evidence to suggest that this till is exposed at surface in the project area (where present, it is always overlain by Keewatin-derived sediments). There are groundwater level data that support the lack of outcrop of the Whiteshell Till; however, it may be possible in that some locations Labradorean glaciofluvial deposits connect the Whiteshell Till to the surface.

Labradorean Glaciofluvial

A glaciofluvial deposit identified as Labradorean (Bajc 2001) occurs on site approximately 1.2 km north of the proposed open pit area (Figure 2-2). A sand and gravel pit was developed during the 1950's / 1960's at this location. It is likely that the deposit is associated with the Whiteshell Till and it occurs stratigraphically immediately above, below, or within the Whiteshell Till. Boreholes immediately to the north and west of proposed the pit (BH11-12, BH11-17, BH11-20, BH11-35 and BH11-40) do not support an extensive and thick body (>5 m) of Labradorean sand/gravel connecting the Whiteshell Till to this glaciofluvial deposit. Exceptions are BH10-04 (KCB 2011) which has close to 12 m of fine to medium sand and gravel beneath the Keewatin sediment; and Borehole BH11-11 (Appendix A) which has an appreciable thickness of glaciofluvial sand (approximately 14.5 m), but this is interpreted as being at a higher stratigraphic level above the Whitemouth Lake Till. The Labradorean glaciofluvial deposits at the gravel pit are more likely to be an isolated deposit exposed at surface at this location due to shallow bedrock with the younger, overlying Keewatin deposits being thin or non-existent. It is possible that similar Labradorean glaciofluvial deposits occur in the subsurface where the overlying Keewatin sediments are thicker. Regionally the Labradorean glaciofluvial deposits range from fine-grained sand to boulder gravel.

Wylie Formation

The Wylie Formation is glaciolacustrine clay, silt and fine sand which occurs between, and is gradational with, the Whiteshell Till and Whitemouth Lake Till. The Wylie Formation likely contains material derived from both Labradorean and Keewatin sources, with the upper portions being more clay-rich and Keewatin in origin. The Wylie Formation is generally less than 2.5 m thick, is not as extensive as the near surface glaciolacustrine deposits of the Brenna Formation and is more common at lower elevations. Regional studies have indicated the clay contains swelling clays such as smectite and vermiculite. Nuinsco (1997) cross sections show these glaciolacustrine clays to be discontinuous. They are nevertheless relatively widespread and are possibly an important component of the hydraulic resistance required to generate the artesian conditions and strong upward vertical groundwater gradients from the Whiteshell Till and shallow bedrock.

Whitemouth Lake Till

The Whitemouth Lake Till is of Keewatin origin and appears to be one of the most widespread and thickest Quaternary units in the project area. This till is thickest in low-lying areas. Nuinsco (1997) reported from their extensive drill campaigns that this till is typically greater than 50% of the overburden material above the Labradorean sediments. The Whitemouth Lake Till is a silty clay with trace to some sand and trace gravel, and is high to medium plastic. It is suspected that the Whitemouth Lake Till contains swelling clays such as smectite, given the Keewatin origin of the clay. The depositional environment of this till has not been established for the project area. The till varies from soft to very stiff (AMEC 2012a), which may be an indication of different depositional environments. The softer material may be flow tills and similar material deposited into water. The stiff to very stiff tills are likely sub-glacial and may include lodgement till.

Keewatin Glaciofluvial

Glaciofluvial deposits of Keewatin origin are relatively uncommon in the area, but may have been encountered in a few boreholes from the 2011/2012 geotechnical drilling program (Figure 2-2). BH11-28 located south of the Pinewood River encountered 5.5 m of sand and gravel, including some sandy clayey gravel above the Whitemouth Lake Till at a depth of 8.2 m. The other occurrence was in BH11-11, where 14.5 m of silty sand was encountered at a depth of 2.3 m overlying the Whitemouth Lake Till. The extent of these deposits is unknown, but they are not expected to be widespread.

Brenna Formation

The Brenna Formation is a glacial Lake Agassiz clay of Keewatin origin which occurs stratigraphically above the Whitemouth Lake Till and is widespread throughout low-lying areas. It is assumed that most or all of the near surface, upper glaciolacustrine deposits encountered by the 2011/12 geotechnical drilling program (AMEC 2012a) are Brenna Formation, although

some may belong to the Poplar River or Sherack Formations described below. It is varved in places and contains sand lenses and gravel at some locations. Regionally the Brenna Formation is rich in swelling clay minerals such as smectite and vermiculite, with slickensides; however, the clay mineralogy or presence of slickensides has not been confirmed within the project area.

The shoreline of Lake Agassiz at the time of deposition of the Brenna Formation was in the range of 370 to 375 masl and the Brenna Formation is not likely to occur above this elevation. An analysis of air photos has indicated some sandier glaciolacustrine deposits noted as unit GLc on the surficial geology map (Figure 2-2). It is possible that these sandy sediments could have been deposited in beach or near-shore environments of Lake Agassiz, similar to those mapped on Figure 2-1. Alternatively these deposits may be fluvial in origin and belong to the Poplar River Formation.

Poplar River Formation

It is unknown if the Poplar River Formation which formed in the Lake Agassiz basin during a time of low water levels occurs within the project area. Regionally these deposits are fluvial in nature composed of sand and gravel, but may also include boulder lags, channel fills, palaeosols and organic remains. The Poplar River deposits are not believed to be widespread and would occur in low lying areas, within the glaciolacustrine deposits of the Brenna Formation and Sherack Formation. There is a possibility that the near surface sand encountered in boreholes at the open pit site and in the vicinity of the Pinewood River may be Poplar River Formation.

Sherack Formation

The Sherack Formation is a glaciolacustrine deposit from Lake Agassiz which has not been identified in the project area, but is likely to occur in low lying areas below 355 masl elevation in the southwest corner of the project area and along the Pinewood River. It would represent the uppermost Pleistocene unit in the area. The Sherack Formation consists of clay, silt, sand, minor gravel and organics where it occurs regionally and often includes a distinctive red clay bed. Regional studies indicate the clay contains swelling clays such as smectite and vermiculite.

Recent Deposits

Recent sediments have been deposited since Lake Agassiz retreated from the area, approximately 9,000 years BP. Deposits of peat occur in low lying areas and along some watercourses and are fairly common within the project area. The most extensive area of peat is located in the southwest corner of the project area. The thickness of peat is expected to be variable ranging from thin veneers to greater than 2 m thickness in places.

Recent alluvial deposits are expected to occur along the Pinewood River and its tributaries. The alluvium likely consists of silt, clay, sand and some organics. It is possible that some colluvium may occur at the base of and along lower portions of slopes; however this is not expected to be extensive due to the limited topographic variability. These deposits would have formed by the erosion and gravity driven transport of materials such as clay, silt, sand and pieces of bedrock.

2.2.4 Regional Bedrock Geology

An overview of the regional bedrock geology is provided by Caracle Creek (2008) and SRK (2011) and summarized herein. The project area lies within the Rainy River Greenstone Belt which is part of the Achaean Wabigoon Subprovince and the Superior Province of the Precambrian Shield. The Rainy River Greenstone Belt is a 900 km long, east-west trending metavolcanic and metasedimentary domain, bordered and intruded by numerous granitoid batholiths. The supracrustal rocks of the Wabigoon Subprovince have a synformal structure that is associated with the emplacement of the granitoid batholiths. The Quetico Fault forms the southern boundary of the Wabigoon Subprovince, but departs from the boundary towards the west. The Rainy River Greenstone Belt to the south of the proposed open pit is believed to be intersected by the Quetico Fault; however, the surface trace of the fault is only conjectured. The Rainy River Greenstone Belt is bounded by the Sabaskong Batholith to the north and extends into Minnesota to the south (Figure 2-3).

2.2.5 Project Area Bedrock Geology

The bedrock geology in the project area was considerably refined by Nuinsco, which is described by Caracle Creek (2008) and slightly modified by SRK (2011). The main meta-volcanic units are a mafic-intermediate volcanic succession which lies immediately to the north and south of the proposed open pit; and an intermediate-felsic volcanic succession located in between. The latter comprises a diverse and complex sequence and is also the host for the gold mineralization. A detailed description of the main bedrock units is given in Table 2-2, along with the main intrusive bodies, such as the Black Hawk Stock. The metamorphic grade of the meta-volcanics is greenschist to lower-amphibolite facies.

2.2.6 **Project Area Structural Geology**

The structural geology of the project area is complex; interpretation and mapping of major structures can be difficult. The current interpretation of the major structures is shown on Figure 2-3. Two main phases of deformation and associated folding are currently recognized in the project area (D/F1 and D/F2). Deformation associated with faulting is predominantly in the mode of ductile shear zones (i.e., well-annealed) rather than brittle faulting and associated development of more permeable zones, such as fault breccia.

The structure at the project area is dominated by a south plunging F2 antiform. The contact of the Mafic-Intermediate Volcanic Succession with the Sabaskong granite is also interpreted to be

deformed by this fold and the former is considered an early tectonic granite. On the eastern limb of the antiform the strike is approximately 050°N to 060°N; the western limb is interpreted to have a strike of approximately 100° to 110°N. Bedding dip is approximately 70° to the south, but may be shallower near the antiform hinge (~50°). A foliation occurs that is generally parallel or closely parallel to bedding in the metavolcanics associated with early (D/F1) deformation broadly striking east-west, but is not well-developed in the intrusive rocks. The regional foliation diverges around the Black Hawk Stock, which has been interpreted as a late-tectonic granite.

The major faults shown on Figure 2-3 are interpreted based mainly on aeromagnetic data (SRK 2011). A set of reactivated D1/D2 thrust faults are interpreted to run through the proposed open pit locally separating the lower Mafic-Intermediate Volcanic Succession from the Intermediate-Felsic Volcanic Succession. To the south the boundary of the Intermediate-Felsic Volcanic Succession is interpreted to be a fault striking 100°N to 110°N, which may be the western extension of the Quetico Fault. This fault is interpreted to possibly have some splays, one of which runs through the bottom part of the proposed open pit. To date, exploration drilling performed by RRR around and within the footprint of the proposed open pit has not confirmed the existence of these reactivated D1/D2 thrust faults or splays of the Quetico Fault (Macdonald 2012). Consequently all previously interpreted major faults/shear zones in the vicinity of the proposed open pit are considered conjecture.

Exploration drilling has revealed one brittle fault (the Eastern Fault; EFLT) that can be correlated across the proposed open pit (Figure 2-3). This is a north-south striking structure that dips at approximately 50° and is an approximately 50 to 100 m thick zone, comprising a relatively thin central zone of fault gouge with brittle deformation either side. This fault can be traced 2.3 km to the north of centre of the proposed open pit and 1.8 km to the south. It does not have a large displacement as the mineralized gold-bearing zones are not notably offset.

The 210°N to 230°N striking faults found to the west of the project area are interpreted to displace all structures and are likely the final major tectonic activity in the area (Figure 2-3). It is possible that the EFLT is contemporaneous with these late south-southwest - north-northeast trending faults.

2.3 Climate

2.3.1 Background

The summary of baseline climatic conditions provided herein, is based on published government sources, on-site studies conducted by KCB, and data from an onsite climate station monitored by RRR. Published sources of climatic information provide the best longer term record for planning and design purposes (Environment Canada 2012).

2.3.2 Temperature

The mean annual temperature and precipitation in the area of the RRGP site are best described by the 1971 to 2000 Canadian Climate Normals. Several climate stations are located within 30 km of the RRGP site; however, the Barwick, Ontario meteorological station (Station 6020559; Environment Canada 2012) has established Canadian Climate Normals and is currently active. The Barwick, Ontario Station is located approximately 20 km south of the RRGP site near Rainy River, Ontario.

The average daily temperature (from Canadian Climate Normals) at the Barwick station is 18.8°C in July, -15.9°C in January and 3.2°C annually.

KCB (2011) found daily average temperatures at the RRGP site from June, 2009 to January, 2011 closely approximated temperatures at the Barwick station 20 km to the south (correlation coefficient of 0.98). Barwick station was typically warmer than the site by 1°C to 2°C (KCB 2011).

2.3.3 Precipitation

On average, 695 mm of precipitation occurs annually, with 552 mm of this total falling as rain. Most precipitation occurs in the summer months and the Canadian Climate Normals show an extreme precipitation event of 152 mm of daily rainfall. The monthly mean precipitation is shown in Table 2-3.

2.3.4 Evapotranspiration

The Hydrological Atlas of Canada (1978) estimates the RRGP region experiences 600 to 700 mm/year of lake evaporation and 500 to 600 mm/year of evapotranspiration. KCB (2011) predicted average evapotranspiration in the RRGP area of likely between 315 and 560 mm/yr (45% to 80% of average annual precipitation). The KCB prediction was based upon regional information (National Resources of Canada Evaporation Atlas and streamflow stations) and data from the temporary climate station. Evapotranspiration varies temporally throughout the year, and spatially as surface water, soil, and vegetation conditions change across the Project area (KCB 2011).

The most applicable evaporation data for the RRGP site is available from the Atikokan Climate Station (Station 6020379) located approximately 175 km east of the RRGP. Annual lake evaporation recorded at this station is 560 mm/year.

2.4 Hydrology

The RRGP is located in the Rainy Lake drainage sub-basin (19,400 km²) of the Rainy River watershed which covers an area of 55,100 km². The Pinewood River is a tributary of the Rainy

River which drains into Lake of the Woods and eventually into Hudson Bay. The Pinewood River is typically meandering and has an average channel slope of less than 0.1%. The proposed open pit is located approximately 43 km upstream along the Pinewood River from the confluence of the Pinewood River and Rainy River (Figure 1-2).

Local drainage systems are characterized by numerous small creeks draining to the Pinewood River. The creeks generally originate in rocky uplands, but also frequently originate from or pass through headwater wetland systems. Much of the area has been cleared for agricultural development, except where rock outcrop and wetlands occur. The natural drainage systems have been altered near the RRGP site through the development of agricultural drains (including the Cowser Drain and Teeple Drain) and ongoing beaver activities.

Regional hydrological data are available from four WSC stations: two on the Pinewood River and two on the much larger Rainy River. Additional Project flow data are also available for a number of the local creek systems. In addition to the WSC data, water level / flow data are being collected periodically by RRR from local creek systems.

The Rainy River WSC stations cover areas that are too large to derive flow condition data which could be applied to the RRGP site, other than for comparisons of long term, per unit area annual averages (i.e., mean annual runoff data) which are not affected by watershed catchment size, or whether or not the station exhibits regulated or natural flow. Data from the downstream Pinewood River station near Pinewood (station 05PC011) are more helpful, especially given the long term record for this station; but the data are limited by the fact that there are no winter data for this station and that the station was discontinued in 1998. The higher mean annual runoff values for this station (270 mm) compared with those of the other three stations is a reflection of the lack of winter measurements.

Data from the upstream Pinewood River station at Highway 617 (station 05PC023) are particularly relevant to the project area because they are on the same river system (the Pinewood River); data are collected year-round; the station is currently still active; and the watershed is comparatively small allowing for direct prorated data derivations for other site area watersheds (Figure 2-4). The only limitation to data records for this station is the comparatively short timeframe for data collection, from 2007 to present.

As with all of northern Ontario, peak stream flows occur in the spring, with a secondary smaller peak flow in the fall. Low flows occur in the winter under ice cover, and also vary, depending on the year, in the late summer or early fall. The average annual runoff for the region is approximately 230 mm, reflecting the progressively drier conditions towards the western portion of the province.

From the information available from the WSC EC gauging stations, the Pinewood River would be considered runoff dominated; however, there is an apparent attenuation to smaller precipitation events (KCB 2011). This indicates a short to medium term flow response to

precipitation (interflow) related to a storage process associated with soils and near-surface deposits (peat, alluvium), but also obstructions to river flow such as beaver dams and elevated culverts. This interflow response is considered part of the Near-surface System (Section 3.4.2).

Overall the Pinewood River has very low flows under dry conditions, which has been approximately assessed by averaging gauged flow outside of clear recessions from runoff events for summer and winter periods. For the years of 2007 to 2010 average low flows have been estimated within the range 0.003 to 0.03 cubic metres per second (m^3/s) for summer conditions (June to September) and 0.01 to 0.1 m^3/s for winter conditions (November to February) for station 05PC023. These values suggest that groundwater recharge on average is very low within the Pinewood River watershed (excluding the Near-surface System) – likely lower than 10 mm/year, assuming an average of 0.03 m^3/s . The low flow conditions have been confirmed through an infield low flow survey (Section 3.4.1).

The downstream Pinewood River station 05PC011 has also gone to zero or near zero flows (monthly averages) in both the late summer/fall (about 10% of years), and in the late winter (about 25% of the years) for records spanning 1952 to 1998. The vast majority of the recorded zero flows for this station were prior to 1983, and may reflect, in part, the seasonal operating constraints of the system.

2.5 Aquatic Studies

As part of AMEC's aquatic baseline study (AMEC 2012b) for RRR, a physio-chemical and habitat characterisation was performed for the Pinewood River and its tributaries. Sediment grain size was consistently dominated by smaller particles (clay and silt) with some sample locations showing a greater proportion of sand and in some cases gravel. Larger particles (cobble and boulder) were atypical for the Project area, but were present at those locations exhibiting higher gradients.

Aquatic habitat was found to support a variety of small-bodied forage fish species. The tributaries of the Pinewood River support warm water fish communities and habitats, while the lower reaches of these tributaries at their confluence with the Pinewood River as well as the Pinewood River itself, support a warm / cool water fish community. These habitats are consistently affected by beaver activity and water temperatures are influenced in many locations, specifically in Clark and Marr Creeks, where watercourses have been manipulated to provide water sources for livestock. In these areas riparian vegetation had been reduced to grass and sedge species in lower densities which provide little cover for thermal refuge.

The creeks and streams that are present in the Project area do not support a commercial or recreational fishery, and a number including Marr Creek and Clark Creek are agricultural drains.

Overall the information from the aquatic studies is consistent with limited groundwater discharge occurring to the Pinewood River and its tributaries.

2.6 Water Wells

An assessment has been made of the occurrence of private water wells within a 10 km radius of the proposed open pit using the geographic location data from the Ministry of the Environment (MOE) water well information system and cross-referenced against more detailed water well records (WWR) requested and obtained from the MOE. Well locations were recorded by the MOE using Global Positioning Systems (GPS) after 2003 and are considered accurate. For wells recorded prior to 2003, schematics of the well location are only available. AMEC conducted a private well survey in 2012 which located 68 private wells within approximately 10 km of the proposed open pit.

The majority of the private wells were drilled to the base of a coarse granular material, presumed to be the Whiteshell Till located above the bedrock surface. These wells are usually in the range of 10 to 30 m below ground surface (mbgs). Where the Whiteshell Till is absent, the wells are completed in the bedrock and are much deeper, approaching 100 m depth. This indicates that the specific capacity of bedrock wells is much lower than those sourcing water predominantly from the Whiteshell Till.

Figure 2-5 shows the locations of the wells, with an indication of accuracy on a scale of one to three, with one being accurate (GPS/well survey), two moderately accurate (reasonable well location diagram in WWR) and three inaccurate (poor well location diagram in WWR). It is likely that these underestimate of the total number of wells as buildings within the 10 km buffer number approximately 130; the majority of these may be assumed to have a well for water supply. However, most of the well locations and buildings correspond with the main roads, particularly the Trans Canada Highway (71), which is 6 km east of the open pit. To the south and north of the proposed pit there are few roads and correspondingly few wells/buildings.

The majority of wells/buildings in close proximity to the open pit are located along Highway 600. Within a radius of approximately two km of the margins of the proposed open pit there are a possible 21 wells of which 18 have associated well records; the other are three buildings with no located well record nearby. The majority of these 21 wells are on RRR lands.

Table 2-1: Summary of Expected Project Area Overburden Geology

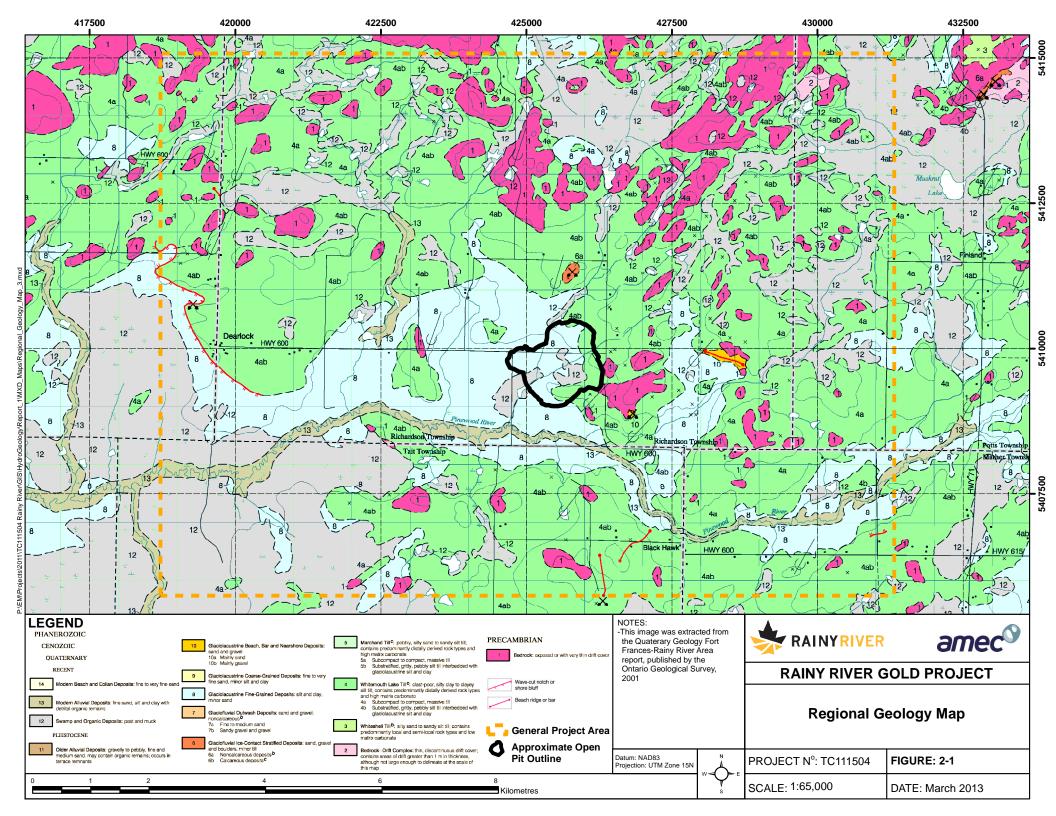
Age Deposit*		Description*	Expected Occurrence in Project Area / Comments	
	Muskeg	Peat and organic muck	Swamps, bogs, drainages	
Holocene	Alluvium	Sand, silt, clay and organics	Along Pinewood River and tributaries	
	Colluvium	Clay, silt, sand; blocks of bedrock	Isolated, at base of slopes	
	Sherack glaciolacustrine	Clay, silt and sand; minor gravel	May occur in areas below 355 masl	
	Poplar River fluvial	Sand and gravel	Unknown	
	Brenna glaciolacustrine	Clay, silt and sand; minor gravel	Widespread in areas below 375 masl	
	Glaciofluvial (Keewatin)	Sand and silt; minor gravel	Isolated	
Late Wisconsinan	Whitemouth Lake Till (Keewatin)	Silty clay: silty, trace gravel, high plastic, carbonate in matrix, the gravel is mostly rounded and consists of limestone, shale and siltstone with minor shield rocks	Widespread / Should be the uppermost till in the area	
WISCONSINAN	Wylie glaciolacustrine	Sand, silt and clay; often laminated or varved	Common / Often occurs between the two tills	
	Glaciofluvial (Labradorean)	Sand, gravel and boulders; minor silt and till	Isolated / Exposed in gravel pit north of proposed open pit	
	Whiteshell Till (Labradorean)	Silty to sandy till: low clay content, some cobbles which are mainly locally derived (volcanics)	Widespread sheet / Generally is the first till to occur above bedrock, with other glacial deposits occurring above	
	Older Keewatin till	Sandy, clayey silt till	Not present to isolated / May occur in	
Pre-late	Older Labradorean till	Sandy silt till	isolated bedrock lows, directly above	
Wisconsinan	Old glaciolacustrine / glaciofluvial deposits	Sand, silt and clay; minor gravel	bedrock	

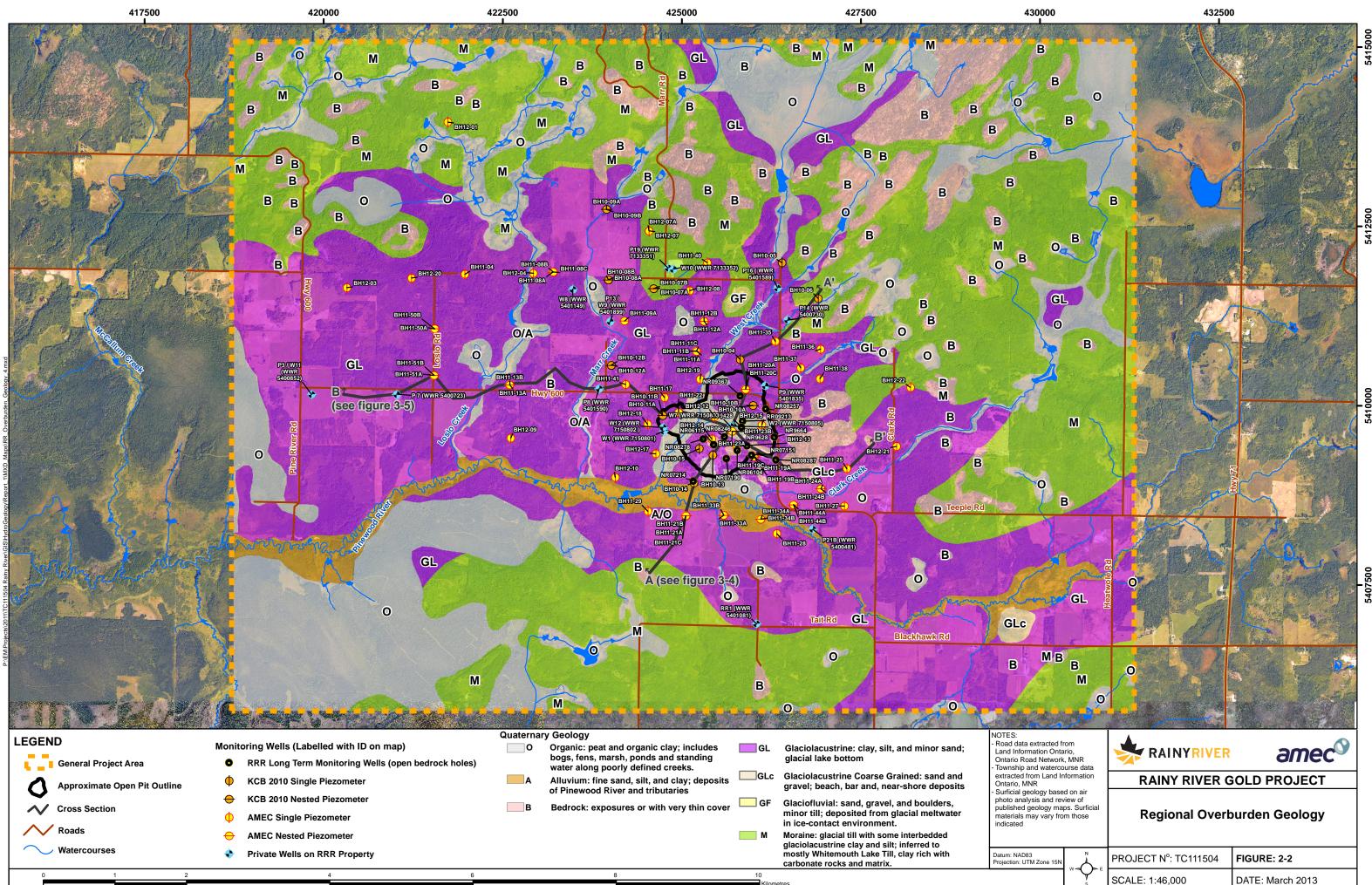
* Modified from Bajc (2001)

Table 2-2: Summary of Project Area Bedrock Geology

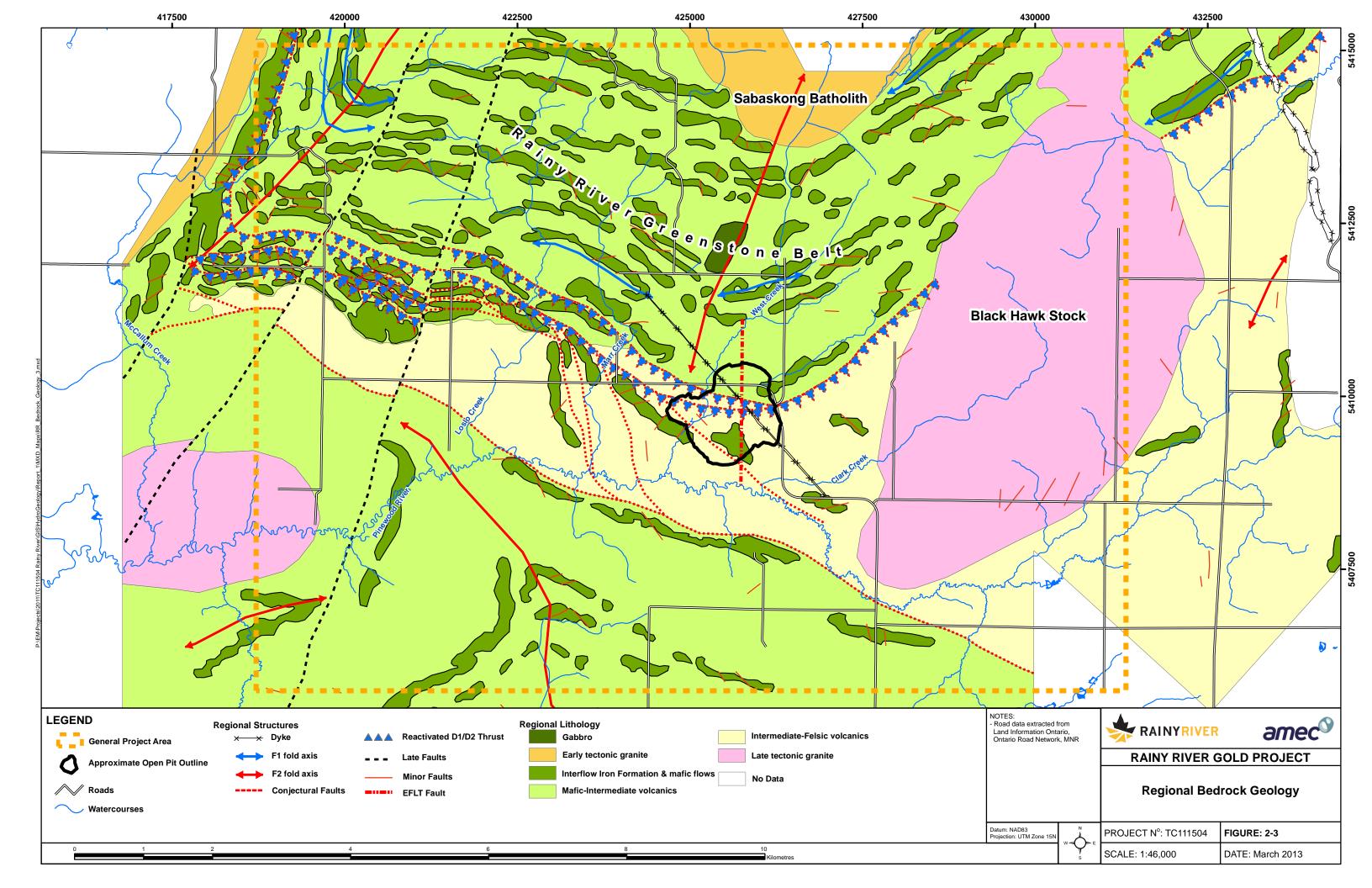
Lithologic Units	Description	Structural relationships	
Metasedimentary Rock	Aetasedimentary Rock Containing graphite and sulphides, occurs above the Intermediate-Felsic Volcanic Succession the project area		
	Mixed Succession: intermediate (dacite-andesite) tuff horizons succeeded by mafic metavolcanics	Above Upper Felsic Succession	
Intermediate-Felsic	Upper Felsic Succession – quartz-pyrhic rhyolite	Above Intermediate Succession	
Volcanic Succession	Intermediate Succession - complex and heterogeneous unit comprising predominantly fine- grained pyroclastic deposits; composed of quartz eye dacite (crystal ash tuff), with subordinate ash horizons; lapilli tuffs, tuff breccias occur locally	Above Mafic-Intermediate Volcanic Succession	
Mafic-Intermediate Volcanic Succession	Subaqueously deposited, fine to medium grained, massive and pillowed flows and flow breccias, with subordinate tuff-hyaloclastite and graphitic sediments, conformably overlying medium to coarse grained, massive flows (probably in part intrusive); a pyritic, heavy metal bearing graphitic horizon is often present at contact with overlying Intermediate-Felsic Volcanic Succession	Above Sabaskong batholith	
Intrusives			
Diabase Dyke	Proterozoic diabase dyke, approximately 10 m thick with sub-vertical dip	Cross-cutting all units across the project site, striking at N135°	
Felsic-Intermediate Intrusions	Abundant, anastomosing felsic-intermediate dykes transect the Mafic-Intermediate Volcanic Succession at oblique angles; the dykes range in thickness from decimeter to decameter-scale	Generally strike at N30°	
Mafic-Ultra Mafic Intrusions	Narrow (sub-metre) mafic and possibly ultramafic intrusions have been frequently intersected in drill holes; in general, these bodies are aphanitic to fine grained and massive to weakly feldspar- phyric; lithologies identified include gabbro, pyroxene-phyric gabbro, pyroxenite and dunite	Concordant and discordant contacts occur and shearing at contacts is quite common	
Blackhawk Stock	The marginal zone comprises coarse grained, unfoliated, pink-gray monzonite; the interior zone comprises grey, porphyritic granodiorite with significant positive topographic relief. Contact with metavolcanic rocks is generally unexposed – in the SE observed to be sharp and non-mineralized	Post dating main deformation events (D/F1, D/F2)	

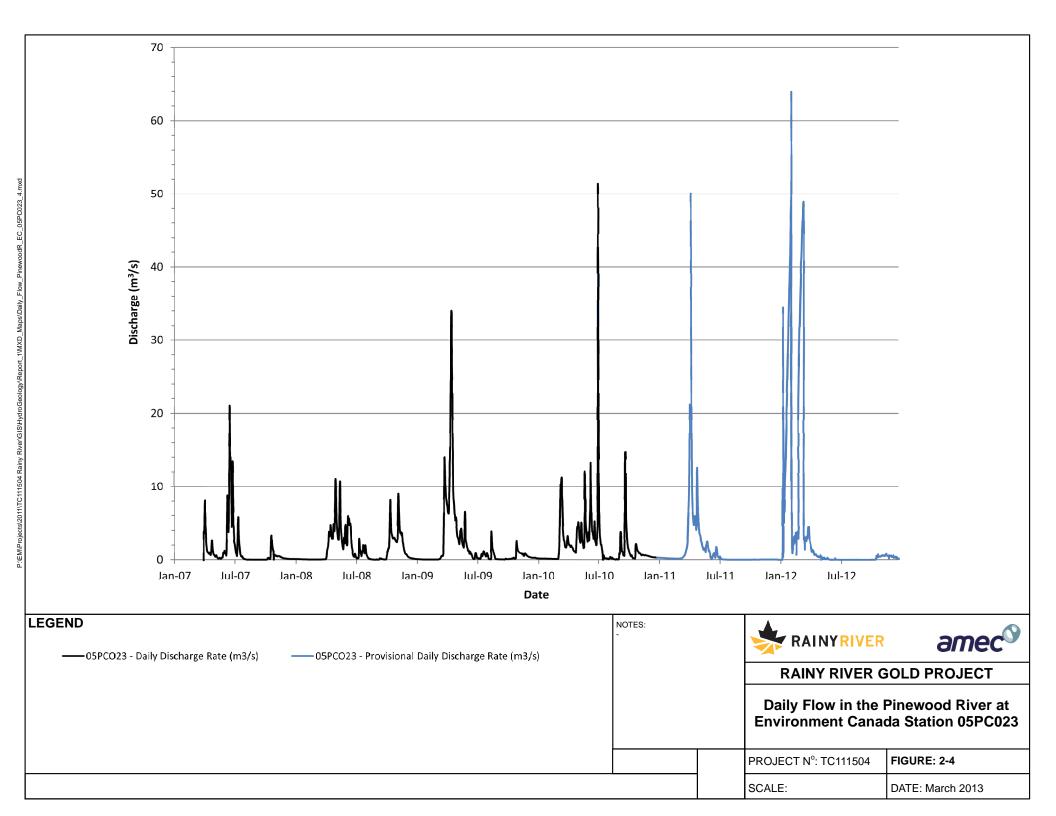
Summarized from Caracle Creek (2008) and SRK (2011)

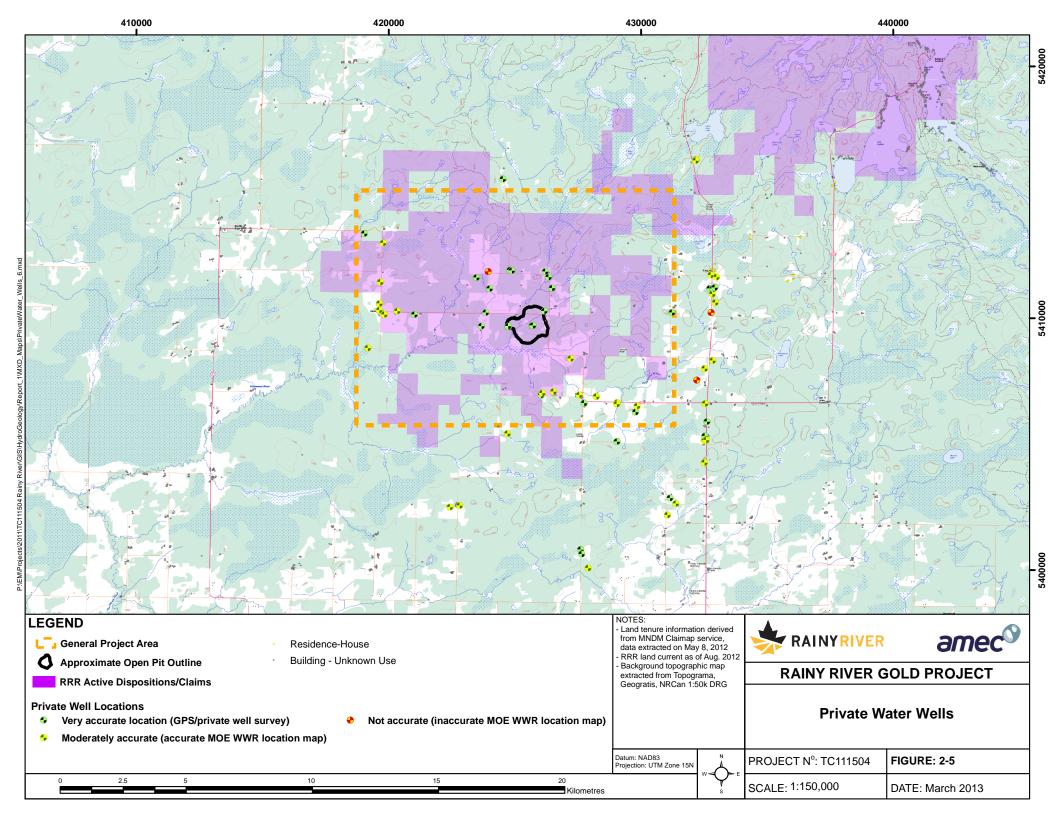



Table 2-3: Environment Canada Station

Station	Location		Dete Benge	Catchment Area	Derived Runoff
Station	Easting	Northing	Data Range	(km²)	(mm)*
05PC011	409290	5400720	1952-1998	461	215
05PC023	413017	5405653	2007-2010	229	200


*from AMEC (2012d)





3.0 HYDROGEOLOGICAL ENVIRONMENTAL BASELINE

3.1 Background and Approach

The hydrogeological environmental baseline condition for the RRGP has been determined through a number of investigations and including most recently those completed by AMEC in 2011 to 2012. Data collected prior to 2011 (KCB 2011) are summarized herein as relevant. Data collected by AMEC are described in more detail with detailed data and/or analyses catalogued in the appendices.

Six hydrostratigraphic units, consisting of overburden and bedrock units have previously been identified in the project area: peat, recent alluvium, Whitemouth Lake Till (Keewatin origin) and glaciolacustrine sediments (Lake Agassiz Sediments), Whiteshell Till (Labradorean origin), competent bedrock and fractured bedrock (KCB 2011). These hydrostratigraphic units have been reorganized into a set of units that are relevant to explaining the groundwater - surface water interaction in the Pinewood River watershed, the artesian conditions that occur at lower elevations and how discharge will occur to the proposed open pit. The proposed hydrostratigraphic units are shown in Table 3-1 listed according to increasing depth. The rational for this hydrostratigraphic subdivision is developed over Sections 3.2 to 3.4 and summarised in Section 3.6, where the hydrogeological conceptual model is outlined.

3.2 Hydrogeological Investigations and Testing for the RRGP

Shallow (overburden and the Shallow Bedrock; AMEC 2012a) and deep (bedrock; AMEC 2012c) investigations have been conducted by AMEC within the project area. These two AMEC investigations are described separately below as they consider largely different hydrostratigraphic units (i.e., different parts of the groundwater flow system) and also different methods of testing (mainly slug testing in shallow piezometers for the overburden and Shallow Bedrock as opposed to packer testing in boreholes for the bedrock), which may produce some systematic bias in the data. There is some overlap as both programmes have undertaken testing on the Shallow Bedrock. Where relevant, data are summarised from KCB (2011) to give a comprehensive understanding of the hydraulic character of the proposed hydrostratigraphic units for the project area.

3.2.1 Overburden and Shallow Bedrock

As part of the geotechnical and hydrogeological site investigations for the RRGP, 51 boreholes were drilled between December 2011 and April 2012 (AMEC 2012a). Boreholes associated with this investigation are all named BH11-XX. Piezometers were installed at 30 of these locations for groundwater level monitoring. These are in addition to the holes / tests completed previously by KCB. The locations of the boreholes with piezometers are shown on Figure 2-2.

The piezometers were constructed with 2.54 cm inner diameter PVC piping and generally had 1.5 m long screens. Up to two piezometers were installed at each borehole location with injected grout seals between installations and offset holes used for additional piezometer installations. The piezometers are identified by the borehole number and the suffix A, B or C (deepest through shallowest, respectively). Piezometers were typically installed in one of three geological units which included the Shallow Bedrock, the Whiteshell Till and the Whitelake Mouth Till. Lithological logs and construction details for these piezometers are provided in Appendix A.

Slug testing of the AMEC piezometers was conducted between June 8 and 16, 2012. Not all the sites were accessible due to access timing limitations, flooded conditions, or in some cases, wells had been damaged since establishment and were not amenable to testing. In total hydraulic conductivity was estimated for 29 piezometers by slug testing. A further three piezometers were tested, but proved to be too conductive for a reliable estimate using a slug testing methodology.

Where it was possible to do so, rising-head slug tests were conducted by removing water using a Waterra Inertia Pump with 13 millimetre (mm) diameter tubing. Changes in groundwater levels were recorded using a transducer and manual water levels at regular intervals. These slug tests were analyzed using the Bouwer and Rice (1976) method. The results of the slug testing are summarized in Table B-1 (Appendix B). Print outs of the analyses using AQTESOLV software (Duffield 2007) are also presented in Appendix B.

Where artesian conditions existed, an extension was placed onto to the well casing in order to measure the height of the water column above grade. The hydraulic conductivity in these flowing artesian wells was calculated using a constant head test analysis (Powers et al. 2007), by measuring the head difference between the static water level and the height of the point of discharge and the flow rate. The latter was calculated by noting the time required to fill a container of known volume. The results of these tests are also presented in Table B-1, with the basic data for these tests presented in a following table in Appendix B (Table B-2).

Summary statistics of the results from the AMEC piezometers, along with those of KCB (2011) are provided in Table 3-2 according to the proposed hydrostratigraphic units used in the groundwater model. These results are considered below according to these hydrostratigraphic units.

Near-surface System

The Near-surface System comprises a heterogeneous assemblage of sediments that includes peat, fine to coarser-grained material associated with the Pinewood River alluvial sediments and weathered clay/till and sand at the top of the Pleistocene Aquitard.

There is one AMEC data point for the Near-surface System, which comprised silty sand and gave a hydraulic conductivity result of 1.4E-06 meters per second (m/s). KCB (2011) undertook slug testing on seven piezometers that were all within 0.5 m of surface and described as being in top soil. These gave a geometric mean of 3.6E-07 m/s with a minimum of 5.6E-08 m/s and a maximum of 3.6E-06 m/s. The data provided above give an indication of the hydraulic conductivity of the finer-grained material (weathered silt, clay and sand from either the Whitemouth Lake Till or Brenna Formation) associated with the Near-surface System.

The hydraulic properties of the other near-surface strata have been assessed by reference to project area geology data and literature. Peat can have very high hydraulic conductivities in the range 1E-04 to 1E-02 m/s, but this is generally only in the top 10 to 20 cm where it is highly weathered. Below this depth it decreases rapidly to within the approximate range of 5E-06 to 5E-05 m/s as indicated by the research of Quinton et al. (2008) on peat hydraulics in Canadian boreal conditions.

Alluvium deposits can be very heterogeneous with grain sizes varying from silt/clay to gravel. The current indications are that the Pinewood River alluvium is relatively fine grained as indicated by borehole data (Appendix A; logs of BH11-29, BH11-21, BH11-33 and BH11-24). Stream bed sediment samples of the Pinewood River are predominantly of clay and silt with some sands in locations (AMEC 2012b). Assuming that grain sizes are predominantly silt to fine sand, hydraulic conductivities in the range of 1E-08 to 1E-04 m/s are expected (Freeze and Cherry 1979).

Whitemouth Lake Till (Pleistocene Aquitard)

All of the AMEC data from the Pleistocene Aquitard are for strata interpreted as Whitemouth Lake Till (10 results), which largely fall within the range 1E-08 to 5E-07 m/s. There is one anomalous high value at 1.8E-05 m/s (BH11-24B), which suggests possibly a faulty completion of the piezometer. This data point is excluded from the statistics shown in Table 3-2. Overall the data collected by AMEC are very consistent in terms of geometric mean and range with the data collected by KCB (Table 3-2). The geometric mean of the combined data is 3.4E-08 m/s.

Overall the vertical hydraulic conductivity of the Pleistocene Aquitard would be expected to be on the order of 1E-08 m/s or possibly lower, particularly where there are glaciolacustrine clays from the Wylie Formation below and Brenna Formation above the Whitemouth Lake Till.

In addition to the slug testing, KCB (2011) also undertook dissipation tests in cone penetration test holes, which give an estimate of the horizontal hydraulic conductivity. These are predominantly for the Pleistocene Aquitard and have been summarized in Table 3-2 to allow comparison with the slug testing data. The results of the dissipation tests are systematically an order of magnitude lower than the slug test results. There is possibly a sampling bias as most of the cone penetration test results are from the upper glaciolacustrine clay (likely the Brenna Formation). Nevertheless KCB (2011) report that only 18 of the 60 tests undertaken reached the

50% dissipation of excess pressure required to produce an order of magnitude estimate of hydraulic conductivity. The others did not produce a meaningful result because of very low dissipation rates (i.e., likely very low hydraulic conductivity). Given the very small-scale nature of the dissipation tests cone penetration test holes it also possible that these could underestimate the bulk hydraulic conductivity by not taking account of layers of coarser material within the Pleistocene Aquitard.

Whiteshell Till (Pleistocene Lower Granular Deposits)

The geometric mean of the hydraulic conductivity of the Whiteshell Till is 8.8E-06 m/s based on the AMEC slug testing data (five results). This is consistent with the slug testing data from KCB (2011), which gave a geometric mean of 1.7E-05 m/s (Table 3-2). There are no systematic spatial variations in hydraulic conductivity notable from these data.

KCB (2011) also performed five pumping tests, which gave results that overall are approximately one half an order of magnitude higher based on the geometric mean of slug test results (Table 3-2). The difference between these two data sources is likely systematic associated with the scale of measurement. Slug tests are likely to be biased by smaller scale heterogeneity and are not an effective test when more permeable units are encountered (the response is too fast to effectively analyse the test, which was the case for one piezometer; BH11-38). The pumping tests are likely to sample the larger-scale hydraulic behaviour of the unit. For the purposes of this study, where the effects of large-scale dewatering is considered, a best estimate value of 5E-05 m/s is considered most appropriate for the Pleistocene lower granular deposits (PLGD) which is consistent with the pumping test data from KCB (2011).

Shallow Bedrock

The AMEC slug testing was performed on bedrock piezometers located within 10 m of the bedrock surface, with the exception of BH11-34A, for which the piezometer was located within 20 m of the bedrock surface. These piezometers can all be reliably considered as measuring groundwater conditions in the Shallow Bedrock, where elevated hydraulic conductivities may be expected due to fracturing and possibly weathering. Highly fractured and sometimes weathered bedrock has been recorded close to the bedrock surface in a number of boreholes (Appendix A; logs of BH11-04, BH11-12, BH11-16, BH11-17, BH11-20, BH11-21, BH11-33, BH11-34, BH11-36, BH11-37, BH11-38, BH11-41, BH11-44, BH11-49 and BH11-51).

The geometric mean of the Shallow Bedrock based on thirteen results is 4.1E-07 m/s, but the minimum and maximum estimated values span five orders of magnitude. The variability of the hydraulic conductivity is most likely associated with the heterogeneity (degree of weathering and fracturing) although there could be some bias associated with the testing methodology, particularly at the extremes where the test results are harder to interpret. There are no systematic spatial variations in hydraulic conductivity notable from these data. Two of the tests

could not be analyzed because of a very fast response due to increased permeability. If these values are assumed 1E-04 m/s, the geometric mean of the AMEC data would be 8.6E-07 m/s.

KCB (2011) also performed slug-testing on the bedrock, but the majority were in open holes with borehole depths ranging from 80 to 760 m which had overburden cased. Although these boreholes are deep, they are of relevance to the Shallow Bedrock as it may be expected that the hydraulic conductivity would be dominated by the fractured / weathered Shallow Bedrock. The geometric mean of the data from open holes is 4.4E-08 m/s, which is an order of magnitude lower and has a much narrower range than the slug testing data obtained by AMEC from dedicated Shallow Bedrock piezometers. As the estimated hydraulic conductivity is averaged over the full length of the borehole, two observations can be made relating to the differences between these two data sets:

- The lower hydraulic conductivities in the deep open holes suggest there is a decrease overall with hydraulic conductivity with depth; and
- The much narrower range of hydraulic conductivities suggests that the influences of discrete transmissive fractures are averaged out for estimates of hydraulic conductivity over larger length-scales.

3.2.2 The Intermediate and Deep Bedrock

The physical characteristics of the intermediate and deeper groundwater flow system has been assessed as part of the AMEC (2012c) geomechanical field program completed between January and April 2012. This program consisted of:

- Seven inclined NQ-sized holes (300 to 400 m long) totaling 2,405 m of drilling to assess the proposed open pit; and
- Three inclined NQ-sized holes (500 to 750 m long), totaling 1,990 m of drilling to assess the proposed underground mine beneath the open pit (Figure 3-1).

The data collected by the geomechanical program provide information on the local geological structure around the proposed pit and underground mine that is of relevance to the hydrogeological assessment of the bedrock. The cores of all these boreholes were oriented and geomechanically logged (AMEC 2012c). A summary of the boreholes is provided in Table 3-3, including the main lithotypes identified.

The rock mass quality based on the rock quality designation (RQD) was assessed to be good to excellent and dominantly above 90%. The intervals with rock identified as shear, breccia or fault zone (SHR in Table 3-3; <1% overall of rock encountered) sometimes have low RQD. The main example is BH12-UG-02, which has values as low as 10% close to bedrock surface (0 to 8 m below bedrock surface (mbbs; approximately 55 to 63 m depth down hole). At greater depths

these zones of deformation tend to have RQDs above 90%, the main exception being the intersection of the EFLT in BH12-OP-07, which is discussed further below.

The hydraulic conductivity has been assessed with 61 packer tests performed in six of the 2012 inclined and NQ-sized geomechanical holes. Rising head tests were performed in four open pit holes (BH12-OP-01, BH12-OP-03, BH12-OP-05 and BH12-OP-07), as well as constant head and falling head tests in two underground holes (BH12-UG-02 and BH12-UG-03, respectively) using single packer equipment. Packer testing was undertaken at the bottom of the boreholes during its advance. The intervals usually ranged from 18 to 21 m. The main exception is one underground hole (BH12-UG-03), where below 300 mbgs packer intervals ranging from 60 to 201 m were used. The Hvorslev solution was used to estimate hydraulic conductivity of all rising and falling tests. The results for most tests produced linear curves. Where this was not the case, curves were fitted within the recommended normalized head range for the Hvorslev solution (0.2 to 0.3; Butler 1998). Constant head tests were analysed using an equation outlined in Power et al. (2007). The analysis and detailed results of these tests are given in Appendix C.

Figure 3-2 summarizes the packer test results, which are plotted according to the depth below the bedrock surface. Based on the packer tests performed, rock hydraulic conductivity values range from 2.4E-10 m/s to 1.6E-06 m/s. The highest hydraulic conductivity value was found in BH12-OP-03 for the packer interval between 9 and 29 mbbs; the overburden at this hole is approximately 8 m thick.

There is an overall decrease in hydraulic conductivity with depth relative to top of bedrock (Table 3-4; Figure 3-2). This is demonstrated by calculating the geometric mean for depth intervals relative to bedrock surface based on the centre point of the packer interval. The depth intervals overlap to avoid significant bias associated with the choice of interval boundary. The four measurements where the centre of the packer interval is within 25 mbbs has a geometric mean of 1.5E-07; i.e., approaching one order magnitude lower than the determinations from slug testing of the Shallow Bedrock, which were mostly within 10 mbbs (Section 3.2.1). With depth below bedrock surface the geometric mean of the hydraulic conductivity becomes progressively lower until it remains more or less constant at just below 2E-08 m/s below 50 mbbs.

The comparison between the packer testing data and slug testing data suggests that the highest hydraulic conductivities are associated with fractured/weathered bedrock within 10 to 20 mbbs. Between 20 and 50 mbbs, the hydraulic conductivity drops rapidly and approaches 1E-08 m/s at depths greater than 50 mbbs. This is consistent with the data obtained from slug testing deep open boreholes reported in KCB (2011; summarized in Table 3-2).

It should be noted that the geometric mean can underestimate the bulk hydraulic conductivity, particularly if transmissive fractures occur over length scales significantly greater than the typical testing interval (i.e., hundreds to thousands of metres rather than tens of metres) and are well connected. This is illustrated by a comparison with the arithmetic mean (Table 3-4), which

would equally weight all measurements implying larger length scales and a higher degree of connectivity for the more transmissive fractures. Overall, the arithmetic means are generally half an order of magnitude higher. There is a similar trend of decreasing hydraulic conductivity with depth, with the exception of the intervals below 100 mbbs, which is influenced by some relatively high hydraulic conductivities (greater than 1E-07 m/s) at depth (greater than 150 mbbs) estimated for two boreholes:

- BH12-UG-02, one interval: 5.5E-07 m/s between 196 and 214 mbbs (approximately 257 to 276 m down hole), lithology within, above and below interval comprises mafic metavolcanics with RQDs at 94% or greater; and
- BH12-OP-05, two intervals: 2.3E-07 m/s between 172 and 191 mbbs (approximately 226 to 247 m down hole), lithology within, above and below interval consists of felsic tuff with RQDs at 97% or greater; and 2.2E-07 m/s between 210 and 239 mbbs (approximately 268 to 300 m down hole), lithology at the top consists of a mafic dyke, but otherwise within, above and below interval consists of felsic tuff with RQDs at 98% or greater.

In summary, these elevated estimates of hydraulic conductivity do not occur within zones of notable fracturing or faulting and it is assumed that they are relatively localized. They may occur where the effective apertures of the joints are slightly larger than normal.

The north-south striking, eastward dipping EFLT has been mapped across the proposed open pit with a strike length of at least 4 km (Section 2.2.6). BH12-OP-07 (Figure 3-1) was drilled inclined towards the south-southwest to intersect the EFLT to assess rock conditions and the hydraulic conductivity across this fault. Two fault zones were identified in this borehole at 33 and 83 mbbs, respectively (approximately 115 and 183 m down hole with RQDs at 60 to 83% and 67%, respectively) and a marginal increase in hydraulic conductivity was estimated with depth (Figure 3-2). The hydraulic conductivity along BH12-OP-07 does not however, exceed 3E-08 m/s and would not be regarded as unusually high for the project area.

KCB (2011) performed two packer tests at boreholes for intervals that were noted to be fractured that are located within the footprint of the proposed open pit, but away from the EFLT (Figure 3-1):

- KCBL-101, one interval: 3.3E-07 m/s between 43 and 63 mbbs (approximately 56 to 76 m down hole), lithology within, above and below interval comprises metavolcanics with RQDs in the range 55 to 92; and
- KCBL-104, one interval: 3.3E-06 m/s between 20 and 22 mbbs (approximately 59 to 61 m down hole) lithology within, above and below interval comprises metavolcanics with an RQD of 70.

These data are at relatively shallow depths below the bedrock surface. The elevated hydraulic conductivities are consistent with increased weathering and fracturing that is expected to occur closer to the bedrock surface, as indicated by the AMEC slug and packer testing data.

In summary, the slug and packer testing undertaken by AMEC on the bedrock has found no consistent relationship between the degree of brittle deformation and hydraulic conductivity. The only major fault structure (EFLT) that can be correlated across the proposed open pit does not have estimated hydraulic conductivities that are above average based on measurements to date. In the absence of data identifying any significant transmissive features with length scales of over hundreds to thousands of metres, the slug and packer testing data of the bedrock support a decrease of hydraulic conductivity with depth as indicated by the geometric mean of the data. This provides the rational for the threefold subdivision of the bedrock, based approximately on depth below bedrock surface (Section 3.6).

3.3 Groundwater Level and Flow Conditions

3.3.1 Overview of Groundwater Level Monitoring

There has been ongoing groundwater monitoring within the project area since August, 2009. Open bedrock boreholes have been monitored since August 2009 and geotechnical boreholes with piezometer installations constructed by KCB have been monitored since September, 2010. A total of 26 locations are being monitored, 6 of which have multilevel piezometers (deepest - labelled A to shallowest - labelled B, with some exceptions though). Monitoring has been conducted weekly to monthly by RRR, although monitoring at some of the open bedrock boreholes monitoring has been discontinued. Twenty-one locations continue to be monitored at present. Appendix A (Table A-1) presents the piezometer details and a representative range of measured groundwater levels in the open bedrock holes and KCB piezometers. Hydrographs for these monitoring installations are presented in Appendix D.

As discussed in Section 3.2.1, AMEC has added 30 piezometer sites to the groundwater level monitoring network of which 14 are nested piezometers (Appendix A, Table A-1). As monitoring has only recently started on these piezometers, no hydrographs are presented. In addition to these sites, AMEC has also started monitoring at 16 existing private wells on RRR lands. Appendix A (Table A-1) presents data for all monitoring sites for a survey undertaken in June, 2012, which provides the most extensive data set spatially for the project area.

Appendix A, Table A-1 also shows data for September, 2009, 2010 and 2011 and March, 2011 as a comparison, which shows that groundwater levels during the June, 2012 survey are low. This is also evident from the groundwater level hydrographs (Appendix D), which show a notable decline during 2011 into 2012 (see Section 3.3.4 for a fuller discussion of these data). Given the wide coverage of the June, 2012 data, these provide the best available data set for the analysis of the regional and local, groundwater level and flow conditions (Section 3.3.2),

including the patterns of artesian conditions and vertical gradients (Section 3.3.3). The climate conditions of 2012 have, however, been taken into account when interpreting these data.

3.3.2 Regional and Local Groundwater Flow Directions

The regional groundwater flow has been previously described by KCB (2011; Figure 6.2). Groundwater flow approximately follows topography with a groundwater divide to the northwest, approximately coincident with the watershed boundary of the Pinewood River. Groundwater flow is generally towards the west in the Pinewood River watershed.

There are some variations from the groundwater level data collated from previous studies (KCB 2011) and ongoing groundwater level monitoring by RRR, and the new piezometers installed and monitored by AMEC. Figure 3-3 shows a contour map of the groundwater levels from the bedrock and/or the PLGD for June, 2012. Groundwater flow is from the higher ground towards the Pinewood River corridor. It should be noted that two of the private wells (P14 and P16) are thought to be being pumped and do not adhere to the contours.

Horizontal gradients are relatively steep on higher ground approaching 0.01, but become more subdued in the lower lying areas decreasing to around 0.003 in the area. It is particularly notable as this pattern has prevailed during the dry conditions encountered in 2011 and 2012. The change in horizontal gradient is a strong indication that as the groundwater flows from the higher ground to lower elevations there is flow from the Shallow Bedrock to a more permeable hydrostratigraphic unit. The most likely explanation is that recharge water flows into overlapping and more permeable Whiteshell Till or other granular material (i.e., the PLGD). The pattern is consistent with the results from hydraulic testing, which shows the Whiteshell Till having at least an order of magnitude higher hydraulic conductivity overall than the Shallow Bedrock (Section 3.2.1). This is an indirect, but reasonable indication that the PLGD do not have significant exposure at surface and direct access to recharge water, either from precipitation or any surface water.

3.3.3 Vertical Gradients

Artesian conditions as demonstrated by flowing wells occur in the area and particularly for boreholes completed in the bedrock and/or the Whiteshell Till. This is shown from north to south and east to west in cross section on Figures 3-4 and 3-5, respectively. Artesian conditions are most prevalent during the freshet when groundwater levels are high, but many piezometers occur that appear to be permanently artesian. The piezometers with artesian conditions (either apparently permanent or periodic) are indicated on Figure 3-6 for the groundwater levels measured in the deepest piezometers (Shallow Bedrock, Whiteshell Till; or the deeper piezometers of the Whitemouth Lake Till at greater than 10 mbgs). The occurrence of artesian conditions is systematic. Most artesian piezometers occur below the 350 masl contour in the lower lying areas of the Pinewood River corridor in the vicinity and to the west of the proposed open pit. The higher areas immediately to the south, east and north of the proposed open pit are

largely free of artesian conditions, coincident with the bedrock outcrop or limited overburden thickness.

The distribution of the artesian conditions in the bedrock and Whiteshell Till is a consequence of the general groundwater flow in the Pinewood River watershed in the immediate vicinity of the proposed open pit. Groundwater is mainly recharged in the higher areas where there is bedrock outcrop (or with minimal overburden cover). Groundwater flows towards the Pinewood River corridor and subsequently becomes confined in the Shallow Bedrock and Whiteshell Till beneath the lower permeability silty clays of the Whitemouth Lake Till and glaciolacustrine deposits that largely sandwich this till (i.e., the Pleistocene Aquitard). The steeper horizontal gradients shown in Figure 3-3 are likely where flow is predominantly through the Shallow Bedrock. These gradients become shallower in the lower lying areas where the bedrock is overlain by the Whiteshell Till and other granular deposits (the PLGD), which is then the main unit for horizontal groundwater flow.

The vertical gradients are plotted in Figure 3-6 for June, 2012 for the locations where there are nested piezometers with a piezometer in the Shallow Bedrock and/or Whiteshell Till to a piezometer in the Whitemouth Till or the shallow overburden above. The average piezometer spacing (from middle of screen) of the nests is just less than 20 m. The gradients tend to be of the order of 0.03 to 0.1 and are upwards (indicated as negative) along the stream corridors and downwards in the higher areas between the streams. The consistent upward gradients across the Whitemouth Lake Till along the Pinewood River corridor are shown by four nested piezometers (BH-11-21, BH-11-33, BH-11-34 and BH-11-44), which are all located within about 500 m of the Pinewood River. This is an indicator of groundwater discharge in the Pinewood River corridor from the Shallow Bedrock and PLGD.

There is one location where a very strong downward gradient occurs between the Shallow Bedrock and the Whitemouth Lake Till (approximately 0.58 at BH-11-50). This is a location where the measured groundwater level of the bedrock (5.9 mbgs) is below the screened interval in the Whitemouth Lake Till (4.5 mbgs) and is an indication that perched conditions in the Whitemouth Lake Till could occur above the bedrock outside of the stream corridors. It is also an indication that some recharge to the PLGD and bedrock is possible through the Whitemouth Lake Till on higher ground, particularly where it is not overlain by glaciolacustrine clays.

3.3.4 Temporal Groundwater Level Responses

Groundwater levels have been regularly monitored in the overburden and the bedrock since the summer of 2009. Some of the piezometers have artesian conditions and the records may be limited because the groundwater level is above stick-up and/or the piezometer pipe has been frozen during winter conditions. The main characteristic of most hydrographs where records are continuous, is that they show a regression that starts at the end of 2010 and continues through 2011 into 2012. This is largely due to the low amount of precipitation throughout 2011, which

was below 60% of the 1971 to 2000 climate normal annual value. In 2012 there has been relatively limited, if any recovery, because the precipitation has remained below average.

3.3.4.1 Whitemouth Lake Till and Near-surface System

There are seven sites with piezometers with groundwater level hydrographs with measurements in overburden interpreted as Whitemouth Lake Till or sediments above. At five of these there are nested piezometers with a piezometer at two levels within the Whitemouth Lake Till (three sites) or with a piezometer in the Whitemouth Lake Till and the Whiteshell Lake Till or bedrock below (two sites). There are two additional sites that have piezometers straddling the contact with the Whitemouth Lake Till and the Whiteshell Till and are more likely representative of the latter.

In most cases the full annual variation in groundwater levels in the Whitemouth Till could not be measured due to the practical limits of measuring artesian heads above the top of the well casings (or potential breaks in the casings near ground level) (Figure 3-8). Most of the piezometers with artesian conditions have screens that are at least 10 m below surface. The main exception is BH10-06, which has a shallow piezometer within 5 m of the surface and had artesian conditions in 2011, which subsequently dropped 3 m in 2012. The log of this borehole (KCB 2011) shows gravel immediately beneath the piezometer screen and the groundwater level measured could actually be more representative of conditions in the Whiteshell Till. The recession observed in this hydrograph could be explained by the relatively thin amount of silty clay above and proximity to a possible discharge boundary (tributary of the West Creek; Figure 2-2).

The responsive shallow piezometers are more likely representative of the Near-surface System where local precipitation recharge and resulting shallow groundwater discharge occurs, possibly over a time-scale of several months after a precipitation event. The less responsive and mostly deeper artesian piezometers, are an indicator of a confining system (i.e., caused by the Pleistocene Aquitard) with upward groundwater gradients. The groundwater level variation in these piezometers is expected to be largely influenced by groundwater head variations at the base of the Pleistocene Aquitard, rather than by any precipitation recharge infiltrating in the immediate vicinity of the piezometer.

3.3.4.2 Whiteshell Till and Deeper Overburden

There are seven sites with piezometers with groundwater level hydrographs with measurements in overburden interpreted as Whiteshell Till. As noted above, two of these sites have piezometers that straddle the contact with the Whitemouth Lake Till above, but are most likely representative of Whiteshell Till conditions.

Similar to the deeper piezometers in the Whitemouth Lake Till, the groundwater level variations shown by Whiteshell Till piezometers are fairly subdued (less than 1 m) as exemplified by

BH10-11A (Figure 3-8). It is also noteworthy that where artesian conditions occur (BH10-11A, BH10-12A and BH10-14), they are persistent throughout the dry period from 2011 through 2012.

There is one nested piezometer that has separate completions in the Shallow Bedrock and Whiteshell Till (BH10-09; Figure 3-9). Given the very similar groundwater levels, it would appear that there is a good hydraulic connection between Whiteshell Till and the Shallow Bedrock.

3.3.4.3 Bedrock

There are no dedicated monitoring installations in the Intermediate and Deep Bedrock, but monitoring has been undertaken on a regular basis in eleven deep open boreholes since 2009. These may provide some indication of groundwater conditions at depth in the bedrock, although the interpretation of data from open boreholes is less certain, because the borehole itself is a flow conduit.

The hydrographs from the deep open boreholes all show climatic responses, including reasonably rapid responses to rainfall, freshet conditions and dry periods. For example, the majority of the deep boreholes show the strong groundwater level decline in 2012, the main exception being the strongly artesian boreholes, where due to practicalities there is no detailed groundwater level record (nevertheless the water pressure may have declined in these boreholes). In general the climatic response is of the order of 1 to 2 m across a year, although one borehole (NR08287; Figure 3-10) shows an annual variation of up to 5 m, which may be considered unusual. The occurrence of the clear climatic signals can be explained by a proximal confined response in the Shallow Bedrock, given the likely hydraulic diffusivity of the Shallow Bedrock.

Rushton (2003) provides a simple assessment for the time necessary for a signal at a boundary (in this case recharge at the bedrock outcrop) to cover distance (L) to a particular point (in this case a deep borehole), where t equals approximately L²/D. D is the unit hydraulic diffusivity (hydraulic conductivity divided by specific storage). Assuming a typical fractured bedrock specific storage of 1E-06 to 5E-06 1/m (Anderson and Woessner 1992) and a Shallow Bedrock hydraulic conductivity of 1E-06 m/s, it would take of the order of 10 to 60 days for a recharge signal from bedrock outcrop to reach a borehole at 1 km distance. It can be concluded that most of the deep boreholes have a record that are consistent with a confined response in Shallow Bedrock given the typical Shallow Bedrock hydraulic conductivity estimated from hydraulic testing undertaken.

With lower hydraulic conductivities more typical of Intermediate and Deep Bedrock (1E-07 m/s and less) a more attenuated climatic response in the groundwater level record may be expected. It is possible that persistent artesian conditions with no climatic signature (such as NR07214; Appendix D) are representative of very tight bedrock, Shallow Bedrock that is not weathered or fractured. This would appear atypical considering it concerns only 2 of 13 records.

3.4 Groundwater - Surface Water Interaction

3.4.1 Pinewood River Low-flow Conditions

Spot flow gauging has also been completed since 2008 within the Pinewood River watershed and adjacent watersheds. Nine locations were gauged by KCB; seven in the Pinewood River watershed and two immediately to the northeast of this watershed (Table 3-5, Figure 3-11). Five of the sites were equipped with level loggers and spot gaugings were undertaken for the purpose of establishing stage-discharge rating curves. Flow hydrographs were not generated at these sites because of anomalous relationships between stage and discharge, potentially related to changes in backwater conditions (beaver dams, debris in culverts etc.) and inaccuracy of measurements at very low velocities (KCB 2011).

AMEC completed a stream flow monitoring program in late August to early September, 2011 with the objective of characterizing stream flows in the vicinity of the project area under low-flow conditions (Appendix E). Twenty-five sites were selected for flow measurements. The survey was performed over three days and provides a basis to assess the downstream accumulation of groundwater discharge within the Pinewood River watershed.

The encountered flow conditions in 2011 were lower than typical for the months of August and September based on comparisons with the baseline study completed by KCB (2011) and conversations with local individuals. The dry conditions in 2011 are also evident in the groundwater level hydrographs (Section 3.3.4). Beaver activity and culverts placed higher than the stream bed (Appendix E) were also apparent at some locations impeding the flow. A summary of the survey is provided in Table 3-5 together with summer measurements previously undertaken by KCB at overlapping sites for comparison. Figure 3-11 plots the results of the 2011 monitoring program, indicating the flow conditions and average discharge rate at each of the sites.

In summary, most locations had no noticeable flow, as these either had: large volumes of standing water with no flow, disconnected ponds of standing water, or dry stream beds. Given the results of this survey, it can be concluded that under dry conditions there is effectively no or minimal flow in the Pinewood River watershed upstream of the current Environment Canada gauging station (05PC023).

3.4.2 Synthesis of Surface Water Flow and Groundwater Level Data

Overall it appears that groundwater - surface water interaction in the Pinewood River watershed is largely governed under current conditions by the occurrence of the Pleistocene Aquitard, in particular the glaciolacustrine sediments in the lower areas below 350 masl. The upward vertical hydraulic gradients in the lower areas mean there is no local recharge infiltrating to the Whiteshell Till and Shallow Bedrock through the Pleistocene Aquitard. Any precipitation that

occurs in the low areas either: becomes runoff (particularly during higher rainfall events of more than 20 mm/d); evaporates; infiltrates locally in the shallow sediments and peat that occur above the Pleistocene Aquitard; or is held up by beaver dams or other obstructions such as elevated culverts. The infiltration into shallow sediments and peat (the Near-surface System) is expected to produce discharge over the short to medium term and in the order of months to the Pinewood River and its tributaries, which is hereafter referred to as interflow. The attenuation that is noted in the gauging records of the Pinewood River (Section 2.4) is likely a combination of water stored in the Near-surface System and surface obstructions. As discussed in Section 3.3.4.1, there are groundwater level hydrographs obtained from shallow piezometers (<5 m deep) that are consistent with a Near-surface System that supports flow in the Pinewood River watershed over the short to medium term.

Under persistent dry conditions such as those encountered through 2011/2012 and monitored in August and September 2011; however, the interflow discharge from the Near-surface System more or less ceases (i.e., the groundwater levels in the shallow sediments and peat drop to such an extent that any significant flow past obstructions, either high culverts or beaver dams is simply not possible. It should be noted across small (over less than 100's of metres) reaches of the creek more complex interactions could occur particularly associated with near-surface Pleistocene sand deposits. These still may discharge through dry periods, but the flow from these is not evident because it is obscured by obstructions (particularly beaver dams).

The absence of any significant flow during August and September 2011 is indicative of very limited groundwater - surface water interaction between the PLGD and Pleistocene Aquitard and creeks within the Pinewood River watershed. This is consistent with the low amounts of flow recorded in the Pinewood River watershed during dry conditions (Section 2.4). Although overall the pattern of horizontal and vertical groundwater levels and gradients is indicative of groundwater discharge in the Pinewood River corridor, the quantities are very limited. This indicates that relatively little water infiltrates through the Shallow Bedrock or Whitemouth Lake Till into the Whiteshell Till under present conditions. The discharge that does occur is over a wide area and this concerns relatively small quantities, which do not give rise to notable downstream accumulation of flow in the Pinewood River and tributaries during very dry conditions.

3.5 Groundwater Quality

Groundwater sampling was completed during 2007 and 2009 to 2012. The baseline study completed by KCB (2011) reported extensively on the groundwater quality of the overburden and the bedrock with data up to 2010, including piper diagrams. In general it was found that the groundwater comprised typical calcium-magnesium-bicarbonate type water with the majority of sampling points having total dissolved solids exceeding 500 mg/L. The following dissolved metal concentrations were noted to exceed or met the Ontario Provincial Water Quality Objectives (PWQO) for the Protection of Aquatic Life at one or more of the twenty monitoring wells that were sampled: aluminum (one site), cadmium (one site), cobalt (six sites), copper (one site),

iron (14 sites), mercury (one site), molybdenum (one site), uranium (four sites) and zinc (one site). It should be noted that groundwater cannot be directly compared to the PWQO, but the objectives can nevertheless be used for description purposes. Exceedances of the PWQO were also observed in surface water body samples for aluminum, cobalt, copper and iron.

KCB (2011) also reviewed a municipal groundwater study for the Township of Chapple and noted that the raw water quality of samples collected from four municipal water supply wells completed in bedrock at the Village of Barwick, located approximately 23 km south of the site, frequently exceeded the Ontario Drinking Water Standards for aluminum, iron and manganese. They also indicated the frequent occurrence of higher iron concentrations in the project area.

Subsequent groundwater sampling by RRR of monitoring wells for 2011 to 2012 is summarised in Appendix F. This sampling has found dissolved metal exceedances of the PWQO for some of the metals reported by KCB (2011) at one or more wells. The groundwater was found to contain metal contents which exceeded the PWQO on one or more sampling occasion include: arsenic (six sites), cobalt (four sites), iron (four sites), molybdenum (two sites), tungsten (four sites) and uranium (two sites). Groundwater was also found to exceed the Canadian Environmental Quality Guidelines (CEQG) for the protection of aquatic freshwater life for similar metals including: arsenic (six sites), cadmium (one site), iron (four sites), mercury (one site) and uranium (one site)

There is no strongly discernable difference between groundwater quality in individual hydrostratigraphic units with regards to metals for which there are PWQO/CEQG, save uranium. As had been noted by KCB (2011) exceedances in uranium concentrations are only observed in wells screened in the Pleistocene Aquitard, a trend that was also observed in subsequent sampling efforts.

3.6 Conceptual Model Summary

Five hydrostratigraphic units have been identified that are key to explaining: the groundwater surface water interaction in the Pinewood River watershed; the artesian conditions that occur; and in predicting the groundwater level drawdown and surface water flow depletion associated with the proposed open pit:

Near-surface Flow System: This unit consists of all the Holocene sediments (alluvium, peat) and hydrologically is the unit in combination with surface storage from beaver dams etc., that is responsible for the attenuation of moderate runoff events in the Pinewood River watershed that produces the short to medium-term interflow response in the river (Sections 2.4 and 3.4). Locally, this may also include more granular and weathered units of the younger Pleistocene deposits where they lie immediately beneath the Holocene deposits, likely to be mainly from the Brenna Formation.

- Pleistocene Aquitard: This unit consists mainly of Whitemouth Lake Till, but also includes the upper and lower glaciolacustrine deposits that sandwich the Whitemouth Lake Till (the Wylie Formation beneath and the Brenna Formation above). Overall this is a reasonably heterogeneous unit that contains some sand lenses that locally may provide some horizontal groundwater flow, otherwise the vertical flow is likely to dominate. The glaciolacustrine sediments at the top and the bottom of this unit probably have the lowest hydraulic conductivity; however, neither of these units are as continuous as the Whitemouth Lake Till. Nevertheless, the Pleistocene Aquitard overall is of low enough hydraulic conductivity to give rise to artesian conditions in the low lying areas within the project area to the west along the Pinewood River and tributaries, particularly below 350 masl.
- PLGD: This unit consists of predominantly the Whiteshell Till and possibly also glaciofluvial deposits of Labradorean origin beneath the Pleistocene Aquitard. It is purposely not referred to as an aquifer because of its overall modest hydraulic conductivity.
- Shallow Bedrock: This unit includes bedrock within 10 to 20 m of the upper bedrock surface and is often weathered and fractured. It is expected to have a moderate hydraulic conductivity overall at least one order of magnitude lower than the Whiteshell Till. Hydraulically it has a reasonable connection with the PLGD.
- Intermediate and Deep Bedrock: Overall a decreasing hydraulic conductivity can be observed with depth. The distinction between intermediate and deep is made to approximately replicate the observed data and is taken at approximately 200 to 300 mbgs.

A summary of the estimated hydraulic conductivities is provided in Table 3-6 based primarily on hydraulic testing undertaken around the project area. The hydrostratigraphy in the bedrock may be different, particularly at depth, if elevated hydraulic conductivities occur in relation to brittle deformation. The EFLT is the only fault identified that has been mapped across the proposed open pit. Conservatively this has been assumed a zone of more enhanced hydraulic conductivity at depth (Intermediate and Deep Bedrock) 100 m wide, although the hydraulic data collected to date does not consistently suggest this is a zone of enhanced transmissivity.

The pattern of groundwater flow at the site is illustrated schematically in a conceptual cross section shown on Figure 3-12. Most of the effective precipitation is either runoff or infiltrates in shallow soils (mainly weathered silts and clays) peat and alluvium. The latter is expected to discharge relatively quickly over the short to medium term as interflow and is interpreted as part of a near-surface flow system (including beaver dams and other obstructions) that gives rise to the characteristic attenuated response of the Pinewood River system to smaller-scale precipitation events.

Limited groundwater recharge to the deeper groundwater system (Shallow Bedrock and PLGD) is expected to occur, primarily where the bedrock is at surface or has limited cover of overburden. Very limited recharge to the deeper groundwater system is probable through the Whitemouth Lake Till on higher ground as downward groundwater gradients are likely. Sand and gravel pits located within the project area may act as localized areas of high recharge rates, although geological data suggest these occur above the Pleistocene Aquitard. Where glaciolacustrine clays and peat are close to surface within the project area, recharge to the deeper groundwater system is minimal (effectively zero), particularly where artesian conditions prevail (below 350 masl). When averaged over the entire project area, recharge to the deeper groundwater system is considered less than 5% (<10 mm) of the total effective precipitation.

Groundwater discharge from the deeper groundwater system to the Pinewood River and its tributaries does occur, but this is very distributed and overall the flows are very low. Given this conceptual model, the majority of watercourses and wetlands are considered weak discharge areas for the deep groundwater system. On higher ground and particularly around 4 km to the north of the proposed open pit, there are wetlands and lakes that may act as groundwater discharge points.

Groundwater withdrawal from the proposed open pit is expected to increase the overall recharge rates in the proximity of the pit due to: altering the direction of vertical gradients from the upward to the downward ones; and increasing the moisture penetration ability / capacity of soil(s) by lowering the water table due to the dewatering operations.

Table 3-1: Summary of Hydrostratigraphic Units

Hydrostratigraphic Units	Geologic Units
Near-surface System	Mainly the Holocene sediments, including the peat and alluvial deposits of the Pinewood River. May also include locally small amounts of Whitemouth Lake Till and and/or Brenna Formation near surface where these comprise fine sand and coarser material or are highly weathered.
Pleistocene Aquitard	The dominant unit is the Whitemouth Lake Till, but also includes the various glaciolacustrine deposits (primarily the Wylie and Brenna Formations)
PLGD	The dominant unit is the Whiteshell Till, but also includes Labradorean glaciofluvial deposits. Coarser (fine sand and above) parts of the Wylie Formation may be included where this sits immediately above the Whiteshell Till or bedrock
Shallow Bedrock	Weathered and/or fractured undifferentiated bedrock, occurring within 10 to 20 m of the bedrock surface
Intermediate and Deep bedrock	Undifferentiated bedrock

Table 3-2: Summary Statistics of Hydraulic Conductivity Data for Overburden and Shallow Bedrock Hydrostratigraphic Units Based on Slug Testing and Pumping Tests

	Number	Geometric Mean (m/s)	Minimum (m/s)	Maximum (m/s)
AMEC slug testing				
Near-surface System	1	1.4E-06	1.4E-06	1.4E-06
Pleistocene Aquitard	9	4.5E-08	8.6E-10	5.0E-07
PLGD	5	8.8E-06	1.6E-06	1.0E-04
Shallow Bedrock	13	4.1E-07	1.8E-11	1.7E-05
Slug testing and pumping tests (KCB 2011)				
Near-surface System	7	3.6E-07	5.6E-08	3.6E-06
Pleistocene Aquitard	8	2.5E-08	1.9E-09	2.5E-07
PLGD	7	1.7E-05	4.0E-07	1.8E-04
PLGD - PT*	4	8.8E-05	4.8E-05	2.1E-04
Shallow Bedrock	2	1.1E-06	7.7E-07	1.7E-06
Bedrock (open borehole 80 to 760 m deep)	11	4.4E-08	2.1E-09	2.9E-07
Cone penetration testing (KCB 2011)				
Near-surface System	1	1.8E-09	1.8E-09	1.8E-09
Pleistocene Aquitard	14	3.6E-09	3.5E-11	1.4E-07
PLGD	3	1.2E-07	1.6E-08	5.2E-07
Combined slug testing				
Near-surface System	8	4.3E-07	5.6E-08	3.6E-06
Pleistocene Aquitard	17	3.4E-08	8.6E-10	5.0E-07
PLGD **	12	1.3E-05	4.0E-07	1.8E-04
Shallow Bedrock***	15	4.7E-07	1.8E-11	1.7E-05

* Pumping test results from KCB (2011)

** Excluding pumping test results from KCB (2011)
 *** Excluding open holes tested by KCB (2011)

Table 3-3: Summary of Deep Geomechanical / Hydrogeological Boreholes

Borehole	Easting	Northing	Surface Elevation (masl)	Dip (°)	UTM Azimuth (°)	Overburden Depth* (m)	Completion Length (m)	Major Rock Type Encountered (ratio based on the core geology)
BH12-UG-01	425213	5409209	349	80	25	37	739	FLS (31%), MSD (67%), MMV (2%)
								MMV (63%), FLS (27%), IMV (8%), SHR
BH12-UG-02	425625	5409102	348	75	25	55	750	(2%)
BH12-UG-03	426224	5409421	360	70	25	8.8	501	IMV (65%), FLS (35%)
BH12-OP-01	425057	5409436	347	65	220	58	402	FLS (82%), MMV (17%), MIN (1%)
BH12-OP-02	425809	5409377	351	65	120	45	402	IMV (65%), MMV (27%), FLS (8%)
BH12-OP-03	425018	5409873	349	65	320	30	400	FLS (89%), MMV (10%), SHR (1%)
BH12-OP-04	425555	5410117	349	65	250	42	300	FLS (96%), FIN (6%), SHR (1%)
BH12-OP-05	425745	5410254	350	65	45	36	301	FLS (77%), MSD (21%), MIN (2%)
BH12-OP-06	425889	5410057	349	65	135	48	300	FLS (85%), MIN (9%), IMV (6%)
BH12-OP-07	425900	5409801	349	45	225	68	300	FLS (95%), SHR (4%), MIN (1%)
KCBL-101	425482	5409624	355	80	180	12	383	-
KCBL-104	425950	5409600	355	70	130	38	400	-

Depths are measured along the borehole and have been determined based on the borehole log geological descriptions Felsic (FLS), Intermediate Volcanics (IMV) and Mafic Metavolcanics (MMV), Metasediments (MSD), Felsic (FIN), Mafic (MIN) Intrusives and Shear (SHR). AMEC (2012c) provides detailed descriptions **

Table 3-4: Hydraulic Conductivity Data for Shallow, Intermediateand Deep Bedrock Based on Single Packer Testing

Interval (mbbs) *	Number	Geometric mean (m/s)	Arithmetic Mean (m/s)	Minimum (m/s)	Maximum (m/s)
0 to 25	4	1.5E-07	7.0E-07	7.9E-09	1.6E-06
0 to 50	10	1.3E-07	4.1E-07	4.9E-09	1.6E-06
25 to 75	11	4.4E-08	2.8E-07	3.8E-09	1.4E-06
50 to 100	13	1.6E-08	1.3E-07	3.8E-09	7.9E-08
75 to 150	18	1.8E-08	2.7E-08	1.4E-09	1.1E-07
100 to 250	30	1.7E-08	7.7E-08	1.8E-10	7.6E-07
>200	17	1.5E-08	7.8E-08	1.1E-09	5.5E-07

* metres below bedrock surface - taken as the centre of the packer interval

Table 3-5 Summer Spot Flow Gauging, Pinewood River and Adjacent W	Watersheds
---	------------

	Easting			(2011) veys	AMEC Survey						
Station		Northing	June / July 2009	June / July 2010	Aug/Sept 2011						
• milen			Average	ulscnarge (m³/s)	Average Discharge (m³/s)	Comments on Flow Conditions	Beaver Activity				
05PC023	413028	5405669			0	Disconnected pools in creek	Not evident				
Clark 1*	427957	5409191			0.0062	Visible flow	Not evident				
Jones 1	416578	5411821			0	Disconnected pools in creek	Not evident				
Jones 2	418847	5413450			0	Creek bed dry	Not evident				
Loslo 1	422912	5412040			0	No Flow	Yes				
Marr 1	423675	5410238			0	Disconnected pools in creek	Possible				
Marr 2	423689	5411785			0	Creek bed dry	No				
Pine 1*	429234	5406712			0.002	Water in creek, no visible flow	Likely				
Pine 2	430090	5408419			0	Creek bed dry	No				
Pine 3	425546	5408124			0	Creek bed dry	No				
Pine 4	430951	5407634			0	No visible flow	Likely				
SW1	426312	5408490	0.03		0	No visible flow	Yes				
SW1A	426150	5408768		0.1	0	No visible flow	Yes				
SW2	425267	5410115	0.12		0	Disconnected pools in creek	No				
SW3	419494	5408096	0	1.36	0	Disconnected pools in creek	No				
SW4	432799	5413361	0		0	No visible flow	Yes				
SW5*	424634	5416586	0		0.0019	Water in creek, no visible flow	Yes				
SW10	427823	5407034			0	Water in creek, too shallow	No				
SW13	422184	5410152		0.006	0	Water in creek, too shallow	No				
SW14**	426283	5411689		0.07	0.01	Visible flow	No				
Tait 1	423669	5403689			0	Creek bed dry	No				
Tait 2	418420	5405321			0	No visible flow	Yes				
West 1	426433	5411095			0	Creek bed dry	Likely				
West 2	426432	5411616			0 Creek bed dry No						
West 3*	426430	5410321			0.0013	Water in creek, no visible flow	No				

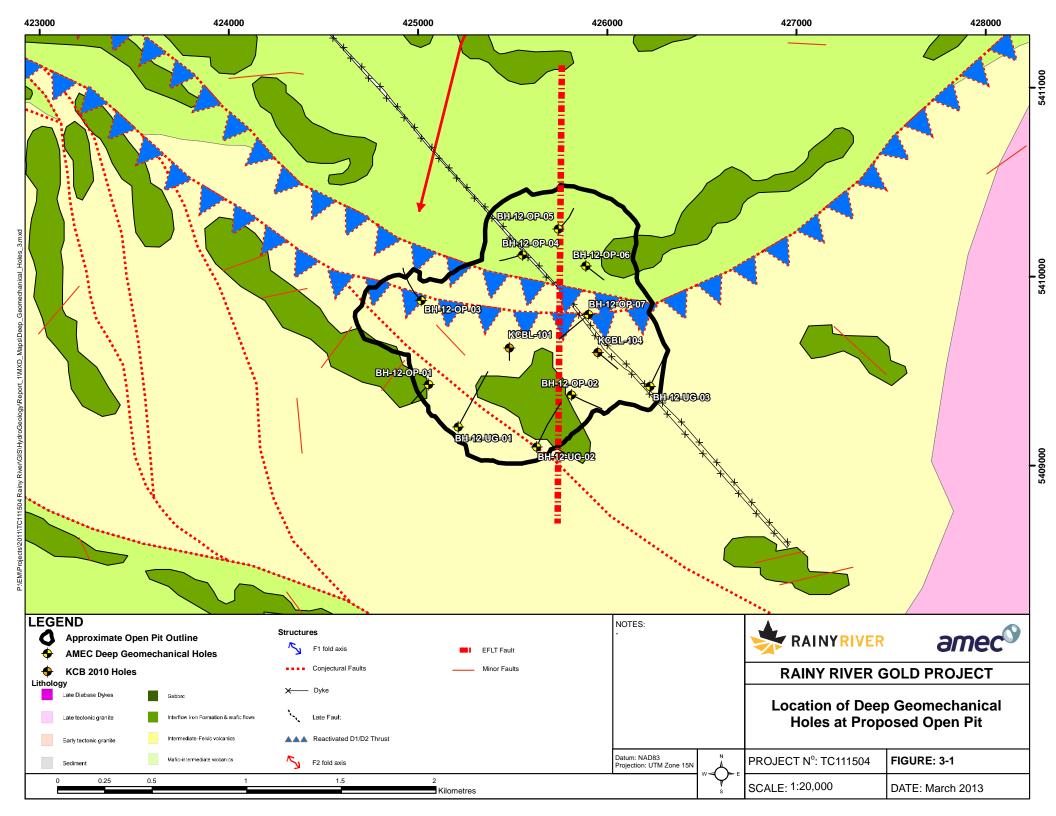
August / September 2011; although a flow measurement was taken the methodology due to poor conditions impacted measurement and this is not a representative record August / September 2011; estimate of flow based on visual observations comparable to other watercourses in the area

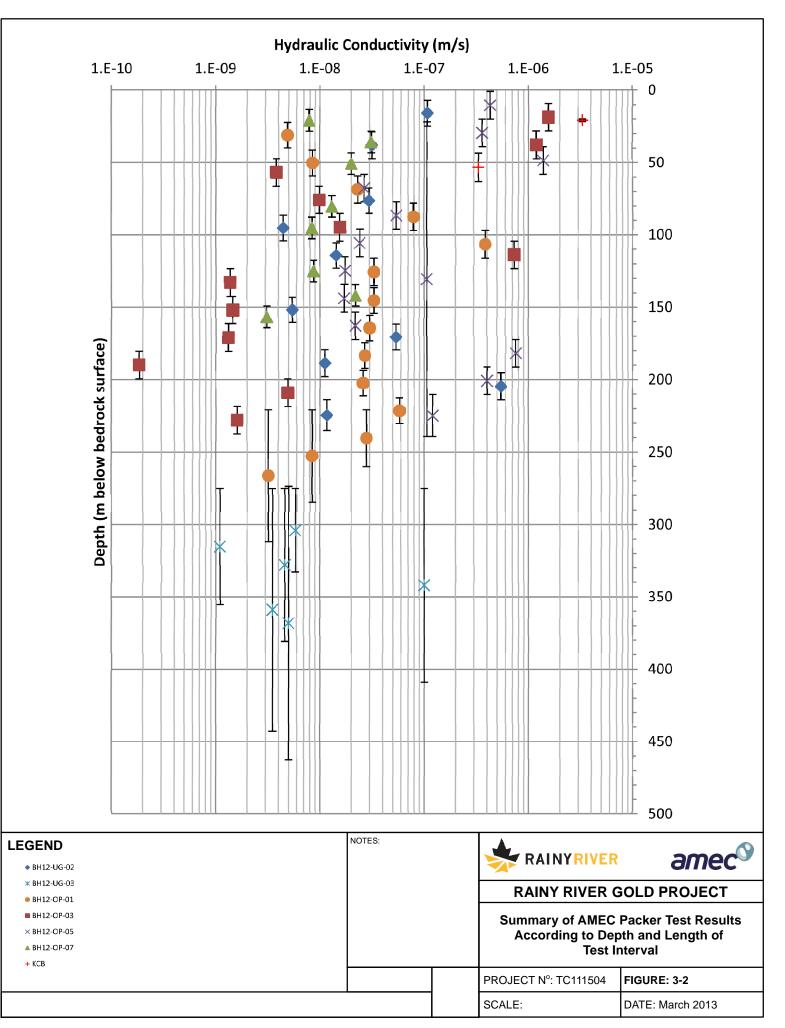
**

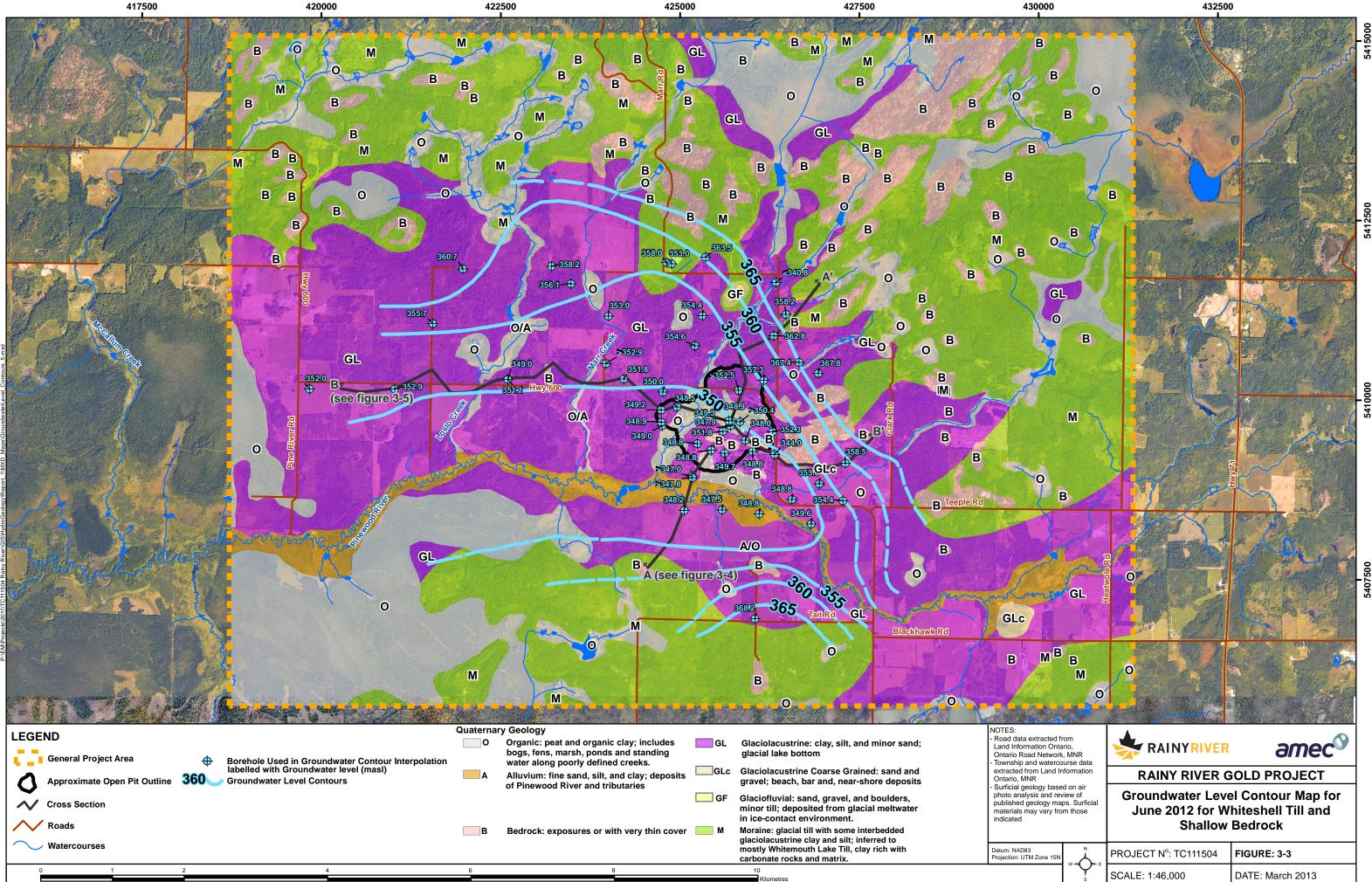
Table 3-6: Initial Estimates of Hydraulic Properties for Hydrostratigraphic Units

		Hydra	aulic Cond	uctivity Estimate	
Hydrostratigraphic Unit	Geology	(m		Initial Estimate (m/s)	
	Peat	5E-06 - 5	E-05*	1E-05	
Near-surface System	Pinewood River alluvium	1E-08 - 1	E-04**	1E-06	
	Brenna (glaciolacustrine)	1E-10 - 1	Ξ-08***	1E-08	
Pleistocene Aquitard	Whitemouth Lake Till (Keewatin derived)	1E-09 - 11		5E-08	
	Wylie (glaciolacustrine)	1E-10 - 1	=-08^^^	1E-08	
Pleistocene Lower Granular Deposits (PLGD)	Whiteshell Till (Labradorean derived) Glaciofluvial sands	1E-06 - 1I	Ξ-04****	5E-05	
Shallow Bedrock (10 to 20 mbbs)	Undifferentiated Rainy River Greenstone Belt intermediate and felsic volcanics and intrusives	1E-07 - 1I	Ξ-05*****	1E-06	
Intermediate Bedrock (to approximately 200 to 300 mbgs)	Undifferentiated Rainy River Greenstone Belt intermediate and felsic volcanics and intrusives	1E-09 - 1 07******	≣-	1E-08	
Deep Bedrock (greater than approximately 200 to 300 mbgs)	Undifferentiated Rainy River Greenstone Belt Intermediate and felsic volcanics and intrusives	1E-10 - 11 08******	Ξ-	1E-09	
	Shallow Bedrock			1E-06	
EFLT	Intermediate Bedrock	1E-8 - 1E	-06	1E-07	
	Deep bedrock	1		1E-08	
	Recharge				
Wetlands/peat and near-surface g		а	Expe	ected to negligible	
Areas without near-surface glaciol	acustrine clay		Exp	ected to be small	
Abandoned sand and gravel pits				d to be relatively high	
Bedrock, near surface PLGD			In the ran	ge of 10 - 50 mm/year	

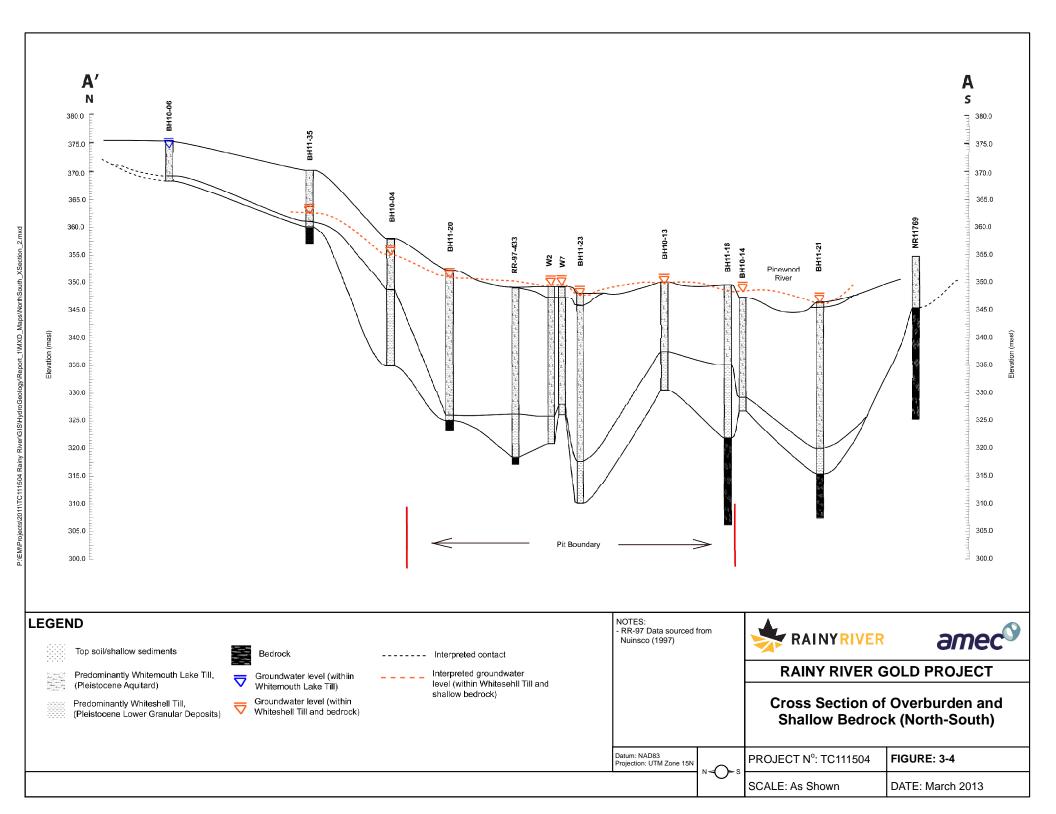
Based on literature values for peat for boreal Canadian conditions (Quinton et al. 2008)
 Based on literature values (Freeze and Cherry 1070) for sediments that are predominated on the predominated on

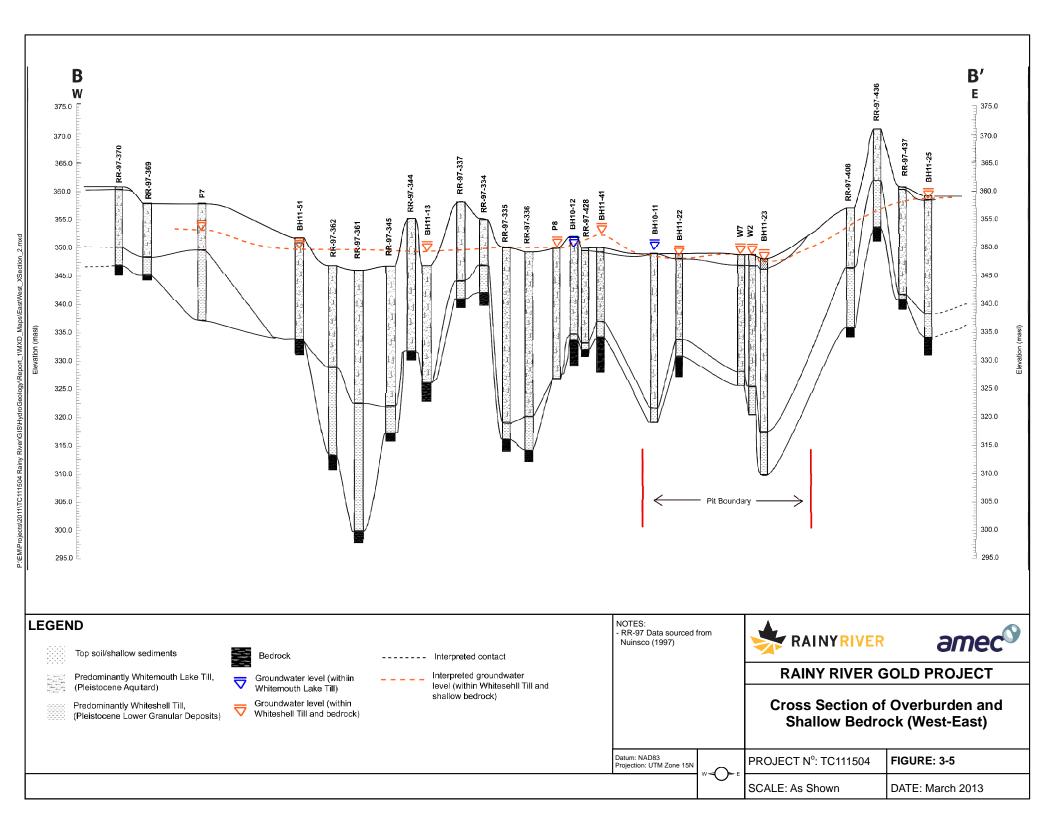

Based on literature values (Freeze and Cherry 1979) for sediments that are predominantly silt to fine sand in grain size

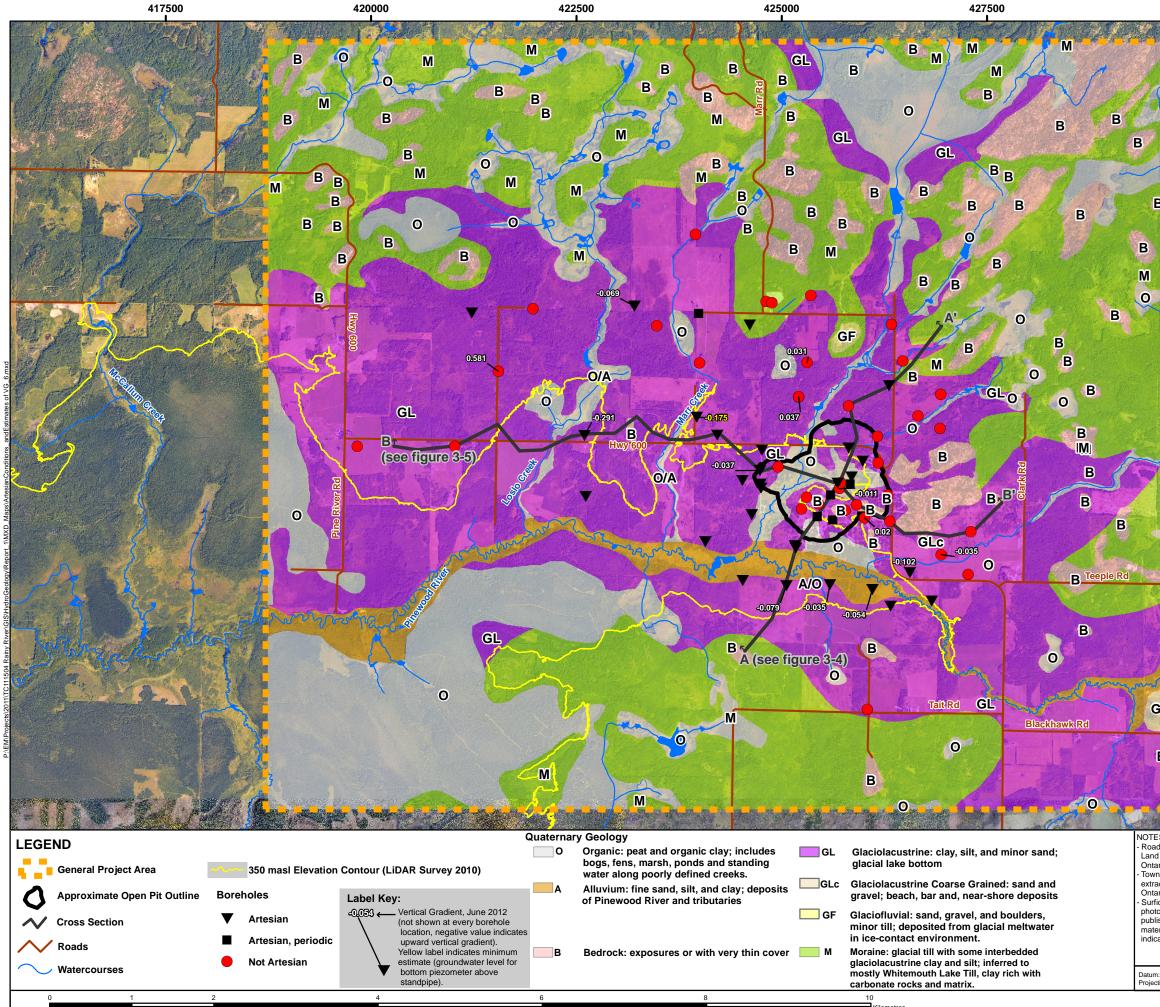

Based on slug testing data and pumping test data summarised in Table 3-2

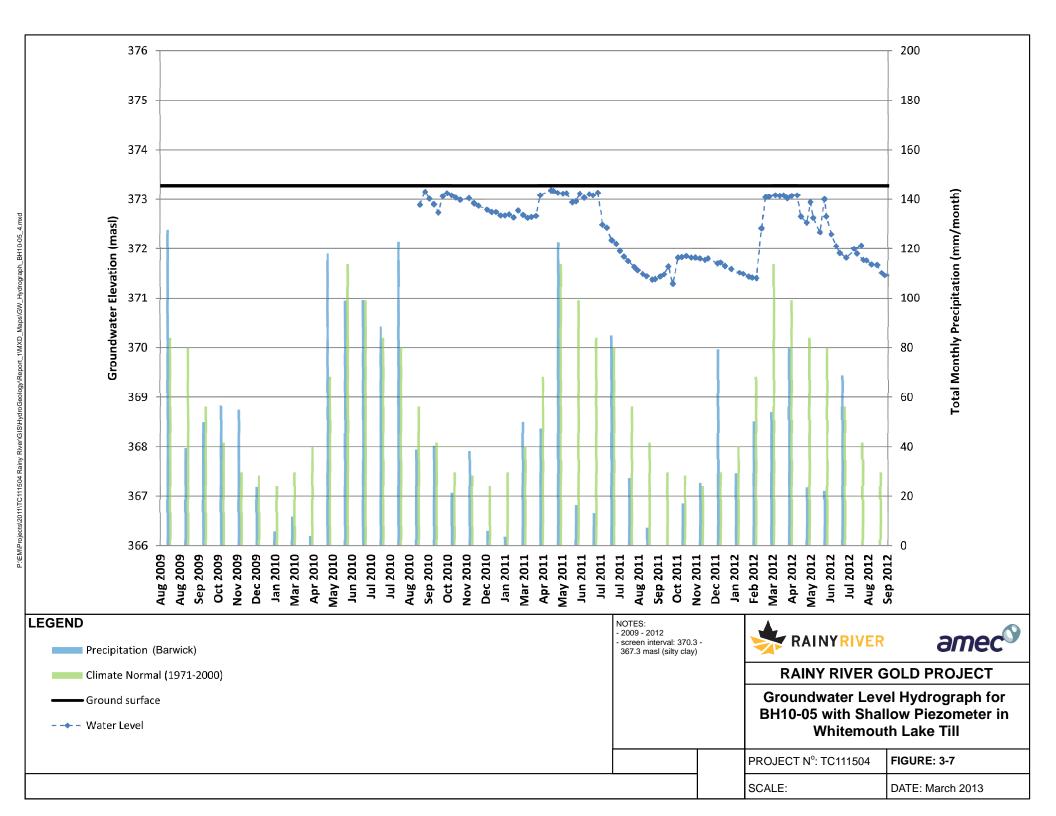

Based on slug testing data summarised in Table 3-2 and packer testing data summarized in Table 3-4

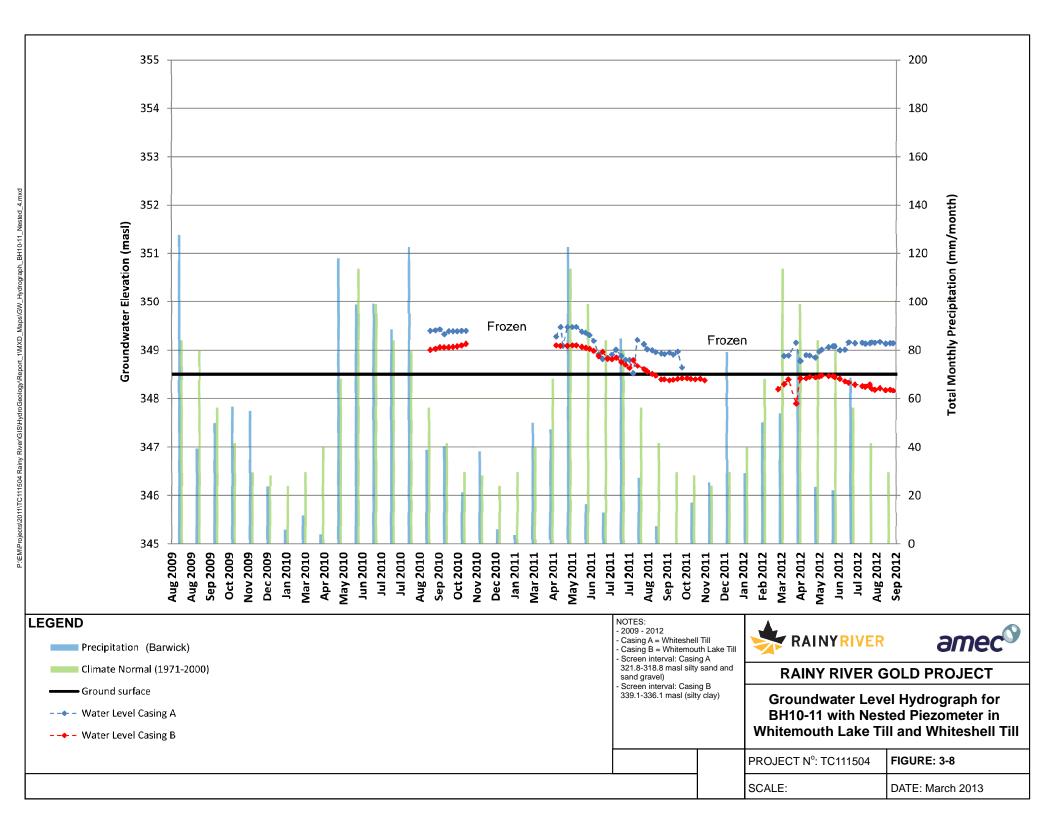
******* Based on packer testing data summarized in Table 3-4

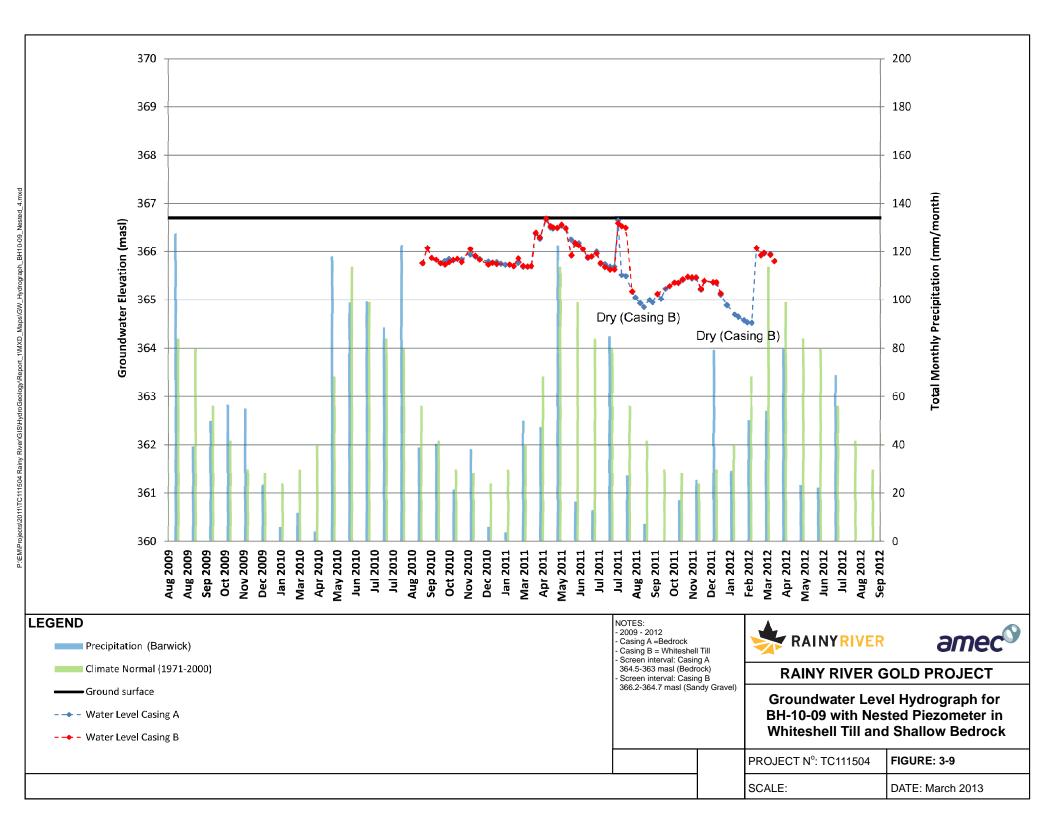


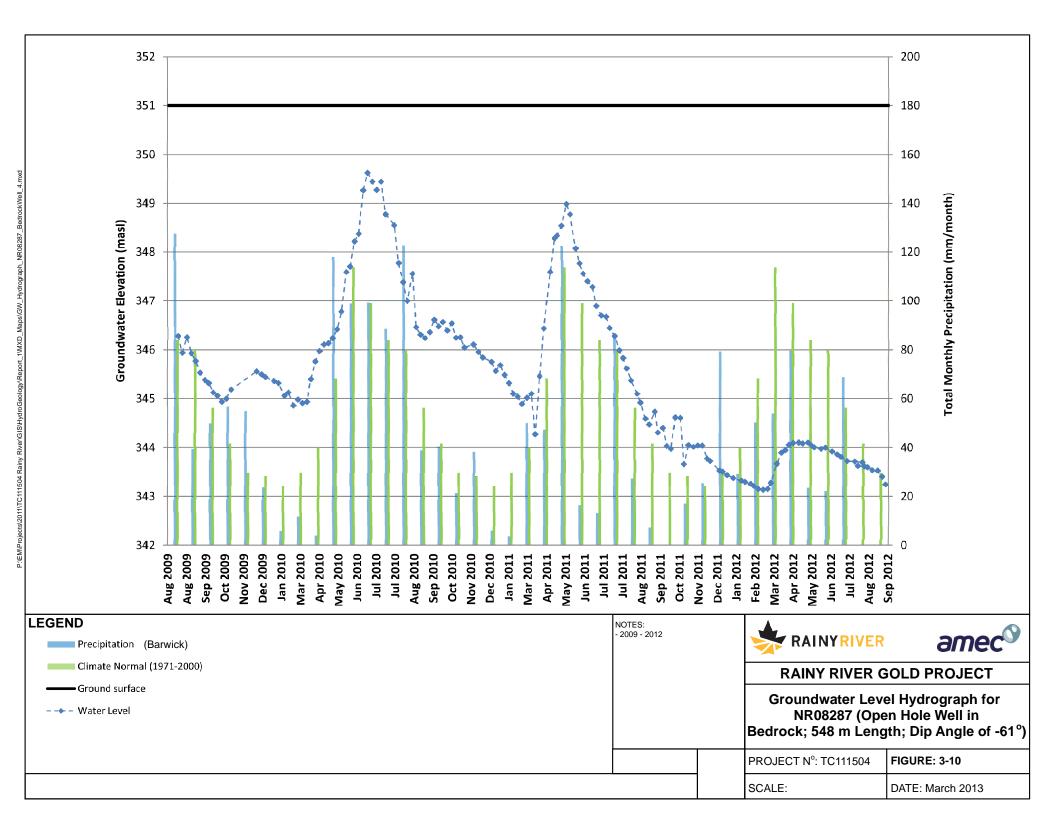


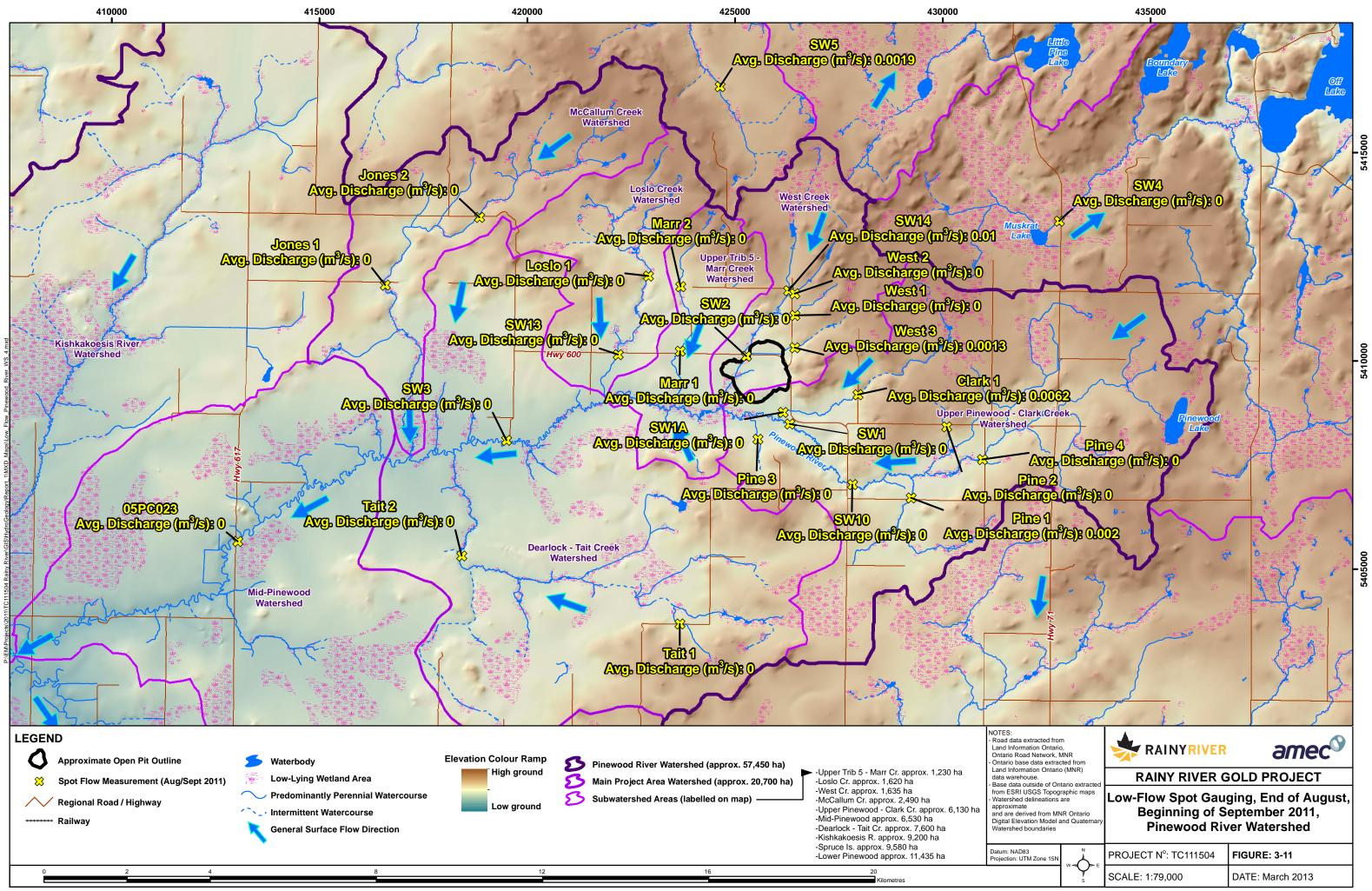


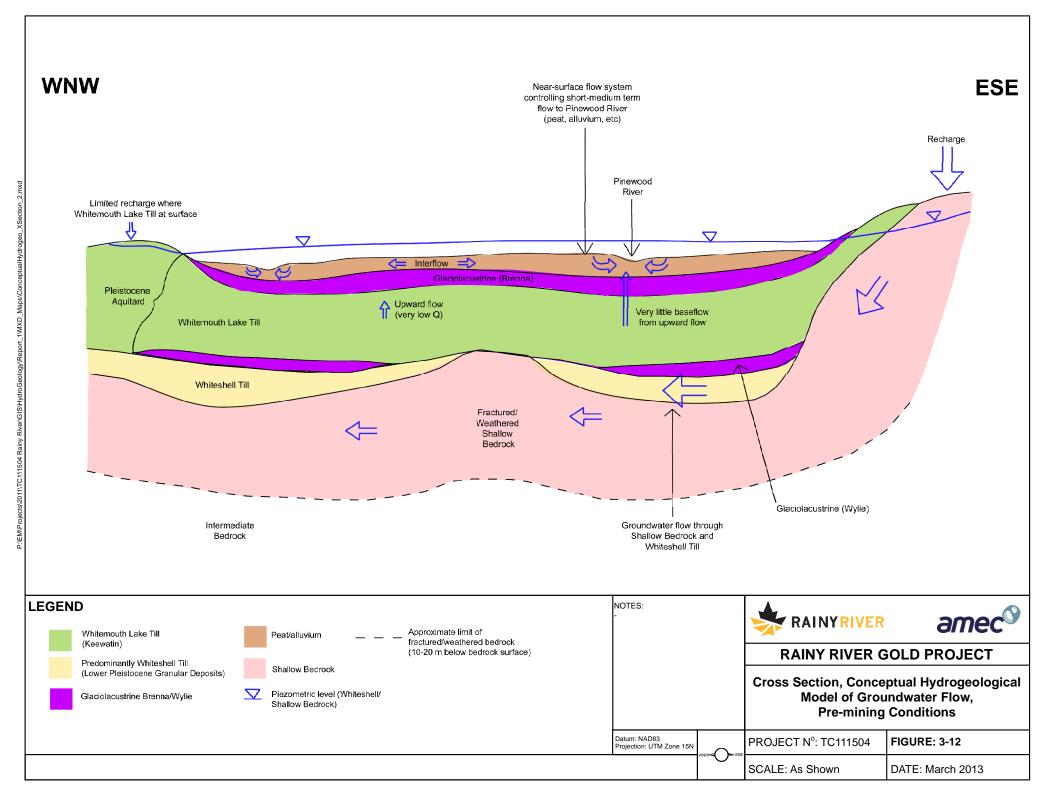









430000		4325	00		
B B O B	o			and the second s	5415000
B B O B	B				5412500
GL O B M					5410000
B GL GLC	Heatwole Ref				5407500
B M B B M	0				
ad data extracted from d Information Ontario, ario Road Network, MNR			ne s	nec [©]	
Inship and watercourse data acted from Land Information ario, MNR ficial geology based on air		RAINY RIVER			
ticial geology based on air to analysis and review of lished geology maps. Surfic terials may vary from those cated		cation of Artes Estimates of \			
m: NAD83 ction: UTM Zone 15N	PROJE	ECT Nº: TC111504	FIGURE: 3-6		
ways	SCALE	E: 1:46,000	DATE: March 20)13	



4.0 REFERENCES

- AMEC. 2012a. Rainy River Gold Project, Geotechnical and Hydrogeological Site Investigations, Rainy River, Ontario.
- AMEC. 2012b. Rainy River Gold Project, Aquatic Resources 2011 Baseline Investigation.
- AMEC. 2012c. Rainy River Gold Project, Rock Mass Characterization and Summary of Geomechanical Site Investigation Program 2012.
- Anderson, MP and WW Woessner. 1992. Applied Groundwater Modeling. Academic Press, Inc, San Diego, CA, 381 pp.
- Bajc AF. 2001. Quaternary Geology, Fort Frances Rainy River Area. Ontario Geological Survey, Report No. 286: 52 pp.
- Bostock, HS. 1970. Physiographic subdivisions of Canada. In: Geology and Economic Minerals of Canada, Geological Survey of Canada, Economic Geology Report No. 1, Part A: 9-30.
- Bouwer, H and RC Rice. 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research 12: 423-428.
- Butler, JJ. 1998. The Design, Performance and Analysis of Slug Tests. Lewis Publishers, Boca Raton: 252 pp.
- Caracle Creek International Consulting Inc.. 2008. Independent Technical Report, Rain River Property.
- Duffield, GM. 2007. AQTESOLV for Windows Version 4.5 User's Guide. HydroSOLVE Inc., Reston, VA.
- Environment Canada. 2012. National Climatic Data and Information Archive. http://climate.weatheroffice.gc.ca/climate_normals/index_e.html. Accessed April 2012.
- Freeze, RA and JA Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey: 604 pp.
- Klohn Crippen Berger. 2011. Rainy River Gold Project Baseline Report 2008-2010.
- Macdonald, G. Rainy River Resources Ltd. Email communication. September 2012.

Nuinsco Resources Limited. 1997. Work Report, 1997 Reverse Circulation Drill Data.

- Powers, JP, AB Corwin, PC Schmall, WE Kaeck and HC Morris. 2007. Construction Dewatering and Groundwater Control. John Wiley and Sons, Hoboken, New Jersey: 177 pp.
- Rushton, KR. 2003. Groundwater Hydrology, Conceptual and Computational Models. John Wiley and Sons, Chichester, UK: 416 pp.
- Quinton, WL, M Hayashi and SK Carey. 2008. Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrological Processes 22: 2829-2837.
- SRK Consulting. 2011. Mineral Resource Evaluation, Rainy River Gold Project, Western Ontario, Canada.

APPENDIX A

AMEC MONITORING WELL LOGS

anie A-I Suinm		<u>of All Mon</u> M 15		ometers and Grou		(mbgs)	weasureme	its for Selec		s evel (masl)			I
Borehole ID	Easting		Ground Surface Elevation (masl)	Unit	top	bottom	Sept.22nd,	Sept.18th	March 8th	Sept.22nd,	June, 2012	Oct./Nov.,	Comments
	Laoting	literang			top	bollom	2009	2010	2011	2011	00110, 2012	2012	
		-			-				oreholes wit	h hydrograph	s monitored	by RRR	-
NR9628		5409444.7	353.60	BR	8.0	203.1	348.61	348.63	348.59	347.47	348.03	347.48	June 25th, 2012
NR9664		5409563.7	365.09	BR	3.9	182.5	353.20	352.91	353.30	351.74	352.30	348.06	June 15th, 2012
NR06104		5409380.8		BR	2.8	398.3	349.86	NA	NA	NA	NA		Stopped monitoring Fall of the 2009
NR06115		5409458.0		BR	4.6	680.3	347.70	NA	NA	NA	NA		Stopped monitoring Fall of the 2009
NR07151		5409314.0		BR	23.2	417.8	351.44	NA	NA	NA	NA		Stopped monitoring Fall of the 2009
NR07190	425622.9	5409265.0	350.42	BR	16.8	350.4	349.71	349.49	349.06	348.51	349.69	348.97	June 25th, 2012
RR09213	425850.0	5409786.0	350.00	BR	3.5	46.5	>350.27	>350.27	>350.27	>350.27	>350.27	>350.27	Bore hole dimensions taken from Klohn-Crippen-Beger Table 6.1, artesian (waterlevel higher than casing 0.27 m above ground),
NR07214	425160.0	5408952.0	347.00	BR	25.3	940.2	>347.00	>347.00	>347.00	>347.00	>347.00	>347.00	Artesian (waterlevel higher than 0 m above ground, no casing height information
NR08246		5409569.0	352.00	BR	28.5	542.5		352.38		351.66	351.83	350.97	Well located near a pumping station, water level in September 2009 affected by pumping, Frozen in March 2011, June 25th,
NR08257		5409956.0	363.00	BR	12.9	729.3	357.52	356.58	NA	NA	NA		September 11th instead of September 18th, 2010 as this was the last reading,
NR08278		5409540.0		BR	7.7	514.8	349.36	348.87	NA	NA	NA		September 11th instead of September 18th, 2010 as this was the last reading,
NR08287	426316.0	5409249.0	351.00	BR	22.5	451.7	345.53	346.24	345.10	344.73	343.97	342.11	June 15th, 2012
NR09367	425814.0	5410139.0	352.00	BR	23.5	322.1				>352.50	>352.50	>352.50	Artesian (waterlevel higher than 0 m above ground, no casing height information not monitored prior to June 28th, 2011,
NR09428	425835.0	5409700.0	350.00	BR	21.5	409.5				>350.38	>350.38	>350.38	Artesian (waterlevel higher than casing 0.38 m above ground), not monitored pri- to June 28th, 2011,
BH10-04	425813.5	5410648.6	358.14	WS	18.5	21.5		355.44		354.83			Monitoring begins on September 18th, 2010, no access to site in March 2011, no access to site after March 31st 2012,
BH10-05	426397.3	5411994.8	373.28	WML	3.0	6.0		372.89	372.62	371.37	372.33		Monitoring begins on September 18th, 2010, June 15, 2012,
BH10-06	426901.3	5411494.2	375.50	WML	3.6	6.6		374.76		374.14		373.48	Monitoring begins on September 18th, 2010, Frozen in March of 2011, no acces after March 31st, 2012, October 29th, 2012
BH10-07A	424608.6	5411634.2	353.27	WML	22.0	25.0		>354.21	>354.21	>354.21	>354.21	353.41	Artesian (waterlevel higher than casing 0.93 m above ground), monitoring begins on September 18th, 2010, October 31st, 2012
BH10-07B	424608.5	5411634.2	353.27	WML	1.4	4.4		>354.33		>354.33	>354.33	355.12	Artesian (waterlevel higher than casing 1.04 m above ground), monitoring begins on September 18th, 2010, Frozen in March of 2011, October 31st, 2012, Artesia conditions above well stick up, measured with an extention
BH10-08A	423987.7	5411777.5	358.14	WML	3.7	6.7		357.95	357.12	356.46	357.43	357.41	Monitoring begins on September 18th, 2010, June 15, 2012, October 29th, 2012
BH10-08B		5411777.5		A	11.7	14.7		358.23		357.96	357.32	356.82	Monitoring begins on September 18th, 2010, March 1st (frozen March 8th), June 15th, 2012, October 29th, 2012
BH10-09A	423949.4	5412734.9	366.70	BR	2.2	3.7		365.96	365.89	365.20		365.67	Monitoring begins on September 18th, 2010, no site access, October 31st, 2012
BH10-09B		5412734.9		WS	0.5	2.0		365.97	365.90	DRY		365.69	Monitoring begins on September 18th, 2010, no measurement on record in June 2012, October 31st, 2012
BH10-10A	425986.5	5409979.8	350.15	WML	27.2	30.2		351.06		>351.07	>351.07	351.01	Artesian (waterlevel higher than casing 0.86 m above ground), Monitoring begins on September 18th, 2010, Frozen in March of 2011, October 30th, 2012
BH10-10B	425986.5	5409980.0	350.15	WML	9.8	12.8		351.21		350.52	351.22	350.19	Monitoring begins on September 18th, 2010, Frozen in March of 2011, June 25th 2012, October 30th, 2012
BH10-11A	424736.3	5409865.5	348.50	WS	26.7	29.7		349.55		349.08	349.23	349.28	Monitoring begins on September 18th, 2010, Frozen in March of 2011, June 15th 2012, October 29th, 2012
BH10-11B	424736.3	5409865.5	348.50	WML	9.4	12.4		349.16		348.55	348.60	348.29	Monitoring begins on September 18th, 2010, Frozen in March of 2011, June 15t 2012, October 29th, 2012
BH10-12A	423964.1	5410512.2	351.94	WS/BR	16.5	19.5		>352.89	>352.89	>352.89	>352.89	352.79	Artesian (waterlevel higher than casing 0.85 m above ground), Monitoring begins on September 18th, 2010, Frozen in March of 2011, October 29th, 2012
BH10-12B	423964.0	5410512.2	351.94	WML	6.0	9.0		350.40	350.47	350.64	350.95	349.63	Monitoring begins on September 18th, 2010, June 15, 2012, October 29th, 2012
BH10-13	425432.6	5409306.5	349.47	WS	16.3	19.3		349.15	349.21	348.63	348.75	348.52	Monitoring begins on September 18th, 2010, June 15, 2012, October 30th, 2012

Table A-1 Summary Details of All Monitoring Wells/Piezometers and Groundwater Level Measurements for Selected Periods

	UTI	M 15	Ground Curfood		Screen	(mbgs)			Water Le	evel (masl)			
Borehole ID	E		Ground Surface	Unit		1	Sept.22nd,	Sept.18th	March 8th	Sept.22nd,	1 0040	Oct./Nov.,	Comments
	Easting	Northing	Elevation (masl)		top	bottom	2009	2010	2011	2011	June, 2012	2012	
													Artesian (waterlevel higher than casing 0.85 m above ground), Monitoring begins
BH10-14	425173 1	5408923.5	346.84	WML/WS	16.5	19.5		>347.81		>347.81	>347.81	>347.81	on September 18th, 2010, Frozen in March of 2011, June 25th, 2012, October
Billori	12017011	0100020.0	010.01		10.0	10.0		2011.01		2011.01	2011.01	2011.01	31st, 2012, Artesian conditions above well stick up.
													Monitoring begins on September 18th, 2010, broken casing in March of 2011,
BH10-15	425241.2	5409399.8	349.65	WML/WS	15.5	18.5		348.64		348.40	348.79	348.75	June 25th, 2012, October 30th, 2012
							l Die	l zomotors in	stalled by Al	L	012		
BH11-04	421070.2	5411831.8	365.477	BR	13.4	16.5					360.71	359.74	June 8th, 2012, October 30th, 2012
BH11-04 BH11-08A		5411863.4	356.564	BR	24.0	25.5					358.20	357.04	June 16th, 2012, October 31st, 2012
	423203.2	5411005.4	300.004	DK	24.0	20.0					306.20	357.04	
BH11-08B	423205.2	5411863.4	356.564	WS	19.8	21.3					356.77		June 16th, 2012, October 31st, 2012, Well under the influence of surface water
	400005-0	E 4 4 4 0 C 2 4		\\/\/	4.0	C 1					250.00		lune 10th 2012, October 21st 2012, Water level at ten of easing
BH11-08C		5411863.4	356.564	WML	4.6	6.1					356.86		June 16th, 2012, October 31st, 2012, Water level at top of casing
BH11-09A		5411181.8		WML	4.6	6.1					350.29		June 11th, 2012
BH11-11A		5410762.9		BR	36.3	37.8					354.58	354.41	June 10th, 2012, October 30th, 2012
BH11-11B		5410762.9		WS	32.8	34.3					354.57	354.43	June 10th, 2012, October 30th, 2012
BH11-11C		5410762.9		GS	6.1	7.6					355.71	354.84	June 10th, 2012, October 30th, 2012
BH11-12A		5411177.9		BR	22.5	27.0					354.37	354.08	June 11th, 2012, October 29th, 2012
BH11-12B		5411177.9		WML	4.6	6.1					354.98	355.30	June 11th, 2012, October 29th, 2012
BH11-13A		5410290.3	347.063	LGL/BR	19.8	22.8					351.06	350.38	June 11th, 2012, October 30th, 2012
BH11-13B		5410290.3	347.063	WML	13.4	14.9					348.98	347.62	June 11th, 2012, November 1st, 2012
BH11-17		5410114.4		WML	10.7	12.2					349.96	349.84	June 11th, 2012, October 29th, 2012
BH11-19A		5409287.1	350.323	BR	28.5	30.1					348.79	348.91	June 11th, 2012, October 30th, 2012
BH11-19B		5409287.1	350.323	LGL/WS	22.8	24.3					348.79	348.91	June 11th, 2012, October 30th, 2013
BH11-19C		5409287.1	350.323	WML	4.6	6.1					349.27	348.84	June 11th, 2012, October 30th, 2014
BH11-20A		5410232.5		LGL/WS	25.0	26.5						352.31	October 30th, 2015 - Water Level measured on several days, but is very variable
BH11-20C	425891.5	5410232.5	352.093	UG	1.5	3.0					351.42		June 8th, 2012
BH11-21A	425054 7	5408465.6	346.495	BR	37.8	39.3					348.18		June 14th, 2012 Water Level inconsistent between two measurements with no
DITTEZIA													explanation, October 31st, 2012, Frozen
BH11-21B		5408465.6		WML	16.8	18.3					348.10		June 14th, 2012, October 31st, 2012, Well under the influence of surface water
BH11-21C		5408465.6		WML	7.6	9.1					345.80		June 13th, 2012, October 31st, 2012, Frozen
BH11-22	424953.5	5409907.9	348.996	BR	20.0	21.5					348.48	348.59	June 14th, 2012, October 30th, 2012
BH11-23A	425704.3	5409645.2	348.143	WS	36.3	37.8					347.92	348.02	June 14th, 2012, October 30th, 2012
BH11-23B	425704.3	5409645.2	348.143	UG	2.8	4.2					347.55	347.57	June 14th, 2012, October 30th, 2012
BH11-24A	426940.0	5408843.0	354.00	BR	18.3	22.8					353.78	353.04	June 8th, 2012, October 29th, 2012
BH11-24B	426940.0	5408843.0	354.00	WML	10.7	12.2					353.46	352.97	June 8th, 2012, October 29th, 2012
BH11-25	427302.2	5409121.8	358.780	WS	23.6	25.1					358.51	358.32	June 15th, 2012, October 29th, 2012
BH11-27		5408603.3		WS	25.9	28.9					354.40	353.80	June 8th, 2012, November 1st, 2012
BH11-28		5408217.7		WML	15.2	16.7					351.99	352.02	June 13th, 2012, October 31st, 2012
BH11-29		5408528.1	345.784	WML	24.4	25.9					346.44		June 15th, 2012, October 31st, 2012, Water level at top of casing
BH11-33A		5408476.3		BR	42.4	43.9					347.55	348.04	June 13th, 2012, October 31st, 2012
								1	1	1			June 14th, 2012, Well under the influence of surface waterWater level at top of
BH11-33B	425585.7	5408476.3	346.707	WML	12.2	13.7					346.48		casing
BH11-34A	426102.3	5408419.0	347.648	BR	35.1	36.6					348.81	347.80	June 14th, 2012, October 31st, 2012
BH11-34B		5408419.0		WML	9.2	10.6					347.40	347.53	June 14th, 2012, October 31st, 2012
BH11-35		5410895.8		BR	11.8	13.3					362.85	361.60	June 11th, 2012, October 29th, 2012
BH11-36		5410792.0		WS	5.2	6.7							Dry , October 29th, 2012, Dry
BH11-37		5410527.7		BR	1.2	2.8					367.38	367.29	June 13th, 2012, October 29th, 2012
BH11-38		5410377.4		WS	19.2	20.7					367.80	367.43	June 11th, 2012, October 29th, 2012
BH11-40		5411994.4		BR	10.0	11.6					363.53	363.20	June 12th, 2012, October 29th, 2012
BH11-40		5410296.0		WS	14.8	16.3					351.83	350.63	June 9th, 2012, October 30th, 2012
BH11-44A		5408621.6		BR	14.0	17.7					348.82	349.41	June 9th, 2012, November 1st, 2012
BH11-44B		5408621.6		UG	5.6	6.1					346.62	349.41	June 9th, 2012, October 29th, 2012
DITT 1-44D	420009.7	J400021.0	J40.01Z	00	5.0	0.1		I			347.09	347.22	

	UTM 15			Screen	(mbgs)			Water Le	vel (masl)				
Borehole ID	Easting	Northing	Ground Surface Elevation (masl)	Unit	top	bottom	Sept.22nd, 2009	Sept.18th 2010	March 8th 2011	Sept.22nd, 2011	June, 2012	Oct./Nov., 2012	
BH11-50A	421550.9	5411071.0	361.591	BR	11.9	12.4					355.69	352.34	June 8th, 2012, Octobe
BH11-50B	421550.9	5411071.0	361.591	WML	3.0	4.5					360.57	359.52	June 8th, 2012, Octobe
BH11-51A	421543.2	5410423.4	351.539	BR	17.4	18.9						351.81	Water Level measured
BH11-51B	421543.2	5410423.4	351.539	WML	10.7	12.2					350.44	351.32	June 16th, 2012, Octob
							N	Ionitored Pri	vate Wells (F	RRR Propert	y)		
P3 / W11 (WWR 5400852)	419831	5410156	356.00	BR	15.2	32.3					351.97	351.62	June, 2012, Broken sma
P7 (WWR 5400723)	421018	5410160	358.00	WS	21.3	21.3					352.87	352.04	June, 2012, WWR 5400
P8 (WWR 5401590)	423846	5410238	350.00	WS	23.5	23.5							June, 2012, Artesian, u overflowing, Well under
P9 (WWR 5401835)	426165	5410281	363.00	WS	9.8	9.8					357.33	357.36	June, 2012, Two wells o WWR 5401835*
P13 / W9 (WWR 5401899)	424000	5411174	354.00	WS	10.4	10.4					353.01	352.64	June, 2012, WWR 5401
P14 (WWR 5400730)	426476	5411194	366.00	WS	18.9	18.9					358.15	357.83	June, 2012, WWR 5400
P16 (WWR 5401589)	426336	5411643	371.00	BR	6.7	62.8					<340.77	338.17	June, 2012, Water level 5401589* (60m tape use
P19 (WWR 7133351)	424808	5411918	365.00	BR	7.6	38.1					358.00	357.49	June, 2012, RR core sto
P21B (WWR 5400481)	426828	5408280	349.00	WS	12.2	12.2					349.56		June, 2012, Artesian - 1 at 0.56 mabgs
RR1 (WWR 5401081)	426042	5406960	373.00	BR	3.4	31.7					368.22	367.21	June, 2012, RRR stude
W1 (WWR 7150801)	424748	5409649	348.00	WS/BR	31.4	32.3					348.99	349.10	June, 2012, TW10-04. /
W2 (WWR 7150805)	425717	5409717	349.00	WS/BR	28.0	28.3					348.92	349.02	June, 2012, TW10-01. /
W7 (WRR 7150803)	425680	5409713	349.00	WS	23.5	23.5					349.29	349.38	June, 2012, TW10-02 A
W8 (WWR 5401149)	423479	5411625	358.00	WS	13.1	13.1					356.06	355.62	June, 2012, WWR 5401
W10 (WWR 7133352)	424881	5411906	364.00	BR	8.5	74.7					352.99	356.09	June, 2012, RR core sto influence of core shack
W12 (WWR 7150802)	424738	5409697	348.00	WS	28.0	28.7					348.93		June, 2012
		•			1	-	1	Piezometers	s installed by	AMEC 2012			
BH12-01	421733	5413954	374.73	WS	6.3	11.9							
BH12-03	420323	5411646	362.57	WML/WS/BR	7.6	12.8						361.87	October 30th, 2012
BH12-04	422926	5411848	357.35	WS/BR	24.7	29.7						356.11	October 31st, 2012
BH12-07	424542	5412438	371.54	WML/LGL/WS	10.4	15.7						360.60	October 31st, 2012
BH12-08	425109	5411603	359.50	WML/LGL/WS/BR		19.8						354.49	October 29th, 2012
BH12-09	422612	5409548	347.42	WML/LGL/WS	21.2	24.7							October 30th, 2012, Fro
BH12-10	424069	5409003	345.23	WML	21.7	25.1							October 31st, 2012, Fro
BH12-13	425767	5409437	353.63		7.1	10.7							October 30th, 2012
BH12-14	425420	5409536	354.13	WML/WS/BR	4.9	10.2						348.72	October 30th, 2012
BH12-15	426116	5409732	351.34	WML/WS	36.1	40.1						350.33	October 30th, 2012
BH12-17	424634	5409329	346.59	LGL/WS	25.8	32.0							October 30th, 2012
BH12-18	424521	5409745	348.38	WS	28.9	33.7						348.87	October 30th, 2012

Comments

oer 30th, 2012

per 30th, 2012

ed on several days, but is very variable, October 30th, 2012 ober 30th, 2012

mall shack

00723*

underground drain build into well casing to keep it from er artesian pressure, but WL controlled by underground s on the property (P9 and W5). Notes for the drilled well.

101899*

00730

vel deeper than length of water level tape (30.60m). WWR used in Oct/Nov)

storage well. A070581. WWR 7133351*

flowing through outlet on side of concrete well casing outlet

lent house. WWR 5401079 or 5401081*

. A091516

. A091513

A091514

401149

storage well. A070580*. WWR 7133352* Likley under och operations.

rozen rozen

	UTI	M 15	Cround Surface		Screer	ı (mbgs)			Water Le	vel (masl)			
Borehole ID	Easting	Northing	Ground Surface Elevation (masl)	Unit	top	bottom	Sept.22nd, 2009	Sept.18th 2010	March 8th 2011	Sept.22nd, 2011	June, 2012	Oct./Nov., 2012	
BH12-19	425255	5410368	351.19	BR	31.2	34.3						351.20	October 30th, 2012
BH12-20	421225	5411780	362.40	WS/BR	21.3	28.4						363.19	October 30th, 2012
BH12-21	427995	5409431	372.77	UG/WS/BR	4.6	8.2							
BH12-22	428190	5410257	379.37	WML/LGL/WS/BR	11.3	16.1							
BBAF-BH-2002	426778	5410217	369.76	UG/WML/BR	1.2	6.3							
BBAF-BH-2015	426591	5410507	368.45	UG/WS/BR	1.2	6.1							
BBAF-BH-2051	426591	5410538	368.51	UG/WS/BR	0.5	4.0							
BBAF-BH-2054	426572	5410874	372.20	WS/BR	3.7	8.5							
BBAF-BH-2061	426687	5411001	374.06	LGL/BR	6.4	11.2							
BBAF-BH-2063	426562	5411008	372.40	UG/BR	0.6	4.3							
BBAF-BH-2065	426758	5411099	375.94	WML/WS/BR	4.3	9.2							
BBAF-BH-2069	426442	5411089	363.24	WML/WS/BR	22.0	27.1							
BBAF-BH-2073	426547	5411158	367.51	WML/BR	11.6	16.9							
BBAF-BH-2076	426698	5410335	365.06	WS/BR	13.4	19.1							
BH-04	426759	5410181	369.08	WS/BR	15.3	18.4							
BH-05	426804	5410210	371.00	WS/BR	5.0	8.0							
BH-07	426807	5410185	369.49	WS/BR	13.6	20.0							

* Interpreted stratigraphic units for the piezometer interval

GL = Glaciolacustrine sediments, either from the Wylie or the Brenna Formations

GS = Glacial sand, most likely from the Brenna Formation

WML = Whitelake Mouth Till

WS = Whiteshell Till

BR = Bedrock

** Hydrostratigraphic units for which the groundwater conditions at the piezometer interval are considered representative

NSS = Near-surface system

PA = Pleistocene aquitard (in this case all Whitemouth Lake Till)

PLGD = Pleistocene lower granular deposits; in this case all Whiteshell Till, with the exception of BH11-21A which is interpreted as glacial sand; always assumed to be more dominant than shallow bedrock, when screen overlaps both SBR = Shallow Bedrock

BR = Undifferentated bedrock

Comments

ſ	an	nec	9									REC	ORD	OF BC	DREHOL	E N	0.	BH11-01 PAGE 1 OF 2
	PROJ	ECT	Rainy River - Geotechnical In	vesti	gatior	/2011 ח	2012									ENGI	NEEF	
	PROJ	ECT NO.	TC113921	DRII	LLER	Ma	arathor	n Drillir	ng		В	ORING METHOD	200 mn	n HSA, NQ	Coring	LOGG	GED E	BY PDR
	CLIEN	п	Rainy River Resources.	LOC	ATIC	DN <u>Ta</u>	ilings l	Manag	ement	Area						COMF	PILED	BY <u>SM</u>
	ELEV	ATION	<u>362.945 m</u>	COC	ORD.	N	5,413,	209 E	420,1	71	В	ORING DATE <u>St</u>	art: Apr	12, 12 Er	<u>id: Apr 13, 12</u>	CHEC	KED	BY DGR
	AU A BU E	PLE TYPE Nuger Bulk Dynamic Cor	SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	lby)				P.P. I U.W. V	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Test	R0 S0	QD Rock Qua CR Solid Cor		< (I ₅₀)		Consolidation Direct Shear Grain Size Analysis
┟			SOIL PROFILE			SAMPL	ES		ER			DYNAMIC CON	E PENET	RATION				
- I-	ELEV DEPTH (m) 362.9	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOULDED UNDRAINED SHEA	50 80 NILC0 △ IN ▲ RE	100 ON VANE TACT EMOULDED NGTH (kPa)	A MOISTURE MATURAL MATURAL MATURAL MATURAL MOISTURE 6 MOISTURE 6 MOISTURE	UIDID WL (%) 60	PERMEABILITY (cm/s)	REMARKS
	0.0	sand, tra	own silty clay, trace to some ace gravel, low to medium y, stiff, moist [Upper		2	ss	67	9			362_				17 ₀ 30 ₀			
					3	ss		12			361				30			
	250.0				4	ss	100	12			360_				30			
	359.9 3.0		wn silty clay, trace gravel,		5	ss	100	11							0			
		Till]	plasticity, stiff, moist [WML								359_				32			
					8	ss	100	11		5	358_							
										6	357				33			
					11	ss	100	10		7	356_							
Date: 7/10/2012 1:28:54 PM		becom	ing firm at 7.6m		14	ss	100	8		8	355				36			
7/10/2012										-9	354_				39			
					17	ss	100	8		 10	353_				о 			
File: 1C113921_BHLOGS_20120405.GPJ															41 0			
BHLOGS					18	ss	100	7		L_11	352	37		80				
C113921										12	351		66 		121 37 0			
					21	ss	100	6		13	350_	46		98				
Format: AMEC GEU MWSK											240	5 •	2		32 0			
	348.9 348.6	SILTY C			24	ss	100	8		14 E	349							
-ormat: A	14.3		ey silty clay, varved, low irm, moist [Lower custrine]		25	RC	95	63			348_							

amed	Ø										R	ECO	ORD	OF	BC	OR	EHOL	E I	No.		11-01 = 2 OF 2
PROJECT	Rainy River - Geotechnical In	vestig	gatior															ENG	GINEE	۲ _	MS
PROJECT NO.		DRIL	LER	Ma Ma	arathor	n Drillin	Ig		В	ORING	G MET	HOD .	200 m	nm HS.	A, NQ	Corir	ng	LOG	GED	BY _	PDR
CLIENT	Rainy River Resources.	LOC	ATIC	DN <u>Ta</u>	iilings l	Manag	ement	Area										CON	MPILEI	OBY_	SM
ELEVATION	<u>362.945 m</u>	COC	ORD.	Ν	5,413,	209 E	420,17	71	В	ORING	G DAT	E <u>Sta</u>	art: Ap	r 12, 1	2 En	id: Ap	or 13, 12	CHE	ECKED	BY _	DGR
SAMPLE TYPI AU Auger BU Bulk DC Dynamic C	SS Spli TW Thir	t Spoo n Walle	n ed Op	en (She	lby)				P.P. 1 U.W.	REVIA Pocket I Wet Uni Standar	Penetro it Weigh	meter nt	F		ick Qua	ality De e Reco	ngth Index esignation overy		C DS GS	Consol Direct	
DO Dynamic O	SOIL PROFILE		· ·	SAMPL	FS		с.			DY	NAMIC	CONE	PENE	TRATI	ON	Ĺ					
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТУРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	0 4 VANE TACT EMOUL RAINE	.DED) SHEA	0 8 NIL(△ I ▲ F R STRE	0 10 CON V/ NTACT REMOU	0 ANE LDED (kPa)		W O ER CONTEI		PERMEABILITY (cm/s)	RE	EMARKS
BEDRO	ЭСК		26	RC	100	88		16	347 346												
344.7			27	RC	100	80		18	345												
Standp mounte Water For Pie zone) a For Pie	Borehole at 18.2m ippes installed with flush ed steel casing level (b.g.s): zzometer A (bottom sensing at 0.3m on April 13/12 zzometer B (top sensing zone) ace on April 13/12																				

an	nec	3										R	ECO	ORD) Of	BC	DRI	EHOL	E I	No.	BH11-04 PAGE 1 OF 2
PRO	JECT	Rainy River - Geotechnical In	vestiç	gatior	n 2011/	2012													ENG	GINEEF	R <u>MS</u>
PRO	JECT NO.	TC113921	DRII	LLER	R <u>Ma</u>	arathor	n Drillin	ng		В	ORING	6 MET	HOD	200 m	nm HS	A, NQ	Corii	ng	LOG	GED I	BY <u>SM</u>
CLIEI		Rainy River Resources.																			D BY <u>SM</u>
ELEV	/ATION	365.477 m	COC	ORD.	N	5,411,8	332 E	421,97	70	B	ORING	5 DAT	E <u>Sta</u>	art: Ma	ir 20, 1	l2 Er	nd: M	<u>ar 20, 1</u> 2	CHE	ECKED	BY DGR
AU BU	PLE TYPE Auger Bulk Dynamic Col	SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)				P.P. U.W.	REVIAT Pocket I Wet Uni Standar	Penetro t Weigl	ometer nt	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Rece	ngth Index esignation overy	(I ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	r		N TER		Ê	R	ESISTA	CONE	PLOT	$- \times$		5	RAL TURE ENT	0	cm/s)	
ELEV DEPTH (m) 365.5		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IN RE UNDE	VANE TACT EMOUL RAINE[.DED D SHEA	NIL(△ I ▲ F R STRE	CON V NTACT REMOL ENGTH	ANE JLDED		W O ER CONTE	UINII WL WT (%)	EABII	REMARKS
	TOPSO			1	ss	63	4	⊥		365_								0			
	CLAYEY Light Bro	own to brown clayey silt, and and gravel, varved, low		2	ss	63	10		1	364_							22	20			
	moist [U	um plasticity, stiff, damp to [pper Glaciolacustrine] 6 m becoming sandy , grey ses		3	ss	100	10		2	304_							17	è			
	at 2.3r lenses	n , trace mottled brown		4	ss	100	10			363_							17	•		-	
				5	ss	100	11		3	362							10			-	
360.9									4	361								.31			
4.6	Silty CL	AY ey silty clay, trace sand, high /, firm, moist [WML Till]		6	ss	100	8		5									0			
									6	360_										-	
				8	ss	92	8			359								27 O	1	-	
									7					■ ⁶⁷		97]					
<u>357.9</u> 7.6	SILTY	CLAY h grey silty clay , varved		11	тw	91			- 8	358_											
Ma 357.9 7.6 357.1 356.3 9.1		Glaciolacustrine]								357_										-	at 6.4m PP=49-61 kPa TV=20 KPa
356.3									_9								7 0				
	Greenis	& GRAVEL h grey sand and gravel, silty, to subangular (black, grey	0 	13	ss	63	39			356_										-	at 9.1 m switched to washboring
0400.01 0	and brow wet	wn, granite pebbles), dense,							E_10	355_											
FIR: 1 (.113921_BHLUGS_20120409.0FJ			 	14	ss	0	67		11											1	
1_BHLO			9.0. .0.	-				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	12	354_											
C11382	hala	10 m groonich -itt toor	.0.°						E_12									29			
		12.2m greenish silt, trace no plasticity, firm, moist		15	ss	54	15			353_											
			[.]	16	SS N	58	50/0.15		13 	352_							2	3			
352.1 13.4 13.4		h grey , highly fractured and		17		25			14												at 13.7 m switched to NQ
IAT: AME			\mathbb{N}	17	RC	35	44			351_										-	coring
Elo								NE	F 15												

3	meć	3										R	ECC	ORE) OF	BC	OR	EHOL	E I	No.		111-04 SE 2 OF 2
PRC	DJECT	Rainy River - Geotechnical	Investi	gatio	n 2011	/2012													ENG	GINEE	R	MS
PRC	DJECT NO.	TC113921	DRI	LLEF	R <u>M</u> a	arathor	n Drillin	g		В	ORING	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOC	GED	BY	SM
CLIE		Rainy River Resources.	-			ailings I	Manag	ement	Area											MPILEI		
ELE	VATION	365.477 m	_ CO(ORD	. <u>N</u>	5,411,8	832 E	421,97	70	В	ORINO	g dat	E <u>Sta</u>	art: Ma	ir 20, 1	2 Er	nd: M	ar 20, 12	CHE	ECKED	BY	DGR
AU BU	VIPLE TYPE Auger Bulk Dynamic Co	SS SI TW TH	plit Spoo	on ed Op	en (She	elby)				P.P. 1 U.W.	Wet Un	Penetro it Weigl	ometer	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Direc	olidation t Shear Size Analysis
		SOIL PROFILE		;	SAMPL	.ES		LER					CONE				o	AL NTE		(cm/s)		
ELEV DEPT (m)	н	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ R UND	VANE ITACT EMOUI RAINEI	LDED D SHEA	i0 8 NIL0 △ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE ILDED		W O ER CONTE	WIL WL WT (%) 60-	EABILITY	F	REMARKS
349	possible	nushy bellow 14.7 m, e infill		18	RC	60	0		16	350										-		
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:28:57 PM 91/66	2 End of Standpi mounte Water le	Borehole at 16.2 m pe installed with flush d steel casing evel (b.g.s): m on Mar 20/12																				

an	nec ^o									RECORD OF BOREHOLE		11-08 E 1 OF 2
PRO	JECT Rainy River - Geotechnical Inv	vestig	ation	2011/2	2012					EN	GINEER _	MS
PRO	JECT NO. TC113921	DRIL	LER	Ma	rathor	n Drillir	ıg		B	30RING METHOD 200 mm HSA, NQ Coring LC	GGED BY	PDR
CLIEI	NT Rainy River Resources.	LOC	ATIO	N Flo	tation	Tailing	ļs			CC	MPILED BY	SM
ELEV	/ATION <u>356.564 m</u>	coc	ORD.	<u>N 5</u>	5,411,8	363 E	423,2	205	B	30RING DATE <u>Start: Dec 13, 11 End: Dec 16, 1</u> 1 CH	ECKED BY	DGR
AU BU	PLE TYPES RC Rocl Auger SS Split Bulk TW Thin Dynamic Cone WS Was	Spoo Walle	n ed Ope	en (Shel	by)				P.P. U.W.	REVIATIONS P.L. Point Load Strength Index (I _{so}) Pocket Penetrometer RQD Rock Quality Designation Wet Unit Weight SCR Solid Core Recovery Standard Proctor Test k	C Conso DS Direct	lidation Shear Size Analysis
	SOIL PROFILE		S	SAMPLE	S		TER	,			(cm/s)	
ELEV DEPTH (m) 356.6		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT WIL Provide 20 40 60 80 100 MTO VANE NILCON VANE WIL Yes Yes INTACT A INTACT Win Win Win INTACT A INTACT Win Win <t< td=""><td>EABILITY E</td><td>EMARKS</td></t<>	EABILITY E	EMARKS
35 8.4 0.2 356.0			1	ss	75	7			356_	16 ₀	froze	en to 0.6m
0.6	low plastic, rootlets [Upper Glaciolacustrine]		2	ss	67	9		1				
	Light brown silty clay, trace to some silt, trace sand, trace gravel, firm to stiff, medium to low plastic, moist [WML Till]		3	ss	100	8		2	355_		-	
	at 2.3m becoming dark brown		4	ss	71	11			354_	32 ₀	-	
			5	ss	75	9			353_	35 ₀		
	below 4.57m dark grey		6	ss	100	7		4	352		-	
			0		100	1			351_		-	
			7	тw	92				350_		at 6. PP=73 TV=49	3 kPa
				N					349_	40	at 7.	63m .
			8	ss	100	7		8	348_		switch	ed to wash
								9			1	
			9	ss	100	8			347_		-	
									346_			
			10	ss	100	8		11		39 O		
								12	345_			
			11	ss	100	9			344_	37		
								13	343_			
			12	ss	100	7		14				
								15	342_			

		()									R	FCC			Rſ)PI	=н∩і	F	No	BH11-	08
an	nec															////			10.	PAGE 2	
PRO.	JECT	Rainy River - Geotechnical In	vestig	ation	2011 ו	1/2012												ENG	SINEE	R <u>MS</u>	
PRO	JECT NO.	TC113921	DRIL	LER	N	laratho	n Drillir	ng		B	ORING ME	THOD _	200 m	nm HSA	A, NQ	Corir	ng	LOG	GED	BY <u>PDF</u>	!
CLIEN	NT	Rainy River Resources.	LOC	ATIC	0N <u>F</u>	lotation	Tailing	gs										CON	MPILE	DBY <u>SM</u>	
ELEV	ATION	<u>356.564 m</u>	COC	RD.	N	l 5,411,	863 E	423,2)5	B	ORING DAT	FE <u>Sta</u>	art: De	c 13, 1 [.]	1 Er	nd: De	<u>ec 16, 1</u> 1	CHE	CKED	BY DGF	<u> </u>
AU / BU I		SS Spli TW Thir	it Spoo n Walle	n d Op	en (Sh	elby)				P.P. U.W.	REVIATIONS Pocket Penetr Wet Unit Weig Standard Proc	ometer pht	F	RQD Roo SCR Sol	ck Qua	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidatio Direct Shear Grain Size A	r
		SOIL PROFILE		· ·	SAMP	LES		ЦЦ			DYNAMI RESIST	C CONE	E PENE	TRATIC	DN	Ĺ	귀ᇟᄃ		(s/u		
ELEV DEPTH (m)	-	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO VANE □ INTACT ■ REMOU UNDRAINE	40 6 E ILDED ED SHEA	0 8 NILC △ II ▲ F R STRE	0 10 CON VA NTACT REMOUL	NE DED		W O ER CONTE		PERMEABILITY (cm/s)	REMAR	KS
				13	τw	100			- - - - - - - - - - - - - - - - - - -	341										at 15.25m TV=78 kPa PP=98 kPa	
	At 16.	77m , sandy lenses/laminate		14	ss	100	9		17	340_						:	28				
<u>338.3</u> 18.3	Varved Grey si	SILTY CLAY ty clay , moist to wet,		15	ss	100	15			338_							37 0			GS on SS15	;
<u>337.4</u> 19.2	[Lower (Gravell Sand bo	medium plastic, very stiff Glaciolacustrine] y SAND ulders, some cobbles in silty		16	RC	67			19	337_										switched t coring at 19	
	sand, ve	ery wet [WS Till, inferred]		10	RC	67			E E_20 E	220											
<u>334.6</u> 22.0		ск		18	RC	47	88		21	336_											
				19	RC	100	97		23	334333											
331.1				20	RC	97	95		25	332_											
25.5	Standpij mounted Water le For Piez zone) at For Piez zone) At 16/11 For Piez	Borehole at 25.5m bes installed with flush d steel casing evel (b.g.s): cometer A (bottom sensing surface on Dec 16/11 cometer B (middle sensing tesian condition on Dec cometer C (top sensing zone) on Dec 16/11																			

ſ	an	nec	9										R	ECC	ORE) OF	BC	DR	EHOL	E N	No.	BH11-09 PAGE 1 OF
	PROJ	IECT	Rainy River - Geotechnical In	vesti	gatio	n 2011	/2012													ENG	SINEE	R <u>MS</u>
	PROJ	IECT NO.	TC113921	DRI	LLEF	R <u>M</u>	arathor	n Drillir	ng		В	ORING	6 MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED	BY <u>SM</u>
	CLIEN		Rainy River Resources.				otation	Tailing	gs											CON	IPILEI	DBY <u>SM</u>
	ELEV	ATION	351.277 m	CO	ORD.	. <u>N</u>	5,411,	182 E	424,20)1	B	ORING	G DATE	E <u>Sta</u>	art: De	c 10, 1	l1 Er	nd: De	<u>ec 11, 1</u> 1	CHE	CKED	BY DGR
	AU A BU E		SS Spli TW Thir	it Spoo n Wall	on ed Op	en (She	elby)			_	P.P. U.W.	REVIAT Pocket I Wet Uni Standar	Penetro t Weigh	meter nt	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analys
			SOIL PROFILE		. :	SAMPL	ES		N		Ê	R	ESISTA	CONE	PLOT	—×		<u>0</u>	CURE	0	(s/uc	
I-	ELEV DEPTH (m) 351.3	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN RE UNDE	VANE TACT EMOUL RAINED		NILO △ I ▲ F R STRE	CON V. NTACT REMOU ENGTH	ANE JLDED		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
	0.0	TOP SO Dark bro				AU					351_							2			ш.	
	350.5 0.8	SILTY C	LAY own silty clay (grey clay in		2	ss	79	10		1	350_							2	4 O			frozen to 1.4m
		firm to st Glaciola	low to medium plasticity, tiff, moist [Upper custrine] 2m becoming firm, trace		3	ss	100	6	- 7	2								2: F	3 4			
		clay									349_					82	1	123				
	348.2 3.0	SILTY C			6	тw	63			3	348_											
		gravel, fi	ey silty clay, trace sand and rm to stiff, medium to high v, moist [WML Till]				00			4				51		92	2					at 3.35m PP=61 KPa TV=49 KPa
		Sanda	and Gravel layer between		8						347_			36		92	2	18 13 c				
		4.64m to	9 4.8m		A&B	ss	100	5		5	346_		31	46	72	82						
					9	ss	100	5		6	345							19	H			
										7	344_			51 46			103 103					
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:02 PM					12	ss	100	5		8	343_								40 0			
: 7/10/2012										9			I	51 41				13 13				
PJ Date					15	тw	88				342											at 9.45m PP=61 KPa
120405.G										10	341			51 ■	72			13				TV=69 KPa
ILOGS_20					18	ss	100	6		11	340_								42 0			
113921_BF										12			31 ■ 0	36		82		13				
- I					20	ss	100	6		13	339								40 0			
O MWSK										F	338_		31 ■	51 ■		92		123				
Format: AMEC GEO MWSK					23	ss	100	5		14	337_								41 0			
Format:										15					62	77		133 133				

an PRO.	nec	Sainy River - Geotechnical	Investi	astic	n 2011	/2012						R	ECO	ORI	D OI	F BC	ORE	HOL		NO. BINEEF	BH11-09 PAGE 2 OF 3 R MS
		TC113921		-			n Drillir	ng		E	ORINO	G MET	HOD	200	mm HS	SA, NQ	Corir	g		GED I	
CLIEI		Rainy River Resources.														, · x					DBY <u>SM</u>
ELEV	ATION	351.277 m	CO	ORD.	. <u>N</u>	5,411,	182 E	424,20)1	B	ORING	G DAT	E Sta	art: D	ec 10,	11 Er	nd: De	ec 11, 11	CHE	ECKED	BY DGR
AU . BU	PLE TYPE Auger Bulk Dynamic Co	SS SI TW TI	plit Spoo hin Wall	on ed Op	en (She	elby)				P.P. U.W.	Pocket Wet Un	TIONS Penetro it Weigl rd Proct	ometer		RQD R SCR S	oint Loa ock Qua olid Cor ermeabi	ality De e Reco	ngth Index signation overy	x (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		;	SAMPL			ETER N		(r	R	ESIST	C CONE	PLOT	\rightarrow		TIC	RAL FURE ENT	0	(cm/s)	
ELEV DEPTH (m)	-	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN R UND		LDED D SHEA	NII △ ▲ R STF		/ANE T ULDED		-0 2: -0 0 MATURAL -0 0 MOISTURE CONTENT		PERMEABILITY (REMARKS
				_						336_								42 0			
				26	ss	100			16	335_								0			
				27	ss	100	6		17	334_								42 0			
	at 18.	3m small brown sandy							18	333_								42			
	pockets			28	ss	100	8		19	332_								42 0			
	at 19.	8m small silty pockets		30	ss	100	9		20	331								43 0			
									21	330_								40			
				31	ss	100	11		22	329_					•	102	133	42 0			
				34	ss	100	12		23	328_							164	43 0			
								_	24	327_											
2	angular	m trace to some gravel, to subangular		35	ss	100	12		25	326								42 0			
				36	ss	100	15	_	26	325_								42			
									27	324_											
				37	ss	100	15		28	323_								40 0			
322.2 29.1	🗋 al 29	n becoming firm, low to plastic, some gravel		38	RC	67			29	322											at 29m, switched to NQ coring.
	GRAVE	LLY SAND blue boulders and gravel,		A&B		01			30												

an	nec	9										R	ECO	ORD) OF	BC	OR	EHOL	E N	No.		11-09 E 3 OF 3
PRO	JECT	Rainy River - Geotechnical Ir	nvestig	gatio															ENG	SINEE	2	MS
PRO	JECT NO.	TC113921	DRI	LLEF	R M	arathor	n Drillin	g		В	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED	BY	SM
CLIEI		Rainy River Resources.			_	otation	Tailing	S												APILEI		
ELEV	ATION	351.277 m	CO	ORD	. <u>N</u>	5,411,	182 E	424,20)1	B	ORINO	g dat	E <u>Sta</u>	art: De	c 10, 1	1 Er	nd: De	<u>ec 11, 1</u> 1	CHE	CKED	BY	DGR
AU BU	PLE TYPE Auger Bulk Dynamic Col	SS Spl TW Thi	it Spoo n Walle	on ed Op	en (She	elby)				P.P. U.W.	REVIA ⁻ Pocket Wet Un Standar	Penetro it Weigl	ometer	F	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index esignation overy		C DS GS	Direc	olidation t Shear Size Analysis
		SOIL PROFILE		:	SAMPL	.ES		LER					CONE				U	AL		(cm/s)		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ R UND	VANE ITACT EMOUL RAINE	LDED D SHEA	i0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE ILDED		W O ER CONTEI	-00 14 LIQUID (%) - 1 K LIQUID	PERMEABILITY (o	F	REMARKS
	subangu	ay and sand, angular to llar [WS Till, inferred]		3	RC	92			31	321											enco artes up to	30.17m, untered ian pressure 2.85m above id level
	End of I Standpip up Water L at 2.23n	Borehole at 31.7m be installed with 0.9m stick evel (bgs): n on Dec 13/12 n on Dec 18/12																				

	an	nec	9									RECOR	RD (OF E	BOREH	OLE No	. В	BH1 1	PAGE 1 OF 3
	PROJ	IECT	Rainy River - Geotechnical In	vesti	gatior	n 2011/	2012										ENG	GINEEF	R <u>MS</u>
	PROJ	IECT NO.	TC113921	DRI	LLER	R <u>Ma</u>	arathor	n Drillir	Ig		В	ORING MET	HOD	200 m	Im HSA, NQ	Coring	LOG	GED E	BY <u>MM</u>
	CLIEN		Rainy River Resources.																DBY <u>NH</u>
	ELEV	ATION	374.744 m	COC	ORD.	N	5,410,	763 E	425,20)5	B	ORING DAT	E <u>Sta</u>	art: Jar	n 30, 12 Er	nd: Feb 2, 12	CHE	CKED	BY DGR
	AU A BU E		SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	elby)				P.P. U.W.	REVIATIONS Pocket Penetro Wet Unit Weigh Standard Proct	ometer ht tor Test	F S k	RQD Rock Qua SCR Solid Cor Permeab		(I ₅₀)		Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE			SAMPL	ES		N		e	RESISTA	ANCE P	LOT	TRATION	IC SAL URE ENT	0	cm/s)	
	ELEV DEPTH (m) 374.7		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOUL UNDRAINEL	_DED	NILC △ II ▲ F R STRE	0 100 CON VANE NTACT REMOULDED ENGTH (kPa) 0 100	MATURAL MATURA	-00 X IMIT (%) X (%) X (%)	PERMEABILITY (cm/s)	REMARKS
	37 9.6 0.2	TOP SO			1	ss	54	10								24			
		rootlets Silty CL Light bro trace gra	AY wn silty clay, trace sand, avel, varved, moist, low to		2	ss	67	11		1	374_								
		medium Glaciola	plasticity, stiff [Upper		3	ss	100	10		2	373_					22 0			
	372.5 2.3	well grad	wn silty sand, trace clay, led, loose to compact,		4	ss	100	11		3	372_					17 0			
		occasior sand]	al silt lenses, moist [Glacial		: : 5	ss	100	8		,	371_					21			
										4									
		below wet	4.57m, very loose to loose,		. 6	ss	83	6		5	370					20 0			
										6	369_								
						ss	100	7		7	368_					22 0			
:06 PM											367_					23			
/2012 1:29					. 8	ss	83	2		8	366					o			
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:06 PM						ss	83	3		9						19 O			
0405.GPJ							Y			10	365								
OGS_2012					. 10	ss	75			11	364_					21 0			at 10.8m SPT sampler sank
3921_BHL										12	363_								under its own weight
File: TC11						ss	92	4			362_					21 0			
O MWSK	361.0									13	001								
Format: AMEC GEO MWSK	13.7			<u>. </u>	12	ss	96	5		14	361					21 0			
Format:										15	360_								

3	nec	3									RE	COF	RD (of e	BOF	REH	OL	E No	. B	3H1 [,]	1-11 A&B PAGE 2 OF 3
	JECT	Rainy River - Geotechnical In		-																SINEE	
		TC113921								В	ORING	6 MET	HOD	200 n	nm HS	A, NQ	Cori	ng		GED	
CLIE FLF	VATION	Rainy River Resources. 374.744 m								B			F Sta	art: la	n 30 1	2 Fr	nd: E	-h 2 12			D BY <u>NH</u> BY DGR
					<u></u>	0, 110,		120,200			REVIAT										
AU BU	Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoo n Wall	on ed Op	en (She	lby)				P.P. 1 U.W.	Pocket I Net Uni Standar	Penetro t Weigł d Proct	ometer nt or Test	H S H	RQD Ro SCR So K Pe	ock Qua olid Corr ermeabi	ality D e Rec		(I ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		1	SAMPL	· · · · ·		N ETER		Ê	R	ESISTA	CONE NCE P 0 6	LOT	\times		ЦC	NATURAL MOISTURE CONTENT	۵	(cm/s)	
ELEV DEPTH (m)	Ŧ	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IN RE UNDE	VANE TACT EMOUL RAINE[NILO △ I ▲ F R STRE	CON V NTACT REMOL ENGTH	ANE JLDED		W O ER CONTE	WIL WL WT (%) 60	PERMEABILITY (cm/s)	REMARKS
				15	ss	100	6		.16	359_							2	20			
	Silty CL		101	18	ss	100			.17	358_								29			
	sand, hi [WML T	ty clay, trace gravel, trace gh plasticity, stiff, moist ïll] n, sand pocket/layer.		10	35	100	11		.18	357_											
				19	ss	100	11		.19	356_								35			at 18.3m, 75 mm of heaving sand.
									.20	355								38			
				20	ss	100	10		.21	354_									+1		
				21	ss	100	6		.22	353_							2	3			
8 351.9 22.9 22.9									.23	352_											
	Dark gro gravel, o [WS Till	ey silty sand, trace clay, compact to dense, saturated		24	ss	46	24		.24	351_							2	0			
	boulder	S		25	ss	25	24		.25	350							80				
										349							9				
				26	ss	0.04	50/0.1		.26	348_											at 25.9m- SPT refusal on possible cobbles and boulders; switched to coring.
									.27	347_											
FORMAL: AMEC GEO MWSK									.28	346_											
									.29	345_											
2	1		0.	1		1	1	ИИИЕ	30	1 2			1			1	1	1	1	I	

0	med	Ø									REC	COF	RD (OF E	BOF	REH	OL	E No	. B	BH1 1		A&B E 3 OF 3
	ROJECT	Rainy River - Geotechnical In	vesti	gatio															ENG	GINEEF	۲ _	MS
		TC113921								В	ORING	MET	HOD _	200 m	nm HS/	A, NQ	Corir	ng		GED I	-	MM
	.IENT	Rainy River Resources.																		MPILE	_	
EL	EVATION	_374.744 m	CO	JRD.	<u>N</u>	5,410,	763 E	425,20)5	B	ORING	DATI	E <u>Sta</u>	art: Jar	n 30, 1:	2 En	d: Fe	eb 2, 12	CHE	ECKED	BY _	DGR
Al Bl	AMPLE TYPI J Auger J Bulk C Dynamic Ce	SS Spl TW Thi	t Spoo n Wall	on ed Op	en (She	elby)				P.P. U.W.	REVIAT Pocket P Net Unit Standard	enetro Weigh	meter nt	F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index esignation overy	(I ₅₀)		Direct	lidation Shear Size Analysis
		SOIL PROFILE		5	Sampl	.ES		A TER		_	RE	SISTA	CONE	LOT	—×		υ	URE		(s/u		
ELE DEF (n	тн	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN RE	MOUL	.DED) SHEA	NIL(△ I ▲ F R STRE				W O ER CONTEI		PERMEABILITY (cm/s)	RI	EMARKS
	Standp flush m Water For Pie zone) a For Pie	DCK Borehole at 37.8m. ipe A and B installed with ounted casing Level (bgs): zometer A (bottom sensing tt 4.7m on Feb 02/12 zometer B (middle sensing tt 5.6 m on Feb 02/12		27 28 29	RC	2 83 98 100	67 70 93		31 32 33 34 35 36 37	344 343 342 341 340 339 338 338 337												

36		3									RE	COF	RD O	FB	OR	Eŀ	IOLE			PAG	1-11C E 1 OF 1
	JECT	Rainy River - Geotechnical I																	SINEEF	۲.	MS
PRO	JECT NO.	TC113921								B	BORING MET	HOD _						LOG	GED I	BY	MM
CLIE	NT	Rainy River Resources.				otation	Tailing	ļs										CON	/IPILED	OBY	SM
ELE\	/ATION	<u>374.744 m</u>	CO	ORD.	Ν	5,410,	763 E	425,20)5	B	BORING DAT	E <u>Sta</u>	rt: Feb	2, 12	End:	Feb	2, 12	CHE	CKED	BY _	DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Co	SS Sp TW Th	lit Spoo in Wall	on ed Ope	n (She	elby)			_	P.P. U.W.	REVIATIONS Pocket Penetro Wet Unit Weig Standard Proc	ometer nt	RC	L. Point D Rock R Solid Perm	Quali Core	ty De Recc	ngth Index signation overy	< (I ₅₀)		Direct	olidation Shear Size Analysis
		SOIL PROFILE		S	AMPL	.ES		TER		(DYNAMIC RESIST/	ANCE PI	_OT —	—X—	I	Q	KAL URE ENT		(s/u:		
ELEV DEPTH (m) 374.7		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOUND UNDRAINE	DED	NILCO △ IN ▲ RE R STREM	emould Igth (kf	ED		-0 0 MATURAL -0 0 MATURAL -0 0 MOISTURE		PERMEABILITY (cm/s)	R	EMARKS
0.0	BH11-1 of shallo BH11-1	1C shows installation details by standpipe piezometer 1C BH11-11 for stratigraphic							1	374_ 373_ 372_ 371_ 370_ 369_ 368_ 368_ 367_											
7.9	Standpi mounte Water L	Borehole pes installed with flush d steel casing .evel (b.g.s): m on Feb 02/12																			

3	nec	9									RECO	RD OF BO	DREHOL	E No.	BH11-12 PAGE 1 OF 2
PRC	JECT	Rainy River - Geotechnical In	vesti	gatio										ENGINEE	
		TC113921									ORING METHOD 2				
CLIE		Rainy River Resources.													ED BY <u>SM</u>
ELE	VATION	<u>355.723 m</u>	CO	ORD.	<u>N</u>	5,411,	178 E	425,3	11	B	ORING DATE Star	t: Mar 17, 12 Ei	nd: Mar 17, 12	CHECKE	D BY DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Cor	SS Spli TW Thir	t Spoo n Wall	on ed Op	en (She	lby)				P.P. F U.W. V	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Test	RQD Rock Qua SCR Solid Cor k Permeab		C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	ES		N TER		Ê	DYNAMIC CONE F RESISTANCE PLO	от ————————————————————————————————————	TIC TIC	cm/s)	
ELEV DEPTI (m) 355.3	4	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAR 20 40 60	80 100 NILCON VANE △ INTACT ▲ REMOULDED STRENGTH (kPa) 80 80 100	MATER CONTENT MATER	· · · · · · · · · · · · · · · · · · ·	REMARKS
0.0	Dark bro			1	AS					355_			42 0		frozen to 0.8m
<u>355.(</u> 0.8	3 SILTY (Greyish	CLAY brown silty clay, trace to and, some lensing and		2	ss	67	8		E1	355			39 0		
	oxidation medium Glaciola	n, varved, firm to stiff, low to plasticity, moist [Upper custrine]		3	ss	92	14		2	354					
		m trace gravel m trace rootlets		4	ss	100	8			353_			35		
				5	тw	100			3	352_					at 3.04m TV=64 KPa
351.2									-4	351_					
4.0	Dark bro sand, tra	own to grey silty clay, trace ace gravel, occasional silt , medium plasticity, stiff,		6	ss	87	10		5	350_			19 0		
				7	ss	100	10		6 	349			35		
9:11 PM				8	ss	100	9			348_			36		
/10/2012 1:29										347_					
GPJ Date: 7				9	ss	100	14			346			36 0		
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:11 PM				10	ss	100	14		11	345			35		
13921_BHLO									12	344					
File: TC1				11	ss	100	13			343_			36 0		
Format: AMEC GEO MWSK				12	ss	100	7			342_			1 ³⁶		
⁻ ormat: AM										341					

an	nec [©]									REC	ORE) OF	BC	RE	HOL	E N	No.	BH11-12 PAGE 2 OF 2
PRO	JECT Rainy River - Geotechnical In	vestig	gatior	n 2011	/2012											ENG	SINEEI	
PRO	JECT NO. TC113921	DRIL	LER	R <u>M</u>	arathoi	n Drillin	g		В	ORING METHOD	200 m	nm HSA,	NQ	Corin	g	LOG	GED	BY PDR
CLIEN	NT Rainy River Resources.	LOC	ATIC	DN <u>F</u>	otation	Tailing	IS									CON	APILE	DBY <u>SM</u>
ELEV	ATION 355.723 m	coc	ORD.	N	5,411,	178 E	425,311		В		tart: Ma	ır 17, 12	En	nd: Ma	ar 17, 12	CHE	ECKED	BY DGR
AU / BU I	Bulk TW Thir	t Spoo n Walle	n ed Op	en (She	elby)				P.P. 1 U.W.	REVIATIONS Pocket Penetrometer Wet Unit Weight	F	P.L. Poin RQD Roci SCR Solic	k Qual I Core	lity De: Reco	signation			Consolidation Direct Shear
DC	Dynamic Cone WS Was SOIL PROFILE	sh Sar	· ·	SAMPL	ES		Ľ		PT :	Standard Proctor Tes	IE PENE	C Perr	N	ŕ	.ш.		GS ĵ	Grain Size Analysis
ELEV DEPTH (m)		STRAT PLOT	NUMBER		RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	RESISTANCE 20 40 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHE 20 40	60 8 NIL0 △ 1 ▲ F AR STRE	80 100 CON VAN NTACT REMOULI) NE DED (Pa)		A MATURAL MATURAL MOISTURA CONTENT Content	-00 4 LIQUID (%) - LIQUID (%) - LIMIT	PERMEABILITY (cm/s)	REMARKS
			13	ss	100	10		_16	340_						38 0			
	at 16.8 m sand lenses/laminae, firm		14	ss	100	8		_17 _18	339 338					20 0				
<u>337.4</u> 18.3	SILTY CLAY Dark grey silty clay and gravel,		15	ss	100	10			337_					F	34			
335.9	varved, lów plasticity, stiff, moist [Lower Glaciolacustrine]							_19	336_					19 0				
19.8			17	ss	25	11		_20										
_ 333.3			18	RC				_21 _22	335 334									
22.4 328.8 27.0	BEDROCK highly fractured and weathered, bluish green		19	RC	63	0		_23	333 332									at 22.4 m switched to NQ
			20	RC	92	0		_25	331									
328.8			21	RC	82	0		_26	330 329									
27.0	End of Borehole at 27m Standpipes installed with flush mounted steel casing Water level (b.g.s): For Piezometer A (bottom sensing zone) at 1.1 m on Mar 18/12 For Piezometer B (top sensing zone) 0.65 m on Mar 18/12																	

at: AMEC GEO MWSK File: TC113921 BHLOGS 20120405.GPJ Date: 7/10/2012

2	med	0									F	RECO	ORD	OF E	OR	EHOL	E I	No.	BH11-13 PAGE 1 OF 2
PF	ROJECT	Rainy River - Geotechnical Ir	vesti	gatio	n 2011/	/2012											ENG	SINEE	R <u>MS</u>
PF	ROJECT NO.	TC113921	DRI	LLEF	R <u>Ma</u>	arathoi	n Drillir	ng		В	ORING ME	THOD	200 m	nm HSA, N	Q Coi	ring	LOG	GED	BY <u>SM</u>
CL	.IENT	Rainy River Resources.	LOC	CATIO	ON <u>O</u>	/erburg	den sto	ockpile	9								CON	MPILEI	D BY <u>NH</u>
EL	EVATION	347.063 m	CO	ORD	. <u>N</u>	5,410,	290 E	422,5	97	В	ORING DA	TE <u>Sta</u>	art: Ma	r 3, 12 E	nd: M	lar 5, 12	CHE	ECKED	BY DGR
Al Bl	AMPLE TYPE J Auger J Bulk C Dynamic Co	SS Spl TW Thi	it Spoo n Wall	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIATION Pocket Penet Wet Unit Wei Standard Pro	rometer ght	F	P.L. Point L RQD Rock G SCR Solid C Perme	uality I ore Re	rength Index Designation covery	к (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		;	SAMPL	ES.		N		(RESIST	ANCE F	PLOT	TRATION	ic	RAL URE ENT	0	cm/s)	
ELI DEF (n 34	7.1 Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VAN	E JLDED ED SHEA	NILO △ I ▲ F R STRE	0 100 CON VANE NTACT REMOULDE ENGTH (KPa 0 100	D	P W O TER CONTE		EABII	REMARKS
34	B.BTOPSC0.3Woody	, fibrous organics	/11	1	ss	87.5	4		i i							21	89	>	
	trace cl soft, lov	own to light brown sandy silt, ay, rootlets, trace organics, v plasticity, damp [Upper		2	ss	29.2	7			346						28			
34	Glaciol	acustrine]		3	ss	92	4		2	345_						25			
	2.3 Clayey Grey cl low pla	SILT ayey silt, trace sand, no to sticity, moist, soft thick silty clay at the top		4	ss	83	7		3	344_						28 O			
		thick sity day at the top		5	ss	92	3					1	67						
	2.5 4.6 \at 4.4	9m, brown oxidised pockets							4 	343_		41		87		42			
	Silty C Dark gr subang	LAY rey silty clay, trace sand, trace ular gravel, limestone, high ty, moist, firm [WMLTill]		8	ss	100	7		5	342				77		43 0			
		6.25m to 9.14m, medium		11	ss	92	5		6	341		51 ■			1	8			
	plastici	iy							7	340_	21	51	72						
1:29:13 PM				14	тw	100			- 	339_									at 7.9m PP=37 KPa
Date: //10/2012 1:29:13 PM									9	338_	26 ■	1	67 62						Torvane=49 KPa
				17	ss	92	5				10		67			34 0			
20120405.GPJ										337	21 21	51							
				20	ss	88	6		E_11 E	336_	21		62			37			
FIIE: 1 C113921_BHLUGS_									12	335	26		56			31			
				23	ss	96	5		L_13	334_	15		62			31 0			
C GEO MWSK				26	тw	100			E 14	333_	_26 ■								
Format: AMEC									15										at 14m PP=61-85 KPa Torvane=44 KPa

an	nec ^o									REC	ORD	OF BC	ORE	EHOL	.E N	No.	BH11-13 PAGE 2 OF 2
PROJ	ECT Rainy River - Geotechnical In	vestig	gation	n 2011	2012										ENG	SINEE	R <u>MS</u>
PROJ	ECT NO. TC113921	DRIL	LER	<u>Ma</u>	arathor	n Drillin	g		В	BORING METHOD	200 mr	n HSA, NQ	Corin	lg	LOG	GED	BY <u>SM</u>
CLIEN	IT Rainy River Resources.	LOC	ATIC	ON <u>O</u>	/erburg	len sto	ckpile								CON	/IPILEI	DBY <u>NH</u>
ELEV	ATION 347.063 m	COC	ORD.	N	5,410,3	290 E	422,59	97	B	BORING DATE <u>S</u>	tart: Mar	3, 12 End	d: Mar	5, 12	CHE	CKED	BY DGR
AU A BU E		t Spoo Walle	n ed Op	en (She	lby)				P.P. U.W.	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Tes	R(S(L. Point Loa QD Rock Qua CR Solid Con Permeabi	ality De e Reco	signation		C DS GS	Consolidation Direct Shear Grain Size Analysis
_	SOIL PROFILE		· ·	SAMPL	.ES		ЦЦ			DYNAMIC CON RESISTANCE	E PENET	RATION	ŕ	귀꿉다		(s/u	
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHE	60 80 NILC △ IN ▲ RE	100 ON VANE TACT EMOULDED NGTH (kPa)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0, Z ≤ LIMIT	PERMEABILITY (cm/s)	REMARKS
			27	ss	100	5		16	331_	31	62			44 0			Artesian pressure up to 1.06m encountered after installing the second standpipe.
			30	ss	100	6		17	330_	• • •		7		41			
								18	329_	26 31	67 62						
			33	ss	100	4		19	328_	21		92					
								Ē		36 ■							
<u>327.3</u> 19.8	Sandy SILT Greyish green sandy silt, trace clay, grey clay lamination, no plasticity, wet, soft to firm [Lower		36	ss		7		20	327_					<u>33</u> 0			
<u>325.7</u> 21.3	Glaciolacustrine]							21	326_								
5			37	RC	98	70		22	325_								
322.6 24.4								23	324_								
322.6			38	RC	100	100		24	323_								
	End of Borehole at 24.4m Two standpipes, BH11-13A and BH11-13B (orange spray) installed with flush mounted steel casing Water level (b.g.s): For Piezometer A (bottom sensing zone) at surface on Mar 5/12 For Piezometer B (top sensing zone) surface on Mar 5/12																

		nec	9									RECO	RD (OF E	BOREH	IOLE No	. B	BH1 1	1-16 A&B PAGE 1 OF 3
Р	ROJE	ECT	Rainy River - Geotechnical In	vesti	gatior	n 2011/	2012										ENG	GINEEF	R <u>MS</u>
P	ROJE	ECT NO.	TC113921	DRI	LLER	R <u>Ma</u>	arathor	n Drillin	Ig		В	ORING MET	FHOD .	200 m	nm HSA, NG	Coring	LOG	GED I	BY <u>SM</u>
С	LIEN	Т	Rainy River Resources.	LOC	CATIC	ON <u>O</u>	/erburg	den sto	ckpile								CON	MPILE	D BY <u>NH</u>
E	LEVA	TION	348.843 m	COC	ORD.	N	5,409,	752 E	423,78	35	B	ORING DAT	E Sta	art: Fel	b 29, 12 E	nd: Mar 2, 12	CHE	ECKED	BY DGR
AB	U A		SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIATIONS Pocket Penetr Wet Unit Weig Standard Proc	ometer ht	F	P.L. Point Loa RQD Rock Qu SCR Solid Cor & Permeab		(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE			SAMPL	ES		N		(RESIST	ANCE F	PLOT	TRATION	IC AL URE ENT)	cm/s)	
DE (.EV PTH m) 48.8	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOU UNDRAINE	LDED D SHEA	NILO △ I ▲ F	0 100 CON VANE NTACT REMOULDED ENGTH (kPa) 0 100	WATER CONTE		PERMEABILITY (cm/s)	REMARKS
	48.9	TOPSOI		 V///	1	ss	100	15		Ē						27	91	>	
		Clayey S Brown cl	SILT ayey silt, trace sand, grey								348_					21			frozen to 0.8m
			nations, varved, low , damp, organics [Upper custrine]		2	ss	100	6											
		below no to low	1.5m mottled brown lenses, v plasticity, firm, damp		3	ss	100	6		2	347					25			
												∎ ¹⁵	41		97				
3	45.8 3.0	Silty CL								_3	346								
	5.0	Dark gre	y silty clay, medium to high , soft to firm, damp to moist		6	ss	100	6								46 0			
		[WML Ťi	1]							E_4	345	3	36	72	97				
		at 4 57	m, some sand, subangular		_											25			
		to subrou	unded gravel, damp to off to firm, sand lenses		9	ss	100	3		_5 _	344					- 25			
											343	21 26		56					
					<u> </u>					E_6	343					19			
		sandy 6.35m	lense between 6.3 and		12	ss	100	4			342_						-1		
										7 E		21 3	46 1 51						
17 PM			en 7.6m to 9.5m - clayey silt,								341					24			at 7.6m SPT
1:29:		soft, no t	o low plasticity, wet		15	ss	71			<u>-</u> 8 -						0			sampler sank under its own weight
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:17 PM											340_	26 21	36 51 36						
ate: 7/					_					E_9 E						39			
L L L					18	ss	100	4		E 10	339_	3.	1	62		0			
20405.0												, ∎ 3.	1						
S_2012										- 11	338_					36 0			
HLOG					21	ss	100	5				26			77	0			
3921_B										- - - 12	337_		36	67					
TC11:										- 12						34 0			
					24	ss	100	5		E E L 13	336_	26			82	0			
MWSK													51	56	82 □				
C GEO										E 14	335_					35			
Format: AMEC GEO MWSK					27	ss	100	6								• •			
Format										E 15	334_	3.	36	67	92 □				

	an	nec	9									RE	CO	RD (OF I	BOF	REH	OL	E No	. В	H1 1		A&B E 2 OF 3
	PROJ		Rainy River - Geotechnical In																		SINEEF		MS
			TC113921								В	ORINO	G MET	HOD	200 r	nm HS	A, NQ	Corir	ng		GED E		SM
	CLIEN		Rainy River Resources.																		/IPILED		
ŀ			348.843 m	000	JRD.	. <u>N</u>	5,409,1	(52 E	423,7	85					art: ⊦e	b 29, 1	2 Er	nd: Ma	ar 2, 12	CHE	CKED	BY	DGR
	AU A BU E		SS Spli TW Thir	t Spoo Walle	on ed Op	oen (She	lby)			-	P.P. 1 U.W.	Pocket Net Un Standar		ometer ht tor Test		RQD Ro SCR So k Pe	ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	(I ₅₀)	GS	Direct	olidation Shear Size Analysis
			SOIL PROFILE		, ;	SAMPL	ES		N TER		Ē	R	ESISTA	CONE	PLOT	—×		2	CURE ENT	0	cm/s)		
k	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN R UND	VANE ITACT EMOUI RAINEI	LDED D SHEA	NIL △ ▲ R STR		ANE		W O ER CONTE	_8 1 ⊾ LIQUID (%) ⊥ LIMIT	PERMEABILITY (cm/s)	R	EMARKS
		sand a 15.75 m	nd gravel lense between and 15.85m		30	ss	79	11	-	 16	333							2	86 O				
					31	ss	79	8	-	17	332_								45 0				
		sand a 17.3 m a	nd gravel lense between nd 17.4m							18	331								41				
					32	ss	100	6	-	19	330	∎ ¹⁰	26		56 67				41 0				
					35	ss	100	6		20	329 328	,	15		56				44 0				
					38	ss	100	6		21	327_		21		3				43 0				
9:17 PM	326.0 22.9	Silty CL	AV							22 	326_		15 26		62 56								
7/10/2012 1:2		Silty clay	, medium plasticity, varved, st to wet [Lower		41	ss	100	6			325_								58	1			
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:17 PM	<u>324.5</u> 24.4	Silty san to suban	ND and GRAVEL d and white brown angular gular gravel, trace clay, , moist to wet [WS Till]		43	ss	38	25		 25	324_								28				
JGS_201204(,					05		26	323_							10_					
3113921_BHL					44	ss	29	25		27	322							ō					
	321.4 27.4	BEDROO Fracture	CK d at the top	.8.	45	ss	25	27		28	321							5 0					
Format: AMEC GEO MWSK					46	RC	100	30		 	320_												
Format: AN					47	RC	100	63		- 30	319_												

≧ AMFC

	an	nec	9									RE	COF	RD (of e	BOF	REH	OL	E No	. В	6H11		A&B E 3 OF 3
	PROJ	ECT	Rainy River - Geotechnical I	nvesti	gatio	n 2011	/2012													ENG	SINEEF	۲.	MS
			TC113921								В	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED E	BY .	SM
	CLIEN		Rainy River Resources.																		/IPILED		
	ELEV	ATION	348.843 m	CO	ORD.	. <u>N</u>	5,409,7	752 E	423,78	85	B	ORINO	G DAT	E <u>Sta</u>	art: Fel	b 29, 1	2 Er	nd: Ma	ar 2, 12	CHE	CKED	BY	DGR
	AU A BU E		SS Sp TW Th	lit Spoo in Wall	on ed Op	oen (She	elby)				P.P. U.W.	REVIA ⁻ Pocket I Wet Uni Standar	Penetro it Weigl	ometer	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ility De Reco	ngth Index signation overy	(I ₅₀)		Direct	olidation Shear Size Analysis
			SOIL PROFILE			SAMPL	.ES		L TER		_			CONE	LOT	—×	-	ں ں	URE		(s/u		
. I.	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINE	LDED D SHEA	0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE ILDED		W O ER CONTE		PERMEABILITY (cm/s)	R	EMARKS
								0,	-	=													
	317.2				48	RC	100	83		31	318_												
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:18 PM	31.6	Two star BH11-16 with flus Water le For Piez zone) at For Piez	Borehole at 31.65m hoppoes, BH11-16A and BB (orange spray) installed h mounted steel casing evel (b.g.s): ometer A (bottom sensing surface on Mar 3/12 ometer B (middle sensing urface on Mar 3/12																				

amec®								RE	COP	RD (OF B	OR	EF	IOLE	ENc). В	H11-16C PAGE 1 OF 2
PROJECT Rainy River - Geotechnical I	nvestigatio	on 20	11/2012												ENG	SINEEF	R <u>MS</u>
PROJECT NO. TC113921	DRILLE	R_	Marathor	n Drillin	g		BO	RING ME	THOD						LOG	GED E	BY <u>SM</u>
CLIENT Rainy River Resources.	LOCATI		Overburg	len sto	ckpile										CON	APILED	DBY <u>SM</u>
ELEVATION <u>348.431 m</u>	COORE	D	N 5,409,	753 E	423,78	5	во	RING DA	TE <u>Sta</u>	art: Ma	ar 3, 12	End:	: Mar	3, 12	CHE	ECKED	BY DGR
BU Bulk TW Th	ick Core lit Spoon in Walled O ash Sample		Shelby)				P.P. Po U.W. W	EVIATION ocket Penet et Unit Weig andard Pro	rometer ght	l	P.L. Poin RQD Rock SCR Solid k Pern	k Quali d Core	ity De Reco	signation	x (I ₅₀)		Consolidation Direct Shear Grain Size Analysis
SOIL PROFILE			PLES		ЦЦ			DYNAM			TRATIO	N	,	귀ᇟ다			
ELEV DEPTH DESCRIPTION (m) 348.4 Ground surface	STRAT PLOT NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	EVATIO	MTO VAN INTACI REMOL UNDRAINE 20	E - JLDED ED SHEA	NIL △ I ▲ F		NE DED (Pa) N			-09 Z * LIMIT (%) Z * LIMIT (%)	PERMEABILITY (cm/s)	REMARKS
348.4 Ground surface 0.0 BH11-16C shows installation details of shallow standpipe piezometer BH11-16C Refer to BH11-16 for stratigraphic Information						_1 _2 _3 _4 _6 _7 _7 _8 _9 _10 _11 _12 _13 _14	348 347 346 345 345 344 343 344 343 344 343 344 343 344 343 345 345										

Ə N PROJI		9 Rainy River - Geotechnica	l Investi	gatior	n 2011	/2012						RE						IOLE		D. B	H11-16C PAGE 2 OF MS
PROJI	ECT NO.	TC113921		-			n Drillir	ng		В	ORING	MET									
CLIEN	т	Rainy River Resources.	LOC	CATIC																	BY SM
ELEVA	ATION	_348.431 m	CO	ORD.	N	5,409,	753 E	423,7	85	В	ORING		E Sta	art: Ma	ır 3, 12	Enc	l: Mai	3, 12	CHE	CKED	BY DGR
AU A BU B		SS S TW	Rock Cor Split Spo Thin Wall Wash Sa	on ed Op	en (She	elby)				P.P. I U.W.	REVIAT Pocket F Wet Unit Standard	Penetro Weigh	meter nt	F	RQD Ro SCR So	int Load ock Qua Ilid Core rmeabil	lity De Reco	ngth Index signation overy	(I ₅₀)	DS	Consolidation Direct Shear Grain Size Anal
		SOIL PROFILE		5	SAMPL	ES		TER			DYI RE	NAMIC	CONE	LOT	—×		U	AL NT		(cm/s)	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2(MTO □ IN ■ RE) 4 VANE TACT MOUL RAINED	0 6 .DED) SHEA	0 8 NILO △ I ▲ F R STRE	O 10 CON VA NTACT REMOU ENGTH	90 ANE ILDED	PLASTIC A PLASTIC A LIMIT 5	CONTENT CONTEN		PERMEABILITY (c	REMARKS
									16	333_											
									17	332_											
									18	331											
330.1 18.3	End of I	Borehole at 16.3m							-												
	mounted Water L	bes installed with flush d steel casing evel (b.g.s): ce on March 03/12																			

3	med	3										R	ECO	ORE) Of	BC	OR	HOL	E N	No.		111-17 SE 1 OF 2
PF	ROJECT	Rainy River - Geotechnical In	vestig	gatior	n 2011/2	2012													ENG	SINEEI	R	MS
PF	ROJECT NO.	TC113921	DRII	LER	Ma	rathor	n Drillir	ng		[BORIN	IG ME	THOD	200 n	nm HS	A, NQ	Corir	ng	LOG	GED	BY	SM
	IENT	Rainy River Resources.																		MPILE		
EL	EVATION	349.346 m	COC	ORD.	<u>N 5</u>	5,410,	114 E	424,7	58	[BORIN	IG DAT	E <u>St</u>	art: Fe	b 27, 1	12 Er	nd: Fe	<u>b 28, 1</u> 2	CHE	CKED	BY	DGR
AL BL	AMPLE TYPE J Auger J Bulk C Dynamic Co	SS Spli TW Thir	t Spoc n Walle	n ed Op	en (Shel	by)				P.P. U.W.	Pocke Wet U	ATIONS t Penetr nit Weig ard Proc	ometer	:	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index signation overy	к (І ₅₀)	C DS GS	Direc	olidation t Shear ı Size Analysis
		SOIL PROFILE		5	SAMPLI	ES		LER					C CONI	PLOT	\times		U	URE		(s/u		
ELE DEF (n 34	ΎТН	DESCRIPTION	STRAT PLOT	NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MT D I	O VANE NTACT REMOU DRAINE	LDED	NIL △ I ▲ I		ANE JLDED		0 20 -0 0 MATURAL -0 0 MOISTURE CONTENT	-09 Z (%) _ ^r LIMIT	PERMEABILITY (cm/s)	F	REMARKS
		IL own, fibrous, rootlets		1	ss	100	29	V		349_							2	32 0 3			froz	zen to 0.8m
	0.8 Light br sand, tr	own silt, trace clay, some ace organics SILT to Silty CLAY		2	ss	96	8		1	348_							2	5 0				
	trace sa lenses,	own clayey silt, trace gravel, and, rootlets, mottled brown low to medium plasticity, mp [Upper Glaciolacustrine]		3	ss	88	4		2									42				
34	6.3 high pla	n brown silty clay, medium to sticity, firm to stiff, damp							3	347_			4 6	56		103 103						
	gravel,	AY silty clay, trace sand and medium to high plasticity, irm, damp to moist [WML Till]		6	ss	100	4			346_			36	7:	2		20)				
									4 	345_			41			97						
				9	ss	100	3		5 5	344_		21	41				2	4 0				
	at 6.1	m grey silty, low plasticity							6	242			41 5' ■ □				2	3				
				12	ss	100	3		7	343_		0			82			0				
										342_			46	╞	7							
4	belov	v 7.6m becoming dark grey		15	ss	100	6		8	341_		3	1		9			31 0				
0401									9				36		77 77 1							
				18	ss	100	5		10	340_								30				
										339_								31				
				0A&I	ss		3		E_11	338_		21		62			21	0				
		10.7m to 14.3m occasional							E12				41		2			35				11.89m, ing sands;
	dark gre Iaminati	ey silty sand and gravel ion		23	ss		5		13	337_		3	1			97	22	-0			switc borin	hed to wash g.
										336_								31				
				26	ss	100	5			335_								0				

an	nec	9										R	ECO	ORE) Of	BC	OR	EHOL	E I	No.	BH11-17 PAGE 2 OF 2
PROJ		Rainy River - Geotechnical In	ivestiç	gatior	n 2011	/2012													ENC	SINEE	R <u>MS</u>
		TC113921	DRII				n Drillir	ng		В	ORING	6 MET	HOD	200 n	nm HS	A, NQ	Corir	ng		GED	
CLIEN		Rainy River Resources.		atic Drd.		t diver															D BY <u>NH</u>
ELEV	ATION	_349.346 m	5,410,	114 E	424,75	58	B	ORING	5 DATI	E <u>St</u>	art: Fe	b 27, <i>'</i>	l2 Er	nd: Fe	eb 28, 12	CHE	ECKED	BY DGR			
AU A BU E		SS Spli TW Thir	it Spoc n Walle	n ed Op	en (She	elby)				P.P. F U.W. \	REVIAT Pocket F Wet Uni Standar	Penetro t Weigh	meter nt	:	RQD RO SCR So		ality De e Reco	ngth Index esignation overy		C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		5	Sampl	ES		LER							TRAT		U	AL		(s/m	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE UNDF	0 4 VANE TACT EMOUL RAINED	DED DED	§0 8 NIL △ 1 ▲ 1 R STR	30 1 CON V INTACI REMOL ENGTH	00 ANE - JLDED		W O ER CONTE		EABII	REMARKS
				27	ss	92	5			334								38 0			
									16	333_											
				28	ss	100	6		17	332_								37 0			
	at 18.2	29m, silty pockets.							18	331_								31			
				29	ss	100	6		19	330_								0			
<u>329.4</u> 20.0						100			20												
20.0	3-4mm l plasticity	green silty clay(silt as amintions) medium , varved, firm, moist [Lower custrine]		30	ss	100	8		21	329											
328.0 21.3	Dark gre	SAND and GRAVEL by clayey sand and gravel, ded to angular [WS Till]	 						22	328_											
	below	22.6m, boulders							23	327_											
			3.00							326											
<u>325.0</u> 24.4	BEDRO	ск		34	RC	37	0		24	325											
<u>322.2</u> 27.2		actured bedrock		35	RC	100	0		25												
				36	RC	78	9		26	324		<u> </u>									Artesian pressure
						400	400		27	323_											up to 0.7m encountered pulling rods out
322.2 27.2	Standpip	Borehole at 27.1m be installed with flush I steel casing		37	RC	100	100														
		vel (b.g.s): ı on Feb 29/12																			

3	nec	3										R	ECC	ORE	OF B	OR	ehol	E	No.	BH11-18 PAGE 1 OF 4
PRO	JECT	Rainy River - Geotechnical In		-		/2012												ENC	SINEE	R <u>MS</u>
		TC113921						ng		В	ORIN	G MET	HOD	200 n	nm HSA, NO	Q Cori	ng		GED	
CLIE		Rainy River Resources.						405.0	00				· - ~		- 45 40					DBY <u>NH</u>
		348.507 m	COO	ORD.	<u>N</u>	5,408,	990 E	425,2	02										CKED	BY DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Co	SS Split TW Thir	t Spoo n Walle	on ed Op	en (She	elby)		-		P.P. U.W.	Pocket Net Un	it Weig	ometer	1	P.L. Point Lo RQD Rock Qu SCR Solid Co < Permeat	ality D re Rec	esignation	к (І ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			Sampl	ES		N		(m)	R	ESIST	ANCE F	LOT		-IC	RAL TURE ENT	0	cm/s)	
ELEV DEPTH (m) 348.5		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (n	MTC III R UND	VANE ITACT EMOU RAINE	LDED D SHEA	NIL △ I ▲ F R STRI	30 100 CON VANE NTACT REMOULDED ENGTH (kPa) 30 100	WAT	W ER CONTE	UINII WL NT (%) 60	PERMEABILITY (cm/s)	REMARKS
0.0	TOPSO								F											
347.7										348_						+				
0.8	Brown s trace gra	LAY ilty clay, trace to some sand, avel, varved, low to medium y, stiff, moist, occasional		2	ss	88	10			347_							34 0			frozen to 1.5m
	sand lar	ninations [Upper icustrine]		3	ss	83	11		2 2							Ē	2 			
				4	ss	96	10			346						2	0			
				5	ss	96	10			345_							25 O			
343.9										344										
4.6	Dark bro	AY own silty clay, trace sand, avel, stiff, medium plasticity, WML Till].		6	ss	100	11		5								36 0			
									6	343										
				7	ss	100	10			342							35			
								888												
Δ				_						341						+	05			
Date: 7/10/2012 1:29:25 PM				8	ss	100	9		8	340_							35 0			
: 7/10/20								2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9											
PJ Date		45m to 9.78m, silty sand, ay, compact, wet.		9	ss	100	14			339_							33			
405.G									E_10											
20120									11	338										
File: TC113921_BHLOGS_20120405.GPJ 151 151 151 151 151 151 151 151 151 15				10	ss	92	9		E_11	337_							32 0			
3921_E																T			1	
20 336.3 12.2		AY															43			
	Dark gre grey silt medium	ey silty clay, varved (greenish y layers 2-3mm), soft, to high plasticity, moist, Glaciolacustrine].		11	ss	100	4			336							 → →	1		
≩ 0		I							ŧ	335_										
Format: AMEC GEO MWSK 13.1 13.7	Greenis trace sil	ND GRAVEL h brown sand and gravel, t, well graded, very dense,		12	ss		69		14							11 0				at 13.72m, heaving sand; switched to wash boring.
Format:	angular	to subangular, wet [WS Till].								334										

< MEC

an	nec	3										REC	OR	DO	F BC	ORE	EHOI			PAG	11-18 E 2 OF 4
PROJ		Rainy River - Geotechnical In									0.0		<u> </u>						GINEE	-	MS
PROJ CLIEN		TC113921						ng		В	ORING M	IETHOD	200	mm H	<u>SA, NQ</u>	Corir	<u>ig</u>		GED	-	PDR/SM
	ATION	Rainy River Resources. 348.507 m						425.20	12	B	ORING D	ATE St	tart: .la	an 15	12				MPILEI ECKEE	-	DGR
	PLE TYPE				<u> </u>	0,100,	000 E	120,20			REVIATIO						ngth Inde				DOIL
AU A BU B	Auger	SS Sp TW Thi	lit Spoo in Walle	on ed Op	en (Sh	elby)				P.P. U.W.	Pocket Per Wet Unit W Standard P	netrometer /eight roctor Test	t	RQD F SCR S k F	Rock Qua Solid Cor Permeab	ality De e Reco	esignation overy	x (I ₅₀)	GS	Direct	olidation Shear Size Analysis
		SOIL PROFILE			SAMPI			N		Ê	RESI	MIC CON STANCE I 40	PLOT		<u>. </u>	1IC	NATURAL MOISTURE CONTENT	Δ	(cm/s)		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VA	NE CT OULDED NED SHEA	NI △	INTAC INTAC REMC RENGT	VANE T OULDED		W O ER CONTE		PERMEABILITY (cm/s)	R	EMARKS
3 <u>33.3</u> 15.3		ERS AND COBBLES	0°.°	4			0,		Ē										-		
10.0	Boulder	ferred WS Till].							16	333									-	at 1 switch coring	ned to NQ
			Ö.	<u> </u>					Ē.	332_											
				13	ws				17	331											
			0°.°						18												
									19	330_											
										329_											
									_20												
			0.0							328_											
									21												
			0	_	 					327_											
				14	ws				_22												
				4						326			-	-							
			.8.]•••						23 E												
			. Þ.							325											
									E_24	324_											
				4					25												
										323_											
1				4 4 3					26												
1			0							322_									-		
321.6 26.9		ск							E_27												
				16	RC	100	55		Ē	321				-		$\left \right $		-			
									E_28												
										320_											
				16	RC	100	93		29	319									-	43.4n head carrie	8.9m to n, Constant Packer test d out; no
			\otimes	1			1	1	E "												ge in flow

	an	nec	3										R	ECC	ORE) Of	F BC	DR	EHOL	E N	No.		11-18 E 3 OF 4
	PROJ	IECT	Rainy River - Geotechnica	al Invest	igatio	n 2011	1/2012													ENG	SINEE	٦	MS
	PROJ	IECT NO.	TC113921	DR	ILLEF	R <u>N</u>	larathor	n Drillir	ng		В	ORING	METI	HOD	200 n	nm HS	A, NQ	Corir	ng	LOG	GED	BY	PDR/SM
	CLIEN	NT	Rainy River Resources.	_ LO	CATIO	ON <u>O</u>	pen Pit													CON	/IPILEI) BY	NH
	ELEV	ATION	348.507 m	_ co	ORD	. <u>N</u>	5,408,9	990 E	425,2	02	В	ORING	DATE	E <u>Sta</u>	art: Jai	n 15, 1	2			CHE	CKED	BY	DGR
	AU A BU E	PLE TYPE Auger Bulk Dynamic Col	SS TW	Rock Co Split Spo Thin Wal Wash Sa	on led Op	oen (Sh	elby)				P.P. 1 U.W.	REVIAT Pocket P Wet Unit Standard	enetro Weigh	t	1	RQD RO SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index signation overy	: (I ₅₀)	C DS GS	Direc	olidation t Shear Size Analysis
ľ		-	SOIL PROFILE			SAMP	LES		ER _			DYN		CONE			ON		AL		m/s)		
- I.	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO □ INT ■ RE) 4 VANE FACT MOUL RAINED	0 6 DED SHEA	0 8 NIL △ I ▲ F R STRI	20 1 CON V NTACI REMOU	οο ANE - JLDED		-0 % MATURAL -0 % MATURAL DIAL CONTENT	-00 4 LIQUID (%) - 10 LIMIT	PERMEABILITY (cm/s)	F	REMARKS
					17	RC	100	75		31	318_												
					18	RC	100	83		32	317 316												
					19	RC	100	100		33 34	315_												
					20	RC	100	93		35	314												
					21	RC	100	70		36 37	312												
Date: 7/10/2012 1:29:26 PM					22	RC	100	90		_38	311												
					23	RC	100	75		39	309												
File: TC113921_BHLOGS_20120405.GPJ					24	RC	100	73			307_												
- 1	305.2				25	RC	98	98		42	306_												
Format: AMEC GEO MWSK	43.4	Standpiµ flushmo Water L	Borehole at 43.35m pe installed with unted steel casing evel (bgs): cometer A (bottom sensing																				

Г														D		חסר							рц	11-18
	BN	nec	y											R	ECU	JRL		םנ			. 🗆 1	NO.		E 4 OF 4
	PROJ	ECT	Rainy River - Geotechn	ical Inv	/estig	gatior	1 2011/	/2012													ENG	GINEEF	٦.	MS
	PROJ	ECT NO.	TC113921		DRIL	LER	Ma	arathor	n Drillin	g		В	ORING	G MET	HOD	200 n	nm HS	A, NQ	Corir	lg	LOG	GED I	BY	PDR/SM
	CLIEN	ΝT	Rainy River Resources.	. <u> </u>	LOC	ATIC	ON Or	oen Pit													CON	NPILE	D BY	NH
	ELEV	ATION	348.507 m		COC	ORD.	Ν	5,408,9	990 E	425,20)2	В	ORING	g dati	E <u>Sta</u>	art: Jai	n 15, 1	2			CHE	ECKED	BY	DGR
		PLE TYPE		C Rock										TIONS		F	P.L. Po	int Loa	d Stre	ngth Index	(I ₅₀)		_	
	AU A BU E	Bulk	τv	S Split V Thin	Walle	ed Op	en (She	lby)				U.W. V	Net Uni	Penetro it Weigh	nt	5	SCR Sc	lid Core	e Ŕeco	signation overy		C DS GS	Direc	olidation t Shear
		Dynamic Cor		S Was	n Sar		SAMPL	FS		к		PI ;	DY	NAMIC	or Test	PENE	TRATI	rmeabi ON	Ĺ				Grain	Size Analysis
┢					⊢				ES	WELL / PIEZOMETER INSTALLATION	(F	(E)	2	0 4		0 8	BO 10	ро	PLASTIC LIMIT	NATURAL MOISTURE CONTENT	LIQUID	PERMEABILITY (cm/s)		
	LEV		DECODIDITION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	NLLA ⁷	DEPTH (m)	ELEVATION (m)		VANE ITACT		ΔI	CON V/ NTACT		L Wp	¥ĕS w	S⊟ M'	BILIT	F	REMARKS
	EPTH (m)		DESCRIPTION		TRAT	NUN	≿	COV	N. P	INST/	DEF	ELEV/		emoul Rained	.DED D SHEA		REMOU ENGTH			O R CONTE	 NT (%)	RMEA		
		Topo) of	0.76m on Eab 02/12		S			R	SPI	ME		ш	2	0 4	0 6	iΟ 8	80 10	0	2	0 40	60	PEF		
		For Piez	0.76m on Feb 02/12 ometer B (middle sensir	ng																				
		zone) at	0.76m on Feb 02/12																					
≥																								
:26 P																								
1:29																								
2012																								
7/10/																								
Date:																								
R																								
05.GI																								
1204																								
ss_20																								
FLOG																								
21_BI																								
1139.																								
e: TC																								
Ē																								
IWSK																								
БО М																								
EC G																								
t: AM																								
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:26 PM																								

an	nec	3									RECORD OF BOREHOLE No. BH11-19 A& PAGE 1 0	
PRO	JECT	Rainy River - Geotechnical In	vesti	gatio	n 2011/	2012					ENGINEER MS	
PRO	JECT NO.	TC113921	DRII	LLEF	R <u>Ma</u>	aratho	n Drillir	Ig		В	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY PDR	
CLIEI		Rainy River Resources.									COMPILED BY <u>NH</u>	
ELEV	ATION	350.323 m	COC	ORD.	. <u>N</u>	5,409,	287 E	426,00)9	B	BORING DATE <u>Start: Jan 3, 12 End: Jan 5, 12</u> CHECKED BY <u>DGR</u>	
AU BU	PLE TYPE Auger Bulk Dynamic Cor	SS Split TW Thin	t Spoo Walle	on ed Op	oen (She	lby)			-	P.P. U.W.	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation V. Wet Unit Weight SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size An	
		SOIL PROFILE			SAMPL	ES		ETER N		(-		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT 0 100	(S
350.3 350:0	TOPSO	L		1	ss	83	15	600	-	350		
0.3	SILTY C	LAY		Ŀ		00	15					1.00
	varved, to wet [L	own silty clay, some sand, soft to firm, low plastic, moist Jpper Glaciolacustrine] n becoming sandy		2	ss	46	5		1	349_		HTI
	becom	ning dark brown below 2.2m		3	ss	100	8		_2	348_		
				4	ss	100	3		Ë,			
				5	ss	100	7			347_		
									-4			
									Ē	346		
<u>345.5</u> 4.9	SILTY C	ey silty (to trace silt) clay,		6	ss	100	11		5	345_		
	medium [WML Ti	nd, trace gravel, firm to stiff, to high plasticity, moist ill]							6			
				7	тw	100			Ē	344_		
				<u> </u>		100			E_7		PP=122-134	KPa
Z									Ē	343_		
FOIMAL AMEC GEO MWAN FIR. ICI 1332 LENLOGS_ZUIZ4403 GFJ DARE // 10/2012 1.25.29 FM				8	ss	92	8		8	342_	27,0	
10/201									Ē			
				9	ss	100	5		<u>9</u>	341		
									10	340_		
LUG9_201				10	ss	100	13		11	339_		
									E_12	338_		
				11	ss	100	9					
NOMINO									8 9 10 11 12 13	337_		
				12	ss	100	11		14	336_		

ar	nec	3									RE	COF	RD (OF I	BOF	REH	OL	E No			PAG	A&B E 2 OF 3
	JECT	Rainy River - Geotechnical I		0			Dilli							000			0.1			GINEE	-	MS
CLIE		TC113921 Rainy River Resources.						Ig		в	ORING	> IVIE I	HOD	200 h	nm He	sa, nq	Cori	ng		GED MPII FI	DBY	PDR
	/ATION	350.323 m		ORD.				426,00	09	В	ORING	DAT	E Sta	art: Ja	n 3, 12	2 Enc	l: Jar	15, 12			_	
AU BU	IPLE TYPE Auger Bulk Dynamic Cor	SS Sp TW Th	lit Spoo in Wall	on ed Op	oen (She	elby)				P.P. U.W.	REVIAT Pocket I Wet Uni Standar	Penetro t Weigl	ometer nt	:	RQD R SCR S	oint Loa ock Qua olid Cor ermeabi	ality De e Rec	ength Index esignation overy	(I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
		SOIL PROFILE		ę	SAMPL	.ES		L TER		_	DY RE	ESISTA	CONE	PLOT	$- \times$		<u>ں</u>	RAL URE	_	(cm/s)		
ELEV DEPTH (m)	_	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	□ IN ■ RE UNDE	VANE TACT EMOUL RAINE[DED D SHEA	NIL △ I ▲ I R STR	ENGTH	, ANE F JLDED		W O ER CONTE		EABILITY	R	EMARKS
				13	ss	100	14			335_										-	at 1 to was	5.25 switch shboring
									16	334_										-		
	below	16.8m very stiff		14	ss	100	17		17	333_												
									18	332_												
				15	ss	100	22		19	331_												
				16	ss	100	16		20	330_							2	4				
									21	329_												
~				17	ss	100	19		22	328_												
Date: 7/10/2012 1:29:29 PM 7/10/2012 1:29:29 PM 7:77 7:29:29 PM	possib	ly varved below 22.9m		18	ss	100	22		23	327_							2'	0		-		
2326.2 24.1 24.1	Sandy	GRAVEL ravel and boulders, wet							24	326												4m switched coring
	[inferred	WS Till]		19	RC				25	325_												
File: TC113921_BHLOGS_20120405.GPU 5.25 5.25 5.05 5.05			*** ***						26	324												
HB_13921 323.0				20	RC				27													
		k		21	RC	100	79		28	323												
Format: AMEC GEO MWSK 0000 0000 0000 0000 0000 0000 0000 0				22	RC	100	92		29	321												
월 일 320.3	3		K						Ë 30								1					

3	med	3									RE	COF	RD (OF E	BOF	REH	OL	E No	. B	BH1 1		A&B E 3 OF 3
PRC	JECT	Rainy River - Geotechnical In	vesti	gatior	/2011 ו	2012													ENG	SINEEF	٦ ,	MS
PRC	JECT NO.	TC113921	DRII	LLER	Ma	arathor	Drillin	g		В	ORING	G MET	HOD _	200 m	nm HS/	A, NQ	Corir	lg	LOG	GED I	BY	PDR
CLIE	ENT	Rainy River Resources.	LOC	CATIC	ON Or	en Pit													CON	IPILE	D BY	NH
ELE	VATION	350.323 m	COO	ORD.	N	5,409,2	287 E	426,00)9	В	ORING	g dati	E <u>Sta</u>	art: Jar	n 3, 12	End	: Jan	5, 12	CHE	ECKED	BY	DGR
AU BU	/IPLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoo	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIAT Pocket I Wet Uni Standar	Penetro it Weigh	meter nt	F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index signation overy	(I ₅₀)		Direc	olidation t Shear Size Analysis
		SOIL PROFILE			SAMPL	ES		ER					CONE				0	월 일 문 다		(s/u		
ELEV DEPT (m)	н	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE UNDE	0 4 VANE ITACT EMOUL RAINED	06	0 8 NILC △ II ▲ F R STRE	0 10 CON V/ NTACT REMOU ENGTH	20 ANE LDED		A MOISTURE CONTENT CONTENT CONTENT CONTENT CONTENT		PERMEABILITY (cm/s)	F	EMARKS
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:30 PM	Standpi 0.91m s Water L For Piez zone) at 1.86 m For Piez zone) at	Borehole at 30.02m pes installed with A 0.86m, B titck up evel (b.g.s): zometer A (bottom sensing t1.83 m on Jan 07/12 at on Jan 14/12 zometer B (middle sensing t1.83 m on Jan 07/12 at on Jan 14/12								320										4		

30		3			0044	100.40													H11-19C PAGE 1 OF 1
PROJ		Rainy River - Geotechnical In																BINEEF	
CLIEN		TC113921 Rainy River Resources.						g		в		HUD							BY <u>PDR</u> DBY NH
		350.453 m		ORD.				126.02	11	B	ORING DATE	= Start	lan 7 12	End	· Ian	7 12			
					<u> </u>	J, 1 03,	200 L	720,0											
AU A BU B		SS Spli TW Thir	t Spoo Wall	on ed Op	en (She	elby)				P.P. U.W.	REVIATIONS Pocket Penetror Wet Unit Weigh Standard Procto	t	P.L. Po RQD Ro SCR So k Pe	ock Qua	lity De Reco	ngth Index esignation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		S	Sampl	.ES		Z TER			DYNAMIC RESISTA	NCE PLO	т ———————————————————————т		<u>∪</u>	LAL URE ENT		(s/u:	
ELEV DEPTH (m) 350.5	Ground		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULI UNDRAINED 20 40	0 60 M DED 4 SHEAR S	80 1 NILCON V INTACT REMOL TRENGTH	οο ANE - JLDED		0 B MATURAL -07 0 MATURAL DIALO 0 MOISTURE		PERMEABILITY (cm/s)	REMARKS
0.0	of shallo BH11-1 Refer to	BH11-19 for stratigraphic								350_									
	Informat	ιοn								349_									
									2	348_									
									3	347_									
									4	346_									
									5	345_									
344.1									6										
6.4	End of	Borehole at 6.4m																	
	Stand p up	ipe installed with 0.91m stick																	
		evel (b.g.s): m on Jan 07/12 at 1.24 m 14/12																	
0.000000																			

an	nec [©]									RECO	ORD	OF	BOR	EH	OLE No	. В	6H11	1-20 A&B PAGE 1 OF 3
PRO	IECT Rainy River - Geotechnical In	vesti	gatior	n 2011/	2012											ENG	SINEEF	R <u>MS</u>
PRO.	IECT NO. TC113921	DRI	LLER	R <u>Ma</u>	arathor	n Drillir	Ig		В	ORING M	ETHOD	200 r	nm HSA	, NQ	Coring	LOG	GED I	BY <u>SM</u>
CLIEI				ON <u>Op</u>														DBY <u>NH</u>
ELEV	ATION 352.093 m	CO	ORD.	<u>N</u>	5,410,2	232 E	425,89	91	B	ORING D	ATE S	tart: Ja	n 6, 12	End	: Jan 9, 12	CHE	CKED	BY DGR
AU . BU		t Spoo Wall	on ed Op	en (She	lby)				P.P. U.W.	REVIATIO Pocket Pen Wet Unit W Standard Pi	etrometer eight		RQD Roc SCR Soli	k Qua	d Strength Index lity Designation Recovery ity	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
	SOIL PROFILE			SAMPL	ES		LER			DYNA RESIS	MIC CON	E PENE PLOT		N	NTE C		(s/ш	
ELEV DEPTH (m) 352.1	Ground surface	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO VA □ INTA(■ REM(UNDRAII 20	CT DULDED NED SHEA	NIL △ ▲	CON VA INTACT REMOUL	.DED kPa)	A MOISTURE A MATURAL A MATURAL A MOISTURE A MOISTURAL A MOISTURAL		PERMEABILITY (cm/s)	REMARKS
359:9 0.2	Dark brown organics, fibrous,		1	ss	63	10		Ē							22			
	SANDY SILT Brown sandy silt to silty sand, trace clay, trace brown lenses , organics,		2	ss	50	3			351						27 0			
	low to medium plasticity, soft to firm, damp to moist [Glacial Sand??]		3	ss	54	5		2	350_						14 0 23 0			
<u>349.8</u> 2.3	below 2.3m - Greyish blue silty clay, trace sand, low to medium plasticity, soft, moist		4	ss	83	4		3							²⁹ ⊢ • -1			
	becoming brown, sandy, low plasticity		5	ss	92	3			349	21			77		25. ⊢ ¶			
<u>347.5</u> 4.6	CLAY							4	348_		41		3 87 0					
4.0	Dark grey clay, trace silt, trace sand, trace gravel, firm to stiff, medium to high plasticity, moist [WML Till]		8	ss	100	5		5 5	347_		_31 ■	62			<u>46</u> ← ◆	82		
			_					6	346		31 5 D	1						
	becoming soft		11	TW	100			7	345_	15 ■	41							at 6.4m PP = 36 KPa TV=44 KPa
											631							
	at 7.62 becoming silty		14	ss	96	5		8	344_	15	46				28 0			
	becoming firm, moist to wet							9	343_		465 1	1			. 36			
	, , , , , , , , , ,		17	ss	100	5		10	342_			1						
											46 ■ C	56						
1			20	ss	100	7		11	341						35			
1								12	340_	21	31		77					
			23	ss	100	5		13	200	15		67			37 0			
									339	15 15	41							
			26	τw	95			14	338_									at 14m PP = 49 KPa
								15			6 41 6			Г	118			TV=59 KPa

8	med	3									RE	COI	RD (of I	BOF	REH	OL	E No	. В	BH1 [·]	1-20 A&B PAGE 2 OF 3
PR	OJECT	Rainy River - Geotechnical In	vestig	gatior	n 2011	/2012													ENG	SINEEI	R <u>MS</u>
PR	OJECT NO.	TC113921	DRIL	LER	<u>M</u>	aratho	n Drillir	Ig		E	ORIN	G MET	HOD	200 n	nm HS.	A, NQ	Corir	ng	LOG	GED	BY <u>SM</u>
CL	IENT	Rainy River Resources.													CON	MPILE	D BY <u>NH</u>				
EL	EVATION	352.093 m	232 E	425,89	91	E	ORIN	G DAT	E <u>Sta</u>	art: Jai	n 6, 12	End	I: Jan	9, 12	CHE	ECKED	BY DGR				
AU BU	MPLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoo n Walle	n ed Op	en (She	elby)				P.P. U.W.	Pocket Wet Un	TIONS Penetro iit Weig rd Proc	ometer	1	RQD Ro SCR So	ck Qua	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			Sampl	ES		TER		_	D) R	/NAMIO	CONE	PLOT	—×-		<u>∪</u>	LURE URE	_	(s/u:	
ELE DEP (m	тн	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		VANE NTACT EMOUI		NIL △ I ▲ F R STRI		ANE		-0 a MATURAL -0 a MOISTURE EILAO	-00 Z LIMIT (%)	PERMEABILITY (cm/s)	REMARKS
				29	ss	100	5			336_		15			77			37			
				32	ss	100	6		17	335_		2 6	5 ¹]			40			at 16.76m switched to
										334_		15 21	51 □	72	2			-			washboring
				35	ss	100	7			333_											
									20	332_		10			92	97		38			
				38	ss	100	6		21												
				40	ss	100	7		22	331_								38 O			
	44.00	90								330_											
4	pockets	86m occasional sandy , stiff		41	ss	100	9			329_								33			
327 327	1.5 SILTY	CLAY h grey silty clay, varved (2-3		42	ss	100	16		24	328_							F	41 — Ə			
	mm) da plasticit Glaciola	rk grey clay, firm, medium y, moist [Lower acustrine]							25	327_							11				
325	5.9 BOULD Dark gro	ERS AND GRAVEL ey boulders in sand and clay, , cm scale [WS Till]		43 44	SS RC	67	/0.08		26	326_							11 0				at 26m spoon refused switched to NQ coring
	-	ractured		45	RC RC	87 100	23		27	325_											
				46	RC	100	0		28	324_											
323	3.1		Ň	48	RC	0		\bigotimes	É												
	9.0 End of fracture Standpi mounte	Borehole at 29m due to d rock cavin pes installed with flush d steel casing evel (b.g.s):																			

a	nec		RECORD OF BOREHOLE No.											BH11-20 A&B PAGE 3 OF 3							
PRO	JECT	Rainy River - Geotechnical In	<u>.</u>																		R <u>MS</u>
PRO	JECT NO.	TC113921								BORING METHOD _200 mm HSA, NQ Coring										GED I	
CLIE		Rainy River Resources.																	COMPILED BY NH		
ELE\	/ATION	352.093 m	COORD. <u>N 5,410,232 E 425,891</u>						91	BORING DATE <u>Start: Jan 6, 12</u> End: Jan 9, 12									CHECKED BY DGR		
AU BU			Spoon Walled Open (Shelby) h Sample							ABBREVIATIONS P.L. Point Load Strength Ind. P.P. Pocket Penetrometer RQD Rock Quality Designatio U.W. Wet Unit Weight SCR Solid Core Recovery PT Standard Proctor Test							esignation overy	(I ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis	
	SOIL PROFILE		s			SAMPLES				Ê	RE	ESISTA	CONE	LOT	—×		PLASTIC LIMIT NATURAL MOISTURE CONTENT	RAL FURE ENT	Ω.	cm/s)	
ELEV DEPTH (m)	1	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN RE UNDE		.DED D SHEA	NILO △ I ▲ F R STRE	0 10 CON V/ NTACT REMOU ENGTH 60 10	ANE LDED (kPa)			-00 4 LIQUID (%) 1 LIMIT	PERMEABILITY (cm/s)	REMARKS
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:34 PM	zone) at	tometer A (bottom sensing surface on Jan 09/12 on Jan 14/12																			

amed	8										RE	COF	RD (OF E	BOF	REF	IOLE	No	р. Е		1-20C
PROJECT	Rainy River - Geotechnical Ir	vesti	gatior	n 2011	/2012													ENG	SINEE	R	MS
PROJECT NO.	TC113921	DRI	LLER	М	arathoi	n Drillir	g											LOG	GED	BY	SM
CLIENT	Rainy River Resources.																		MPILEI		SM
ELEVATION	352.093 m						425,89	91	B	ORINO	g dati	E Sta	art: Jar	n 9, 12	End	: Jan	9, 12				
SAMPLE TYPE AU Auger BU Bulk	ES RC Roc SS Spl TW Thi	it Spoo	on	on (Sh					P.P.	REVIA ⁻ Pocket Wet Un	Penetro	meter	F		ck Qua	lity De	ngth Index		C		olidation t Shear
DC Dynamic Co					iby)					Standar	d Proct	or Test	k	e Pe	rmeabil		,		GS		Size Analysis
	SOIL PROFILE		5	SAMPL			NETER		Ê	R	NAMIC ESISTA		LOT		_	ЭН	NATURAL MOISTURE CONTENT	Δ	(cm/s)		
	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO	VANE ITACT EMOUL RAINEE	.DED) SHEA	NIL(△ I ▲ F R STRE	CON VA	ANE LDED (kPa)		W O ER CONTER		PERMEABILITY (cm/s)	F	REMARKS
of shall BH11-2	BH11-20 for stratigraphic							1	351350												
349.1 3.0 End of								3	-												
Standpi flushmo Water I	Borehole at 3.0m pe installed with unted steel casing .evel (b.g.s): m on 09-Jan-12																				

		nec				0044	100.10					RECOR	RD OF BC	DREHOL			BH11-21 PAGE 1 OF 3
	PROJ PROJ		Rainy River - Geotechnical In TC113921	vestig DRII			arathor	n Drillir	a		B	ORING METHOD 20	mm HSA_NO	Coring	ENGIN		
			Rainy River Resources.						9		D			Conng			BY <u>NH</u>
	ELEV	ATION	346.495 m	COC	ORD.	. <u>N</u>	5,408,4	466 E	425,0	55	В	ORING DATE Start:	Feb 25, 12 Er	nd: Mar 2, 12	CHEC	KED	BY DGR
	AU A BU E		SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	lby)				P.P. U.W.	EVIATIONS Pocket Penetrometer Vet Unit Weight tandard Proctor Test	P.L. Point Loa RQD Rock Qua SCR Solid Con k Permeabi		к (I ₅₀)		Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE			SAMPL	-		ETER		(u	DYNAMIC CONE PE RESISTANCE PLO	г ————————————————————————————————————	PLASTIC LIMIT NATURAL MOISTURE CONTENT	0	(cm/s)	
D	LEV EPTH (m) 346.5	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE N I INTACT 2	80 100 NILCON VANE INTACT REMOULDED TRENGTH (kPa) 80 100	W _P W H O WATER CONTE	TIMIT WL (%) 60	PERMEABILITY (REMARKS
F	0.0	TOPSOI						0,		Ē					299		
	345.7 0.8 345.0	Silty SA Brownish			2	ss	29	6		1	346			17 0			frozen to 0.8m
	1.5	dark brov plasticity	wn silty clay, trace sand, wn lenses, low to medium r, firm, varved, moist [Upper		3	ss	92	5		2				26 0 25			
		Glaciolad	custrine]		4	ss	100	5		Ē	344			0 42 0			
					5	ss	100	6		3 	343_			45 ₀			
										4	342						
					6	ss	100	5		5 5	341_						
					7	тw	67			6	340_						at 6.1m PP = 73 KPa TV=74 KPa
4										- - - -	339_						1V-14 KFa
29:38 PN	338.9 7.6	Silty CL	AY y silty clay, trace fine gravel,		8	ss	100	7		8				36 0			
0/2012 1:2		occasion [WML Ti	al silt pockets, firm, moist ll]								338_						
Date: 7/1		below	9.2m, becoming stiff.		9	ss	100	9		-9	337_			35			
120405.GP										10	336_						
HLOGS_20					10	ss	100	10		11				36			
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:38 PM										12	335						
					11	ss		11		13	334_			35			
EO MW:										Ē	333_						
Format: AMEC GEO MWSK					12	ss	100	10		14	332_			37			
-orma										E 15							

		nec	9										R	ECC	ORD) OF	BC	DRI	EHOL	.E 1	No.	BH11-21 PAGE 2 OF 3
	PROJE		Rainy River - Geotechnical Ir				/2012													ENG	GINEE	
			TC113921		LLER		arathor		g		В	ORING	G MET	HOD	200 m	nm HS	A, NQ	Cori	ng		GED	
			Rainy River Resources.				outh of		405.0							- 05 /	0 5	l. M				DBY <u>NH</u>
			<u>346.495 m</u>		ORD.	<u>_N</u>	5,408,4	100 E	425,0	55												BY DGR
A E	AU A BU B		SS Spl TW Thi	it Spoo n Walle	on ed Op	en (She	elby)		-	·	P.P. U.W.	REVIAT Pocket I Wet Uni Standar	Penetro it Weigl	ometer nt	F	RQD Ro SCR So	oint Loa ock Qua olid Con ermeabi	ality De e Rec	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE		5	SAMPL	ES		N RER		ĉ	R	ESISTA	CONE	PLOT	—×		2	RAL FURE	0	cm/s)	
DE	_EV PTH m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN RE UNDE	VANE ITACT EMOUL RAINE[.DED D SHEA	NIL(△ I ▲ F R STRE		ANE JLDED		W O ER CONTE	-09 A LIMIT (%) A LIMIT	PERMEABILITY (cm/s)	REMARKS
					13	ss	100	11			331_								38 0			switch to NW wash boring.
										16	330_											
		at 17.2 sandy la	m - 2cm thick light brown		14	ss	100	15		17	329_											
		Sanuy la	yennense							18												
					15	ss	100	11		19	328											
					_					20	327_											
					16	ss	100	10			326_											
					17	ss	100	12		21 	325_								38			
M										22	324_											
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:38 PM					18	ss	100	13		23	323_								38 0			
te: 7/10/201										24 24												
5.GPJ Da					19	ss	100	13		25	322											
S_2012040	20.6									26	321											
21_BHL0G	25.9		y silty clay, varved, stiff, low m plasticity, moist [Lower		20	ss	100	14			320_								43 0			
le: IC1139.	27.1		ND GRAVEL d gravel. [Inferred WS Till]	0						27	319_											at 27.1m, 1.2m of artesian pressure
					21	RC	45			28	318_											encountered
Format: AMEC GEO MWSK							67			29												
Format:					22	RC	67			¥ 30	317											

36	nec	3										R	ECC	ORE	0 0	= BC	DRI	EHOL			BH11-21 PAGE 3 OF 3
PRO		Rainy River - Geotechnic												000			0.1			GINEE	
		TC113921 Rainy River Resources.	_ DRIL			laratho		ng		8	ORIN	IG ME I	HOD	200 r	nm HS	SA, NQ	Corii	ng			
CLIE	ATION	346.495 m	COC			1 5,408,		125.05	5	D			= \$+	ort: Eo	h 25	10 Er	ad: M	or 2 12			D BY <u>NH</u> BY DGR
						13,400,	400 L	423,00	5												DOK
AU BU	PLE TYPE Auger Bulk Dynamic Cc	SS TW	Rock Core Split Spoo Thin Walle Wash San	n d Ope	en (Sh	elby)				P.P. U.W.	Pocke Wet U	ATIONS t Penetro nit Weigh ard Proct	meter nt		RQD R SCR S	oint Loa ock Qua olid Cor ermeabi	ality De e Rec	ength Inde: esignation overy	x (I ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		s	SAMP	LES		N		Ê		YNAMIC	NCE F	LOT	$- \times$		<u>9</u>	CURE ENT	0	(s/uc	
ELEV DEPTH (m)	-	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)		20 4 O VANE INTACT REMOUL DRAINEE 20 4	.DED) SHEA	NIL △ ▲ R STR	ENGTH	'ANE r JLDED		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
314.8				23	RC	45			31	316_ 315_											
31.7		ICK veathered/fractured		24	RC		0		32	314_											
				25	RC		0		34	313312											
				26	RC	77	0		35	311_											
				27	RC	37	0		37	310											
307.2				28	RC	60	0		38 39	308_											
39.3	End of Standpi flushmc Water L For Piez zone) a For Piez	Borehole at 39.3m pes installed with unted steel casing evel (b.g.s): zometer A (bottom sensing t surface on March 02/12 zometer B (middle sensing t surface on March 02/12			,																borehole terminated due to dificult drilling condition

an	nec	9									R	ECC	ORD	OF BC	OR	EHOL	E N	No.	BH11-22 PAGE 1 OF 2
PRO		Rainy River - Geotechnical In																SINEEF	
		TC113921	DRII					ng		В	ORING MET	HOD	200 m	nm HSA, NQ	Corir	ng		GED I	
CLIE		Rainy River Resources.			0 N			404.0	-0	_				- 0. 40 - 5		. 0. 10			DBY <u>NH</u>
	ATION	<u>348.996 m</u>		ORD.	<u>N</u>	5,409 <u>,</u> 9	908 E	424,95	53									CKED	BY DGR
AU BU		SS Spli TW Thir	t Spoc n Walle	on ed Op	en (She	lby)				P.P. U.W.	REVIATIONS Pocket Penetro Wet Unit Weigh Standard Proct	ometer nt or Test	F S k	P.L. Point Loa RQD Rock Qua SCR Solid Cor Permeab	ality De	esignation	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			Sampl	ES		N N		(1	RESISTA	NCE P	LOT		ic	RAL URE ENT	0	cm/s)	
ELEV DEPTH (m) 349.0	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOUL UNDRAINEE	DED	NIL(△ II ▲ F R STRE	0 100 CON VANE NTACT REMOULDED ENGTH (kPa) 0 100	WATE	W O ER CONTEI	-00 TIMIT	PERMEABILITY (cm/s)	REMARKS
0.0	TOPSOI Light bro trace org	L own silty sand, moist, loose, ganics.		1	ss	96	18									30			frozen to 1.4m
0.8	Silty CL Light bro varved [AY own silty clay, trace sand, Upper Glaciolacustrine]		2	ss	83	7			348_						38 0			
				3	ss	100	6		2	347_					22	20			
									- 	346_	1 🔳	36 36		92 0 87 0					
				6	ss	100	5								24	4 0			
344.4									4	345_	31			87					
4.6	medium	AY y clay, trace sand, moist, to high plasticity, soft [WML		9	ss	100	5		5	344_					-	34 0			
	Till]								6	343_	²⁶	41 51	67						
				12	ss	100	4									38	1		
									_7	342	13 31		67 56						
				15	ss	100	6		8	341					2	6			
									-9 -10 -11 -12 -13 -14	340_									at 8.55m, Vane refusal; possible sandy
		5m, 15cm thick grey silty er, trace gravel, compact,		16	ss	50	15		10	339_					15 0				layer
				17	ss	100	6		L_11	338_					-	38			
									12	337_	21			77 87					
				20	тw	95				200									at 12.19m, TV = 49 KPa
335.3									13	336		41 36			1				
13.7	varved,	y, trace gravel, trace silt,		23	ss	100	6		14	335_	28				118	37	┥		
<u>335.3</u> 13.7 <u>334.3</u> 14.7	plasticity Glaciola	/, firm [Lower custrine]							15	334									at 14.65m, heaving sand.

PROJ		Sainy River - Geotechnical I	Investic	nation	n 2011	1/2012						R	ECC	ORE) Of	BC	ORE	EHOL		NO.	BH11-22 PAGE 2 OF 2 R MS
		TC113921	DRI			laratho	n Drillir	g		В	ORING	6 MET	HOD	200 m	nm HS	A, NQ	Corir	ng		GED	
CLIEN	NT	Rainy River Resources.	LOC	ATIC	ON <u>O</u>	pen Pit													CO	MPILE	D BY <u>NH</u>
ELEV	ATION	348.996 m	COC	ORD.	N	5,409,	908 E	424,98	53	В	ORING	G DATI	E <u>Sta</u>	art: Fe	b 2, 12	2 End	d: Feb	3, 12	CHE	ECKED	BY DGR
AU A BU E		SS Sp TW Th	olit Spoo nin Walle	on ed Op	en (Sh	elby)				P.P. 1 U.W.	REVIAT Pocket F Wet Uni Standar	Penetro t Weigh	meter nt	F	RQD Ro SCR So	oint Loa ock Qua olid Corr ermeabi	ality De e Reco	ngth Index esignation overy	x (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMP	LES		N		Ê	RE	ESISTA	CONE	LOT	—×		0	RAL URE ENT	0	cm/s)	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	□ IN ■ RE	VANE TACT EMOUL RAINED	.DED) SHEA	NILO △ I ▲ F R STRE		ANE JLDED		0 H MATURAL 0 0 MATURAL 0 0 MOISTURE		PERMEABILITY (cm/s)	REMARKS
	Silty SA Grey silt loose [in	ND y sand, trace gravels, wet, ferred WS Till]							16	333_							20	>			
	boulde	ers below 16.8m		27	RC				17	332_											at 16.38m; switched to NQ coring.
330.6				28	RC				18	331											
18.4	BEDRO	ск		29	RC	100	22		19	330_											
				20	RC	100	97		20	329											
									E_21	328_											
<u>327.5</u> 21.5	Standpip mounted	Borehole at 21.5m be installed with flush d steel casing. evel (bgs): on Feb04/12																			

ə í	mec	3									RECO	RD OF BO	DREHOL			PAGE 1 OF 3
		Rainy River - Geotechnical In TC113921		gatio LLEF			n Drillir	Ig					Coring	ENGIN		
CLIE		Rainy River Resources.						ig		U		.00 1111 134, 110	Conng			BY NH
ELE	VATION	348.143 m		ORD.				425,70)4	В	ORING DATE Star	t: Jan 7, 12 End	1: Jan 9, 12			
AU BU	/IPLE TYPE Auger Bulk Dynamic Col	SS Split TW Thin	t Spoo Walle	on ed Op	en (She	elby)				P.P. U.W.	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Test	P.L. Point Loa RQD Rock Qua SCR Solid Cor k Permeab		(]	DS I	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		;	SAMPL	-		ETER N		(u	DYNAMIC CONE I RESISTANCE PL	от ————————————————————————————————————	ric Ral FURE	0	cm/s)	
ELEV DEPTI (m) 348. ⁻	Ħ	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAR 20 40 60	NILCON VANE △ INTACT ▲ REMOULDED	WATER CONTENT 2000 2000 2000 2000 2000 2000 2000 20		PERMEABILITY (cm/s)	REMARKS
0.0	SILTY S			. 1	AS					348			32			
		gravel, some wood, peat.			$\left \right $				1							frozen to 1.3m
346.0	6			. 2	ss	42				347_						
1.	5 SILT Light bro firm, low	own silt some clay, varved, v plastic, wet [Upper		3	ss	50	7		2	346_						at 1.5m - SPT sample on possible slough
	Glaciola	custrine]		4	ss	100	6						27 0			
				5	ss	83	10			345			31	•		
									4	344_						
<u>343.0</u> 4.0	6 SILTY C	CLAY ey clay, some silt and sand, occasional silt lamination,		6	ss	96	6		5	343			47			
		dium plasticity, moist [WML														
				7	тw	67			6	342_						at 6.4m
									7	341_						PP=49 KPa TV=49 KPa
9:44 PM		m , occasional sand ons, very soft		8	ss	100			8				26			at 7.6m , SPT spoon sank on its
2012 1:2		, - ,								340					'	own weight
e: 7/10									9	339_						
	at 9.2r	n becoming stiff		9	ss	100	9						31 0			
20405.GF									10	338_						
068_201				10	ss	100	9		11	337_			34 0			
File: 1C113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:28:44 PM																
I C1139				<u> </u>					12	336_						
K FIE:				11	ss	100	9		13	225						at 12.9m ,
SMM										335						switched to wash boring
MEC GE	soft cla 14.2m	ay layer between 13.9m and		12	ss	100	8		14	334_						
Format: AMEC: GEO MWSK									- 15							

an	nec	3									REC	ORI) Of	BC	OR	EHOL	.E N	No.		11-23 E 2 OF 3
PRO		Rainy River - Geotechnical I	nvesti	gatior	n 2011/	2012											ENG	SINEE	R	MS
PRO	IECT NO.	TC113921						Ig	E	ORING M	ETHOD	200 r	mm HS	A, NQ	Corir	ng	LOG	GED	BY .	PDR
CLIEN	NT	Rainy River Resources.	LOC	ATIC	ON Op	en Pit											CON	/IPILEI	DBY	NH
ELEV	ATION	348.143 m	COC	ORD.	<u>N</u> :	5,409,	645 E	425,704	E	ORING DA	ATE <u>St</u>	art: Ja	ın 7, 12	Enc	d: Jan	9, 12	CHE	CKED	BY .	DGR
AU A		SS Sp TW Th	lit Spoo in Walle	on ed Op	en (She	lby)			P.P. U.W.	REVIATIOI Pocket Pene Wet Unit We Standard Pr	etrometer eight		RQD Ro SCR So	ock Qua	ality De e Reco	ength Index esignation overy	(I ₅₀)	C DS GS	Direct	olidation Shear Size Analysis
	-	SOIL PROFILE		5	SAMPL	ES		Ë_	_	DYNA	MIC CON			ON	0	AL NTE		(s/u		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION DEPTH (m)	ELEVATION (m)	20 MTO VAI □ INTAC ■ REMO UNDRAIN 20	40 (NE CT OULDED NED SHEA	60 NIL △ ▲	80 1 CON V INTACT REMOL	οο ANE - JLDED		W O ER CONTE	-00 X (%) X (%) X (%) X	PERMEABILITY (cm/s)	R	EMARKS
	at 15. sandy s	25m occasional pockets of llt		13	ss	100	11	16	333_ 332_							34 0				
				14	тw	100		17	331_										at 1	7.1m
								18	330_										PP=7 TV=8	3 KPa 3 KPa
				15	ss	100	11									31 0				
								19	329_											
				16	ss	100	11	20	328_							29				
				17	ss	100	13	22	327						F	28 •				
				18	ss	100	12	_23	325_							33				
								24	324_											
				19	ss	100	13	25	323_							40 O				
				20	ss	100	13	_26	322_							43				
								27	321							42				
				21	ss	100	14	_28	320_							42 0				
				22	ss	100	15	29	319_							<u>51</u> ├──↔				

an	nec	3									R	ECC	ORD	OF	BC	DRE	EHOL	.E 1	No.	BH11-23 PAGE 3 OF 3
PRO		Rainy River - Geotechnical In	vesti	gatior															SINEE	
		TC113921		LLER				Ig		В	ORING MET	HOD _	200 m	m HSA	A, NQ	Corir	ng	LOG	GED	BY <u>PDR</u>
CLIEN		Rainy River Resources.																		D BY <u>NH</u>
ELEV	ATION	348.143 m	CO	ORD.	<u>N</u>	5,409,	,645 E	425,70	04	B	ORING DAT	E <u>Sta</u>	art: Jan	7, 12	End	: Jan	9, 12	CHE	ECKED	BY DGR
AU A		SS Spli TW Thir	t Spoo Wall	on ed Op	en (She	elby)			_	P.P. U.W.	REVIATIONS Pocket Penetro Wet Unit Weigl Standard Proct	meter nt	R	QD Roo CR Sol	ck Qua	lity De Reco	ngth Index esignation overy	к (І ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		ę	SAMPL	ES		L L			DYNAMIC RESISTA					υ	AL NTE		(s/u	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 4 MTO VANE □ INTACT ■ REMOUL UNDRAINED	<u>0 6</u> .DED	0 8(NILC △ IN ▲ R R STRE	0 10 CON VA NTACT EMOUL	NE LDED (kPa)		- 0 MATURAL - 0 MOISTURE - 0 MOISTURE		PERMEABILITY (cm/s)	REMARKS
317.7									ŧ	318										
30.5	SANDY Grey sar	GRAVEL Silty ndy gravel, trace clay, dense lense [WS Till]		23	ss		51/0.15		31	317						16 0				at 30.6m ,SPT sampler bouncing on possible boulder; switched to NQ coring
									33	315_										
	Heaving 35.05m	sands from 34.4m to							34	314										
				4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					36	312_										
									37	311_										
310.0			Å	3				出参												
<u>310.0</u> 38.1	End of I Standpip mounted Water Li For piez zone) at on Jan ¹ For piez	ometer B (top sensing zone) n on Jan10/12 frozen on							38											

30	nec	3										R	ECC	ORE) Of	F BC	DRI	EHOL	.E N	No.		111-24 GE 1 OF 3
PRO	JECT	Rainy River - Geotechnical In	vestig	gatior	n 2011/	2012													ENG	GINEEF	२	MS
PRO.	JECT NO.	TC113921	DRII	LER	Ma	arathor	n Drillir	Ig		В	ORINO	G METH	HOD _	200 n	nm HS	A, NQ	Cori	ng	LOG	GED E	ΒY	PDR
CLIEN	NT	Rainy River Resources.	LOC	ATIC	N <u>Mi</u>	ne Ro	ck Stoo	kpile											CON	IPILED) BY	SM
ELEV	ATION	<u>354 m</u>	COC	ORD.	<u>N</u> 5	5,408,	843 E	426,9	940	В	ORING	g date	E <u>Sta</u>	art: Ma	ar 13, 1	12 Er	nd: M	ar 14, 12	CHE	ECKED	BY	DGR
AU A		SS Spli TW Thir	t Spoc n Walle	on ed Op	en (Shel	lby)				P.P. F U.W. \	Pocket Vet Un	TIONS Penetroi it Weigh rd Procto	t	:	RQD Ro SCR So	ock Qua	ality De e Rece	ngth Index esignation overy			Dire	solidation ct Shear n Size Analysis
		SOIL PROFILE		5	SAMPL	ES		ËR			DY	NAMIC ESISTA				ON	0	NTE		n/s)		
ELEV DEPTH (m) 354.0		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	MTO IIN RI UND	VANE ITACT EMOULI RAINED	0 6 DED SHEAI	0 8 NIL △ 1 ▲ 1 R STR	BO 1 CON V INTACT REMOL ENGTH	00 ANE - JLDED		W O ER CONTE	-09 Z (%) LIMIT (%)	PERMEABILITY (cm/s)		REMARKS
0.0	Dark bro	own sandy silt muskeg,		1	AS					-							22	2 0			fro	zen to 0.6m
<u>353.2</u> 0.8	Silty CL	nal rootlets AY own silty clay, trace sand varved, firm, medium		2	ss	75	7		1 1	353								39	89			20110 0.011
	plasticit	y, moist [Glaciolacustrine] 2m trace fine gravel, stiff		3	ss	88	10		2	352								39 0				
				4	ss	100	13		3	351_							18 C					
				5	ss	100	11			350							2	27				
<u>349.4</u> 4.6	Silty CL																	30				
	to some pockets	eyish brown silty clay, trace fine gravel, occasional silt , stiff, medium plasticity, VML Till]		8	ss	100	10		5 6	349 348				61			142	0				
				11	ss	100	10		7	347_								34 0				
				14	ss	100	9		8	346								31 	_			
								8 8	- - - - - 9	345												
				17	ss	100	7		10	344_								5				
				20	ss	100	11		11	343_							2	4				
									12	342_												
				23	ss	92	12		13	341							2:	3 O				
				24	ss	100	10			340_								40				
										339												

		nec	Deine Diver				- 0044	/2040						R	ECO	ORD	OF BO	DR	EHOL			BH11-24 PAGE 2 OF 3
	PROJ PROJ		Rainy River - Geoteo TC113921						n Drillin	ηα		В	ORING	MET	HOD	200 m	nm HSA, NQ	Cori	na		GINEEI GGED	
	CLIEN		Rainy River Resource										0			2001						D BY <u>SM</u>
	ELEV	ATION	354 m		COC	ORD.	N	5,408,8	843 E	426,94	10	В	ORING	DAT	E <u>Sta</u>	art: Ma	r 13, 12 E	nd: M	lar 14, 12	CHE	ECKED	BY DGR
	AU A BU E			RC Roc SS Split TW Thin WS Was	t Spoo Walle	n ed Op	en (She	elby)				P.P. 1 U.W.	REVIAT Pocket F Wet Uni Standar	Penetro t Weigh	ometer nt	F	P.L. Point Loa RQD Rock Qua SCR Solid Cor Permeab	ality D e Rec	esignation	x (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE				SAMPL	ES		TER		_	RE	ESISTA	ANCE F	PLOT ·	TRATION		AL URE		(s/m	
. I.	ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE UNDF	0 4 VANE TACT EMOUL RAINE	LDED D SHEA	0 8 NILC △ 11 ▲ F R STRE	0 100 CON VANE NTACT REMOULDED ENGTH (kPa) 0 100	WAT	W O ER CONTE		EABII	REMARKS
		at 15.2	5m firm			25	ss	100	5		16	338_				60		118	41 0			at 15.9m
											17	337_				73		133	36			switched to washboring
						28	ss	100	10		18	336_			4 5			127	0			
	335.7 18.3 335.1	varved, f	y clay some light gre irm, low plasticity, mo	y silt, pist ,		31	ss	100	8		- 19	335_							39			
	334:8 19.2	[Lower G BOULDI	Blaciolacustrine]	/		32	BS					335										at 19.2m switched to NQ
		BEDRO]		33	RC	97	58		20	334_										coring
						34	RC	98	38		21	333_										
3 PM											22	332_										
2012 1:29:48						35	RC	95	75		23	331										
Date: 7/10/						36	RC	100	67		24	330										
1120405.GPJ											25	329										
1_BHLOGS_20						37	RC	97	40		26	328_									-	
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:48 PM						38	RC	100	50		27	327										
MEC GEO MWS						39	RC	100	100		29	325_									-	
Format: Al											30	324										

an	nec	3										R	ECC	ORE) Of	BC	R	EHOL	.E I	No.		1-24 3 OF 3
PROJ													ENG	GINEE	۲ <u>ا</u>	MS						
PROJ	PROJECT NO. TC113921 DRILLER Marathon Drilling									В	ORING	G MET	HOD	200 n	nm HS	A, NQ	Corir	ng	LOG	GED	BY <u>I</u>	PDR
CLIEN	NT	Rainy River Resources.	LOC	ATIC	DN <u>M</u>	ine Ro	ck Stoc	kpile											CON	MPILE) BY	SM
ELEV	ATION	354 m	COC	ORD.	N	5,408,	843 E	426,94	10	В	ORINO	G DATI	E <u>Sta</u>	art: Ma	ır 13, 1	2 Er	nd: M	<u>ar 14, 1</u> 2	CHE	ECKED	BY <u>I</u>	JGR
AU A BU E		SS SI TW TI		n ed Op	en (She	elby)				P.P. 1 U.W.	Pocket Net Un	TIONS Penetro it Weigh d Proct	meter nt	F	RQD Ro SCR So		lity De Reco	ngth Inde esignation overy		C DS GS	Consolio Direct S Grain Si	
		SOIL PROFILE		5	SAMPL	ES		БR				'NAMIC ESISTA					0	귀뿝는		(s/u		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN RI UND	VANE ITACT EMOUL RAINED	DED DSHEA	0 8 NIL0 △ 1 ▲ F R STRE	80 1 CON V NTACT REMOL ENGTH	00 ANE JLDED		W O ER CONTE		PERMEABILITY (cm/s)	REI	MARKS
				40	RC	100	87	-	31	323_												
				41	RC	100	52		32	322												
319.6				42	RC	100	80		34	320_												
34.4		Borehole at 34.44m																				
		pes installed with flush d steel casing																				
	For Piez zone) 1 For Piez	evel (b.g.s): zometer A (bottom sensing 67m on March 14/12 zometer B (top sensing zone April 22/12	, 																			

an	nec	3										R	ECC	ORD) OF	BC	DRE	EHOL	ΕN	No.		111-25 GE 1 OF 2
PROJ	IECT	Rainy River - Geotechnical In	vesti	gatior	n 2011/	/2012													ENG	GINEEF	٦	MS
		TC113921								В	ORING	MET	HOD _	200 m	nm HS/	A, NQ	Corir			GED I		PDR
CLIEN		Rainy River Resources.																		/PILE		
	ATION		COC	ORD.	<u>N</u>	5,409,	122 E	427,30)2					art: Ma	ır 15, 1	2 Er	nd: M	ar <u>16, 1</u> 2	CHE	CKED	BY	DGR
AU A BU E	PLE TYPE Auger Bulk Dynamic Col	SS Split TW Thin	t Spoo v Walle	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIAT Pocket F Wet Unit Standard	Penetro t Weigh	meter nt	F	RQD Ro SCR So	ck Qua	ality De e Reco	ngth Index esignation overy	(I ₅₀)	GS	Direc	olidation t Shear n Size Analysis
		SOIL PROFILE			SAMPL	ES		N RER		Ē	RE	SISTA	NCE P	LOT			2	CURE URE	0	(s/uc		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO		.DED) SHEA	NIL(△ I ▲ F R STRE	CON VA NTACT REMOU ENGTH	ANE LDED			© 4 _r≤ Liquid (%) _r≤ Limit	PERMEABILITY (cm/s)	F	REMARKS
<u>358.8</u> 0.0	Ground Silty CL Brown s	AY ilty clay, some sand, trace		1	AS	_	S	>	E E									30		<u> </u>	fro	zen to 0.8m
<u>358.0</u> 0.8	rootlets Silty CL			2	ss	75	18			358							18 C					
	trace gra	own silty clay, some sand, avel, varved, very stiff, low /, moist, trace oxidation								357_							14					
		Glaciolacustrine]		3	ss	96	17		E_2								0					
	al 2.01			4	ss	92	14		E 3	356							17 Þ	-1				
				5	ss	96	13	₽		355_							17 0					
									_4 E													
354.2 4.6				6	ss	100	12			354_							18	-1				
	sand, tra	ey silty clay, trace to some ace gravel, occasional silt stiff, medium plasticity, moist ill]			33	100	12		5	353_												
	at 6.1r	n becoming firm, no gravel		7	ss	100	6		6	352_							2	27				
5									7	552			_50 ■	72		98]	128					
1:29:51 HI				10	ss	100	8		- - - 8	351							2	4 0				
/10/2012										350			37 42		81 78							
File: 1 C113921_BHLOGS_20120405.GFJ Date: 7/10/2012 1:29:51 PM	at 9.15	5m trace gravel		13	ss	100	4		9 10 11 12 13	349_								41 0				
.0120405.G									10				40 37		91 85							
3HLOGS_2				16	ss	100	4		11	348			37		80			42 0				
113921_									12	347			_44 ■		80] 		\vdash					
	at 12.2	2m stiff		19	ss	100	10			346_							18 C					
									13													
IEC GEO	at 13.7	7m very stiff		22	ss	100	20		14	345_							19 C	•				
Format: AMEC GEO MWSK										344_												

อก		39								RECORD OF BOREHOLE No. BH11-25 PAGE 2 OF 2
PROJ		Rainy River - Geotechnica								ENGINEER MS
		<u>TC113921</u>	_					ng	E	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY PDR
	ATION	Rainy River Resources.	_ LOC COC		_					COMPILED BY SM
		<u>358.780 m</u>				5,409,	122 E	427,302		BORING DATE <u>Start: Mar 15, 12 End: Mar 16, 1</u> 2 CHECKED BY <u>DGR</u>
AU A BU B		SS TW	Rock Core Split Spoc Thin Walle Nash Sar	on ed Op	en (Sh	elby)			P.P. U.W.	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Wet Unit Weight SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Analysis
		SOIL PROFILE			SAMPI	LES		N TER	Ê	DYNAMIC CONE PENETRATION RESISTANCE PLOT X THE SECOND STANCE PLOT X THE SECOND STANCE PLOT X THE SECOND STANDARD STAND
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT X Y
	at 15.2	25m some gravel		23	ss	58	17		343_	22at 15.3m switched to washboring
				24	тw				342_	
									341_	at 17.5m PP = 73 KPa Torvane = 25 KPa
				25	тw				340_	at 18.6m PP = 73 KPa Torvane = 25 KPa
	at 19	8m gravel, trace sand, hard							339_	
338.4	low plas	ticity, moist	,	26	ss	17	46			
20.4	BOULD [Inferred	ERS I WS Till]	0°°°					_21	338_	at 20.4m switched to NQ coring
								22	337_	
				27	RC				336_	
			ີ່. ເ ຍ. ເ ເ						335_	
<u>333.6</u> 25.2	BEDRO	ск							334_	
				28	RC	95	85	26	333_	
								×	332_	
330 6				29	RC	97	85	28	331_	
330.6 28.2	Standpi	Borehole at 28.19m		1						
	Water le	d steel casing evel (b.g.s): cometer A at 3.35m on Mar								

3		9 Rainy River - Geotechnical In	Vocti	natia	2044	12010					RI	ECOR	D OF B	DREHOL	E NO	. BH11-27 PAGE 1 OF 3
-		TC113921		gation			n Drillir	ıg		В	ORING METH	HOD 200	mm HSA, NC	Coring	LOGGE	
CLIE		Rainy River Resources.											, •	5		ED BY <u>SM</u>
ELE	VATION	355.103 m	COO	ORD.	N	5,408,	603 E	427,26	69	В	ORING DATE	E Start: N	Mar 14, 12 E	<u>nd: Mar 17, 1</u> 2	CHECKE	ED BY
AU BU	IPLE TYPE Auger Bulk Dynamic Col	SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)		1		P.P. U.W.	REVIATIONS Pocket Penetron Wet Unit Weigh Standard Procto	t or Test	RQD Rock Qu SCR Solid Cor k Permeab	ility	C D G	S Direct Shear S Grain Size Analysis
		SOIL PROFILE			SAMPL	-		N TER		Ê	RESISTA	NCE PLOT	NETRATION ————————————————————————————————————	PLASTIC LIMIT NATURAL MOISTURE CONTENT	D Cm/s)	
ELEV DEPTI (m) 355.	4	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULI UNDRAINED 20 40	N △ DED ▲ SHEAR ST	ILCON VANE INTACT REMOULDED RENGTH (kPa) 80 100	W _P W WATER CONTE	-8 4 Lauid % Lauid PERMEABILITY (cm/s)	REMARKS
0.0	Brown s			1	ss	100	21							27 0		frozen to 1.2m
<u>353.9</u> 1.2	2 SILTY C	CLAY brown silty clay, trace sand		2	ss	83	16			354_				31		
	and grav damp to Glaciola	vel, stiff, medium plasticity, moist. [Upper custrine]		3	ss	88	9		2	353_				³⁹ - →		
	plasticity	n varved, medium to high y, trace mottled brown lenses		4	ss	100	9		3	352_				21		
		m trace to some sand and ounded to subangular		5	ss	100	9							21 0		
350.5										351						
4.6	Greyish	brown silty clay, firm to stiff, to high plasticity, moist.		6	ss	100	5		5	350_	3	6	97			
									6	349_	3 ■	⁶ ⁵⁶		29 H 4		
				9	ss	100	6		7	348_	31 ■	41	82			
-				12	ss	100	9						72	18 O		
										347						
	to some	n becoming dark grey, trace sand and gravel		14	ss	71	9		<u>9</u>	346				21		
	(subang	ular)							10	345_						
				15	ss	100	12		11	344_				22 o		
									12							
2	at 12.6	6m , 5cm thick sand lense		16	ss	100	9			343				28 0		at 12.2 switched to washboring
									13	342						
	at 13.7	7m occasional silty pockets		18	ss	100	9		14	341				28		
Format: AMEC GEO MWSK									15							

	<u> </u>	nec	9										R	ECC	ORE) Of	= BC	ORI	EHOL	E I	No.	BH11-27 PAGE 2 OF 3
	PROJ	IECT	Rainy River - Geotechnical In	vesti	gatio	n 2011	/2012													ENG	GINEEF	R <u>MS</u>
	PROJ	IECT NO.	TC113921	DRII	LLEF	R <u>M</u> a	arathor	n Drillir	Ig		В	ORING	G MET	HOD	200 n	nm HS	A, NQ	Cori	ng		GED I	
	CLIEN		Rainy River Resources.				ine Roo	ck Stoo	kpile													OBY <u>SM</u>
	ELEV	ATION	355.103 m	COO	ORD	. <u>N</u>	5,408,6	603 E	427,26	69	B	ORING	G DAT	E <u>Sta</u>	art: Ma	ar 14, ´	12 Er	nd: M	ar 17, 12	CHE	CKED	BY DGR
	AU A BU E		SS Spli TW Thir	t Spoo v Walle	on ed Op	oen (She	elby)				P.P. 1 U.W.	REVIA ⁻ Pocket Wet Un Standar	Penetro it Weigl	meter	F	RQD Ro SCR So	oint Loa ock Qua olid Corr ermeabi	ality De e Rece	ength Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE		. :	SAMPL	ES		N		(R	ESISTA	CONE	LOT	$- \times$		ic	RAL URE ENT	0	cm/s)	
- I.	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN R UND	VANE ITACT EMOUL RAINE[.DED D SHEA	∆ I ▲ F RSTRI	CON V NTACT REMOL ENGTH	ANE JLDED		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
					19	ss	100	8		16	339_								38 0			
		at 16.8	m becoming firm		21	ss	100	5		1 	338_								39			
										18	337_			41 •	56	82 0	97]					
	336.4				24	ss	100	8											37 0			
	18.7 335.3		green silty clay, varved, firm, plasticity, moist. [Lower							19	336											
	19.8	Grev sar	RAVEL AND SILT ndy gravel, trace clay, dense, wet [inferred WS		26	ss	13	36		20	335							7				
					27	ss	25	49		21	334_							1				
MM		below	22.3m occasional boulders		-		20	-10		22	333_											
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:54 PM										23	332_											
Date: 7/10/2										24	331_											
20405.GPJ										25	330_											
BHLOGS_201										26	329											
TC113921_E					• • • •					27	328_											
- 1	<u>327.2</u> 27.9	BEDROO Grey frac								28	327_											switched to NQ coring at 27.9 m
Format: AMEC GEO MWSK		-			28	RC	84	67		29	326_											
⁼ ormat: A										E E 30												

4

an	nec	3										R	ECC	ORE) OF	BC	ORE	EHOL	E I	No.		111-27 SE 3 OF 3
PROJ	IECT	Rainy River - Geotechnical In				/2012													ENC	GINEEI	R	MS
		TC113921	DRII			arathor				В	ORIN	G MET	HOD	200 m	nm HS	a, NQ	Corir	ig	LOC	GGED	BY	SM
CLIEN		Rainy River Resources.																		MPILE		
ELEV	ATION	355.103 m	COC	ORD.	<u>N</u>	5,408,6	603 E	427,26	69	B	ORIN	G DATI	E <u>Sta</u>	art: Ma	ir 14, 1	2 Er	nd: Ma	ar <u>17, 1</u> 2	CHE	ECKED	BY	DGR
AU A BU E		SS Sp TW Thi	lit Spoc in Walle	on ed Op	en (She	elby)				P.P. U.W.	Pocket Wet Un	TIONS Penetro it Weigh rd Proct	meter nt	F	RQD Ro SCR So	ck Qua	ality De e Reco	ngth Index signation overy	κ (Ι ₅₀)	C DS GS	Direc	olidation t Shear Size Analysis
		SOIL PROFILE		5	Sampl	ES		TER				/NAMIC ESISTA					υ	AL		(s/m		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTC III R UND	20 4 VANE ITACT EMOUL RAINED	0 6 .DED) SHEA	i0 8 NIL0 △ I ▲ F R STRE	O 1 CON V NTACT REMOU ENGTH	90 ANE ILDED		- 0 0 CONTENT CONTENT CONTENT CONTENT		EABII	F	REMARKS
		ck highly fractured between nd 31.1m		29	RC	100	50		31	324_										-		
	slightly	y fractured below 32.7m		30	RC	100	68		32	323_										-		
				31	RC	100	92		33 	322										-		
319.4				32	RC	100	93		35	320_										-		
35.7	Standpip mounted Water le	Borehole at 35.7m be installed with flush d steel casing. invel(b.g.s): n on March 17/2012																				

mat: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012_1:29:55 PM

	<u> </u>	nec	9										R	EC	ORD) OF	= BC	DRE	HOL	.E 1	No.	BH11 PAGE 1	
	PROJ		Rainy River - Geotechnical In	vestiç	gatior																GINEEF	R <u>M</u>	8
			TC113921								В	ORINO	G MET	HOD	200 m	m HS	A, NQ	Corir	g		GED I		
			Rainy River Resources.							25						- 40 4	10 F					DBY <u>NH</u>	
⊢			<u>349.444 m</u>			<u>_N</u>	5,408,	218 E	420,34	25												BY D	
	AU A BU B		SS Spli TW Thir	t Spoo Walle	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIA Pocket Wet Un Standar	Penetro it Weig	ometer ht	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco		(I ₅₀)	GS	Consolida Direct She Grain Size	ar
			SOIL PROFILE			SAMPL	ES		N TER		ê	R	ESIST	ANCE F	E PENE	— ×		2	RAL	0	cm/s)		
D	ELEV EPTH (m)	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN RI UND	VANE ITACT EMOU RAINE	LDED D SHEA	NILC △ II ▲ F AR STRE	INGTH	ANE JLDED	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A MATURAL MATURAL MOISTURA 0 40	00 XV	PERMEABILITY (cm/s)	REM/	ARKS
	349.4 0.0	Ground s	ND				-	S S		<u> </u>			r					22 22			۵.		
		clay, oxio	wn silty sand, fine, trace dised, woods.		. 1	AS				E	349_								,				
	348.6 0.9	lenses, r	AY wn silty clay, light brown nedium plasticity, stiff, moist		2	ss	83	16			348_							18 0	40 0			frozen te	o 1.4m
		[Upper G	Blaciolacustrine]		3	ss	88	9		2									41 0				
					4	ss	96	9		Ē	347								36 0				
					5	ss	96	7		_3	346							21 H	¦ ₽-				
										E_4				37 38		_°	100						
	344.9	0:14 - 01								Ē	345_					L							
	4.6	sand, lig	y clay, trace gravel, trace ht grey lenses, medium ; firm, moist [WML Till]		8	ss	100	7		5 5					57		106	19 C					
		plasticity								6	344				72								
					11	ss	67	10			343							20					
×										_7	342_												
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:57 PM	341.2		7.63m, wet, hard		12	ss	21	27		8								16 0					
/10/2012	8.2	Grey sar some sil	LLY SAND ad and gravel, trace clay, t, poorly graded, compact, ciofluvial]		13	AS				- - - 9	341												
J Date: 7		wet [Old	Sonuviaij		14	ss	50	20			340							18 0				heaving to 8.8m	sand up
20405.GP				0.00						10	339_												
DGS_2012					15	ss	33	34		11								16 0				at 10.67 switched t boring.	
921_BHL(338_											bornig.	
C113				000						E_12								40					
File:					16	ss	54	42			337							13 0					
0 MWSK										13	336_												
IEC GEC	335.7 13.7		y silty clay, trace light brown		17	ss	100	16		14									34 0				
Format: AMEC GEO MWSK		lenses, c	iccasional silt pockets, very dium plasticity [WML Till]								335												

ſ	an	nec	3										R	ECC	ORD) OF	BC	DRE	EHOL	E I	No.	BH11-28 PAGE 2 OF	
	PROJ	ECT	Rainy River - Geotechnical In	vestig	gatior	n 2011	/2012													ENG	GINEE	R <u>MS</u>	_
	PROJ	ECT NO.	TC113921	DRIL	LER	<u>N</u>	larathor	n Drillin	g		В	ORING	6 METI	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED	BY <u>PDR</u>	_
	CLIEN		Rainy River Resources.				outh of	Open	Pit													DBY <u>NH</u>	
	ELEV	ATION	349.444 m	COC	ORD.	N	5,408,2	218 E	426,32	25	B	ORING	6 DATE	E <u>Sta</u>	art: Fel	b 12, 1	2 Er	nd: Fe	eb <u>23, 1</u> 2	CHE	ECKED	BY DGR	_
	AU A BU E		SS Split TW Thin	Spoo Walle	n ed Op	en (Sh	elby)				P.P. U.W.	REVIAT Pocket F Wet Unit Standard	Penetro t Weigh	meter It	F	P.L. Po RQD Ro SCR So K Pe	ock Qua	ality De e Reco	ngth Index esignation overy	((I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analy	ysis
ľ			SOIL PROFILE			SAMP	LES		LER							TRATI X			AL		(s/ш		
	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2(MTO □ IN ■ RE	0 4 VANE TACT MOUL RAINED	0 6 DED SHEA	0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	90 ANE ILDED		W O ER CONTE	TIMIT WL WT (%) 60	PERMEABILITY (cm/s)	REMARKS	
					20	тw	100				334_												
	332.7									16	333_											at 16m PP=49 KPa TV=49 KPa	
	16.8 332.1 17.4	Dark gre	y silty clay, trace gravel, ow plasticity, wet [Lower		23 A&B	ss		25		17	332_							14 0	30			at 17.4m, 1m	of
		BOULDI [inferred	ERS		24	RC			\bigotimes	18	331_											artesian pressur encountered	e
										19	220												
									\bigotimes	20	330												
	329.0 20.4	BEDRO	СК							21	329_												
					26	RC	97	28		22	328												
57 PM											327_												
2012 1:29:5	325.7				27	RC	98	97		23	326_												
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:57 PM	23.8	mounted Water le	Borehole be installed with flush I steel casing. vel(b.g.s): I on February 23/2012		25	RC				T													

	mod	3											R	ECC	ORD) OF	BC	RE	EHOL	Eľ	No.		11-28
	DJECT	Rainy River - Geote	chnical In	vestic	natior	2011	/2012													FNG	SINEEF		E 3 OF 3 MS
							arathor	Drillin	g		В	ORINO	G MET	HOD	200 m	nm HS.	A, NQ	Corin	ng		GED	-	PDR
CLI	ENT	Rainy River Resour	ces.	LOC	ATIC															CON	APILE	DBY	NH
ELE	VATION	349.444 m		COC	ORD.	N	5,408,2	218 E	426,32	25	В	ORING	G DAT	E <u>Sta</u>	art: Fel	b 12, 1	2 Er	d: Fe	<u>b 23, 1</u> 2	CHE	ECKED	BY	DGR
AU BU	MPLE TYPE Auger Bulk Dynamic Co		RC Roc SS Split TW Thir WS Was	t Spoo	on ed Op	en (She	elby)				P.P. I U.W.	Pocket I Wet Uni	TIONS Penetro it Weigh	ometer	F	RQD Ro SCR So	ck Qua	lity De Recc	ngth Index signation overy	(I ₅₀)		Direct	olidation Shear Size Analysis
DC		SOIL PROFILE	VV3 VVa			SAMPL	ES		ER			DY	'NAMIC	CONE	PENE	TRATI	ON	Ĺ.	그뿝드			Grain	Size Analysis
ELE\ DEPT (m)	н	DESCRIPTION		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINE		0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	90 ANE ILDED		A MATURAL MATU		PERMEABILITY (cm/s)	R	EMARKS
Format: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:29:58 PM																							

a r	nec	9										R	ECC	ORE) Of	F BC	DR	ehol	E I	No.		11-29 E 1 OF 4
	JECT	Rainy River - Geotechnical In				/2012													ENG	GINEE	R _	MS
		TC113921	DRII				n Drillin			В	ORINO	3 MET	HOD	200 n	nm HS	A, NQ	Cori	ng		GED	-	PDR
CLIE		Rainy River Resources.											- 01							MPILE	-	
	ATION	<u>345.784 m</u>		ORD.	<u> </u>	5,408,	528 E	424,52	20									ar <u>5, 12</u>			BI -	DGR
AU BU	PLE TYPE Auger Bulk Dynamic Cor	SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	elby)				P.P. 1 U.W.	Pocket Net Un	FIONS Penetro it Weigh d Proct	meter	:	RQD RO SCR So	oint Loa ock Qua olid Cor ermeab	ality D e Rec	-	(I ₅₀)	C DS GS	Direct	olidation Shear Size Analysis
		SOIL PROFILE			Sampl			ETER		(-	R	ESISTA	CONE	LOT	$- \times$		lc	RAL URE ENT	0	cm/s)		
ELEV DEPTH (m) 345.8		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIN R UND	VANE TACT EMOUL RAINE[.DED) SHEA	NIL △ I ▲ I R STR		ANE JLDED		W O TER CONTE		PERMEABILITY (cm/s)	R	EMARKS
0.0	TOPSO			1	AS		0,		-										488			
345.0		·			AS					345											froz	en to 0.6m
0.8 <u>344.3</u> 1.5	Light bro	own silty clay, soft. Om, grey sandy clay, low		2	ss	17	3		1									27				
1.5	Silty CL			3	ss	63	4		_2	344							† F	26 이				
	plasticity oxidised	, varved, moist, firm, trace pockets [Upper custrine]		4	AS	100				343_								35 0		-		
				5	тw	100			3												at 3 TV=2	.35m, 5 KPa
									4	342												
<u>341.2</u> 4.6	Silty CL Dark gre medium	ey silty clay, trace sand, to high plasticity, stiff, moist.		6	ss	96	6		5	341							2	3 0				
		iiij							6	340												
				7	ss	100	5		- 7	339_								53				
<																						
Date: 7/10/2012 1:30:00 PM	below	7.63m, trace fine gravel.		8	ss	75	5		8	338_							-20	0		-		
10/2012										337_										-		
				9	ss	100	11		9									33				
20405.GPJ									10	336												
File: TC113921_BHL0GS_20120405.GPJ				10	ss	100	7		11	335_								38 O			at 1 switch boring	ned to wash
3921_BHL									12	334_										-		
: TC113				11	ss	100	7		- 12									38				
									13	333_												
Format: AMEC GEO MWSK									14	332_								33				
mat: AME(12	ss	100	12		9 10 11 12 13	331_								0				
uo-			W/	1				ØØ	F 15								1			1		

ame	eco										R	ECC	ORD	OF	BC	DRI	EHOL	E N	lo.	BH11-29 PAGE 2 OF 4
PROJECT					2012														SINEEF	
	ΓΝΟ. <u>TC113921</u>	DRIL		-		n Drillin			В	ORIN	G METH	HOD _	200 m	ım HS/	A, NQ		ng		GED I	
CLIENT	Rainy River Resources.																			DBY <u>NH</u>
ELEVATIO		COC	DRD.	<u>N</u>	5,408,	528 E	424,5	26				<u>Sta</u>	art: Ma	r 2, 12	Enc	d: Ma	r 5, 12	CHE	CKED	BY DGR
SAMPLE AU Auger BU Bulk DC Dynar	r SS Spl TW Thi	it Spoo n Walle	n d Ope	en (She	lby)				P.P. U.W.	Pocket Net Ur	TIONS Penetron hit Weigh rd Procto	t	F	RQD Ro SCR So	ck Qua	ality De e Rec	ength Index esignation overy	к (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
	SOIL PROFILE		S	SAMPL	ES		LER			D` R	YNAMIC ESISTA 20 4(CONE NCE P	PENE LOT	TRATI	ON	<u>ں</u>	CAL URE		(s/u:	
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER		ELEVATION (m)	MTC III III R UND	20 4(VANE NTACT EMOULI RAINED 20 4(DED SHEA	NIL(△ II ▲ F R STRE	CON V/ NTACT REMOU	ANE LDED (kPa)		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
			13	ss	100	10		16	330_								35			
									329_											
			14	ss	100	12			328_								35			
			15	ss	100	9		E_18									36			
								19	327											
			16	ss	100	9		20	326_								35			
								21	325											
			17	ss	100	10		22	324_								35			
			18	ss	100	11		23	323_							16				
					100			24	322_											
			19	ss	100	13		25	321							2	25 0			
									320_											
t	below 25.9m, stiff to very stiff.		20	ss	100	19		26	319_								26			
				N				27								2	4			
			21	ss	100	23		28	318								0			
			22	ss	100	14		29	317_								37			
				N				₹ ₹ 30	316											

an	nec	3									R	ECC	ORD	OF E	BOF	RE	HOL	E N	No.		11-29 E 3 OF 4
PRO.		Rainy River - Geotechnical In	vesti	gatior	n 2011/	/2012												ENG	SINEE	۲ _	MS
PRO.	JECT NO.	TC113921	DRI	LLER	Ma	arathor	n Drillir	Ig		BORIN	G MET	HOD	200 m	nm HSA, N	IQ Co	orin	g	LOG	GED	BY _	PDR
CLIEI	NT	Rainy River Resources.	LOC	ATIC	N Sc	outh of	Pinew	ood River												OBY_	
ELEV	ATION	345.784 m	COC	ORD.	N	5,408,	528 E	424,526		BORIN	G DAT	E <u>Sta</u>	art: Ma	r 2, 12 E	End: I	Mar	5, 12	CHE	CKED	BY _	DGR
AU A	PLE TYPES Auger Bulk Dynamic Cor	SS Spli TW Thir	t Spoo v Walle	on ed Op	en (She	elby)			P.P. U.W	REVIA Pocket Wet Ur Standa	Penetro nit Weig	ometer ht	F	P.L. Point L RQD Rock (SCR Solid (Perme	Quality Core R	/ De: Reco	signation	(I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
		SOIL PROFILE		5	SAMPL	ES		L L L L L L L L L L L L L L L L L L L					LOT	TRATION	c	2	CAL URE ENT		(s/u		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION DEPTH (m)	ELEVATION (m)		O VANE NTACT REMOUI DRAINEI	LDED D SHEA	NIL(△ II ▲ F R STRE	0 100 CON VANE NTACT REMOULDE ENGTH (kPa 0 100	D		CONTENT CONTEN	-00 4 LIQUID (%) - 10 LIQUID (%)	PERMEABILITY (cm/s)	RI	EMARKS
	from 3 sand lay	0.6m to 30.8m, grey silty er.		23	ss	100	9	31	315							23	9				
								32	314												
				24	ss	100	11	_33	313												
				25	ss	100	11	34	312						_						
310.7								35	311						_						
35.1 <u>309.8</u> 36.0	silt, varv very stiff	AY y silty clay, trace sand, trace ed, low to medium plasticity, [Lower Glaciolacustrine] SRAVEL and BOULDERS		26	ss	100	24	_36	310	-											
	Sandy g	ravel, silty [inferred WS Till]						_37	309											encou	an pressure ntered up to
30:01 PM								38	308											2.1m	
Date: //10/2012 1:30:01 PM 30:02 30:02 30:03 30:03 20:04 20:				27	ss	54	45	39	307												
906.5 39.3	BEDRO	ск		28	RC	100	20	40	306												
2012040								41	305												
FIG: 1 C1 1 3821_BHLUGS_ZU1 20405.0FJ				29	RC	100	58	42	304												
				30	RC	100	57	43	303												
FOITHAIT: AMEC GEO MWSK				31	RC	100	77	44	302 301												

an		3										R	ECO	ORD) Of	BC	DRI	EHOL			BH11-29 PAGE 4 OF 4
PRO		Rainy River - Geotechnica					D					0 MET		000			0.1			BINEEF	
		<u>TC113921</u>				larathor				в	ORIN	JMEI	HOD	200 m	IM HS	A, NQ	Corii	ng			
CLIEN		Rainy River Resources.												art: Ma	- 0. 11		J. M.	- 5 10			DBY <u>NH</u>
	ATION	345.784 m	_ COC	JRD.		5,408,	028 E	424,54	20					art: Ivia	F Z, 14	2 Enc	1: IVIA	r 5, 12	CHE	CKED	BY DGR
AU / BU I		SS S TW	Rock Core Split Spoo Fhin Walle Wash Sar	n ed Op	en (Sh	elby)			-	P.P. U.W.	Pocket Wet Ur	TIONS Penetro it Weigh rd Proct	meter nt	F	RQD RO SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Rece	ngth Index esignation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		5	SAMP	LES		N TER		ê	F	/NAMIC ESISTA	NCE F	PLOT	—×		2	AL URE	~	(s/uc	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTC III F UNE	VANE NTACT EMOUL	.DED) SHEA	NIL(△ I ▲ F R STRE	ENGTH	ANE JLDED		- 0 A MATURAL - 0 A MOISTURE CONTENT CONTENT		PERMEABILITY (cm/s)	REMARKS
									Ē												
				32	RC	100	72		46	300											
				33	RC	100	50		48	298_											
				34	RC	100	57		49 49 50	297_ 296_											
				35	RC	100	88		51	295_											
				36	RC	100	10		52	294 293											
291.3				37	RC	100	77		54	292_											
54.5	Standpi mounte Water le	Boreholeat 54.35 pe installed with flush d steel casing. evel (b.g.s): ce on March 05/12																			

			9									RECO	RD OF	BC	OREH	IOLE	E No.		
S Pi	ROJI	ECT	Rainy River - Geotechnical In	vestig	gatior	n 2011/	/2012									E	ENGINE		GE 1 OF 3
PI	Roji	ECT NO.	TC113921	DRIL	LLER	<u>Ma</u>	arathor	n Drillir	ng		В		200 mm HS	A, NQ	Coring	L	OGGED) BY	PDR
C	LIEN	т.	Rainy River Resources.	LOC	ATIC	ON <u>So</u>	outh of	River								(COMPILI	ED BY	NH
El	EVA	ATION	346.707 m	COC	ORD.	N	5,408,4	476 E	425,5	86	B	ORING DATE Star	rt: Feb 23, 1	2 Ei	nd: Feb 2	<u>4, 1</u> 2 (CHECKE	D BY	DGR
A B	U A U B		SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	lby)				P.P. U.W.	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Test	RQD Ro SCR So	ock Qua	d Strength ality Desigr e Recoven ility	nation	50 ⁾ C DS GS	5 Direc	olidation t Shear n Size Analysis
			SOIL PROFILE			Sampl			N		Ē	DYNAMIC CONE RESISTANCE PL	.ot —×		'IC 3AL	ENT	cm/s)		
(r	РТН n)	Ground s	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAR 20 40 60		ANE	W _P WATER C	w o	· · ·	F	REMARKS
	16.7 18:0	TOPSOI	L /	Ï				0	Í	ŧ						49			
		Silty CL/ Brown sil	AY Ity clay, some sand, slightly low plasticity, soft, moist to								346_						_		
		wet at tip			2	ss	54	4							26 0				
					3	ss	79	11			345_				28		_		
34	4.4	at 1.8m	n grey silty sand, poorly compact, wet				10								23				
	2.3	Silty CL/ Dark bro	AY wn silty clay, some sand,		4	ss	88	6			344_				31 0		_		
		laminatio	vel, occasional sand ons, low plasticity, firm, oper Glaciolacustrine]		5	ss	71	4							27				
		110131 [0]			<u> </u>						343_						_		
	1.8	011/ 01	• • •		6 A&B	ss	83	3			342				30	47	83		
	4.9	Silty CLA Dark green	y silty clay, some sand, firm, plasticity, moist																
		moulant									341_						_		
		below (laminatio	6.1m, sand and gravel		7	ss	100	7							36				
										Ē,	340_						_		
Σ																			
0:11 PI					8	ss	100	10			339_				23 O		_		
12 1:3																			
7/10/20										<u> </u>	338						_		
Date:					9	ss	100								4	0			
GPJ					-						337								
20405																			
3S_20					10	ss	100	10		1 11	336				37	,	_		
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:30:11 PM					-														
13921										12	335								
E TC11					11	ss		9		Ē					34				
¥ ≣		from 12	2.5 to 13.7m, boulders							13	334					·	_	at refus	12.5m, SPT al
MWS					12	RC	19												
Format: AMEC GEO MWSK										E_14	333						-		
at: AME					13	RC	7			Ē						46 0			
Forme										15	332						-		

an		3										R	ECC	ORE	0 0	F BC	DRI	EHOL	EN	lo.		11-33 2 OF 3
PROJ		Rainy River - Geotechnical																		SINEEF		MS
		TC113921	-			arathor		Ig		В	ORIN	G MET	HOD _	200 n	nm HS			ng		GED I		PDR
CLIEN		Rainy River Resources.									0.5.0	0 5 / -									DBY_	
	ATION	346.707 m	COC	JRD.	<u>N</u> 5	5,408,4	176 E	425,5	86					art: Fe	b 23, ⁻	12 Er	nd: Fe	eb 24, 12	CHE	CKED	BY _	DGR
AU A BU B	PLE TYPE Auger Bulk Dynamic Co	SS S TW T	ock Core plit Spoo hin Walle /ash San	n ed Op	en (She	lby)				P.P. U.W.	Pocket Wet Ur	TIONS Penetro hit Weigh rd Procto	meter It	1	RQD R SCR S		ality De e Rece	ngth Index esignation overy		C DS GS	Consol Direct S Grain S	
		SOIL PROFILE		5	SAMPL	ES	-	LER		-	D' R	YNAMIC ESISTA 20 4	CONE	E PENE LOT	TRAT	ION	<u>0</u>	8AL URE ENT		(s/u:		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 4 O VANE NTACT EEMOUL RAINED 20 4	DED SHEAI	NIL⊄ △ I ▲ F R STRI	CON V NTAC ⁻ REMOU ENGTH	/ANE F JLDED		W O ER CONTE		PERMEABILITY (cm/s)	RE	MARKS
	below	15.25m very stiff		14	ss	4	36			331_								37				
					N				16 16	331_												
										330_												
				15	ss	100	18		17 									31 0				
										329_												
									- 10								2	4				
				16	ss	100	18		19	328_								4 0				
				17	ss	100	13		20	327							22	2				
										326_												
									21 21													
	below pockets	21.34m, occasional silt		18	ss	100	14			325_								35				
					IX				22 													
										324_												
1				19	ss	100	15											37 0				
									24	323_												
					Ν													35				
				20	ss	100	14		25	322								•				
										321_												
				21	ss	100	15		26 								2	5				
				-						320_												
319.3									27													
27.4	Grey sil	ty clay, varved, low plasticity	,	22	ss	100	17			319								35 •				
		f, moist [Lower icustrine]			N				28 													
317.7									29	318_							\vdash					
29.0	Grey sa	nd GRAVEL nd and gravel, trace silt, wel	1	23	ss	100	54		- 29													
	graded,	dense, wet [WS till]			I\			1	E 30	317_							\vdash					

a n	nec	9										R	ECC	ORD) Of	= BC	ORE	EHOL			BH11-33 PAGE 3 OF 3
PRO		Rainy River - Geotechr																		GINEEF	
		TC113921					n Drillin	Ig		B	ORIN	G MET	HOD _	200 m	nm HS	a, NQ	Corir	ng		GED I	
CLIEI		Rainy River Resources																			DBY <u>NH</u>
ELEV	ATION	346.707 m	CO	ORD.	N	5,408,	476 E	425,58	36	B	ORIN	G DATI	E <u>Sta</u>	art: Fel	b 23, <i>*</i>	12 Er	nd: Fe	eb 24, 12	CHE	CKED	BY DGR
AU BU	PLE TYPE Auger Bulk Dynamic Co	S: T\	C Rock Core S Split Spoo V Thin Wall S Wash Sar	on ed Op	en (She	elby)				P.P. F U.W. \	Pocket Vet Un	TIONS Penetro iit Weigh rd Proct	meter nt	F	RQD RO SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	к (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		5	Sampl	ES		ER _			D) R	/NAMIC ESISTA			TRAT	ION	0	AL		(cm/s)	
ELEV DEPTH (m)	-	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 4 VANE NTACT EMOUL RAINED	<u>0 6</u> .DED	0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACI REMOU	00 ANE JLDED		-0 A MOISTURAL -0 A MOISTURAL -0 A CONTENT	+0 Z S LIQUID %) - S LIQUID	PERMEABILITY (ci	REMARKS
			0°.° .°.°																		
				24	ss	0	76		31	316											
			0.						32	315_											
				25	ss	38	41		Ē												
			0°.° 						33	314											
			••• ••• •••	26	ss	42	19			313_											
				20	33	42	19		34 =												
									Ē	312											
			\$ \$ \$	-					35												
				27	ss	83	38		Ē												
									36	311_											
			0°°						Ē												
	below	36.6m, boulders	•••• •••							310_											
									37												
308.9										309											
37.8		CK veathered	Ň						38												
4				28	RC	77	0		Ē	308_											
									39	300_											
				<u> </u>					Ē												
									40	307											
				29	RC	83	0														
4										306_											
									41 												
				30	RC	58	0			305_											
100									_42												
			Ň	<u> </u>	$\left - \right $				Ē												
									43	304											
				31	RC	47	0		Ē												
302.8									Ē	303_											
43.9	End of I Standpi mounted	Borehole pe installed with flush d steel casing evel at ground surface u ion	pon																		

a n	neď	3										R	ECC	ORD) OF	BC	DRI	EHOL	.E I	No.		11-34 E 1 OF 3
PRO	JECT	Rainy River - Geotechnical	Investi	gatio	n 2011/	2012													ENG	BINEEF	۲.	MS
		TC113921	-	LLEF			n Drillir				BORIN	NG MET	HOD	200 m	nm HS	A, NQ	Cori	ng	LOG	GED I	BY	PDR
CLIE		Rainy River Resources.	_																	<i>I</i> PILE	-	
ELEV	ATION	347.648 m	CO	ORD.	. <u>N</u>	5,408,	419 E	426,1	02	I	BORIN	NG DAT	E <u>Sta</u>	art: Fel	b 9, 12	Enc	d: Fel	<u>o 11, 12</u>	CHE	CKED	BY	DGR
AU . BU		SS S TW T	Rock Core Split Spoo Thin Walle Vash Sar	on ed Op	en (She	lby)			-	P.P. U.W	Pocke Wet L	ATIONS et Penetro Init Weig ard Proc	ometer ht	F	RQD Ro SCR So	ock Qua	ality De e Rec	ength Index esignation overy	k (I ₅₀)	C DS GS	Direct	olidation Shear Size Analysis
		SOIL PROFILE			SAMPL	ES		ETER N		(-		OYNAMIC RESIST/	ANCE P	PLOT	—×		-IC	RAL TURE ENT	0	(cm/s)		
ELEV DEPTH (m) 347.6		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		O VANE INTACT REMOUI DRAINEI	LDED D SHEA	NIL(△ I ▲ F R STRE		ANE		W O ER CONTE	UINIT WL NT (%)	PERMEABILITY (R	EMARKS
347.3	TOPSO			1	AS		0,		Ē										66			
0.3	Silty CL									347_	1										troz	en to 0.6m
	gravel, g	grey lenses, trace oxidised , medium plasticity, moist Glaciolacustrine]		2A B&C	ss	83	7															
		6m, sand laminations		3	ss	79	6		2	346_								29				
				4A B C	ss	75	5		1 1 2 3 4 4 5	345_							2	4 380 3 0				
				5	т	100			1_3													
									4	344_			50		87	103	141					
<u>343.1</u> 4.6	Silty CL	Δ٧								343_					•	[D ^{'*'}	50	90			
	Dark gro medium	ey silty clay, trace sand, plasticity, firm to stiff, moist y silt pockets [WML Till]	.,	8	ss	83	7		5			24			83			→				
	iigin gre								L L 6	342_		31										
				10	ss	100	6			341_							:	27 0				
									7				4 8	59		¹¹	120					
										340_		-					2	4				
2				13	ss	92	6															
									E_9	339_												
				14	ss	100	10			338_								30				15m, ned to wash g.
									10													
				15	ss	100	11		E 11	337_								28 O				
						100				336_												
1400									12									20				
	at sai 12.8m	ndy layer between 12.65 and	1	6A&	B SS	100	17			335_							18 0	30				
									E_13													
										334_							2	4				
				17	ss	100	9											0				
									€ 15	333_	1											

36	nec	3									R	ECC	RD O	FBC	ORI	EHOL	.E 1	No.	BH11-34 PAGE 2 OF 3
	JECT	Rainy River - Geote		vestig	atior	2011 ו	/2012										ENG	GINEEF	
PRO	JECT NO.	TC113921		DRIL	LER	M	arathor	n Drillir	g	В	ORING MET	HOD _	200 mm H	ISA, NQ	Cori	ng	LOG	GED I	BY <u>PDR</u>
CLIE		Rainy River Resour																	DBY <u>NH</u>
ELE\	ATION	347.648 m		COC	ORD.	N	5,408,4	419 E	426,102	В	ORING DAT	E <u>Sta</u>	rt: Feb 9,	12 En	d: Fel	<u>o 11, 12</u>	CHE	CKED	BY DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Col		RC Rock SS Split TW Thin WS Was	Spoo Walle	n ed Op	en (Sh	elby)			P.P. 1 U.W.	REVIATIONS Pocket Penetro Wet Unit Weigh Standard Proct	meter nt	RQD SCR	Point Loa Rock Qua Solid Cor Permeab	ality De e Rece	ngth Inde esignation overy	к (І ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			5	SAMPI	ES	_	Z TER	-	RESISTA	NCE PL	PENETRA _OT \longrightarrow	~ ~	<u>∪</u>	8AL URE ENT		(s/uc	
ELEV DEPTH (m)	1	DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION DEPTH (m)	ELEVATION (m)	20 4 MTO VANE □ INTACT ■ REMOUL UNDRAINEE 20 4	.DED		VANE CT DULDED		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
					18	ss	100	16		332						38			
										331_									
					19	ss	100	12	17	330_						37 0			
					20	ss	100	8	18	329_					2	26			
328.4									19										
19.2		GRAVEL s [inferred WS Till]							20	328_									
<u>326.9</u> 20.7		ск							21	327_									
					22	RC	98	83	22	326									
:30:16 PM					23	RC	97	55	_23	325_									
7/10/2012 1	highly	fractured							_24	324									
SPJ Date:					24	RC	95	7	25	323									
20120405.0										322_									
File: TC:113921_BHLOGS_20120405.GFU Date: 7/10/2012 1:30:16 PM					25	RC	98	62	26	321									
					27	RC	95	68	27	320									
Format: AMEC GEO MWSK					28	RC	98	87	29	319_									
⁻ ormat:										318_					-				

an	ned	3									REC	ORE) OF	BC	ORE	EHOL	.E 1	No.	BH11-34 PAGE 3 OF 3
PROJ		Rainy River - Geotechnic	al Investic	ation 2	2011/20 ⁷	2											ENG	SINEEI	
PROJ	JECT NO.	TC113921		LER		hon Drilli	ng		В	ORING	METHOD	200 m	nm HS	A, NQ	Corir	Ig	LOG	GED	
CLIEN	ЛТ	Rainy River Resources.	LOC	ATION	South	of Open	Pit										CON	MPILEI	D BY NH
ELEV	ATION	347.648 m		ORD.	N 5,4	08,419 E	E 426,1	02	В	ORING	DATE <u>S</u>	art: Fe	b 9, 12	2 Enc	I: Feb	<u>11, 12</u>	CHE	ECKED	BY DGR
AU A BU B		SS TW	Rock Core Split Spoo Thin Walle Wash San	n d Open	ı (Shelby)				P.P. U.W.	Wet Unit \	enetrometer	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	lity De Reco	ngth Index signation overy	к (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
DC I		SOIL PROFILE	Wash San		MPLES		Ľ			DYN	AMIC CON	E PENE	TRATI	ON	Ĺ	그뽔⊢			Grain Size Analysis
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	~	TYPE	SPT "N" VALUES	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	20 MTO V □ INT. ■ REM	ANE ACT MOULDED AINED SHE	60 8 NIL0 △ 1 ▲ F AR STRE	30 1 CON V NTACT REMOU ENGTH	00 ANE JLDED		-0 35 MOISTURE		PERMEABILITY (cm/s)	REMARKS
				29 F	RC	7 80		31	317_										
				30 F	RC 9	7 87		32	316 315										
				31 F	RC S	5 55		33	314_										
				32 F	RC 9	5 80		35	313										
310.6	End of	Borehole at 37.0m		33 F	RC 1	00 62		37	311_										
	Standpi mounte Vibratin	be installed with flush d steel casing. g wire piezometer [VW installed at 19.8m																	

		3									R	ECC	ORD	OF B	OR	EHOL	E N	lo.	BH11-35
PROJ		Rainy River - Geotechnical In	vestio	patio	n 2011/	2012											ENG	INEEF	PAGE 1 OF 1 R MS
			DRI				n Drillir	ng		В	ORING MET	HOD	200 m	m HSA, NG	Corir	ng		GED I	
CLIEN	NT	Rainy River Resources.	LOC	ATIC	ON <u>Or</u>	e Stoc	kpile										CON	1PILE	DBY NH
ELEV	ATION	370.255 m	COO	ORD.	<u>N</u>	5,410,	896 E	426,3	06	В	ORING DAT	E <u>Sta</u>	art: Jan	10, 12 E	nd: Ja	<u>n 12, 1</u> 2	CHE	CKED	BY DGR
AU A BU B		SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIATIONS Pocket Penetro Wet Unit Weigl Standard Proct	ometer ht	R S	.L. Point Loa QD Rock Qu CR Solid Co Permeat	ality De	esignation	x (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	ES		ER _			DYNAMIC RESISTA				0	AL		(s/u	
ELEV DEPTH (m) 370.3	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 4 MTO VANE □ INTACT ■ REMOUL UNDRAINE	LDED D SHEA	0 <u>8</u> 0 NILC △ IN ▲ R) 100 CON VANE ITACT EMOULDED NGTH (kPa)	WATE	W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
37 0.0 0.2	- TOPSOI SANDY	/	Î	1	ss	79	8		Ē	370_									
369.6 0.6	Light bro some ro SANDY	own sandy silt, some clay, ots, frozen. SILT		2	ss	75	12			369_					18 e				frozen to 1.4 m
	trace gra varved, s plasticity	own sandy silt, some clay, avel, some silt laminations, stiff, low to medium v, moist [Upper		3	ss	96	13		2						22	0			
	at 2.3r	n, some to trace clay, very		4	ss	100	19			368					P F	4 •			
		Im, becoming stiff, nal sand laminations.		5	ss	100	11			367					2	4 0			
365.7									1 4	366									
4.6	SILTY S Light bro trace gra Sand]	AND wwn silty sand, some clay, avel, loose, wet [Glacial		6	ss	100	6		5	365_					2	26 O			
363.8					ss	75	6		1_6	364									
6.4	silt, trace plasticity	ey some clay trace to some e gravel, stiff, medium , moist, light brown lenses							- - - - -	363_									
1:30:18 PM		III] onal 3mm sand laminations slow 7.6m.		8	ss	100	8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	362_					18 C				
361.1									9						19				
9.1 360.5 9.8	Grey sar	ND GRAVEL nd and gravel, boulders, ;, wet [WS Till] CK		10	RC	95	48			361						,			
20120402										360									
				11	RC	88	67		E_11	359									
5K FIRE I CUTU3821_BHLUGS_20120405.6FU Date: //10/2012 1:50:18 FM 6 09 8 15 1 1 1				12	RC	100	75		12	358_									
00111111111111111111111111111111111111	Standpip mounted Water le at 4.24	Borehole at 13.3m be installed with flush d steel casing wel (b.g.s): m on Jan12/12. m on Jan15/12.	¥//						<u>-</u>	357									

an	nec	3										R	ECO	ORE) Of	BC	DRI	EHOI	.E N	No.	BH11-3 PAGE 1 C	
PROJ		Rainy River - Geotechnical Ir																	ENG	SINEE	-	
PROJ	IECT NO.	TC113921	DRIL			aratho		ng		B	ORIN	G MET	HOD	200 m	nm HS	A, NQ	Cori	ng	LOG	GED	BY <u>SM</u>	
CLIEN	NT	Rainy River Resources.	LOC	ATIC	N <u>P</u>	ant Site	e												CON	IPILEI	DBY <u>SM</u>	
ELEV	ATION	<u>374.669 m</u>	COC	ORD.	N	5,410,	792 E	426,9	36	B	ORIN	G DATI	E <u>Sta</u>	art: De	c 7, 1′	1 Enc	d: De	<u>c 9, 11</u>	CHE	ECKED	BY DGR	
AU A BU B		SS Sp TW Thi	lit Spoo n Walle	n ed Op	en (Sh	elby)				P.P. U.W.	Pocket Wet Ur	TIONS Penetro it Weigh rd Proct	meter nt	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Rec	ength Inde esignation overy	x (I ₅₀)	C DS GS	Consolidatior Direct Shear Grain Size Ar	
	-	SOIL PROFILE		5	SAMPI	ES		ËR				/NAMIC ESISTA					0	귀뿝두		(cm/s)		
ELEV DEPTH (m) 374.7		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)		20 4 VANE NTACT EMOUL RAINED	DED DED	0 8 NIL0 △ 1 ▲ F R STR1	0 1 Con V Ntact Remou Ength	οο ANE - JLDED		W ER CONTE		PERMEABILITY (cr	REMAR	٢S
374.4	TOPSO	IL ey silty clay, trace sand,							Ē													
0.3	medium	plastic, moist, rootlets							i I	374_												
	laminati	rown silt, varved (grey clay in ons), firm, low to medium y, damp to moist [Upper		1	ss	79	8		1								16 0					
		custrine] m, non-plastic		2	ss	100	13		Ē	373_							F	27 d				
	at 1.5	2m, trace mottled brown		<u> </u>					<u>2</u> E			31			77							
	lenses								Ē	372_		31 ■			77	103						
371.6				1					_3							μ						
3.1	SILTY (Drak gr	CLAY ey clay, some silt to silty,		3	ss	100	12											33 - 	-			
	trace gr	avel, stiff to very stiff, to high plasticity, occasional		}—	N				Ē	371_				56			154					
		ckets, moist [WML Till]							4 _							(† '``					
									Ē	370_												
369.8 4.8	below	4.6m, becoming silty and (subrounded)		4	ss	75	21	8 8 8	- :5	370_							6 0					
4.0	SAND		.8.0		<u> </u>				Ē													
	(subrou	ey sand, trace silt and gravel nded), fine to medium, poorly	3							369_												
	graded, moist	compact to dense, damp to	. .						E_6													
368.4 6.2	∖at 6.1	some fine gravel		5	SS	67	8/0.07		E													
	BEDRC Metamo	CK orphic, highly fractured	\mathbb{N}					E	E	368_												
									E7													
									Ē	267												
				6	RC	97	19		E_8	367_												
				1					Ē													
									E	366												
0.05 (E_9													
<u>365.4</u> 9.2	Stand p up and stand pi retrievir Water lo at 5.58r	Borehole at 9.2m ipe installed with 0.76m stick protected with steel casing; pe pulled up by 0.45m while g auger evel (bgs): n on Dec09/12 er on De18/12	¥///																			

t: AMEC GEO MWSK File: TC113921 BHLOGS 20120405.GPJ Date: 7/10/2012 1:

PROJ	NECO IECT Rainy River - Geotechnical I	nvesti	aatio	n 2011	/2012					F	REC	ORD	OF E	30	RE	HOL		NO. GINEEF	BH11-37 PAGE 1 OF 1 R MS
	IECT NO. <u>TC113921</u>	DRI	0		arathor	n Drillir	ng		В	ORING ME	THOD	200 m	ım HSA, I	NQ C	Corin	g		GED	
CLIEN	NT Rainy River Resources.	LOC	CATIO	ЭN <u>Р</u>	ant Site	e											CON	NPILE	D BY <u>SM</u>
ELEV	ATION _369.991 m	CO	ORD	. <u>N</u>	5,410,	528 E	426,6	58	B	ORING DA	TE <u>St</u>	art: Deo	c 9, 11	End:	Dec	: 13, 11	CHE	CKED	BY DGR
AU A BU E		olit Spoo nin Wall	on ed Op	ben (She	elby)				P.P. U.W.	REVIATION Pocket Penet Wet Unit Wei Standard Pro	rometer ght	F	P.L. Point RQD Rock SCR Solid	Quality Core F	y De Reco	signation	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
	SOIL PROFILE		;	SAMPL	ES		LER			DYNAM RESIST	IC CON	E PENE			υ	AL		m/s)	
ELEV DEPTH (m) 370.0		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		40 (E JLDED ED SHEA	0 8 NILC △ 11 ▲ R R STRE	0 100 CON VANI NTACT REMOULD	ED		0 40 CONTENT	-00 X X X X X X X X X X	PERMEABILITY (cm/s)	REMARKS
0.0								-										_	
	cobbles (angular), mottled brown lenses, firm, no plasticity, dry to moist, rootlets at top		1	ss	83	22		- - - - - - -	369					7	7 0				
368.5 1.5	BEDROCK Bluish grey, metamorphic,																		
	weathered fractured at the top		2	RC	100	65		2	368_										
			3	RC	100	56		3	367										
			4	RC	100	96													
<u>365.2</u> 4.8	End of Borehole at 4.8m Stand pipe installed with 0.91m stick up, protected with steel casing. Water level (bgs): at 1.88m on Dec 14/12 at 1.90m on Dec 18/12																		

3	nec	9										RE	CC	RD	OF	BC	R	EHOL	E N	No.		111-38 SE 1 OF 2
PRO	JECT	Rainy River - Geotechnical In	vesti	gatior															ENG	GINEEF	२	MS
PRO	JECT NO.	TC113921	DRII	LLER	R <u>M</u> a	arathor	n Drillir	Ig		В	ORING	METH	OD _	200 m	nm HSA,	NQ	Corir	ng	LOG	GED I	BY	SM
CLIE		Rainy River Resources.																		/IPILE		
ELE	VATION	<u>371.593 m</u>	COC	ORD.	N	5,410,3	377 E	426,92	28	В	ORING	DATE	Sta	irt: Jar	n 16, 12				CHE	CKED	BY	DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Cor	SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)			_	P.P. I U.W. V	REVIAT Pocket P Wet Unit Standard	enetrom Weight		F	P.L. Point RQD Rock SCR Solid C Perm	Qua Core	lity De Reco	signation	(I ₅₀)	GS	Direc	olidation t Shear Size Analysis
		SOIL PROFILE			SAMPL	ES		NTER		Ē	RE	SISTAN	ICE PI	LOT		-	2	CURE ENT	0	(s/uc		
ELEV DEPTH (m) 371.6		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		ANE ACT MOULD AINED	ED SHEAF	NIL(△ I ▲ F R STRE	30 100 CON VAN NTACT REMOULD ENGTH (KF 30 100	IE DED Pa)		0 40 CONTENT	00 AL	PERMEABILITY (cm/s)	F	REMARKS
0.0 370.8	brown s trace sa	IL ilty clay , organics, rootlets, nd, firm, low plasticity, damp					0,7			371												
0.8	SILTY C Light bro gravel, c	CLAY own silt, trace sand and grey clay lenses, low to		1	ss	92	13		1	370_							12 0					
	rootlets	plasticity, stiff, moist, [Upper Glaciolacustrine] n, becoming clayey, moist to rootlets		2	ss	100	9		2				51				20 •	⊢				
									3	369		36 ■	-				125 125 20					
				5	ss	100	8	L	4	368							200	>				
<u>367.0</u> 4.6	SILTY C			6	ss	100	7			367							21					
	gravel, c	y, silty, trace sand, trace occasional silt pocket, stiff , to high plasticity, moist ill]			33	100	/		<u>5</u>	366			51	67			151	,				
	becon medium 9.14m	ning silty, firm, low to plastic, wet from 6.1m to		7	ss	100	6		6	365_				-			2:	3 0				
Σ	0.1111								7	364		36 ■	46			103 108 						
Date: 7/10/2012 1:30:22 PM				12	ss	96	6		8					67			21	þ				
6: //10/201									9	363		36 	4146	67								
				15	ss	100	10		10	362			5	56			118	28 O				
20120405										361_		31 ■	_				138	31				
1_BHLOGS				18	ss		8		11 	360			51				149	0				
File: 1C113921_BHL0GS_20120405.GPJ				20	ss	100	6		12	359								37				
									13					i6 i6		103 Г	154					
Format: AMEC GEO MWSK	at 13.7 cm scale	72m, occasional silt pockets, e.		23	ss	100	8		14	358								33 0				
-ormat: AI									- 15	357												

an	nec	9										RE	ECC	ORD	OF	BC	DRI	EHOL	E N	No.		111-38 SE 2 OF 2
PRO	IECT	Rainy River - Geotechnical In	vestig	gatio	n 2011	/2012													ENG	SINEE		MS
PRO	IECT NO.	TC113921	DRII	LLEF	к <u>м</u>	aratho	n Drillir	g		В	ORING I	METH		200 m	m HS	A, NQ	Cori	ng	LOG	GED	BY	SM
CLIEN	NT	Rainy River Resources.	LOC	CATIC	ON <u>PI</u>	ant Site	e												CON	MPILEI	D BY	NH
ELEV	ATION	371.593 m	COC	ORD.	. <u>N</u>	5,410,	377 E	426,9	28	В	oring i	DATE	Sta	art: Jar	n 16, 1	2			CHE	ECKED) BY	DGR
AU A BU I		SS Spli TW Thir	it Spoo n Walle	on ed Op	en (She	elby)				P.P. 1 U.W.	REVIATIO Pocket Pe Wet Unit V Standard I	netron Veight		F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Rece	ength Index esignation overy	c (I ₅₀)	C DS GS	Direc	olidation t Shear i Size Analysis
		SOIL PROFILE			SAMPL	ES		ER -		_	DYN/ RES				TRATI	ON		AL		m/s)		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	20 MTO V □ INT/ ■ REM UNDRA 20	40 ANE ACT MOULE	DED SHEAF	0 8 NILC △ II ▲ F R STRE	0 10 CON VA NTACT REMOU	00 ANE ILDED		W O ER CONTE		PERMEABILITY (cm/s)	F	REMARKS
				24	ss	100	4		1 1 1 1 1 1 1 1 1 1 1	356							╞	30				
										355												
	at 16.8 angular	8m trace sand and gravel to subangular, firm.		25	ss	54	12		17	354_								31				
									18													
353.3 18.3	Greenisi sand, bo	GRAVEL n grey fine gravel, some ulders, well graded ,angular			ss	17	15		19	353							7					
	at 18.9 light grey	ngular [WS Till] Om, black greenish grey to y boulders, some cobbles, to sub angular		4	RC	33			20	352												
										351_												
350.7 20.9	DEDDO	ok		28	RC	100			21													
20.9	BEDRO Grey, me	etamorphic, fractured		29	RC	100	65															
										350												
				30	RC	98	80		22 													
N N N N N N N N N N N N N N N N N N N										349		_										
1:30:2			\mathbb{N}	31	RC	100	100		23 =													
-01114: AMEC GEO MWSK FIR: 10.113821_BHLUGS_20120405.6FU Date: //10/2012 1:30.22 FM 3783 9.0	Standpip up and s Water le at 3.8m	porehole at 23.6m be installed with 0.79m stick steel casing ver (b.g.s): on Dec 19/12 on Jan14/12		31	RC .																	

อก	nec	9										R	ECC	ORE) OF	BC	ORE	EHOL	E I	No.		111-39 Se 1 OF 1
PROJ	IECT	Rainy River - Geotechnical In	vestig	gatior	n 2011/	2012													ENG	GINEEI	R	MS
		TC113921	DRII				n Drillin	g		В	ORING	G MET	HOD .	200 m	nm HS	A, NQ	Corir	ng		GED		SM
CLIEN		Rainy River Resources.																		MPILE		
ELEV	ATION	373.723 m	COC	ORD.	<u>N</u> :	5,409,8	832 E	426,8	19	B	ORING	G DATI	E <u>Sta</u>	art: Jai	n 5, 12	Enc	I: Jan	6, 12	CHE	ECKED) BY	DGR
AU A BU B		SS Spli TW Thir	it Spoc n Walle	on ed Op	en (She	lby)			_	P.P. U.W.	REVIAT Pocket I Net Uni Standar	Penetro it Weigh	meter nt	F	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index signation overy		C DS GS	Direc	olidation t Shear ı Size Analysis
		SOIL PROFILE		S	SAMPL	ES		TER				NAMIC ESISTA		PLOT	—×	-	ы	URE URE	_	(cm/s)		
ELEV DEPTH (m) 373.7		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN RE UNDE	0 4 VANE ITACT EMOUL RAINEE 0 4	.DED) SHEA	NILO △ I ▲ F R STRE		ANE		W O ER CONTE		PERMEABILITY (c	F	REMARKS
37 9.0 0.2				· 1	ss	71	7														froz	zen to 0.2m
<u>373.0</u> 0.8	Light bro	ID SAND own silt and sand, trace lark brown pockets of		2	ss	75	10		1	373_							16					
	organics SILTY C Light bro	s, damp, rootlets CLAY own to grey silt, trace sand		3	ss	100	10	⊻	2	372_							17 •	-1				
<u>370.9</u> 2.8	lamination medium occasion	vel, varved (grey clay on), firm to stiff, low to plasticity, damp to moist, nal mottled brown lenses		4	ss	100	10			371							2	5				
2.0	BEDRO	Glaciolacustrine] / CK d, greyish blue		5	RC	100	74		<u>-</u> 3	370_												
				6 7	RC RC	86 100	0 93		4													
				8	RC	87	50		5	369												
367.8 5.9		Borehole at 5.9m		9	RC	100	75		Ē	368_												
	Stand pi up and p Water le at 0.2m	pe installed with 0.81m stick protected with steel casing evel (b.g.s): on Jan 06/12 on Jan 14/12																				

mat: AMEC GEO MWSK File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012_1:30:25 PM

an	nec ^Ø									RECO	RD OF BC	DREHOL	E No		H11-40 AGE 1 OF 2
PRO													ENGIN		MS
	JECT NO. <u>TC113921</u>		LLEF				ng		В	BORING METHOD 2	<u>00 mm HSA, NQ</u>	Coring	LOGGE		PDR
CLIE				DN <u>Fk</u>									COMPI		
	ATION 370.100 m	CO	ORD.	<u>N</u>	5,411,9	994 E	425,35	00	B	BORING DATE Start	:: ⊢eb 2, 12 Enc	1: Fed 3, 12	CHECK	ED BY	DGR
AU BU		t Spoo n Wall	on ed Op	en (She	lby)				P.P. U.W.	REVIATIONS Pocket Penetrometer Wet Unit Weight Standard Proctor Test	P.L. Point Loa RQD Rock Qua SCR Solid Core k Permeabi	Recovery	([(DS Dire GS Gra	nsolidation ect Shear ain Size Analysis
	SOIL PROFILE		5	SAMPL	.ES		TER		-	DYNAMIC CONE P RESISTANCE PLO	т ——Х── тс	IC URE NT		(ciii/s)	
ELEV DEPTH (m) 370.1	DESCRIPTION Ground surface	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT	80 100 NILCON VANE △ INTACT ▲ REMOULDED	A MOISTURE MATURAL MATURAL MATURAL MATURAL MOISTURE 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0		רבאואובאסורוו ז (ט	REMARKS
37 0.0 0.2		ŤΠ	1	ss	67	9		Ē	-			30			(t- 0 0
	Brown silt, some clay, trace to some sand, trace gravel, moist, stiff at 0.76m, becoming light brown,		2	ss	75	10		1	369_			18		1	frozen to 0.6m
368.6	clayey,				15	10									
1.5 367.8	SILTY CLAY Light brown clay, some silt, trace fine gravel, varved, tiny pockets of silt,		3	ss	83	12		2	368_			26 0			
2.3	Viou plastic, stiff, moist [Upper Glaciolacustrine] SILTY CLAY		4	ss	88	14						29 ↔			
	Dark brown clay, silty, trace gravel, lensed, tiny pockets of silt, medium to high plasticity, stiff [WML Till]		5	ss	100	11		3 	367_			32 0			
								4 4	366_						
			1					-							
			6	ss	100	8		5 	365_			34 0			
								6	364_						
			7	ss	100	10						37 0			
								7	363						
			8	тw	75			8	362_					PF TV	at 7.6m > = 158 KPa ′ (standard) =
														49	KPa
360.9 9.2 360.4 9.7	SILTY CLAY Silty clay, trace sand, medium to		9	ss	14	11		-9	361			20			
9.7	high plastic, stiff [Lower Glaciolacustrine] BOULDERS		10	RC				E_10	360					spo pos	at 9.7m SPT oon bouncing on ssible boulders;
,			<u> </u>					Ē							itched to NQ ring
		0 0	11	RC				E_11	359_				+		
	between 11.7m and 13.26m, silty		-					12	358_						
	sand, some gravel, wet		12	RC											
		D						13	357_						
356.5			-					Ē							
13.6	BEDROCK	Ň	12	RC	75	50		14	250						
<u>356.5</u> 13.6			13		75	58			356				\uparrow		
			}					- 15							

											R	ECO	ORD	OF	BC	R	EHOL	.E 1	No.	BH11-40
PROJEC	CT Rainy River - Geotechnical I	nvectio	ation	2011	/2012													ENG	SINEE	PAGE 2 OF 2 R MS
	CT NO. TC113921					n Drillin	ia.				3 MET	HOD	200 m	m HS		Corir	ng		GED	
CLIENT													20011		71, 1102	00111	9			DBY NH
ELEVAT		COC				994 E		56	F	ORIN	G DAT	F Sta	art [.] Fel	n 2 12	P End	l [.] Feł	0.3 12			BY DGR
					•, • • •,•		0,00				TIONS									
AU Aug BU Bull	ger SS Sp	lit Spoo in Walle	n d Op	en (She	lby)				P.P. U.W.	Pocket Wet Un	Penetro it Weigh d Proct	ometer nt	F	RQD Ro SCR So		lity De Reco	ngth Index esignation overy	((I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
	SOIL PROFILE		5	SAMPL	.ES		LER						E PENE PLOT			υ	AL NTE		(cm/s)	
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTC IIII R UND	VANE ITACT EMOUL RAINE	LDED D SHEA	0 8 NIL(△ 11 ▲ F R STRE	0 1 CON V NTACT REMOL	00 ANE JLDED		- 00 A MATURAL - 07 A MATURAL DIALOONTENT		PERMEABILITY (c	REMARKS
			14	RC	95	93		16	354_											
352.7 17.4 E	End of Borehole at 17.4m.		15	RC	93	57		17	353_											
L	Standpipe installed with 0.15m stick up and protected with steel casing. Water level(bgs): at 5.7m on Dec17/12																			

ē	n	nec	9									F	ECO	ORD	OF B	OR	EHOI	E	No.		11-41 E 1 OF 2
	ROJI	ECT	Rainy River - Geotechnical In	vestig	gatio	n 2011/	/2012											ENG	SINEE		MS
PI	Roji	ECT NO.	TC113921	DRIL	LLEF	R <u>Ma</u>	aratho	n Drillir	ng		В	ORING ME	THOD	200 m	Im HSA, N	Q Cor	ing	LOG	GED	BY _	MM
C	LIEN	Т	Rainy River Resources.	LOC	ATIC	ON <u>Sa</u>	atelite I	Pit										CON	IPILEI	OBY_	NH
EI	EVA	TION	350.444 m	COC	ORD.	N	5,410,	296 E	424,21	15	B	ORING DA	E <u>St</u>	art: Fet	o 4, 12 E	nd: Fe	b 5, 12	CHE	ECKED	BY _	DGR
A B	U A U B		SS Split TW Thin	t Spoo v Walle	on ed Op	en (She	elby)				P.P. F U.W. \	REVIATION Pocket Penetr Net Unit Weig Standard Proc	ometer ht	F	P.L. Point Lo RQD Rock Q SCR Solid Co Permea	uality D ore Red	Designation	x (I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
			SOIL PROFILE		;	SAMPL	ES.		N TER		(RESIST	ANCE F	PLOT	TRATION	<u>i</u>	RAL URE ENT	0	(cm/s)		
(r	EV PTH n) 50.4	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANI INTACT REMOU UNDRAINE	LDED	NILC △ II ▲ F AR STRE	0 100 CON VANE NTACT REMOULDE ENGTH (kPa 0 100	D ⊢) WAT	W O TER CONTE	-09 X (%) Inmit (%) Inmit	PERMEABILITY (0	R	EMARKS
	0.0	Silty SA			1	ss	88	13			350						5	80		froze	en to 1.35m
34	19.7 0.8	Silty CLA Light bro trace org			2	ss	92	10			349_					18 	3 				
		varved [t	Jpper Glaciolacustilliej		3	ss	96	7		2 2	348_	_26			79		24 O				
											340_	3	1		77						
					6	ss		4			347_					-	24				
											346		41 41	67	92						
					9	тw	83			5	345_	_3	1	67							
34	14.3	0111-01											⁴¹ □	56]							
	6.1	trace silt,	y silty clay, trace gravel, , moist, medium to high ; firm [WML Till]		12	ss	100	7		- - - - 7	344_						27				
											343_					-					
Date: 11 10/2012 1:00/20 LIN					13	ss	100	6			342_	3		62 0 56			37				
Jale: 1/ 10/						66	100			9	341_		³⁶ ■ □]			37				
					16	ss	100	9		10				56		133					
					<u> </u>						340		5				22				
					19	ss	100	8		11	339_		1 1	56			33				
1700110										12		26		i			26				
					22	ss		2		13	338	13		67			36 0				
33	36.7										337_	21 •			77	+					
	13.7	Sandy T [Inferred	ill WS Till]		25	ss	0.04	13		E_14	336_						39 0				
LOIIIIAL										- 15											

an	nec	3										R	ECC	ORE) Of	F BC	R	EHO	LE	No.	BH11-41 PAGE 2 OF 2
PRO.	JECT	Rainy River - Geotechnica													GINEE	R <u>MS</u>					
PRO.	JECT NO.	TC113921	n Drillin	g		В	ORIN	G METI	HOD	200 m	nm HS	a, NQ	Corii	ng	LO	GGED	BY <u>MM</u>				
CLIEI	NT	Rainy River Resources.	_ LOC	ATIO	N <u>S</u>	atelite F	Pit												CO	MPILE	D BY <u>NH</u>
ELEV	ATION	350.444 m	_ coc	DRD.	N	5,410,2	296 E	424,2´	5	В	ORIN	g date	E <u>Sta</u>	art: Fe	b 4, 12	2 Enc	1: Feb	5, 12	CH	ECKED	BY DGR
AU . BU	PLE TYPE Auger Bulk Dynamic Co	SS S TW	Rock Core Split Spoo Fhin Walle Wash San	n d Ope	en (Sh	elby)				P.P. U.W.	Pocket Wet Ur	TIONS Penetro nit Weigh rd Procto	t	F	RQD RO SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Rece	ngth Ind esignatio overy	ex (I ₅₀) n	C DS GS	Consolidation Direct Shear Grain Size Analysi
		SOIL PROFILE		S	AMP	LES		LER			D' F	YNAMIC ESISTA	CONE	E PENE LOT	TRAT	ION	o	AL NTE		(s/m	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	туре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)			0 6 DED 9 SHEA	0 8 NIL0 △ 1 ▲ F R STRE	0 1 CON V NTACI REMOU	οο ΆΝΕ JLDED		-04 MATURAL -07 0 MATURAL -07 0 MOISTURE CONTENT	WL ENT (%	EABII	REMARKS
										335_										-	
334.1				26	RC	58			16												
16.3	BEDRO Highly fi			27	RC	28	0	<u> </u>	17	334										-	
				28	RC	50	12		18	332										-	
				29	RC	80	0		20	330_											
328.0				30	RC	100	68		21	329_										-	
22.4	Standpi mounte Water L	Borehole at 22.41m. pe installed with flush d casing .evel (b.g.s): ce upon completion																			

9	mec	3										R	ECO	ORD	OF	BC	DR	EHOL			PAG	11-44 E 1 OF 2
		Rainy River - Geotechnical In			D	~						2000			<u> </u>			GINEEF	-	MS		
	OJECT NO.	<u>TC113921</u> Rainy River Resources.		LLER						В	OKING	∍ıvı⊨l	ַ עטה	<u>∠00 m</u>	<u>III HS</u> A	<u>n, INQ</u>	COL	ng		ged i Mpilei	вү С ВҮ	<u>SM</u>
	EVATION	348.812 m		ORD.	_			426,56		В	ORING	DAT	E Sta	art: Ma	r 13, 12	2 Er	nd: N	1ar 14, 12			-	
AU BU	MPLE TYPE Auger Bulk Dynamic Col	SS Split TW Thir	t Spoo n Wall	on ed Op	en (She	lby)				P.P. 1 U.W.	REVIAT Pocket F Wet Unit Standard	Penetro t Weigl	meter nt	F	RQD Roo SCR Sol	ck Qua	ality D e Rec	ength Index esignation covery		C DS GS	Direct	lidation Shear Size Analysis
		SOIL PROFILE		5	SAMPL	.ES		TER		_				PLOT	TRATIC	_	<u>ں</u>	KAL URE	_	(s/u		
ELE DEP (m 348	тн I)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	□ IN ■ RE	VANE TACT EMOUL RAINE[.DED) SHEA	NILO △ I ▲ F R STRE	0 10 CON VA NTACT REMOUL ENGTH (0 10	NE _DED [kPa)		W O TER CONTE	-00 IX % LIQUID	PERMEABILITY (cm/s)	R	EMARKS
34				1A&E	ss	96	14											29 0			Frozer	n to 0.61m
34	Silty CL Brown s trace to	AY to Clayey SILT ilty clay, trace to some sand, some organics, firm to stiff, plasticity, occasional		2	ss	79	9		1	348								37 0				
	1.5 rootlets Silty CL			3	ss	96	7		2	347							+	29				
	sand, gr mottled medium	ey clay lamination (varved), brown lenses, firm, low to plasticity, damp [Upper custrine]		4	ss	96	9		3	346_							2	1 0				
		Bm, sandy, trace gravel, stiff		5	ss	100	8			345_							2	24 O				
	at 4.6r	n, sandy, damp to moist		6	ss	100	15			344							16 C)				
342	2.7 5.1 CLAY								6	343_												
	Dark gre	ey clay, some silt, trace sand /el , stiff, high plasticity, /ML Till]		7	ss	100	8		7	342			4 6	56 72	77			30				
80:31 PM	at 7.6r wet	n, becoming firm, moist to		10	ss	100	5			341				56 72				30 ⊨≎ —1				
10/2012 1:3										340_	1	5 26		62 62								
File: TC113921_BHLOGS_20120405.GPJ Date: 7/10/2012 1:30:31 PM 18: 21 8: 21 8: 21 8: 21 8: 21 8: 21 8: 21 8: 21 8: 21 8: 21 10:2012 1:30:31 PM				13	ss	100	6			339_			41		77							
20120405.G	3.1 0.7 Clayey	си т							10	338_		I	51	67 0	,,							
	Greyish green la firm, low	green clayey silt, silt as mination (2-3mm) varved, plasticity, moist to wet Blaciolacustrine]		16	ss	100	13		11								ł	³¹ Þ			auge 11m	er grinding at
1C113921	5.6	10.9m, sandy							12	337							12					
	Grey silt to subar wet [Infe	y sand and gravel, angular ngular, compact, well graded, erred WS Till]		17	ss	50	29		13	336_							13 0					
Format: AMEC GEO MWSK	below	13.1m, boulders							14	335_												
Format: AME	4.2 4.6								-	334_												ed to NQ at 14.64

7/10/2012 Date Ч. Ц 20405 201 000 BHI 3921 10.1 Ē GEO MWSK rmat: AMFC

PROJECT	Rainy River - Geotechnical I				R	ECO	ORE) Of	BC	DRI	EHOL		NO.	PAGE	11-44 E 2 OF 2 MS						
	NO. TC113921		LLEF		laratho	n Drillir	na		E	ORINO	G MET	HOD	200 m	nm HS	A. NQ	Corii	ng		GGED	_	SM
CLIENT	Rainy River Resources.									-	-	-			,		<u> </u>			D BY _	
ELEVATIO	N <u>348.812 m</u>	CO	ORD	. <u>N</u>	5,408,	622 E	426,56	60	B	ORINO	G DAT	E <u>Sta</u>	art: Ma	ir 13, 1	2 Er	nd: M	lar 14, 12	2 CHE	ECKED	BY _	DGR
SAMPLE T AU Auger BU Bulk DC Dynam	SS Sp TW Th	lit Spoo	on ed Op	en (Sh	elby)				P.P. U.W.	REVIA Pocket Wet Un Standar	Penetro it Weigh	meter nt	F	RQD Ro SCR So		ality De e Rece	ength Index esignation overy		C DS GS	Consol Direct S Grain S	
	SOIL PROFILE			SAMPI	LES		ER			DY	'NAMIC ESISTA	CONE	E PENE	TRATI	ON	Ĺ			(s/u		
ELEV DEPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN IR UND	VANE ITACT EMOUL RAINE	DED DED	0 8 NIL0 △ 1 ▲ F R STRE	0 1 CON V NTACT REMOL ENGTH	00 ANE ILDED		W O ER CONTE		PERMEABILITY (cm/s)	RE	EMARKS
	y bedrock elow 16.2m, highly fractured		18	RC	100	67		16	333_										-		
	elow 10.2m, nighty hactured		19	RC	56	0		E 17	332_										-		
			20	RC	100	0															
330.9 18.0 Enc	d of Borehole		21	RC	95	20	\swarrow	<u> </u>	331_								<u> </u>				
Wa For zon For	hmounted steel casing. ter level(b.g.s): Piezometer A (bottom sensing le) at surface on March 14/12 Piezometer B (top sensing zone) urface on March 14/12																				

												К	ECC	JRL		BC	JRE		.c (NO.	BH11-4 PAGE 1 O	
PROJ	JECT	Rainy River - Geotechnical In	vestig	gation	n 2011/2	2012													ENG	GINEEF	R <u>MS</u>	
PROJ	JECT NO.	TC113921	DRIL	LER	Ma	rathor	n Drillin	ıg		В	ORINO	G MET	HOD	200 m	nm HS/	A, NQ	Corir	ng	LOG	GED I	BY PDR	
CLIEN	NT	Rainy River Resources.	LOC	ATIO	N <u>Tai</u>	ilings l	Manag	emen	t Area										CON	IPILE	BY <u>SM</u>	
ELEV	ATION	353.404 m	COC	ORD.	<u>N 5</u>	5,411,2	233 E	419,8	00	В	ORINO	G DATI	E <u>Sta</u>	art: Ma	ır 19, 1	2 Er	nd: Ma	<u>ar 19, 1</u> 2	CHE	ECKED	BY DGR	
AU A BU B		SS Spli TW Thir	t Spoo n Walle	on ed Ope	en (Shel	lby)				P.P. U.W.	Pocket Wet Un	TIONS Penetro it Weigh d Procto	meter nt	F	RQD Ro SCR So	ck Qua	ality De e Reco	ngth Index signation overy		C DS GS	Consolidation Direct Shear Grain Size Ana	alysis
		SOIL PROFILE		S	SAMPLI	ES		ĽĽ		_	DY	'NAMIC ESISTA				NC	0	NTE		(s/u		
ELEV DEPTH (m) 353.4		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IIIN R UND	VANE ITACT EMOUL RAINED	<u>DED</u> DED	0 8 NIL(△ 1 ▲ F R STRE	0 10 CON VA NTACT REMOU	20 ANE LDED (kPa)		W O ER CONTE	WIL WL WT (%) 60	PERMEABILITY (cm/s)	REMARK	S
0.0	SILTY (Brown s moist, tr	CLAY ilty clay, trace gravel, stiff, ace rootlets		1	AS					353_							22 15 0	0				
<u>352.5</u> 0.9	SILTY (Dark bro	CLAY own silty clay, trace sand, e gravel, trace silt pockets,		2 A & B	ss	67	16			352_								5				
	stiff, me [WML T at 1.5r	dium to high plasticity, moist		3	ss	67	13			351_								28 O				
	iensing,	trace fine gravel, oxidized		4	ss	92	8			351								33	-1			
				5	ss	96	7		4	350_								32				
				6	ss	100	7		5	349 - - - - - - - - - - - - - - - - - -			42			102		39				
	becom	ing dark grey below 6.1m		9	ss	100	6		L 6	347				59			16	40				
									F	346_			4 5	59		96 106						
				12	ss	100	5			345_			5	70	84			42 0				
				15	ss	100	5		9	344_								33				
									10	343_			39 44		89 92 							
				18	ss	100				342_		31			82			31 0				
					n N				12	341		■ 3	4					45				
				21	ss	100	6		13	340_			36 		90 87			0				
				24	тw	100				339_			51 42			101 101	13				at 14.1m PP=24 KPa Torvane=39 K	Pa

ar	nec	9										R	ECC	ORE) Of	BC	ORE	EHOL	.E I	No.	BH11-49 PAGE 2 OF 2
PRO	JECT	Rainy River - Geotechnical In	gatior	2011 ו	/2012													ENC	GINEEI	R <u>MS</u>	
PRO	JECT NO.	TC113921	DRII	LER	M	arathor	n Drillin	Ig		В	ORING	6 MET	HOD	200 n	nm HS	A, NQ	Corir	ng	LOC	GED	BY <u>PDR</u>
CLIE	NT	Rainy River Resources.	LOC	ATIC	DN <u>Ta</u>	ailings l	Manag	ement	Area										CO	MPILE	D BY <u>SM</u>
ELE\	/ATION	353.404 m	COC	ORD.	N	5,411,2	233 E	419,80	00	В	ORING	DATI	E <u>Sta</u>	art: Ma	ir 19 , 1	l2 Er	nd: M	ar 19, 12	CHE	ECKED	BY DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoc n Walle	on ed Op	en (Sh	elby)				P.P. U.W.	REVIAT Pocket F Wet Unit Standard	Penetro t Weigh	meter nt	F	RQD Ro SCR So		ality De e Reco	ngth Inde signation overy		C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		1	SAMPI	ES		ШШ			DY	NAMIC	CONE	E PENE	TRATI	ON	ŕ	ᆜᄦᆔᄃ			
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2i MTO □ IN ■ RE	0 4 VANE TACT EMOUL RAINED	.DED) SHEA	i0 8 NIL △ I ▲ F R STRE	0 1 CON V NTACT REMOL ENGTH	00 ANE JLDED		W O ER CONTE		PERMEABILITY (cm/s)	REMARKS
337.2	Glaciola	d clay below 15.25m [Lower icustrine]		27	тw	100			16	338_											at 15.6m Torvane=59 KPa
<u>337.2</u> 16.2 334.5	Boulder Boulder	ERS s [Inferred WS Till]		28	RC				17	337 336 335											
18.9	Greyish weather	blue, highly fractured and ed quartz between 20.4m and		29	RC	60	0		20	334											
				30	RC	33 90	0		21	332											
						30		\bigotimes	E_23												
	 End of Standpi mounted Water L For Piez zone) at For Piez 	Borehole at 23.47m pes installed with flush d steel casing evel (b.g.s): cometer A (bottom sensing : 2 m on March 20/12 cometer B (top sensing zone) n on March 20/12								330_											

a	nec	9				R	ECO	DRE) Of	BC	OR	EHOL	E I	No.		111-50 SE 1 OF 1							
PRO	JECT	Rainy River - Geotechnical In	vestig	atior	n 2011/	2012														ENG	SINEEI		MS
PRO	JECT NO.	TC113921	DRIL	LER	. Ma	arathor	n Drillir	ng			В	ORING	MET	HOD	200 r	mm HS	A, NQ	Corir	ng	LOG	GED	BY	SM
CLIE	NT	Rainy River Resources.	LOC	ATIC																CON	MPILE	D BY	SM
ELE\	ATION	<u>361.591 m</u>	coc	ORD.	N	5,411,	071 E	421,5	551		_ В	ORING	DATI	E <u>Sta</u>	art: Ma	ar 19, 1	2 Er	nd: M	<u>ar 19, 1</u> 2	CHE	ECKED) BY	DGR
	PLE TYPE Auger		k Core									REVIAT Pocket F				P.L. Po	oint Loa	d Stre	ngth Index	((I ₅₀)	с	Cons	olidation
BU		TW Thin	i Walle	d Op	en (She	lby)		-			U.W. \	Vet Uni Standar	t Weigh d Proct	nt or Test		SCR So k Pe	olid Core ermeabi	e Ŕeco	overy		DS GS	Direc	t Shear Size Analysis
		SOIL PROFILE		5	SAMPL			ETER S			(L	RE	SISTA	NCE F	PLOT	ETRATI X 80 1	-	ЭĽ.	NATURAL MOISTURE CONTENT	₽.	(cm/s		
ELEV DEPT⊦ (m)	Ī	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION		(m) הויאםט	ELEVATION (m)	MTO IIN RE UNDE	VANE TACT EMOUL RAINEE	.DED D SHEA	NIL △ ▲ R STR	CON V INTACT REMOL ENGTH	ANE ILDED (kPa)		W O ER CONTEI		PERMEABILITY (cm/s)	F	REMARKS
361.6 3691:9	Ground					~	ц З	≥	8-			2	0 4	ο ε	50	80 1	00	2	0 40 0 36'	60	Б		
	Dark bro	own organics, fibrous,		1	ss	92	7		Ē		361_							18 C				fro;	zen to 0.6m
<u>360.8</u> 0.8	Clayey S	SILT layey silt, some sand and nedium plasticity, rootlets		2	ss	79	10		E E_1 E									16 0					
	Silty CL			3	ss	100	10				360_							2	4 0				
359.3 2.3	medium Upper (plasticity, damp to moist Glaciolacustrine] m trace to some sand and		4	ss	79	12	-			359_							21					
	gravel			4	33	79	12		E ₃										,	1	1		
	and grav	AY brown silty clay, trace sand /el, firm to stiff, high /, moist. [WML Till]		5	ss	100	11				358_								29				
	mottle	d brown lenses at the top							4														
	below	4.6m becoming dark grey		6	ss	100	8				357								30				
											356												
									6 		11111								30				
				7	ss	100	6		7		355				56	77							
2									Ē		354						97						
- 04.00 04.00 04.00	sandy se	en 7.62 m and 7.67m, eam		10	ss	92	7		8										30				
353.2	Clayey								Ē		353_												
352.4	varved. Glaciola			12	AU				9 9													at §	9.1m switched
9.2	Dealoci	c green, slightly fractured							Ē		352_											to NG	Q coring
				12	RC	100	95		E_1(0	11111												
									Ē		351_												
				13	RC	100	90		E1'	1													
				14	RC	95	98				350												
349.2									E														
	Standpip mounted Water L For Piez zone) at For Piez	Borehole at12.4m bes installed with flush d steel casing evel (b.g.s): ometer A (bottom sensing 0.73 m on March 19/12 ometer B (top sensing zone) be on March 19/12																					

PROJECT NO. TOT 13921 DRULER Maration Duling BORNG METHOD 200 mm HGA, ND Comp LOGGED CLINT Bain, Rever Resource. LOCATION Tating Management Area COMP COMP BORNG DATE Start. Mar 17, 12 End. Mar 17, 12	OLE No. BH11-51 PAGE 1 OF 2	RECORD OF BOREHO				3	amed
CLENT Taimy Rover Resources LOCATION Taimy Rover Resources COMPLE SUBJECTION 351.55 m COORD N.5.410.423 BORNS DATE Start Mart 71, 12 End Antra 12, 12 CHECHENT SUBJECTIVES TS: 50 m Start Start Mart 71, 12 CHECKENT PREVENTION PREVENTION <td< td=""><td>ENGINEER MS</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ENGINEER MS						
ELEVATION 351.539 m COORD N 5.41.0423 BORING DATE Sant Mm 17, 12 End Mm 17, 12 CHECKNER SMAPLET TYPES BU Javik Core BU Davik Core BU DavikCore BU DavikCore BU Davik Core BU DavikCore BU Davik Core BU Da							
SAMPLE TYPES Bit Rock Core BY BERKOCCORE (Setty) ABBREVIATIONS FOR two collects PL Prior Lead Stempth Index (U) Convert Pressure PT Busined Product Trees Provided PT Busined Product Trees Provided Product Trees Provided PT Busined Product Trees Provided Product Trees Provided Product Trees Provided Produc	COMPILED BY <u>SM</u>						
U. Auge SS Statuscon P.P. Poster Presonance PRO Book counce being being the monitor of the monitor being the m	/, 12 CHECKED BY			<u>N 5,410,423 E 4</u>	COORD. 1	_351.539 m	ELEVATION
388 IDPSOL Intersection statuces and fraces rootlets 1	ation C Consolidation DS Direct Shear GS Grain Size Analysis	P.P. Pocket Penetrometer U.W. Wet Unit Weight SCR Solid Core Recovery	F	(Shelby)	t Spoon Walled Open (Si	SS Split TW Thin	AU Auger BU Bulk
388 IDPSOL Intersection statuces and fraces rootlets 1	ENT Sm/s)	C DYNAMIC CONE PENETRATION 모 정말	Z LEK	VIPLES	SAMF	SOIL PROFILE	
388 IDPSOL Intersection statuces and fraces rootlets 1	SILL UILLU SUNCE SUN	L INTACT △ INTACT W _P W B REMOULDED ▲ REMOULDED UNDRAINED SHEAR STRENGTH (kPa) WATER CONTE	WELL / PIEZOME INSTALLATIO DEPTH (m)	TYPE RECOVERY (%) SPT "N" VALUES or RQD	STRAT PLOT NUMBER TYPE		DEPTH (m)
at 10.7m moist to wet, trace to some sand and gravel	0			N	1 SS	IL /	350 V TOPSO
at 10.7m moist to wet, trace to some sand and gravel				S 79 12	2 SS	own silty clay, trace to some ace gravel, trace mottled	Light bro sand, tra
at 10.7m moist to wet, trace to some sand and gravel		350	3	S 100 7	3 SS), firm, low to medium y, moist [Upper	(varved) plasticity
at 10.7m moist to wet, trace to some sand and gravel		349 27	3	S 83 22	4 SS	m no varving noted	at 2.5r
at 10.7m moist to wet, trace to some sand and gravel		348		S 88 7	5 SS	m very silty low plasticity	at 3.4r
at 10.7m moist to wet, trace to some sand and gravel	I	347	5	S 100 10	8 SS	brown silty clay, trace sand vel, stiff, high plasticity, moist	4.6 Silty CL Greyish and grav
at 10.7m moist to wet, trace to some sand and gravel		345	3	S 100 10	9 SS	Im becoming grey	at 6.1
at 10.7m moist to wet, trace to some sand and gravel	at 7.62m, PP=122 KPa Torvane=69 KPa	344	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 TW		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			9 - 3 - 3 - 10 - 10		11 SS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$1 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11 11 11 11 11 11 11 11 11 11 11 11 11	S 100 8	14 SS		
	oat 12.2m switched to washboring		3	S 100 5	17 SS		
			3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3371077	14 3	S 100 6	20 SS		

an	nec	9										R	ECC	ORE) OF	BC	ORE	EHOL	E N	No.	BH11-51 PAGE 2 OF 2
PROJ	IECT	Rainy River - Geotechnical Ir	/2012													ENG	SINEE	R <u>MS</u>			
		TC113921	DRIL				n Drillin			В	ORING	METI	HOD _	200 m	nm HS	A, NQ	Corir	ng		GED	
CLIEN		Rainy River Resources.																			D BY <u>SM</u>
ELEV	ATION	351.539 m	COC	ORD.	<u>N</u>	5,410,4	423 E	421,54	43	B	ORING	DATE	E <u>Sta</u>	art: Ma	ır 17, 1	2 Er	nd: Ma	<u>ar 17, 1</u> 2	CHE	CKED	BY DGR
AU A BU B		SS Spl TW Thi	en (She	elby)				P.P. 1 U.W.	REVIATI Pocket Pe Wet Unit \ Standard	enetro Weigh	meter nt	F	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis		
		SOIL PROFILE		5	Sampl	ES		LER		_			CONE	PLOT	—×		<u>о</u>	URE		(s/u	
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO V □ INT/ ■ REM UNDR/ 20	4 ANE ACT MOUL AINED	0 6 .DED) SHEA	i0 8 NIL0 △ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE ILDED		- 0 MATURAL - 0 MATURAL - 0 MOISTURE CONTENT		PERMEABILITY (cm/s)	REMARKS
				23	ss	100	8			336_							21	,			
<u>335.8</u> 15.8	Grey silt to high p	AY y clay,varved, firm, medium lasticity, moist [Lower custrine]		23	33		0		16	335_	2	21			82						
				26	тw	63			E_17	334_											at 17.1m, PP=61 KPa Torvane=39 KPa
<u>333.7</u> 17.8	Green, ł	(highly fractured and ed, red veining		28	RC	95	58		18 18 18 18 19	333_											at 17.8m switched to NQ coring
									20	332											
330.6				29	RC	100	60			331_											
20.9	Standpip mounted Water L For Piez zone) at For Piez	Borehole at 20.9m bes installed with flush d steel casing evel (b.g.s): cometer A (bottom sensing surface on March 18/12 cometer B (top sensing zone) be on March 18/12																			

lat: AMEC GEO MWSK File: TC113921 BHLOGS 20120405.GPJ Date: 7/10/2012 1:30:50 PM

ar	nec	9										RE	CO	RD C	OF BC	ORE	EHOL	E N	No.		12-01 E 1 OF 1
PRO	JECT	Rainy River Gold Project																ENG	SINEEF	۲ _	MS
PRO	JECT NO.	TC113921	DRI	LLER	R <u>Ma</u>	arathor	n Drillin	ıg		В	ORING	МЕТНС	DD <u>20</u>	00 mm l	HSA, NQ	Corir	ng	LOG	GED E	BY _	ТА
CLIE	NT	Rainy River Resources.	LOC	ATIC	DN <u>Ta</u>	ilings l	Manag	ement	Area									CON	/IPILED	BY _	DG
ELEV	ATION	374.729 m	COO	ORD.	N	5,413,	954 E	421,7	33	В	ORING	DATE	Start:	Oct 3,	12 End	I: Oct	4, 12	CHE	CKED	BY	DGR
AU BU		SS Split TW Thin	t Spoo Walle	on ed Op	en (She	lby)				P.P. I TV	REVIATI Pocket Pe Forvane	enetrome		RQD SCR	Point Loa Rock Qua Solid Core	ality De e Reco	signation	(I ₅₀)		Direct	
DC	Dynamic Co		sh Sar					ſr	1	PT :	Standard	Proctor			Permeabi	lity				Grain	Size Analysis
		SOIL PROFILE			Sampl	-	S	N ETE		Ê	RES	SISTANC 40	CE PLC	т —		PLASTIC LIMIT	NATURAL MOISTURE CONTENT	≘_⊢	(cm/		
ELEV DEPTH (m) 374.7		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		ACT MOULDE AINED SI	D	NILCON △ INTA ▲ REM	N VANE CT OULDED		R CONTE		PERMEABILITY (cm/s)	R	EMARKS
37 8 .0		IL organics, rootlets		1	ss	22	12		=	-											
	Silty CL Brown s dry, med	AY ilty clay, trace to some sand, dium plasticity, stiff	ss	100	22		1	374													
	[Upper (Glaciolacustrine]		3	ss	100	19			373_						20					
	becon	ning moist at 2.29m		4	ss	100	21		2	372_						2: F	³ ⊶— 1				
371.7									_3												
3.1	Grey sill	AY ty clay, trace sand, trace moist, high plasticity, firm to		5	тw	100				371_											
	[WML T	ill]							1_4												
				6	ss	100	9		5	370											
									6	369											
M 1 000				7	ss	100	9		Ę	368_							36				
									E_7												
									L_8	367_					_						
5										366					-						
<u>365.3</u> 9.5	_at 9.14n	ning moist to wet, some sand n, possible transition zone nd GRAVEL		8	ss	83	24			365_						F	32 				
		nd and gravel, saturated		-					E_10												
									11	364_					_						
362.8										363											
11.9	End of I [Inferred Standpi up	Borehole at 11.9m I bedrock] pe installed with 0.6m stick evel at surface upon ion	<u>, </u>																		

a	mec	9										R	ECC	ORE) Of	BC	DRI	EHOL	E I	No.	BH12-03 PAGE 1 OF 2
PR	DJECT	Rainy River Gold Project																	ENG	GINEEF	R <u>MS</u>
PR	DJECT NO.	TC113921	DRII	LLER	R <u>M</u> a	arathor	n Drillir	Ig		В	ORING	6 MET	HOD	200 m	nm HS	A, NQ	Cori	ng	LOG	GED I	BY <u>PDR</u>
CLI	ENT	Rainy River Resources.			ON <u>Ta</u>	ailings l	Manag	ement	Area												DBY <u>DG</u>
ELE	VATION	<u>362.567 m</u>	COC	ORD.	N	5,411,	646 E	420,32	23	B	ORING	DAT	E <u>Sta</u>	art: Se	p 14, ′	l2 Er	nd: S	ep 15, 12	CHE	CKED	BY DGR
AU BU	MPLE TYPE Auger Bulk Dynamic Col	SS Split TW Thin	t Spoo Walle	on ed Op	en (She	elby)				P.P. I TV	REVIAT Pocket I Torvane Standar	Penetro		F	RQD Ro SCR So		ality De e Rec	ength Index esignation overy	: (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	.ES		ER			DY	NAMIC	C CONE	E PENE	TRATI	ON	Ĺ	AL		n/s)	,
ELE DEP1 (m)	6 Ground		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE	0 4 VANE TACT EMOUL RAINED	LDED D SHEA	i0 8 NIL0 △ I ▲ F R STRE	30 1 CON V NTACT REMOL ENGTH	00 ANE JLDED	2	W ER CONTE	WL (%)	PERMEABILITY (cm/s)	REMARKS
362		IL own, organics /	VXX	1	GS				E	-								31 0			
	Silty CL Brown s varved, [Upper (2	ss	37	18		1	362							14 0				
				3	ss	58	13		_2								16 ⊮∋	-1			
				4	ss	71	13			360											
359 3	1 Silty CL	AY y clay, trace gravel,		5	тw	65			3												
	ocasiona [WML T	al silt pockets, moist, firm				00				359				60		101					at 3.66m PP= 196.1 kPa
									4 	358_					8 7 ■		122				TV= 134.8 kPa
				8	ss	100	8		_5									37	+1		
									6	357				69 ■	8 9	107 	121				
:10 PM				11	ss	100	9			356								38			
13 3:13									_7						80	97	125 148				
/01/201	occasi	onlal silt lensing						-		355					-		┦	40			
ate: 02				14	ss	100	6		8								ŀ	40			
2 Z										354_					91	98	140 147				
0.71 80 323 329				15	SS N	100			E_9							■ (
6 20120	³ Grey silt	, some clay, wet e Lower Glaciolacustrine]								353_											at 9.3m SPT refusal
OGS	BEDRO			16	RC	100	94		E_10												
012BHI	Dialorry								Ē	352											
MER20								E	E_11												
SUM				17	RC	100	94		Ē	351_											
13921									12												
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:10 PM 6 답답당				18	RC	100	100			350_											
₩ 349	1		\otimes						13 												
× 349 0 13 0 0 0 0	4 End of I	Borehole at 13.44m be installed with 0.9m stick																			
Format: AMEC GEO MWSK	up Water le	evel at 5m below ground upon installation																			
Form:	Water L	evel at 0.8m below ground																			

	an	nec	9											R	ECC	ORD) OF	BC	RE	EHOL	EN	No.		12-03
	PROJ	ECT	Rainy River Gold Pr	oject																	ENG	GINEEF		MS
	PROJ	ECT NO.	TC113921		DRIL	LER	Ma	arathon	n Drillin	g		В	ORING	G MET	HOD	200 m	nm HS/	A, NQ	Corin	lg	LOG	GED I	3Y _	PDR
	CLIEN	IT	Rainy River Resource	ces.	LOC	ATIC	N <u>Ta</u>	ilings N	Manage	ement	Area										CON	NPILE	DBY_	DG
	ELEV	ATION	362.567 m		COC	ORD.	N	5,411,6	646 E	420,32	23	В	ORING	G DATI	E <u>Sta</u>	art: Se	p 14, 1	2 En	id: Se	ep 15, 12	CHE	CKED	BY _	DGR
	SAMF AU A BU E		3	RC Rock SS Split TW Thin	Spoo	n	on (Sho	lby)				P.P. I		FIONS Penetro		F		ck Qua	lity De	ngth Index signation	(I ₅₀)	C	Conso Direct	idation
		ynamic Cor	ie	WS Was				iby)					Standar	d Procte		k	k Pe	rmeabil		· ·		GS		Size Analysis
			SOIL PROFILE			S	SAMPL			ETER DN		Ê	DY RE 2	ESISTA	NCE P	LOT		_	СĒ.	NATURAL MOISTURE CONTENT	Ω.	(cm/s)		
	ELEV DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO	VANE TACT EMOUL	.DED	NIL(△ I ▲ F	CON VA NTACT REMOU ENGTH	ANE LDED	T ^{-A} PLASTIC		≦ _s Liquid (%) _s Liquid	PERMEABILITY (cm/s)	RE	MARKS
					S			RE	SPT	WE		ш	2	0 4	06	8 0	0 10	0	2	0 40 6	0	PEF		
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:11 PM		surface of	on Oct. 30, 2012																					

a	nec	9										RI	ECC	ORE) Of	BC	DRE	EHOL	E N	lo.		2-04
PRC	JECT	Rainy River Gold Project																	ENG	SINEEF	۲ _	MS
PRC	JECT NO.	TC113921	DRIL	LER	Ma	arathor	n Drillin	g		B	ORING	METH	HOD	200 r	nm HS	A, NQ	Corir	ng	LOG	GED E	BY _	TA
CLIE					ON <u>Ta</u>) BY _	
	VATION	357.346 m	COC	ORD.	<u>N</u> 5	5,411,8	348 E	422,9	26				E <u>Sta</u>	art: Se	ep 27, 1	l2 Er	nd: Se	ep 29, 12	CHE	CKED	BY _	DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	it Spoo n Walle	n ed Op	en (Shel	lby)				P.P. F TV	REVIAT Pocket P Forvane Standard	enetro			RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	(I ₅₀)	DS	Consoli Direct S Grain S	
		SOIL PROFILE			SAMPL	ES	-	Z TER		(RE	SISTA	NCE P	LOT			<u>0</u>	CAL URE ENT	_	(s/uc		
ELEV DEPTI (m) 357.3	H 3 Ground	DESCRIPTION	STRAT PLOT	NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	□ IN ■ RE	VANE TACT MOULI RAINED	DED SHEA	NIL △ ▲ R STR	BO 1 CON V INTACT REMOL ENGTH BO 1	ANE JLDED		-0- -0- -0- -0- -0- -0- -0- -0- -0- -0-		PERMEABILITY (cm/s)	RE	MARKS
350.		own peat, fibrous		1	ss	39	6		ŧ	357												
	Silty CL Brown s	AY illty clay, trace to some sand, avel, moist, varved, low		2	ss	33	9			356												
		Glaciolacustrine]		3	ss	100	12		2 2	330							Ê	5 → -				
354.3	3			4	ss	100	12			355_												
3.1	1 Silty CL Brown s	ilty clay, trace sand, teace noist, medium to high		5	ss	100	13			354_												
	[WML T									353_												
				6	ss	100	10		5	352												
3:13 PM	becom	ning grey below 6.1m		7	ss	5	7			351												
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:13 PM									2_7	350_					83 78		129 133					
Date: 02/0				8	τw	100			2_8	349_				69		107						
20817.GPJ				9	ss	100	7			348_				63		107 0 109		44				
HLOGS_201									1 10	347				6 5	74	103						
MER2012B				10	тw	100			11													
3921_SUM									1 1 1 1 1 1	346		3	65	4	81 90							
File: TC11				11	ss	100	5			345												
Format: AMEC GEO MWSK									13	344_			■ 57		86 75							
VEC G				12	ss	100	7		14									50				
mat: Al										343		26 22		7.								
For			W	1					F 15	3		22		r	79		1					

	<u> </u>	nec	9									RE	COR	d of	BC	ORE	EHOL	.E 1	No.		2-04 2 OF 3
	PROJ	ECT	Rainy River Gold Project															ENG	GINEEF	۲ <u>ا</u>	MS
	PROJ	ECT NO.	TC113921	DRI							B	ORING METHO	D 200	mm HS	A, NQ	Corir	ng	LOG	GED I	BY _	TA
	CLIEN	-							ement Are) BY	
	ELEV	ATION	357.346 m	COC	ORD.	<u>N</u> 5	5,411,8	848 E	422,926		B	ORING DATE	Start: S	ep 27, 1	l2 Er	nd: Se	<u>ep 29, 1</u> 2	CHE	CKED	BY _	DGR
	AU A BU E		SS Split TW Thin	t Spoo Walle	n ed Op	en (She	lby)				P.P. F TV 1	REVIATIONS Pocket Penetromet Forvane Standard Proctor T		RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index signation overy	(I ₅₀)		Consoli Direct S Grain S	
			SOIL PROFILE		5	SAMPL	ES		LER		0	DYNAMIC CO RESISTANC	ONE PEN		ON	υ	AL		(s/m		
D	LEV EPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULDE UNDRAINED SH 20 40	60 NI D ▲	80 1 LCON V INTACT REMOL RENGTH	00 ANE JLDED	PLASTIC AM PLASTIC	- 0 0 0 CONTENT CONTENT CONTENT		PERMEABILITY (cm/s)	RE	MARKS
		some to high pl	sand, trace gravel, medium lasticity at 15.24m		13	ss	100	6			342_										
										16	341_	4: 4		70 91 	1						
										17	340_										
					14	тw	75			18	339_										
										19	338_		53 66		105 107						
										20	337		-								
×	336.0									21	336_						47				
/2013 3:13:14 F	21.3	interbedo	AY ogrey silty clay, varved, ded silt lenses, moist slaciolacustrine]		15	ss	100	12		22	335_						47				
I Date: 02/01										23	334_										
20817.GP	333.0									24	333_										
DGS_201:	24.4	BOULDE [Inferred	E RS WS Till]	800						25											
2012BHL(0000							332_										
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:14 PM	331.4 25.9		CK y volcanic rock pred rock from 25.9m to		16	RC	87	30		26 27	331										
					17	RC	67	53		28	330_										
GEO MWS											329_										
Format: AMEC GEO MWSK	<u>327.6</u> 29.7				18	RC	95	57		29	328_										

a	nec	9										R	ECC	ORD	OF	BC	R	EHOL	E I	No.		2-04 3 OF 3
PRO	JECT	Rainy River Gold Project																	ENG	GINEEF	R <u>N</u>	IS
PRO	JECT NO.	TC113921	DRI	LLER	<u>Ma</u>	arathor	n Drillin	g		В	ORING	G MET	HOD _	200 m	m HS/	A, NQ	Corir	ng	LOG	GED I	BY <u>T</u>	A
CLIE		Rainy River Resources.			0N <u>Ta</u>	lings N	lanage	ement	Area												D BY	
ELE	VATION	357.346 m	CO	ORD.	N	5,411,8	348 E	422,92	26	B	ORING	g dati	E <u>Sta</u>	art: Se	o 27, 1	2 En	id: Se	ep 29, 12	CHE	ECKED	BY	OGR
AU BU	IPLE TYPE Auger Bulk	SS Spli TW Thir	t Spoo n Wall	on ed Op	en (She	lby)				P.P. I TV	REVIAT Pocket I Torvane	Penetro	meter	F	RQD Ro SCR So	ick Qua lid Core	lity De Reco	ngth Index signation overy	(I ₅₀)		Consolid Direct SI	near
DC	Dynamic Cor		sh Sa			<u> </u>		۲		PT :	Standar	NAMIC			TRATI	rmeabil	,	ш			Grain Siz	ze Analysis
ELEV DEPTH (m)	_	SOIL PROFILE DESCRIPTION	STRAT PLOT	NUMBER	SAMPL	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	RE 2 MTO IN RE UNDE	ESISTA 0 4 VANE ITACT EMOUL RAINEE	NCE P 0 6	LOT 0 8 NIL0 △ II ▲ F R STRE	0 10 CON V/ NTACT REMOU	ANE LDED (kPa)		A MATURAL MATURAL MATURAL MATURAL MATURAL MATURAL MATURAL MATURAL		PERMEABILITY (cm/s)	REN	IARKS
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:14 PM	Standpip up Water Lu surface	Borehole at 29.72m be installed with 0.76m sitck evel 1.2m below ground on Oct. 31, 2012											0 6	0 8	0 11							

	an	nec	9									RECO	RD OF BO	DREHOL	E No		112-07 GE 1 OF 2
	PROJ	IECT	Rainy River Gold Project												ENGINE	ER	MS
	PROJ	IECT NO.	TC113921	DRII	LER	Ma	rathor	n Drillin	Ig		В	ORING METHOD 2	200 mm HSA, NQ	Coring	LOGGE	D BY	TA/AD
	CLIEN)N <u>Ta</u>									COMPIL		
	ELEV	ATION	371.539 m	COO	ORD.	<u>N</u> :	5,412,4	438 E	424,5	42	B	ORING DATE <u>Star</u>	rt: Oct 4, 12 End	l: Oct 10, 12	CHECK	ED BY	DGR
	AU A BU E		SS Split TW Thin	Spoc Walle	n ed Op	en (She	lby)				P.P. I TV	REVIATIONS Pocket Penetrometer Forvane Standard Proctor Test	P.L. Point Loa RQD Rock Qua SCR Solid Cor k Permeab		C	S Direc	solidation ct Shear n Size Analysis
Ì			SOIL PROFILE		5	SAMPL	ES		Z TER		_	DYNAMIC CONE I RESISTANCE PL	PENETRATION	IC CURE	(s/m		
- I.	ELEV DEPTH (m) 371.5			STRAT PLOT	NUMBER	түре	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAR 20 40 60	80 100 NILCON VANE △ △ INTACT ▲ REMOULDED & STRENGTH (kPa)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	-8 ≤ 1 ≤ Liquid ⊗ 1 ≤ Limit PERMEABILITY (cm/s)		REMARKS
	378:9	Silty CL	AY								371_						
		dry, firm, [WML Ti	Ity clay, trace to some sand, medium to high plasticity I]		1	ss	94	20		1 1							
					2	ss	94	16			370			25 P			
					3	ss	100	15			369			28 •	-4		
		brown	to grey, trace sand, trace							<u>-</u> 3							
		gravel at			4	ss	100	17			368						
					5	ss	100	11			367						
											366						
Σ					6	ss	100	13		6							
Date: 02/01/2013 3:13:17 PM						00	100	10			365						
/2013 3											364						
: 02/01										1 1_8							
										ŧ	363_						
7.GPJ										£_9							
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ					7	ss	100	12			362						
HLOGS										10							
(2012B										Ē	361_						
MMER									Ā	E_11							
921_SU											360						
TC113	359.3 12.2	Silty CL	AY							E_12				32			
- 1		Dark gre gravel, v	y silty clay, trace sand, trace arved with light grey silt		8	ss	100	9		- 10	359			32			
MWSK		thick), da	ns (approximately 3mm imp to moist ilaciolacustrine]							<u>_</u> 13							
GEOI		1201101 0								Ē.	358						
AMEC										E_14							
Format: AMEC GEO MWSK										15	357						

ſ			0											R	FCC	R) OF	BC)RF	-ноі	F١	No.	BH	12-07
	an	nec															. 0.	50				10.		E 2 OF 2
	PROJ	ECT	Rainy River Gold Proje	ect																	ENG	SINEEF	۲ _	MS
	PROJ	ECT NO.	TC113921		DRIL	LER	Ma	arathor	n Drillin	g		В	ORING	9 MET	HOD _	200 m	nm HS	a, NQ	Corir	ng	LOG	GED I	BY _	TA/AD
	CLIEN	IT	Rainy River Resources	8	LOC	ATIC	DN <u>Ta</u>	ilings I	Manage	ement	Area										CON	ADILE	DBY_	DG
	ELEV	ATION	371.539 m		coc	ORD.	N	5,412,4	438 E	424,54	12	В	ORING	G DATI	E <u>Sta</u>	art: Oc	t 4, 12	End	: Oct	10, 12	CHE	CKED	BY _	DGR
ľ	SAMF	PLE TYPE	S R	C Rock	(Core	÷						ABBF	REVIA	TIONS		F	P.L. Po	int Load	d Stre	ngth Index	((I ₅₀)			
	AU A BU E	Bulk	Т	S Split W Thin	Walle	ed Op	en (She	lby)				TV .	Pocket I Torvane	•		5	RQD Ro SCR So			signation overy			Direct	
╞	DC DC	Dynamic Cor		/S Was	h San					~		PT :			or Test		C Pe	rmeabil	ity			GS	Grain	Size Analysis
╞			SOIL PROFILE			1	Sampl		S	WELL / PIEZOMETER INSTALLATION		Ê	RI	ESISTA 0 4	NCE P	LOT			PLASTIC LIMIT	NATURAL MOISTURE CONTENT	₽⊢	PERMEABILITY (cm/s)		
	ELEV				LOT	н		RECOVERY (%)	Ü N T C	LATI	DEPTH (m)	ELEVATION (m)	МТО	VANE		NIL	CON V	ANE			LIQUID	LIT	R	EMARKS
Ī	DEPTH (m)		DESCRIPTION		STRAT PLOT	NUMBER	TYPE	OVEF	N ROX	- / PIE STAL	DEPT	EVAT	RI	TACT		🔺 F	NTACT	LDED	W _P	•	WL	1EAB		
	(111)				STF	z		REC	SPT "N" VALUES or RQD	MELL				RAINEL 0 4			ENGTH	(kPa) Q0		R CONTE	NT (%) 6 <mark>0</mark>	PERV		
ļ	356.3	0.4115			XX.				0,			=											Orad	
	15.2 355.8	SAND Medium	to coarse grained sand	l,		9	ss	100			_	356												heave in at 15.24m
	15.7	some sil	t, some clay, wet																					
			Borehole at 15.7m be installed with 0.9m s	tick																				
		up Water le	evel at 10.9m below gro upon completion																					
			evel at 11m below grour	hd																				
			on Oct. 31, 2012																					
3:13:17 PM																								
3:13:1																								
/01/2																								
te: 02																								
Da																								
.GPJ																								
20817																								
201																								
OGS																								
2BHL																								
R201																								
MME																								
า_ร																								
11392																								
S: TC																								
Ĕ																								
WSK																								
ШO																								
EC G																								
it: AM																								
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013																								

	an	nec	9										REC	ORE) OF	F BC	ORE	HOL	E N	No.	BH12-08 PAGE 1 OF 2
	PROJ	ECT	Rainy River Gold Project																ENG	SINEEF	R <u>MS</u>
			TC113921		LLEF							ORING N	IETHOD	200 m	nm HS	A, NQ	Corir	g		GED I	
	CLIEN					DN <u>Ta</u>															DBY <u>DG</u>
╞			359.5 m	COC	ORD.	. <u>N</u>	5,411,	603 E	425,10	09				tart: Se	p 13, 1	l2 Er	nd: Se	ep <u>13, 1</u> 2	CHE	CKED	BY DGR
	AU A BU E		SS Spli TW Thir	t Spoo n Walle	on ed Op	oen (She	lby)				P.P. I TV	REVIATIC Pocket Per Torvane Standard P	netrometer	F	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index signation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Analysis
F			SOIL PROFILE			SAMPL	.ES		ER			DYNA RESI	MIC CON STANCE	E PENE PLOT		ON	0	AL		(s/ш	
	ELEV DEPTH (m) 359.5	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO VA □ INTA ■ REM	40 NE CT OULDED NED SHE	60 8 NIL0 △ 1 ▲ F AR STRE	30 1 CON V NTACT REMOU ENGTH	00 ANE JLDED		-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	-00 TX (%) T (%)	PERMEABILITY (cm/s)	REMARKS
F	3588:4				1	ss	25	8		-	359_						17 0				
		sand, mo medium	Ity clay, trace gravel, trace bist, varved, firm, low to plasticity Glaciolacustrine]		2	ss	79	13		1							20)			
			ome oxidized pockets at		3	ss	67	12		2	358						P P	5 ←			
		dark bi	rown below 2.3m		4	ss	83	14		- 3	357_						21)			
					5	ss	92	7			356							34 0			
	354.9									4 	355		49 ■				13				
	4.6	Silty CL Grey silty medium silt pocke [WML Ti	y clay, trace sand, firm, to high plasticity, occasional ets		8	тw	83			5	354			62			13				at 5.2m PP= 171.6 kPa TV= 134.8 kPa
:21 PM					11	ss	96	7		6 	353_							37 0			
Date: 02/01/2013 3:13:21 PM		hecom	ing stiff at 7.6m							7	352_				92	98 (138 148	37			
					14	ss	87	9		8	351								-1		
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ					17	тw	96			9	350_										
2BHLOGS_2										10	349_		39	68 ■			124				at 9.8m PP= 147.1 kPa TV= 110.3 kPa
JMMER2012					20	ss	100	7		11								41 0			
C113921_SI										12	348				79		134				
File: T(23	ss	100	8			347		_					40	$\left \right $		
EO MWSK										13 	346				77 86		135 143				
Format: AMEC GEO MWSK					26	ss	100	9		14	345_							40 0			
⁻ ormat										- 15											

	an	nec	3									R	ECC	ORD	OF	BC	R	EHOL	EN	No.	BH12-0 PAGE 2 0	
	PROJ	ECT	Rainy River Gold Project																ENG	SINEEF	R <u>MS</u>	
	PROJ	ECT NO.	TC113921	DRIL	LER	Ma Ma	arathor	n Drillin	g		В	ORING MET	HOD _	200 m	im HS/	A, NQ	Corir	Ig	LOG	GED I	BY PDR	
	CLIEN	IT	Rainy River Resources.	LOC	ATIC	DN <u>Ta</u>	ilings I	Manag	ement	Area									CON	IPILE	BY DG	
	ELEV	ATION	359.5 m	COC	ORD.	N	5,411,6	603 E	425,10	09	В	ORING DAT	E <u>Sta</u>	art: Sep	o 13, 1	2 Er	nd: Se	ep <u>13, 1</u> 2	CHE	CKED	BY DGR	
	AU A BU E	PLE TYPE Auger Bulk Dynamic Cor	SS Split TW Thin	t Spoo Walle	n ed Op	en (She	lby)				P.P. TV	REVIATIONS Pocket Penetro Torvane Standard Proct	meter	F	RQD Ro SCR So	int Load ock Qua lid Core rmeabil	lity De Reco	ngth Index signation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Ana	llysis
F			SOIL PROFILE			SAMPL	.ES		ER			DYNAMIC RESISTA	CONE	PENE	TRATI	ON	Ĺ	┙╏┍				,
	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 4 MTO VANE □ INTACT ■ REMOUL UNDRAINEE	0 6 .DED	0 8 NILC △ II ▲ R R STRE	0 10 CON V/ NTACT REMOU	0 ANE ILDED		A MOISTURE CONTENT CON	-8 4 LIQUID ⊗ _s LIQUID	PERMEABILITY (cm/s)	REMARK	3
					27	ss	100	10		16	344						-	31 •				
	342.9										343_											
	16.6 342.4	Silty CL Varved s	AY silty clay Slaciolacustrine] /		30	TW	100			E E_17												
F	<u>347:1</u> 17.4	BOULDI	ERS		31	RC					342_											
		BEDRO Bluish gr fracturec	ey bedrock, moderately		32	RC	93	62		18	341											
		becom 19.5m	ing highly fractured at		33	RC	100	83		19 	340_											
	338.6				34	RC	100	100			339_											
3:13:21 PM	20.9	Standpip Water le	Borehole at 20.9m e installed vel at 10.9m below ground upon completion																			
/01/2013 3:			vel at 4.8m below ground on Oct. 29, 2012																			
ormat: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013																						
120817.GPJ																						
HLOGS_201																						
AER2012B																						
921_SUM																						
File: TC11:																						
MWSK																						
MEC GEC																						
ormat: A																						

ar	nec	9										R	ECC	ORE	0	= BC	DR	EHOI	EI	No.	BH12-09 PAGE 1 OF	
PRO	JECT	Rainy River Gold Project																	ENG	GINEE	R <u>MS</u>	
PRO	JECT NO.	TC113921	DRII	LLEF	R <u>M</u> a	arathor	n Drillin	g		В	ORING	6 MET	HOD	200 n	nm HS	SA, NQ	Corir	ng	LOG	GED	BY <u>AD</u>	_
CLIE					<u>0 NC</u>																DBY DG	
ELEV	/ATION	347.415 m	COC	ORD.	. <u>N</u>	5,409,	548 E	422,6′	12	B	ORING	G DAT	E <u>Sta</u>	art: Se	p 16,	12 Ei	nd: Se	ep 17, 12	2 CHE	CKED	BY DGR	_
AU BU	PLE TYPES Auger Bulk Dynamic Cor	SS Split TW Thin	t Spoo	on ed Op	oen (She	elby)				P.P. I TV	REVIAT Pocket F Torvane Standar	Penetro	ometer	1	RQD R SCR S	oint Loa ock Qua olid Cor ermeab	ality De	ngth Inde esignation overy	x (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Anal	ysis
		SOIL PROFILE			SAMPL	.ES		ER			DY	NAMIC	C CONE	E PENE	TRAT	ION	ŕ	AL NTE		n/s)		
ELEV DEPTH (m) 347.4		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE	0 4 VANE TACT EMOUL RAINEL	LDED D SHEA	0 8 NIL △ I ▲ F R STRI	80 1 CON V NTAC ⁻ REMOU ENGTH	φο ΆΝΕ Γ JLDED		-0 3 -0 0 0 MOISTURE -0 0 MOISTURE	UIIVII WL WT (%)	EABII	REMARKS	
34 9.9 0.2	PEAT Dark bro	wn peat, some sand, some e clay, fibrous		. 1	ss	25	2			347							20	>				
	Sandy S Light bro moist, so			2	ss	92	4		1 1 	346_							2: F	•				
345.6 1.8	Silty CL	AY		3	ss	92	5		2								2	4 34 0				
	trace gra occasion firm, low	wn silty clay, trace sand, wel, varved, damp to moist, al oxidized pockets, soft to to medium plasticity		4	ss	92	7			345							2ª	38 30				
	light gr	Blaciolacustrine] ey laminations of silt with gravel at 2.6m		5	тw	96				344											at 3.4m PP= 76 kPa	
				6	ss	100	4		4	343							20 0 	29 				
				7	ss	100	4		5	342_							2	4 0				
<u>341.3</u> 6.2		ND							6								22					
340.7 6.7	Grey silt wet [Glacio F	y sand, fine grained, loose, Fluvial]		8	ss	75	4		7	341								ò				
	fine grav	y silty clay, trace sand, trace el, damp to moist, stiff, to high plasticity								340_								.33				
	[WML Ti			9	ss	100	8		8	339_												
338.3									E 9													
9.1	Silty SA Grey silty wet [Glacio F	y sand, fine grained, loose,		10	ss	92				338_							22	0			spoon droppe under weight of hammer at 9.1n 0.15m of sand	
				4					10	337_						-					heave in auger	
	becom	ing moist to wet at 10.7m		. 11	ss	100			11	336_							22	0			spoon droppe under weight of hammer, likely heaved sand	d
338.3 9.1 334.8 12.6				- 					12													
334.8				12	ss	83	8		Ē	335						+		28	+			
	Dark gre fine grav	AY y silty clay, trace sand, trace el, damp to moist, stiff, to high plasticity							13	334_								-26				
332.5	[WML Ti			13	ss	100	4		14									36 0				
										333_												

ſ	an	nec [©]	2										R	ECO	ORE	0 0	FBC	DRI	ehol	.E I	No.		12-09 E 2 OF 2
	PROJ	ECT _	Rainy River Gold Project																	ENC	GINEE	۲ _	MS
	PROJ	ECT NO.									В	ORING	G MET	HOD	200 m	nm HS	SA, NQ	Cori	ng	LOC	GED	BY _	AD
	CLIEN	-				ON <u>O</u>															MPILEI	-	
	ELEV	ATION _	347.415 m	COC	ORD.	. <u>N</u>	5,409,	548 E	422,6	12	B	ORINO	g dat	E <u>Sta</u>	art: Se	p 16,	12 Er	nd: S	ep 17, 12	2 CHE	ECKED	BY _	DGR
	AU A BU E		SS Spli TW Thir	t Spoc n Walle	on ed Op	en (She	elby)			_	P.P. TV	REVIA Pocket I Torvane Standar	Penetro e		F	RQD R SCR S	oint Loa ock Qua olid Cor ermeabi	ality De e Rec	ength Inde esignation overy	x (I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
			SOIL PROFILE			SAMPL	ES		TER		-	RI	ESIST	CONE	PLOT	$- \times$		<u>∪</u>	KAL URE ENT	_	(cm/s)		
	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IN RI UND	VANE ITACT EMOUI RAINEI	LDED D SHEA	NIL0 △ I ▲ F	ENGTH	, ANE T ULDED		ER CONTE		PERMEABILITY (c	R	EMARKS
	14.9	Silty SAN	ND sand, fine grained, loose,		14	ss	83	12		ŧ	222							20	•				
	331.0	wet [Glacio Fl			- 					16	332								2				
	16.5	fine grave medium t	y silty clay, trace sand, trace el, damp to moist, stiff, to high plasticity		15	ss	75	5		17	330_								0 34 0				
		[WML Till	IJ		16	ss	62	5		18									33				
											329												
							100				328								33				
					17	ss	100	8		E_20									-0				
										21	327_												
3:13:24 PM					18	ss	100	8			326_								32		-		
/2013 3:13										22	325_										-		
Date: 02/01/2013	324.6 22.9	Silty CLA Light grey	y silty clay with dark grey		19	ss	100	11		23	324								29 - -				
	323.3		laciolacustrine] below 23.2m (possible							24													
S_201208	24.1	BOULDE	RS and COBBLES green boulders and cobbles		20	RC	35	0			323_											at 24 sand I	4.1m, 3.0m neave
HL0G	322.2 25.2	BEDROC	NZ		20				-	25 													
2012B	20.2	Reddish g	green to black bands, silver crystals throughout		21	RC	100	100	\times	-	322												
1_SUMMER2		becomi	ng red bedrock with blue to nds, white intrusions		22	RC	93	80		26	321												
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ										27	320										-		ian flow ved at 27.1m
	318.9			X	23	RC	100	81		28 *	319_												
Format: AMEC GEO MWSK	28.5	Standpipe	orehole at 28.5m e installed with 1m stick up, pressure condition upon on																				
-ormat:		Artesian f	flow noted on Oct. 30, 2012																				

ar	nec	3									RECC	ORD O	F BC	DREH	OLE	No.	BH12-10 PAGE 1 OF 3
PRO	JECT	Rainy River Gold Project														GINEEF	R <u>MS</u>
										В	ORING METHOD	200 mm HS	SA, NQ	Coring		GED I	
CLIE	NT /ATION	Rainy River Resources.			0 NC		<u>len Sto</u> 003 E			P		ort: Aug 24	12 5	nd: Aug 2			DBY DG
	PLE TYPE				. <u>IN</u>	3,403,0	JUJ L	424,0	09		REVIATIONS						
AU BU	Auger	SS Spli TW Thir	t Spoc n Walle	on ed Op	en (She	lby)				P.P. I TV	Pocket Penetrometer Torvane Standard Proctor Test	RQD R SCR S	lock Qua	id Strength ality Design e Recovery ility	ation		Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	ES		ETER N		(u	DYNAMIC CONE RESISTANCE P	IOT ————————————————————————————————————		ric RAL	MOISTURE CONTENT LIQUID LIMIT	cm/s)	
ELEV DEPTH (m) 345.2		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAF 20 40 60		/ANE T ULDED	W _P WATER CO		PERMEABILITY (cm/s)	REMARKS
34 9 : 2	PEAT Dark bro	own, fibrous, dry, some		1	ss	62	5			345				17 0			
	Some sa	AY and, grey to brown, damp, oxidazed staining		2	ss	89	6		1	344_				20			
		out, firm, occasional rootlets		3	ss	100	6		2					22			
<u>342.7</u> 2.5	Silty CL	AY and, trace fine gravel, grey,		4	ss	100	3			343					1 89 Ə		
		nedium to high plasticity, firm		5	тw	62			-3	342_							
				6	ss	100			4	341					47 0		
	coarse	e sand seam at 4.9m		7	ss	100	3		5	340				29 •			
M				8	тw	87			6	339							
013 3:13:27									7	338_							
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:27 PM				9	ss	89	5		8	337_				21			
1817.GPJ [9	336							
20120				10	ss	100	4							24			
12BHLOGS									10	335							
JMMER201				11	ss	100	5		11	334				34			
0113921_S									12	333_							
				12	ss	100	6		13					32			
Format: AMEC GEO MWSK										332							
t: AMEC				13	ss	100	7		14	331				32			
Forma									15								

an	nec	3										RI	ECC	R) OF	BC	DRE	EHOL	E N	No.	BH12-10 PAGE 2 OF	
PROJ	ECT	Rainy River Gold Project																	ENG	SINEE	R <u>MS</u>	
PROJ	IECT NO.	TC113921	DRII	LER	M	aratho	n Drillir	ng		В	ORING	METH		200 n	nm HS	A, NQ	Corir	ng	LOG	GED	BY <u>AD</u>	
CLIEN	ΝT	Rainy River Resources.	LOC	ATIC	ON <u>O</u>	verburg	den Sto	ockpile	•										CON	/IPILEI	BY DG	
ELEV	ATION	345.232 m	COC	ORD.	Ν	5,409,	003 E	424,0	69	В	ORING	DATE	E <u>Sta</u>	irt: Au	g 24, 1	2 Er	nd: Au	<u>ug 27, 1</u> 2	CHE	CKED	BY DGR	
AU A BU B		SS Split TW Thir	t Spoo	n ed Op	en (She	elby)				P.P. I TV	REVIAT Pocket P Torvane Standarc	enetro		F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	lity De Reco	ngth Index signation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Anal	llysis
	-	SOIL PROFILE		5	SAMPL	ES		ER 1							TRATI		U	AL		(s/m		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO 1 □ IN1 ■ RE) 4(VANE TACT MOULI RAINED	DED SHEAI	D 8 NIL0 △ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE ILDED			-00 A LIQUID	PERMEABILITY (cm/s)	REMARKS	3
				14	ss	100	7		16	330								35 0				
				15	ss	100	6		17	329 328								35 0				
									18	327_								33				
				16	ss	100	6		19	326_								0				
	grey, 19.5m	noist, fine sand seam at		17	ss	100	5		20	325								37				
				18	ss	100	7		21 21	324							ŀ	36	4			
				19	ss	100	4		22	323								40 °				
						100			23 	322												
	possii 23.9m	le sand and gravel seam at		20	ss	100	5		25	321								39 0				
				21	ss	100			26	320 319								50 0			possible sloug due to coring at 25.6m	
<u>318.1</u> 27.1	Silty CL	AY					-		27	318_								52			Artisian condi	lition
	Grey si light gre	ty clay, moist, varved with y silt lenses, firm Glaciolacustrine]		22	ss	100	5		28	317_											at 27.1m, approximately 4.5m head	
316.6 28.7 316.1 29.1	fine s	and, some gravel, wet, soft		23	ss	100	4		29	316							2	5				
	Fine gra to black	ined silty sand, loose, grey							× × × × 30													

	an	nec	3										R	ECC	ORE) OF	BC	R	HOL	Eľ	No.		2-10 3 OF 3
	PROJ	ECT	Rainy River Gold Project																	ENG	GINEEF	۲ <u>۱</u>	/IS
	PROJ	ECT NO.	TC113921	DRI	LLEF	R <u>Ma</u>	arathor	Drillin	g		В	ORING	G MET	HOD	200 m	nm HS/	A, NQ	Corir	g	LOG	GED I	BY _/	D
	CLIEN	IT	Rainy River Resources.	LOC	CATIC	ON <u>O</u>	/erburd	len Sto	ckpile											CON	IPILE) BY <u></u>)G
	ELEV	ATION	345.232 m	CO	ORD.	N	5,409,0	003 E	424,06	69	В	ORINO	G DAT	E <u>Sta</u>	art: Au	g 24, 1	2 Er	nd: Au	ı <u>g 27, 1</u> 2	CHE	ECKED	BY _[OGR
	AU A BU E		SS Spl TW Thi	t Spoo n Wall	on ed Op	en (She	lby)				P.P. F TV	Pocket Torvane			F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index signation overy	(I ₅₀)	C DS GS	Consolic Direct S Grain Si	
F	-	,	SOIL PROFILE			SAMPL	ES		ËR			DY	NAMIC	CONE	E PENE		ON	ŕ					
	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UND	VANE ITACT EMOUL RAINE	LDED D SHEA	i0 8 NIL0 △ I ▲ F R STRE	30 10 CON V/ NTACT REMOU ENGTH	20 ANE LDED	DITAN STAM LIMIT 2	CONTENT CONTEN		PERMEABILITY (cm/s)	REM	IARKS
-	314.1	End of F	Roraholaat 31 1m		- - -					31	315												
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:28 PM	<u>314.1</u> 31.1	Standpip up Artesian	Boreholeat 31.1m he installed with 0.9m stick head of 0.7m above ground hoted on Oct. 31, 2012																				

	an	nec	9									RECORD OF BOREHOLE No. BH12-13
F	PROJ	ECT	Rainy River Gold Project									ENGINEER MS
F	PROJ	ECT NO.	TC113921	DRI	LLER	<u>Ma</u>	arathor	n Drillin	g		В	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY AD
0		NT .	Rainy River Resources.	LOC	ATIC	0 N	oen Pit	Area				COMPILED BY DG
E	ELEV	ATION	352.625 m	COO	ORD.	Ν	5,409,4	437 E	425,76	57	В	BORING DATE Start: Sep 8, 12 End: Sep 9, 12 CHECKED BY DGR
Í	AU A BU E		SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	elby)				P.P. F TV	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Torvane SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Anal
F			SOIL PROFILE			SAMPL	ES		Ц.			
DI	LEV EPTH (m) 352.6	Ground s	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT UNTO VANE UNICON VANE U
	0.0	Silty CLA Dark bro		•	1	ss	46	7		-	352	
	<u>351.9</u> 0.8	Silty CLA Brown si light brow damp, ve	AY Ity clay, trace sand, varved, wn sand and gravel lenses, ery stiff		2	ss	54	7		1	351	34
		[Upper G	Bláciolacustrine]		3	ss	100			2	350_	split spoon sampler used fr SS 3, 4, 5, and
_;	349.6 3.1	oxidize 3.1m Silty CL/	ed pockets from 2.6m to						V	3		
		Grey silty gravel, tr stiff, trac	y clay, some sand, some ace cobbles, damp, firm to e mottled brown oxidized medium to high plasticity		4	ss	100			4	349	
					5	ss	100			5	348	
ΡM										6	347	
:013 3:13:35 PM					6	ss	100			7	346	
Date: 02/01/2013		greyish	n black gravel at 7.8m		7	ss	83	18		8	345	
										-	344	
20120817.0		becom	ing more silty, coarse sand,		8	ss	79	4		9	343_	
012BHLOG	342.1 3 40.6	wet (pos	sible transition zone)			SS		50		10	342_	
	10.7	Coarse g gravel, tr [WS Till] BEDROO	СК		10	RC RC	33 100	63		11	341	
SK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ			black bedrock, green bands		12	RC	100	87		12 13	340	
GEO MW	338.7				13	RC	100	82			339	
Format: AMEC GEO MWSK	13.9		Borehole at 13.9m he installed with 0.9m stick							-		
Fon		Water le	vel at 3.2m below ground									

a	med	3										R	ECC	ORD) OF	BC	R	EHOL	E I	No.	BH12-1 PAGE 2 C	
	DJECT	Rainy River Gold Project																	ENC	GINEEF		
PRO	DJECT NO.	TC113921	DRI	LLER	R _M	arathor	n Drillin	g		В	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOC	GED I	BY <u>AD</u>	
CLI	ENT	Rainy River Resources.	_ LOC	CATIC	ON <u>O</u>	oen Pit	Area												CO	MPILE	DBY DG	
ELE	VATION	352.625 m	CO	ORD.	N	5,409,4	437 E	425,76	67	В	ORINO	G DATI	E <u>Sta</u>	art: Se	p 8, 12	Enc	l: Sep	9, 12	CHE	ECKED	BY DGR	
AU BU	MPLE TYPE Auger Bulk Dynamic Co	SS S TW 1	Rock Con Split Spoo Thin Wall Wash Sai	on ed Op	en (She	elby)				P.P. TV	REVIA Pocket I Torvane Standar	Penetro :	meter	F	RQD Ro SCR So	int Load ock Qua Ilid Core rmeabil	lity De Reco	ngth Index esignation overy	c (I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Ar	
		SOIL PROFILE			SAMPL	ES		К			DY	NAMIC	CONE	PENE	TRATI	ON	Ĺ	그뿞드				
ELE\ DEPT (m)	н	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	0 4 VANE TACT EMOUL RAINED	.DED) SHEA	0 8 NIL(△ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	90 ANE ILDED				PERMEABILITY (cm/s)	REMAR	s
	Water le	on installation evel at 3.0m below ground on Oct. 30, 2012					SPT									. ,						

Γ	20		9									F	RECO	ORE	OF B	ORI	EHOL	EN	No.		
1		nec~	Dainy Diver Cold Draiget																		E 1 OF 1
	PROJ		Rainy River Gold Project TC113921	DRI		2 M:	aratho	n Drillin	a		P		тнор	200 r	nm HSA, No	Cori			GINEEF	-	MS TA
	CLIEN		Rainy River Resources.	-		N 01			9					2001		2 0011	<u> </u>		NPILED	-	
			354.133 m	-	ORD			536 E	425,4	20	B	ORING DA	TE Sta	art: Oc	ct 2, 12 Er	d: Oct	2, 12			-	
	SAMF	PLE TYPE	S RC F	lock Con	e						ABBI	REVIATION	S		P.L. Point Lo	ad Stre	ength Index	к (I ₅₀)			
	AU A BU E DC E		SS S TW T	plit Spoo hin Wall Vash Sar	on ed Op	en (She	elby)			ł	TV	Pocket Penet Forvane Standard Pro	ctor Test		RQD Rock Qi SCR Solid Co k Permea	ality De	esignation overy	(30/	GS	Direct	olidation Shear Size Analysis
			SOIL PROFILE		;	SAMPL			NETER		Ê	RESIS		PLOT	ETRATION 80 100	TIC	NATURAL MOISTURE CONTENT	D	(cm/s)		
6	ELEV			LOT	R		RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VAN	E	NIL	CON VANE	PLASTIC LIMIT		LIQUID	PERMEABILITY (cm/s)	R	EMARKS
_ I_	EPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	OVEF	N" <	- / PIE	DEPT	EVAT		JLDED						1EAB		
	354.1	Ground	surface	STI			REC	SPT -	MELI		_	20			ENGTH (kPa) 80 100		ER CONTE	NT (%) 60	PERN		
F	35 9.0 0.2		L	- 7						-	354					-					
		Brown si	It clay, trace to some sand, ccasional silty lenses, low							Ē											
		plasticity			1	ss	88	16		1_1 1	353_		_			16 ₽	<u> </u>				
		[oppo. c			_																
					2	ss	100	19		<u>_</u> 2	352_										
		becom	ing varved at 2.3m		3	тw	100			ŧ											
										£_3											
					4	ss	39	24		ŧ	351_					20 +) ⇒ –				
										ŧ.											
										E_4	350		-			-					
╞	349.6 4.6	Silty CL	AY													.	34				
		Grey silt	y clay, trace sand, trace ow to medium plasticity, stif	F	5	ss	83	23		5	349_										
		[WML Ti								Ē											
										E _6											
M	347.7				6	ss	100	56	₽		348_					H	29 0				
3:13:37 PM	6.5 347.3 6.8	Sandy S	ILT ndy silt to silty sand						18												
	0.0	BEDROO Light gre								7	347_										
/01/20		0 0	,		7	RC	95	57													
ate: 02										E_8	346_					_					
ů r																					
17.GP							05	00		9	345_										
1208					8	RC	95	62		Ē	-										
GS_2(E_10											
BHLO	344.0 10.2		Borehole at 10.2m		9	RC	100	91		F	344				+	+		+			
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013		Standpip up	e installed with 0.9m stick																		
MMEF			vel 5.4m below ground																		
1_SU			on completion																		
11392			vel 5.4m below ground on Oct. 30, 2012																		
e: TC																					
Ē																					
MWSh																					
GEO																					
MEC																					
nat: Aı																					
Form					1																

an	neco											R	ECC	ORD	OF	BC	R	EHOL	EI	No.	BH12 PAGE	
PRO	JECT Rainy	River Gold Project																	ENG	GINEEF		
PRO	JECT NO. TC11	3921	DRII	LLER	<u>Ma</u>	arathor	n Drillin	g		В	ORING	G MET	HOD _	200 m	m HS	A, NQ	Cori	ng	LOG	GED I	BY <u>A</u>)
CLIEI	NT <u>Rainy</u>	River Resources.	LOC	CATIC	ON <u>Op</u>	oen Pit	Area												CON	<i>I</i> PILE	D BY	3
ELEV	ATION <u>351.3</u>	39 m	COC	ORD.	N	5,409,	732 E	426,11	16	В	ORING	G DATI	E <u>Sta</u>	art: Sep	p 10, 1	2 Er	nd: Se	ep <u>13, 1</u> 2	CHE	CKED	BY D	GR
AU BU	PLE TYPES Auger Bulk Dynamic Cone	RC Roo SS Spli TW Thir WS Wa	it Spoc n Walle	on ed Op	en (She	lby)				P.P. I TV	REVIAT Pocket I Torvane Standar	Penetro :		F	RQD Ro SCR So	oint Load ock Qua olid Core ermeabil	ality De e Rece	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolida Direct She Grain Size	ear
		PROFILE		•	SAMPL	.ES		ËR			DY	NAMIC	CONE	PENE	TRATI	ON	ŕ			(cm/s)		
ELEV DEPTH (m) 351.3		SCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE UNDE	0 4 VANE TACT EMOUL RAINED	06	0 8 NILC △ II ▲ F R STRE	0 1 CON V NTACT REMOU	00 ANE ILDED		W ER CONTE		PERMEABILITY (cr	REM	ARKS
350.0 0.2	Dark brown pe	at. some gravel.		1	ss	42	15			351							8 7 0					
<u>350.6</u> 0.8	SAND Light brown sa	casional rootlets nd, fine to coarse, ry, possibe road fill		2	ss	46	7	Į	1	350								33				
	damp to dry, lo rootlets, soft to								2								15 ¢					
348.3	1.5m	acustrine] and pockets below		3	ss	50			3	349							21	þ				
3.1	sand, trace gra plasticity, damp	grey silty clay, trace wel, medium to high to to moist, trace		4	ss	20			- 4	348							2	B O			102mm split spoo sampler u	n
	oxidized pocke [WML Till]	15								347											SS 3, 4, 6 and 10	, 8, 9,
	becoming gre occasional co throughout, mo	parse sand pockets		5	ss	71	3		5	346_							22	2				
-									6	345												
Date: 02/01/2013 3:13:39 PM				6	ss	47			7	343												
1/2013										344												
Date: 02/0				7	ss	96	4		8	343_								45 → 49 ○	81			
	at 8.9m light thick	grey silt varves 20mm		8	ss	100			9	342								0				
S_201															92 ■		143 20					
012BHLOG				9	ss	100			10	341								>				
SUMMER2				10	ss	100				340						97 11	19					
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ									12	339_								7				
				11	ss	87	6		13									0				
Format: AMEC GEO MWSK				 					14	338_								37				
it: AME(12	ss	92	3			337								37				
Torma									15													

an	nec	9										R	ECO	ORE) Of	= BC	ORE	EHOL	.E 1	No.		12-15 E 2 OF 4
PROJ	ECT	Rainy River Gold Project																	ENG	SINEE	٦ _	MS
PROJ	ECT NO.	TC113921	DRI	LLER	R <u>Ma</u>	arathor	n Drillin	ıg		B	ORIN	G MET	HOD	200 r	nm HS	A, NQ	Corir	ng	LOG	GED	BY _	AD
CLIEN	IT	Rainy River Resources.	LOC	ATIC	ON Op	oen Pit	Area												CON	IPILEI	DBY_	DG
ELEV	ATION	351.339 m	CO	ORD.	N	5,409,	732 E	426,1	16	B	ORIN	G DAT	E <u>Sta</u>	art: Se	ep 10, ⁻	12 Er	nd: Se	ep 13, 12	2 CHE	CKED	BY _	DGR
AU A BU E		SS Spl TW Thi	lit Spoo n Wall	on ed Op	en (She	lby)				P.P. TV	Pocket Torvan				RQD RO SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	к (I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
		SOIL PROFILE		5	SAMPL	ES		ER _				/NAMIO	C CONE			ION	0	AL		m/s)		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 VANE NTACT EMOUI RAINEI	40 € LDED D SHEA	NIL △ ▲	BO 1 CON V INTACI REMOL ENGTH	00 ANE JLDED		-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		PERMEABILITY (cm/s)	RI	EMARKS
									ŧ	336_												
				13	ss		4		Ĩ									37				
									16	335_												
				14	ss	75	6		17	334_								41 0				
									18	333_												
				15	ss	92	6			555_								36 0				
									19													
										332_												
				16	ss	79	7		20									46				
					33	79	· ·			331_								0				
									21													
				<u> </u>					ŧ	330_												
				17	ss	79	8		22								2	4 0				
									[329_												
				18	ss		12		1_23	328_							Í	27 ↔				
				┢						520_												
									24													
					ss	83	9			327_								34				
				19	33	03	9		_25									0				
									ŧ	326_												
				1					26													
				20	ss	83	9		ŧ	325_					-			26 0				
									1													
									27 E	324_												
	trace to below 2	to some sand, fine gravel 7.4m		21	ss	100	10		ŧ									29				
				\vdash					28	323_												
	candu	silt seam from 29.1m to		\vdash					29									31				
	sandy 29.4m	Sin Seath HUIII 29. IIII [0		22	ss	92	9		ŧ	322								0				
				1					ŧ.		1											

2	med	3									RECORD OF BOREHOLE No. BH12-15 PAGE 3 OF 4
PR	OJECT	Rainy River Gold Project									ENGINEER MS
PR	OJECT NO.	TC113921	DRIL	LER	Ma	aratho	n Drillin	Ig		B	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY AD
CLI	ENT	Rainy River Resources.	LOC	ATIC	0 N	oen Pit	Area				COMPILED BY _ DG
ELE	EVATION	351.339 m	COC	ORD.	Ν	5,409,	732 E	426,11	16	B	BORING DATE Start: Sep 10, 12 End: Sep 13, 12 CHECKED BY DGR
AU BU	MPLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoo n Walle	n ed Op	en (She	elby)				P.P. TV	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Torvane SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Analysi
		SOIL PROFILE			SAMPL	ES		LER			
ELE DEP (m)	гн	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT (\$ 20 40 60 80 100 MTO VANE NILCON VANE UNTACT 01/01/01/01/01/01/01/01/01/01/01/01/01/0
				23	ss		11		-	321_	
									31	320_	
				24	ss		9		32	319_	29 0
	increa	ising silt and sand content 3 2m		25	ss	29	14		33	318	
		0.2.11							34	317_	
				26	ss		10		35	040	
								22	36	316	
										315_	
0.02/10		ning light grey, wet, firm		27	ss	100	9		37	314_	
313 37	.9 Silty SA			28	SS		50		38		25 I 4 heaving sand at
т С	grained	ty sand, fine to coarse , wet		29	RC	100	0			313_	37.9m
2001/012	[WS Til freque	l ent boulders		30	RC	10	0		39	312_	
	.9 BEDRO Grey be	CK drock, black banding, highly red, soft, faintly cemented		31	RC	45	11		40	311_	
				32	RC	58	13		41	310_	
									42	309_	
GEOIMMON				33	RC	38	0			308_	
				34	RC	100	21		44	307_	

DJECT NO. ENT EVATION	Rainy River Gold Project TC113921 Rainy River Resources.	DRIL																		
ENT VATION MPLE TYPE																		ENG	SINEEF	R <u>MS</u>
VATION	Rainy River Resources.		LER	Ma	arathon	Drillin	g		В	ORING	6 MET		200 m	Im HSA	A, NQ	Corin	g	LOG	GED I	BY AD
MPLE TYPE		LOC	ATIC	ON Op	en Pit	Area												CON	/IPILED	BY DG
	351.339 m	COC	ORD.	N	5,409,7	732 E	426,11	6	В	ORING	DATE	E <u>Sta</u>	art: Sep	o 10, 1	2 En	d: Se	p <u>13, 1</u> 2	CHE	CKED	BY DGR
Auger Bulk	SS Spl TW Thi	it Spoo n Walle	on ed Op	en (She	lby)				P.P. I TV	REVIAT Pocket F Forvane	Penetro	meter	F	RQD Ro SCR So	ck Qua lid Core	lity De Reco	ngth Index signation wery	(I ₅₀)		Consolidation Direct Shear
Dynamic Co	ne WS Wa SOIL PROFILE	sh Sar		SAMPL	E9		ц		PIS	Standaro DY		CONE			rmeabil ON		.ш.			Grain Size Analysis
/	DESCRIPTION	STRAT PLOT	NUMBER		RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2¦ MTO □ IN ■ RE	0 4 VANE TACT EMOUL		0 8 NILC △ II ▲ F	0 10 CON VA NTACT REMOU	0 ANE LDED		A MOISTURAL CONTENT CONTENT	A LIQUID	PERMEABILITY (cm/s)	REMARKS
		ST	-		REC	SPT	NEL		Ш	2				0 10	• •			50	PERI	
			35	RC	58	0		_46	306 305											
8 End of			1																	
Standpi up Water le surface Water le	ee installed wiht 0.9m stick evel 1.2m below ground on completion evel 1.1m below ground																			
	Standpij up Water le surface Water le	8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick	 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground 	5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	35 RC 58 0 5 5 58 0 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up 1 1 Water level 1.2m below ground surface on completion 1 1 Water level 1.1m below ground 1 1	35 RC 58 0 5 5 305 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	35 RC 58 0 305 5 5 58 0 58 0 8 End of Borehole at 46.8m 305 1 1 8 Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion 1 1 Water level 1.1m below ground 1 1 1 1	35 RC 58 0 305	35 RC 58 0 305	35 RC 58 0 1 5 305 1 305 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	35 RC 58 0 305 5 58 0 305 305 8 End of Borehole at 46.8m 305 305 8 End of Borehole at 46.8m 305 305 9 Water level 1.2m below ground surface on completion 305 305 Water level 1.1m below ground 305 305	335 RC 58 0 305 305 5 58 0 58 0 58 10 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up 10 10 10 Water level 1.2m below ground surface on completion 10 10 10 10 10	35 RC 58 0 1 305 1 5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	33 RC 58 0 305 305 5 58 0 58 0 58 8 End of Borehole at 46.8m 305 1 1 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up 1 1 Water level 1.2m below ground surface on completion 1 1 1 1 Water level 1.1m below ground 1 1 1 1 1	35 RC 58 0 1 305 1 1 5 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Water level 1.2m below ground surface on completion Water level 1.1m below ground	35 RC 58 0 305 305 5 305 305 305 305 305 8 End of Borehole at 46.8m Standpipe installed wiht 0.9m stick up Vater level 1.2m below ground surface on completion Vater level 1.1m below ground

an	nec	3									RECORD OF BOREHOLE No. BH12-17 PAGE 1 OF
PROJ	JECT	Rainy River Gold Project									ENGINEER <u>MS</u>
PROJ	JECT NO.	TC113921	DRII	LLER	R <u>Ma</u>	aratho	n Drillin	ng		E	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY AD
CLIEN		Rainy River Resources.									COMPILED BY DG
ELEV	ATION	346.592 m	COC	ORD.	. <u>N</u> 5	5,409,	329 E	424,63	34	E	BORING DATE <u>Start: Aug 28, 12 End: Sep 7, 12</u> CHECKED BY <u>DGR</u>
AU A BU B		SS Spli TW Thir	t Spoc n Walle	on ed Op	en (Shel	lby)			-	P.P. TV	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidation Torvane SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Analys
		SOIL PROFILE			SAMPLI			N N		Ê	DYNAMIC CONE PENETRATION RESISTANCE PLOT Size (5 a) 20 40 80 100 MTO VANE NILCON VANE Line Market and Mar
ELEV DEPTH (m) 346.6		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT (% u) 20 40 60 80 100 MTO VANE NILCON VANE USENTIANCE PLOT (% u) INTACT A INTACT WP W REMOULDED REMOULDED REMOULDED WATER CONTENT (%) 20 40 60 80 100 20 40 60 80 100
0.0	Dark bro	own peat, trace rootlets, damp	4	1	ss	8	0			346_	315
0.8	Clayey Greyish sand, da	brown clayey silt, trace amp to moist, low plasticity,		2	ss	78	3		1		
1.5	\pockets Silty CL			3	ss	100	3		2	345_	
	arey silt), soft to firm, moist Glaciolacustrine]		4	ss	100	2		3	344_	
342.8				5	тw	100				343_	
3.8	Silty CL Light gr firm, da	ey silty clay, trace fine gravel, mp to moist, medium to high		6	ss	100	6		4		36 O PP= 118kPa
	plasticit [WML T			7	ss	100	6		_5	342_	
									6	341_	
	dark g	rey below 6.1m		8	ss	78	9			340_	
									7	339	
	becon	ning moist to wet at 7.6m		9	ss	100	4		8		
									9	338_	
1				10	ss	100	4			337_	
									10	336	
				11	тw	100			11	550_	
1									12	335_	
				12	ss	100	9			334_	
									13	333_	
				13	ss	100	6		14		
									- 15	332_	

a	nec	0										REC	ORE) of B	OR	EHOL	.E N	No.	BH12-17 PAGE 2 OF 3
PRO	JECT	Rainy River Gold Project																GINEEF	R <u>MS</u>
PRO	JECT NO.	TC113921	DRIL	LLER	R <u>Ma</u>	aratho	n Drillir	Ig		E	BORING M	ETHOD	200 n	nm HSA, N	Q Cori	ng	LOG	GED I	BY <u>AD</u>
CLIE	NT	Rainy River Resources.	LOC	ATIC	ON <u>Op</u>	oen Pit	Area										CON	/IPILE[DBY DG
ELE	/ATION	346.592 m	COC	ORD.	N	5,409,	329 E	424,63	34	E	BORING D	ATE <u>St</u>	art: Au	ig 28, 12 I	End: S	ep 7, 12	CHE	CKED	BY DGR
AU BU	IPLE TYPE Auger Bulk Dynamic Cc	SS Spl TW Thi	it Spoo n Walle	on ed Op	en (She	elby)				P.P. TV	REVIATIO Pocket Pen Torvane Standard Pr	etrometer	:	P.L. Point Lo RQD Rock Q SCR Solid Co k Permea	uality D ore Rec	esignation	x (I ₅₀)		Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		5	SAMPL	.ES		TER			DYNAI RESIS	STANCE F	PLOT	TRATION	U	AL NTE		(s/m	
ELEV DEPTH (m)	-	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO VA □ INTAC ■ REMO	40 (NE CT DULDED NED SHEA	60 8 NIL △ 1 ▲ 1 AR STR	30 100 CON VANE INTACT REMOULDEI ENGTH (kPa) 30 100	WAT	ER CONTE	-09 Z × LIQUID (%)	PERMEABILITY (cm/s)	REMARKS
				14	ss	100	7			331_						27 ↔			
									16	330_									
	sandy 17.2m	layer between 16.8m to		15	ss	100	6		17	329_						28			
				16	ss	100	6		18	328_						26 ₀			
									19										
				17	ss	100	7		20	327_						38			
									21	326_									
				18	ss	100	4		22	325_						43			
				19	ss	100	6		23	324_						39			
									24	323_									
1	occas silty sar	ional pockets of light grey nd below 24.1m		20	ss	100	7		25	322_						40 0			
									20	321_						55			
320.7 25.9	Silty CL Grey sil gravel, plasticit	AY ty clay, trace sand and light grey silt laminations, low y, moist Glaciolacustrine]		21	ss	100	6		26	320_									
319.5 27.1	SAND a Coarse semian	and GRAVEL grained, some silt, angular to gular, wet d WS Till]		22	ss	39	16		27	319_					17				approximately 6m of sand heave at 27.1m
		lers suspected below 28m							28	318_									
									29	317									

Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:46 PM

ſ													D		חסר							DL	12-17
	an	nec	y										К	ECU	JKL		םנ	JK			NO.		11∠-1 / GE 3 OF 3
	PROJ	ECT	Rainy River Gold Project																	ENG	SINEEF	R	MS
	PROJ	ECT NO.	TC113921	DRI	LLER	R <u>N</u>	larathor	n Drillir	ng		В	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED	BY	AD
	CLIEN	IT	Rainy River Resources.	LOC	ATIC	ON <u>O</u>	pen Pit	Area												CON	MPILE) BY	DG
	ELEV	ATION	346.592 m	COC	ORD.	. <u>N</u>	5,409,	329 E	424,63	34	В	ORINO	G DAT	E <u>Sta</u>	art: Au	g 28, 1	2 Er	nd: Se	ep 7, 12	CHE	ECKED) BY	DGR
ŀ	SAMF	PLE TYPE	S RC R	ock Core	e						ABBF	REVIA	TIONS	;	F	P.L. Po	oint Loa	d Stre	ngth Index	K (l₅₀)			
	AU A BU E		SS SI TW TH	plit Spoo		en (Sh	elby)					Pocket I Torvane		ometer	F	RQD Ro	ock Qua	ality De	esignation	1 30/	C DS		olidation t Shear
ŀ	DC E	Dynamic Cor		/ash Sar					ſſ	—	PT :			or Test			ermeabi	lity			GS	Grain	Size Analysis
			SOIL PROFILE		1	SAMP	-	S	WELL / PIEZOMETER INSTALLATION		Ê	RI		ANCE F	LOT		-	PLASTIC LIMIT	NATURAL MOISTURE CONTENT	≘⊢	PERMEABILITY (cm/s)		
	ELEV			STRAT PLOT	ER	ш	RECOVERY (%)	SPT "N" VALUES or RQD	EZON	DEPTH (m)	ELEVATION (m)		VANE			CON V.						F	REMARKS
Ī	DEPTH (m)		DESCRIPTION	RAT	NUMBER	TYPE	OVE	"N" - 0	L / PI NSTAI	DEP1	EVA.	RI	EMOUL	_DED D SHEA	🔺 F	REMOL	ILDED		R CONTE		MEAE		
	(,						REC	SPT	MEL								(KFa) 00			60	PERI		
										Ē													
										Ē	316												
										31 E													
										Ē	315_												
										32													
											314												
	313.4		0 //							33 													
	33.2	BEDRO Greyish	CK black to black bedrock							-	313												
					23	RC	71	42		34													
										Ē	010												
		fractur	es (shards) from 34.7m to								312												
		35.1m			24	RC	87	0		35 													
										Ē	311_												
					25	RC	100	73		36													
PM	309.9									-	310_												
3:13:47 PM	36.7		Borehole at 36.7m							-													
			be installed with 1.5m stick sian condition upon ion																				
Date: 02/01/2013			head of 2.3m above ground noted on Oct. 30, 2012	1																			
Ы																							
317.G																							
01208																							
GS_2																							
BHLO																							
2012																							
IMER																							
SUN																							
3921																							
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ																							
File:																							
۷SK																							
NM O																							
C GE																							
: AME																							
Format: AMEC GEO MWSK																							

		nec	9									R	ECC	RD	OF BC	R	HOL	E N	lo.	BH12-18 PAGE 1 OF 3
F	ROJE	ECT	Rainy River Gold Project															ENG	SINEEF	R <u>MS</u>
F	ROJE	ECT NO.	TC113921	_ DRI	LLEF	R <u>Ma</u>	arathor	n Drillir	ng		В	ORING MET	HOD _	200 mm	n HSA, NQ	Corir	ig	LOG	GED E	BY <u>TA</u>
0	LIEN		Rainy River Resources.	_		ON Or														BY DG
E	LEVA	ATION	348.384 m	_ CO	ORD	. <u>N</u>	5,409,	745 E	424,5	21	B	ORING DAT	E <u>Sta</u>	rt: Aug '	11, 12 Er	nd: Au	<u>ıg 13, 1</u> 2	CHE	CKED	BY DGR
Æ	AU A BU B		SS S TW T	Rock Cor Split Spo Thin Wall Vash Sa	on Ied Op	oen (She	lby)				P.P. I TV	REVIATIONS Pocket Penetro Forvane Standard Proct	meter	RQ SC	Point Load D Rock Qua R Solid Core Permeabil	lity De Reco	signation		DS	Consolidation Direct Shear Grain Size Analysis
		,	SOIL PROFILE			SAMPL	ES		ER -			DYNAMIC		от —	—X—	, U	NTE		m/s)	
DE (_EV :PTH m) 48.4	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 4 MTO VANE □ INTACT ■ REMOUL UNDRAINE	10 60 .DED) 80 NILCC △ INT ▲ RE R STREN	100 ON VANE FACT MOULDED		A MATURAL MATURAL MATURAL MATURAL MATURAL MATURAL MATURAL		PERMEABILITY (cm/s)	REMARKS
	0.0	TOPSO			1	ss	0	6		ŧ	348_						41			
3	47.8 0.6	Silty CL	AY							Ē	-									
		gravel, v	ilty clay, trace sand, trace varved, medium plasticity,			ss	100	5								2	5			
		firm [Upper (Glaciolacustrine]		2	ss	100	6		ŧ	347						33			
						22	100	0		<u>_</u> 2										
3	45.9 2.4	Silty CL	AY		4	тw	96			ŧ	346									
		Grey silt greavel,	y clay, trace sand, trace medium to high plasticity,		Ŀ					<u>_</u> 3										
		firm [WML Ti	ill]		5	ss	100	7		ŧ	345						36			
					_					ŧ.							39			
					6	ss	100	7		Ē	344_						0			
					7	ss	100	6		ŧ						18 0				
		sand s	seam at 4.8m, 30mm thick							<u>_</u> 5	343_									
										ŧ										
										6										
50 PM					8	ss	100	4		ŧ	342					19 •				
3:13:50 PM										Ê_7										
Date: 02/01/2013										ŧ	341									
02/01/					9	тw	100													
Date:					Ľ					Ē	340									
GPJ										ŧ										
0817.0										1_9 1	339_						40 O			
					10	ss	100	5		ŧ										
LOGS																				
12BHI										ŧ	338									
1ER20					11	ss	100	5		Ê_11							37 ₀			
SUMN										ŧ	337_									
3921_																				
TC11:					╞	N				Ē	336									
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ					12	τw	100			ŧ										
										13 E	205									
EO M						_				ŧ	335						26			
IEC G					13	ss	100	5		14							36	$\left + \right $		
Format: AMEC GEO MWSK										ŧ	334_							\vdash		
Form										15										

ſ	an	nec	9									RECORD OF BOREHOLE No. BH12 PAGE 2	
	PROJ	ECT	Rainy River Gold Project									ENGINEER MS	
	PROJ	ECT NO.	TC113921	DRI	LLEF	R <u>Ma</u>	arathor	n Drillir	ng		В	BORING METHOD _200 mm HSA, NQ Coring LOGGED BYA	
	CLIEN	IT	Rainy River Resources.	LOC	ATIC	ON Or	oen Pit	Area				COMPILED BY DG	
	ELEV	ATION	348.384 m	COC	ORD.	<u>N</u>	5,409,	745 E	424,5	21	В	BORING DATE <u>Start: Aug 11, 12 End: Aug 13, 1</u> 2 CHECKED BY <u>DG</u>	R
	AU A BU E		SS Spl TW Thi	it Spoo n Walle	on ed Op	en (She	lby)				P.P. I TV	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) Pocket Penetrometer RQD Rock Quality Designation C Consolidati Torvane SCR Solid Core Recovery DS Direct Shee Standard Proctor Test k Permeability GS Grain Size	ar
ſ			SOIL PROFILE			SAMPL	.ES		LER		_	DYNAMIC CONE PENETRATION RESISTANCE PLOT → U ਤੱਤ E	
I-	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT → → → ↓	RKS
	333.1 15.2	Silty SA			14	ss	72	5		ŧ	333_		
		grained, loose [Glacio F	y sand to sandy silt, fine trace clay lenses, saturated, ⁻ luvial]							16	332_		
		silty cla	ay with fine sand at 17m		15	ss	100	5		17	331_	240	
		alayov	cond below 19 fm		16	ss	89	2		18	330_		
		clayey	sand below 18.6m							19	329		
-	<u>328.6</u> 19.8		y clay, some sand, al sand and silt seams, high , firm		17	ss	100	6		20	328_		
Þ		[.1							2_21	327_		
3:13:50 PM					18	ss	100	4		22			
01/2013											326		
Date: 02/01/2013					19	ss	100	5		23	325		
17.GPJ										24			
201208					20	ss	100	4		ŧ	324_		
OGS					20		100	-		_25			
112BHL										ŧ	323_		
JMMER20					21	ss	100			26	322_		
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ										27			
ile: TC1	321.0 27.4	Clayey S					400				321		
		to some	y to green clayey silt, trace sand, trace gravel, varved Glaciolacustrine]		22	ss	100	7		28			
	319.7	-	-		23	RC	66	6		Ē	320		
Format: AMEC GEO MWSK	28.7		nd GRAVEL grained, trace silt, grey WS Till]	° ° ° ° °	24	ss	33	16		29	319_		
ormé				° (E 30			

	an	nec	3										R	ECO	ORE) OF	BC	DRE	EHOL	E N	No.	BH12-18 PAGE 3 OF	
	PROJ	IECT	Rainy River Gold Project																	ENG	GINEEF	R <u>MS</u>	
	PROJ	IECT NO.	TC113921	DRII	LLEF	R <u>M</u> a	arathor	n Drillin	g		B	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED E	BY <u>TA</u>	
	CLIEN		Rainy River Resources.																			DBY DG	
	ELEV	ATION	348.384 m	CO	ORD.	. <u>N</u>	5,409,	745 E	424,52	21	B	ORINO	G DAT	E <u>Sta</u>	art: Au	g 11, 1	2 Er	nd: Ai	<u>ug 13, 1</u> 2	CHE	CKED	BY DGR	
	AU A BU E		SS TW	Rock Core Split Spoo Thin Walle Wash Sar	on ed Op	en (She	lby)				P.P. TV	REVIA ⁻ Pocket I Torvane Standar	Penetro e	ometer	F	RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index esignation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Anal	lysis
F			SOIL PROFILE			SAMPL	.ES		۳ ۳			DY	NAMIC	CONE	E PENE	TRATI	ON	ŕ	AF NTE		(s/u		-
	ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINE	LDED D SHEA	i0 8 NIL0 △ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE			-00 de liquid (%) de liquid (%) de limit	PERMEABILITY (cm/s)	REMARKS	;
				• 0						E	318_												
				0	25	ss	0	14		31													
				° (5					31 	317_												
				0						Ē	317_												
				• C	26	ss	61	24		E_32													
				。 0							316_												
				0						33													
				0 °	27	ss	33	13		Ē	315_												
ŀ	314.7 33.7		Borehole at 33.7m, no	<u> </u>																			
		refusal	no installed with 1 0m stiel																				
		up	pe installed with 1.0m stick	`																			
		Water le	evel 2.7m below ground on installation.																				
			head 0.4m above ground																				
		surface	noted on Oct. 20, 2012																				
1 PM																							
3:13:51 PM																							
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013																							
Date: C																							
Ы																							
317.GI																							
201208																							
GGS_2																							
BHLO																							
32012																							
MMEF																							
1_SU																							
11392																							
le: TC																							
MWS																							
Format: AMEC GEO MWSK																							
AMEC					1																		
rmat: ,																							
요					1																		

		nec ^Ø									RECORD OF BOREHOLE No. BH12-19 PAGE 1 OF 3
F	ROJE	ECT Rainy River Gold Project									ENGINEER MS
F	ROJE	ECT NO. TC113921	DRII	LER	R <u>Ma</u>	arathor	n Drillin	g		В	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY TA
0	LIEN	T Rainy River Resources.	LOC	ATIC	ON <u>Op</u>	en Pit	Area				COMPILED BY _ DG
E	LEVA	ATION 351.189 m	COO	ORD.	<u>N</u> 5	5,410,3	368 E	425,2	55	B	BORING DATE <u>Start: Aug 21, 12</u> End: Aug 23, 12 CHECKED BY <u>DGR</u>
Æ	U A		Spoc Walle	on ed Op	en (She	lby)				P.P. F TV 1	
		SOIL PROFILE		5	SAMPL	ES		N		(DYNAMIC CONE PENETRATION RESISTANCE PLOT ————————————————————————————————————
DE (.EV PTH m) 51.2	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	
17	59.0 0.2	PEAT Dark brown peat, fibrous	===	1	ss 🛛	100	6	Ø₹6	ŧ	351	
	49.7	Silty SAND Brown fine grained silty sand, some organics, trace rootlets silty clay at 0.8m		2	ss	39	6			350	
	1.5	Silty CLAY Brown to grey silty clay, varved, moist [Upper Glaciolacustrine]		3	ss	94	6		2	349_	
	47.7			4	TW SS	77	5		3	348_	3-
	3.5	Silty CLAY Grey silty clay, trace sand, trace gravel, medium to high plasticity, moist, occasional sand seams		6	ss	100	3		4	347_	
		[WML Till]		7	ss	100	3		5	346	
Md				8	тw	83			6	345_	
2013 3:13:54									7	344_	
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:54 PM				9	ss	100	4		8	343_	
120817.GPJ				10	ss	100	5		9	342	
BHLOGS_20									10	341	
UMMER2012				11	ss	100	4		1 1 1 1 1 1 1 1	340_	
IC113921_S									12	339_	
				12	TW	96			13	338_	
Format: AMEC GEO MWSK		grey sandy silt, some clay, wet at 13.7m		13	ss	100	5		14	337_	
Format: A									15		

an	nec	3										R	ECC	ORD	OF B	OR	EHOL	E N	No.		12-19 E 2 OF 3
PROJ	IECT	Rainy River Gold Project																	SINEEF		MS
PROJ	IECT NO.	TC113921	DRI	LLEF	R Ma	arathoi	n Drillir	Ig		E	ORIN	G MET	HOD	200 m	m HSA, NO	Q Cori	ng	LOG	GED I	BY	ТА
CLIEN	NT	Rainy River Resources.	LOC	CATIO	ON <u>Op</u>	pen Pit	Area											CON	/IPILED	OBY	DG
ELEV	ATION	<u>351.189 m</u>	CO	ORD	. <u>N</u>	5,410,	368 E	425,2	55	E	ORIN	G DAT	E <u>Sta</u>	art: Aug	21, 12 E	nd: A	ug 23, 12	2 CHE	CKED	BY	DGR
AU A BU B		SS Sp TW Th	lit Spoo in Wall	on ed Op	en (She	elby)				P.P. TV	Pocket Torvan	TIONS Penetro e rd Proct	ometer	R S	.L. Point Lo QD Rock Qu CR Solid Co Permeal	ality D re Rec	esignation	к (I ₅₀)		Direct	olidation Shear Size Analysis
	-	SOIL PROFILE			SAMPL	ES		ER _			D' R	YNAMIO			TRATION	0	NTE		(s/u		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 20 VANE NTACT REMOUL DRAINEL	LDED D SHEA	0 80 NILC △ IN ▲ R) 100 ON VANE ITACT EMOULDEE NGTH (kPa)	WAT	ER CONTENT -05 -07 -07 -07 -07 -07 -07 -07 -07 -07 -07		PERMEABILITY (cm/s)	R	EMARKS
				-						336_							27				
				14	ss	100	3										0				
									16	335_											
	with tr 18.3m	ace silt lenses from 16.8m to		15	ss	100	3		E_17	334_							27 0				
									18	000											
				16	ss	100	3			333_							41				
						100			19	-											
									Ē	332_											
				17	ss	100	3		1_20	331_		-					45	-1			
									£_21	330_											
				18	ss	100	3										46				
									22												
										329_											
									ŧ.	-											
				19	ss	100	4		23	328_	<u> </u>						43 0				
									E_24	327_											
				20	ss	100	4										46				
									25												
1									ŧ	326_											
325.3									£_26								E1	82			
25.9	Silty CL grey silt	y clay,trace sand, medium		21	ss	100	7			325_							51				
	plasticit [Lower	y, varved, moist Glaciolacustrine]																			
									27	324_											
	sandy	below 27.4m, wet		22	ss	100	11		1								26 0				
									28	000											
322.7	-									323_		1									
28.5	SAND 1 [Inferred	TILL 1 WS Till]		23	RC	53			£_29												
			K	Ĩ					Ē	322		-				+					
				24	RC	22															

an	nec	3										R	ECC	ORD) OF	BC	R	EHOL	E I	No.		12-19 E 3 OF 3
PRO.	JECT	Rainy River Gold Project																	ENG	GINEEF	۲ ₋	MS
PRO.	JECT NO.	TC113921						Ig		В	ORINO	G MET	HOD	200 m	m HS	A, NQ	Corir	ng		GED I	-	TA
CLIEI		Rainy River Resources.																		MPILE	-	
ELEV	ATION	<u>351.189 m</u>	COC	ORD.	N	5,410,3	368 E	425,2	55	B	ORINO	G DAT	E <u>Sta</u>	art: Aug	g 21, 1	2 Er	nd: Au	u <u>g 23, 1</u> 2	CHE	CKED	BY	DGR
AU . BU		SS Sp TW Thi	lit Spoc n Walle	on ed Op	en (She	elby)				P.P. TV	REVIA ⁻ Pocket I Torvane Standar	Penetro e		F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ility De Reco	ngth Index esignation overy	: (I ₅₀)	C DS GS	Direct	lidation Shear Size Analysis
		SOIL PROFILE		5	Sampl	.ES		TER			DY RI	NAMIC	CONE	E PENE PLOT	TRATI X	ON	υ	AL		(s/m		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINE	LDED D SHEA	0 8 NIL0 △ 11 ▲ F R STRE	0 1 CON V NTACT REMOU	00 ANE		W O ER CONTE	TIMIT WL WL (%) MT (%)	PERMEABILITY (cm/s)	R	EMARKS
				25	RC	100				321_												
320.2				25	RC	31			Ē													
31.0			X						31 	320_												
	0.10m	seam at 31.3m		27	RC	87	12		32													
				28	RC	100	98		33	319												
				29	RC	100	36		34	318												
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:56 PM	Stand pi stickup Water le upon co Water le	Borehole at 34.3m pe installed with 0.6m evel at 0.3m below ground mpletion evel at 0.04m below ground 30, 2012																				

ſ	an	nec ⁽	9										RE	CO	RD O	FBC	ORE	EHOL	.E N	No.	BH12-20 PAGE 1 OF 3
	PROJ	ECT	Rainy River Gold Pro																	SINEEF	R <u>MS</u>
													ORING METH							GED	
	CLIEN		Rainy River Resourc																		DBY DG
	ELEV	ATION	362.401 m		COC	ORD.	N	5,411,	780 E	421,2	25	В	ORING DATE	_Start:	Sep 30,	12 Ei	nd: O	ct 1, 12	CHE	CKED	BY DGR
	AU A BU E			RC Rocl SS Split TW Thin WS Was	Spoo Walle	n ed Op	en (She	lby)			-	P.P. TV	REVIATIONS Pocket Penetron Torvane Standard Proctor		RQD F SCR S	Point Loa Rock Qua Solid Cor Permeab	ality De e Reco	ngth Index signation overy	x (I ₅₀)	GS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE				SAMPL	ES		N TER		Ê	DYNAMIC RESISTAN	ICE PLC)т —×		2	CAL URE		(cm/s)	
- I-	ELEV DEPTH (m) 362.4	Ground s	DESCRIPTION		STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULE UNDRAINED 20 40)ED SHEAR \$	NILCON △ INTAC ▲ REMO STRENGTI	VANE T ULDED		W O ER CONTE	-00 X	PERMEABILITY (0	REMARKS
	0.0	PEAT	wn peat, fibrous		<u></u>	1	ss	22	6		Ē	362_									
		Dark Dio	wir pear, librous		Ш Ш							302_									
	361.5 0.9 360.9	_ occasion	Ity clay, some sand, i al rootlets	moist,		2	ss	0	10			361_									
	1.5	plasticity	AY Ity clay, trace sand, lo , varved, moist Baciolacustrine]	w		3	ss	100	15		2 2	360_					20				additional sample taken (thin
		[, ,			4	ss	100	14		3						Ĩ				wall) between 2.1m and 2.7m (TW 22, 0.46m recovery)
						5	ss	11	18			359_									at 3.0m, SPT sampler hit possible cobble
-	<u>357.8</u> 4.6	Silty CL	AY									358_						30			
		Grey silty	y clay, trace sand, tra noist, medium plastic	ice ity		6	ss	100	12		5	357						•			
3:13:58 PM						7	тw	100				356									
												355_						24			
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013			erbedded silt lenses 7.6m and 9.1m			8	ss	100	11		8	354_						34	1		
GPJ											l L9										
20120817	<u>353.3</u> 9.1	Sandy S Greenish clay, moi	n grey fine sandy silt,	 trace		9	ss	100	22			353_					21	ə l			
12BHLOGS											10	352_									
SUMMER20						10	ss	100	31		11	351_									
C113921_S				10.0							12										
		trace to	o some clay, moist at	12.2m		11	ss	100	25		13	350									
MWS											ŧ	349									
Format: AMEC GEO MWSK		clay at 13		trace		12	ss	100	62		14 14										
Format: A		thin sto	one layer at 13.9m								15	348_									

ar	nec	3										R	ECC	ORE) OF	BC	DRE	EHOL	.E N	No.	BH12-20 PAGE 2 OF 3
PRO	JECT	Rainy River Gold Project																	ENG	SINEEF	MS
PRO	JECT NO.	TC113921	DRIL	LER	N	larathoi	n Drillir	g		В	ORINO	G MET	HOD _	200 n	nm HS	A, NQ	Corir	ng	LOG	GED E	BY <u>TA</u>
CLIE	NT	Rainy River Resources.	LOC	ATIC	DN <u>T</u>	ailings	Manag	ement	Area										CON	APILED	BY DG
ELEV	ATION	362.401 m	coc	ORD.	N	5,411,	780 E	421,2	25	В	ORING	g dati	E <u>Sta</u>	art: Se	p 30, 1	2 Er	nd: O	ct 1, 12	CHE	ECKED	BY DGR
AU BU		SS Spli TW Thir	t Spoo Walle	n ed Op	en (Sh	elby)				P.P. I TV	Pocket Forvane		meter	:	RQD Ro SCR So	lid Core	ality De e Reco	ngth Index signation overy	(I ₅₀)		Consolidation Direct Shear
DC	Dynamic Co		sh Sar	-		. 50		۲	1	PT S	DY	NAMIC	or Test		TRATI	rmeabi	lity				Grain Size Analysis
ELEV DEPTH (m)		SOIL PROFILE	STRAT PLOT	NUMBER	BAMP BALL	RECOVERY (%)	F "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	RI 2 MTO □ IN ■ R	ESISTA 0 4 VANE ITACT EMOUL	NCE P 0 6	2LOT 0 8 NIL △ 1	CON V CON V NTACT REMOU	ρ0 ANE	T ^d PLASTIC	A MATURAL MATURAL MOISTURE CONTENT	(%) <u> </u>	PERMEABILITY (cm/s)	REMARKS
0.17.0			00			R	SPT	×			2	0 4	06	3 0	30 1	00	2	0 40 0	60	PEI	
<u>347.2</u> 15.2	BOULD Boulder	ERS and COBBLES s and cobbles with greenish ad and silt]		13	RC	0			16	347											
				14	RC	12			17	345 344											
				15	RC	0			19	343_											
				16	RC	0	0		21	342 341											
				17	RC	3			22	340_											
338.6				18	RC	0				339_											
23.9	Greenis	CK h grey bedrock, highly red, very soft		19	RC	87	0		24	338											
				20	RC	93	0		26	336_											
334.0				21	RC	100	12		27	335											
28.4	Standpi up Artesiar above o	Borehole at 28.42 m pe installed with 0.9m stick n condition- Water level 0.4m round surface at completion																			
	above g Water le	round surface at completion evel 0.8m above ground																			

Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:59 PM

Γ			9											R	ECC	ORE) OF	BC	RE	EHOL	E I	No.		12-20
PROJECT Rainy River Gold Project																								E 3 OF 3
		ECT NO.	Ma	arathor	Drillin	a		В	ORING	MET	HOD	200 m	nm HS		Corir	Ig		GED I	-	MS TA				
	CLIEN		Rainy River Resour		DRIL LOC											20011		, 11 0	00111	9		/PILE	-	
									780 E				ORING	G DATI	E Sta	art: Se	p 30, 1	2 Er	id: O	ct 1, 12			-	
┢	SAMF	PLE TYPE	S	RC Roc	k Core							ABBF	REVIAT	FIONS		F	P.L. Po	oint Load	d Stre	ngth Index	(l _{eo})			
	AU A BU E	luger		SS Split TW Thin WS Was	t Spoo n Walle	on ed Op	en (She	lby)				TV '	Pocket I Torvane Standar	•	ometer or Test	F	RQD Ro SCR So	ock Qua olid Core ermeabil	lity De Reco	signation	. (-50)	C DS GS	Direct	olidation Shear Size Analysis
ŀ		,	SOIL PROFILE				SAMPL	ES		I ER			DY	NAMIC	CONE	PENE	TRATI	ON	,	NTE		m/s)		
					OT	۲		(%) /	UES	WELL / PIEZOMETER INSTALLATION	٦.	EVATION (m)	2	0 4 VANE	ļ0 6	6 B	0 1 CON V	Q0	PLASTIC LIMIT	NATURAL MOISTURE CONTENT	LIQUID	PERMEABILITY (cm/s)	R	EMARKS
D	ELEV EPTH		DESCRIPTION		STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	/ PIEZ	DEPTH (m)	VATIO	🗆 IN	TACT		ΔI	NTACT		W _P	W	WL	EABIL		
	(m)				STR	z		RECC	PT "N	VELL	Ω	ELE			D SHEA			(kPa) 00		R CONTE	NT (%) 60	ERMI		
		surface of	on Oct. 30, 2012					_	S	~												۵.		
3:14:00 PM																								
3:14:0																								
013 3																								
2/01/2																								
ite: 02																								
Da																								
.GPJ																								
20817																								
2012																								
065																								
2BHL																								
K201																								
MME																								
l_su																								
1392																								
5																								
FIIE																								
WSK																								
Ň																								
00																								
Format: AMEC GEO MWSK File: 1C113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013																								
rmat																								

	ned	8										R	ECC	ORE) OF	BC	DRE	EHOL	E N	lo.		12-21
PROJ	IECT	Rainy River Gold Project													ENG	INEEF		MS				
		TC113921	DRI	LLEF	R Ma	arathor	n Drillin	q		В	ORIN	G MET	HOD	200 n	nm HS	A, NQ	Corir	ng		GED E		PDR
CLIEN		Rainy River Resources.	-													,		<u> </u>		IPILED		
ELEV	ATION	372.765 m	CO	ORD	. N	5,409,4	431 E	427,9	95	В	ORIN	G DAT	E Sta	art: Se	p 10, 1	2 Er	nd: Se	ep 10, 12	CHE	CKED	BY	DGR
SAMF	PLE TYPE	S RC F	Rock Cor	e						ABB	REVIA	TIONS		F	P.L. Po	oint Loa	d Stre	ngth Index	((I ₅₀)			
AU A BU E DC E		SS S TW T	Split Spo Thin Wall Vash Sa	on ed Op	oen (She	elby)				TV .	Torvan	Penetro e rd Proct		F	RQD Ro SCR So	ock Qua	ality De e Reco	esignation	(30/	GS	Direct	olidation Shear Size Analysis
		SOIL PROFILE			SAMPL	ES		N TER		Ē	R	YNAMIC ESISTA	ANCE F	PLOT	—×		2	CURE URE	0	cm/s)		
ELEV DEPTH (m) 372.8		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)		20 4 VANE NTACT EMOUL RAINEE 20 4	DED D SHEA	NILO △ I ▲ F R STRE	30 1 CON V. NTACT REMOU ENGTH 30 1	ANE ILDED (kPa)	2	ER CONTE		PERMEABILITY (cm/s)	R	EMARKS
378.0 0.1	TOPSO Silty CL			1	ss	42	9										20 20					
	gravel, r rootlets	Glaciolacustrine]		2	ss	92	17			372							21 F	⊢ -1				
	[Obbei (Giaciolacusti inej		3	ss	92	13			371_							2	5				
	very s	tiff, trace gravelly sand							1_2								18					
		below 2.3m		4	ss \	100	19 50		_3	370_							Ŭe 2	 27 ⊷	4			
	boulde	er at 3.2m		6	RC	0				369_												
									4 													
				7	ss	100	12			368_												
									5 													
									6	367												
366.5 36 6.4	n	and gravel below 6.1m, e transition zone	1 NO	8	SS RC	67 67	30		Ē													
6.4	BOULD	ERS	-18						Ē,	366												
	BEDRO	CK anite bedrock, slightly		10	RC	100	83	¥	-7	365_												
									-8	305_												
5				11	RC	85	63			364												
363.3								\bigotimes														
9.5	Standpi mounte Water le	Borehole at 9.5m pe installed with flush d steel casing evel at 5.6m below ground on completion							-													
	Water le surface	evel at 7.5m below ground on Oct. 3, 2012																				
1				1	1			1														

an	nec	3									RECORD OF BOREHOLE No. BH12-2 PAGE 1 0	
PROJ	JECT	Rainy River Gold Project									ENGINEERMS	
PROJ	JECT NO.	TC113921	DRII	LLEF	R <u>Ma</u>	aratho	n Drillir	ng		В	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY PDR	
CLIEN					ON <u>Mi</u>						COMPILED BY _ DG	
ELEV	ATION	379.373 m	COO	ORD.	N	5,410,	257 E	428,1	90	B	BORING DATE Start: Sep 9, 12 End: Sep 9, 12 CHECKED BY DGR	
AU A BU B		SS Spli TW Thir	t Spoo n Walle	on ed Op	en (She	lby)			-	P.P. TV		
		SOIL PROFILE			SAMPL	ES		NTER		Ê	DYNAMIC CONE PENETRATION RESISTANCE PLOT X 20 40 60 80 100	
ELEV DEPTH (m) 379.4	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT ************************************	ŝ
37 8 :9	TOPSO Silty CL Brown s			1	AS	58	6			379		
	varved, low plas	trace rootlets, firm to stiff,		2	ss	75	12			378_		
	trace fin	ning stiff, with trace sand, e gravel at 0.8m ace sand and trace oxidized		3	ss	96	12		2			
	роскет	at 1.5m		4	ss	100	15			377_		
				5	тw	83				376		
									1 4	375_	at 3.7m PP= 367.7 KF TV= 171.6 KP	
<u>374.8</u> 4.6	Silty CL Dark gro	ey silty clay, trace sand, trace nedium plasticity, very stiff,		6	ss	83	15		5	374_		
				7	тw	75			6	373_		
								¥	7	372_	at 6.7m PP= 318.7 KP TV= 171.6 KP	°a °a
				8	ss	79	14		8	371		
				_					1_9	370_		
				9	TW	83						_
										369_	PP= 220.6 KP TV= 164.3 KP	'a 'a
	trace : at 10.7r	silty pockets, laminated, stiff 1		10	ss	100	13	8	11	368_		
367.1									12			
12.2 366.8 12.6	Lower	y clay, varved, wet Glaciolacustrine]		11	ss	100	19			367		
<u>366.0</u> 13.4	BEDRO	СК							13	366		
	Pink to	grey bedrock, highly d, weathering and oxidation		12	RC	100	40		14	365_		

Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:14:05 PM

<u>an</u>	nec	9										R	ECO	ORE) Of	BC	DRE	HOL	.E I	No.		112-22 GE 2 OF 2
PRO	JECT	Rainy River Gold Project																	ENG	SINEEF	2	MS
PRO	JECT NO.	TC113921	DRI	LLER	R <u>M</u> a	arathor	n Drillin	Ig		E	ORINO	G MET	HOD	200 m	nm HS	A, NQ	Corir	Ig	LOG	GED E	BY	PDR
CLIEI	NT	Rainy River Resources.	LOC	ATIC	ON <u>Mi</u>	ine Ro	ck Area	a											CON	MPILED) BY	DG
ELEV	ATION	379.373 m	COC	ORD.	N	5,410,2	257 E	428,19	90	E	ORINO	G DAT	E <u>Sta</u>	art: Se	p 9, 12	2 Enc	l: Sep	9, 12	CHE	CKED	BY	DGR
AU . BU	PLE TYPE Auger Bulk Dynamic Co	SS S TW T	ock Core plit Spoc hin Walle /ash Sar	on ed Op	en (She	elby)				P.P. TV	REVIA [®] Pocket Torvane Standar	Penetro e	ometer	F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	lity De Reco	ngth Inde signation overy	к (I ₅₀)		Direc	olidation t Shear Size Analysis
00		SOIL PROFILE			SAMPL	.ES		Ř			DY	'NAMIC	CONE	E PENE	TRATI	ON	Ĺ	그쓔⊢				
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ R UND	VANE ITACT EMOUL RAINE	μο ε LDED D SHEA	NILO △ I ▲ F R STRE	0 1 CON V NTACT REMOU ENGTH	00 ANE JLDED		-0 35 NATURAL -0 0 MOISTURE -0 0 MOISTURE		PERMEABILITY (cm/s)	F	REMARKS
362.9	trace ox	ning moderately fractured, idized pockets		13	RC				16	364												
16.5	End of Standpr mounte Water le	Borehole at 16.5m bipe installed with flush d steel casing evel at 9.6m below ground mpletion																				
	Water la surface	evel at 7.4m below ground on Oct. 3, 2012																				
MILIAL AWEC GEO WWY																						

an	nec	9								F	RECORD OF BOREHOLE No. BBAF-BH-2002 PAGE 1 OF
PROJ	JECT	Rainy River Gold Project									ENGINEER MS
PROJ		TC113921	DRII	LLEF	R <u>M</u>	arathor	n Drillin	g		В	BORING METHOD 200 mm HSA, NQ Coring LOGGED BY ARM
CLIEN					ON <u>Pl</u>						COMPILED BY _ DG
ELEV	ATION	369.759 m	COC	ORD	. <u>N</u>	5,410,3	217 E	426,77	78	B	BORING DATE <u>Start: Aug 28, 12</u> End: Aug 28, 12 CHECKED BY <u>DGR</u>
AU A BU B		SS Spli TW Thir	t Spoo n Walle	on ed Op	oen (She	elby)				P.P. TV	BREVIATIONS P.L. Point Load Strength Index (I ₅₀) P. Pocket Penetrometer RQD Rock Quality Designation C Consolidation Torvane SCR Solid Core Recovery DS Direct Shear Standard Proctor Test k Permeability GS Grain Size Analys
		SOIL PROFILE			SAMPL	ES		LER		_	
ELEV DEPTH (m) 369.8		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	DYNAMIC CONE PENETRATION RESISTANCE PLOT Image: Constraint of the second sec
0.0				1	AS				-		
369.0 0.8	Light bro	own silty clay, trace sand, plasticity, very stiff		2	ss	67	17		1	369_	
367.6	[Upper G	Slaciolacustrine]		3	ss	75	20		2	368_	
2.1	sand, tra	dark brown silty clay, trace ce gravel, high plasticity,		4	ss	83	12			367_	
366.6 3.2				5	SS RC	100	50 70		4	366_	SPT refusal at 3.2m
										365_	
363 5				7	RC	100	81		5 6	364_	
363.5 6.3	Standpip up Water le	Borehole at 6.3m le installed with 0.9 m stick vel 2.4 m below ground on Sept 15, 2012									

ENGINEER MS BORING METHOD 200 mm HSA, NQ Coring LOGGED BY PDR COMPILED BY AD COMPILED BY AD 26,591 BORING DATE Start: Aug 11, 12 End: Aug 12, 12 CHECKED BY DGR ABBREVIATIONS P.L. Point Load Strength Index (Iso) C Consolidation P.P. Pocket Penetrometer RQD Rock Quality Designation DS Direct Shear PT Standard Proctor Test k Permeability GS Grain Size A V 0 80 100 Use of the start Aug 10, 100 Use of the start Aug 10, 100 Start Aug 11, 12 End: Aug 12, 12 CHECKED BY DGR V Torvane SCR Solid Core Recovery C Consolidation DS Direct Shear PT Standard Proctor Test k Permeability GS Grain Size A V 0 00 100 Use of the start Aug 10, 100 Start Aug 10, 100 Start Aug 10, 100 Lugart Aug 10, 100
26,591 BORING DATE Start: Aug 11, 12 End: Aug 12, 12 CHECKED BY
BORING DATE Start: Aug 11, 12 End: Aug 12, 12 CHECKED BY DGR ABBREVIATIONS P.L. Point Load Strength Index (I ₅₀) C Consolidation P.P. Pocket Penetrometer RQD Rock Quality Designation C Consolidation TV Torvane SCR Solid Core Recovery DS Direct Shear PT Standard Proctor Test K Permeability GS Grain Size A
ABBREVIATIONS P.L. Point Load Strength Index (I ₅₀) P.P. Pocket Penetrometer RQD Rock Quality Designation C Consolidation TV Torvane SCR Solid Core Recovery DS Direct Shear PT Standard Proctor Test k Permeability GS Grain Size A
P.P. Pocket Penetrometer RQD Rock Quality Designation C Consolidation TV Torvane SCR Solid Core Recovery DS Direct Shear PT Standard Proctor Test k Permeability GS Grain Size A
U DYNAMIC CONE PENETRATION RESISTANCE PLOT U
Image: State of the state o
365

am	nec	9								R	EC	ORI	0 0	F B(ORE	EHO	LE	No.	BE	BAF	BH-20	
PROJE	CT	Rainy River Gold Project																	ENG	GINEEF	R <u>MS</u>	
PROJE	CT NO.	TC113921	DRIL	LER	Ma	arathor	n Drillin	g		В	ORING	G MET	HOD	200 m	nm HS	A, NQ	Corir	Ig	LOG	GED I	BY <u>PDR</u>	
CLIENT	Г	Rainy River Resources.	LOC	ATIC	N <u>Pla</u>	ant Site	e Area												CON	<i>NPILE</i>	BY AD	
ELEVA	TION	368.505 m	COC	ORD.	Ν	5,410,	538 E	426,59	91	В	ORING	g dati	E <u>Sta</u>	art: Aug	g 11, 1	l2 Er	nd: Au	u <u>g 11, 1</u> 2	CHE	ECKED	BY DGR	
	LE TYPE											TIONS						ngth Inde		0	Oracalidation	
AU Au BU Bu DC Dy		SS Spli TW Thir ne WS Was	n Walle	d Op	en (She	lby)				TV -	Forvane Standar	d Proct	or Test	S k	SCR So	olid Core ermeabi	Reco			GS	Consolidation Direct Shear Grain Size Ar	
		SOIL PROFILE		5	SAMPL	ES.		N TER		ê	R	NAMIC ESISTA	NCE P	LOT	—×		2	RAL FURE	0	cm/s)		
ELEV DEPTH (m)	Cround	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IN R UND	VANE VANE ITACT EMOUL RAINEE	.DED) SHEA	NIL(△ II ▲ F R STRE	CON V. NTACT REMOU ENGTH	ANE JLDED	PLASTIC A PLASTIC T MIT	W OR CONTE		PERMEABILITY (cm/s)	REMARI	KS
368:4	Ground TOPSO	L /							-	=							16 16			а.		
367.9	Silty CL Brown s	ilty clay, varved, stiff,		1	ss	58	13	8 - 8	Ē	368_							11 0					
300.0	medium	plasticity, moist, trace roots Glaciolacustrine]		2	SS	67	50		E_1													
	Silty SA Reddish	ND brown silty sand, trace fine		3	RC	100	21		E	367												
		rery dense, moist		4	RC	100	33	¥	2													
	BEDRO	СК		5	RC	100	17	E														
	fractured	h black bedrock, highly 1							Ē	366												
	dark g	rey below 2.8m		6	RC	97	88		_3													
									Ē	365												
364.5	F ()	Borehole at 3.96m		7	RC	100	30		-	=												
	Stand pi up Water le	pe installed with 0.9m stick evel at 1.6 m below ground on Sept. 15, 2012																				

		nec	9								R	RECORI) of	BOR	EHC	LE	No.	BB	BAF-	BH-2054 PAGE 1 OF 1
P	ROJ	ECT	Rainy River Gold Project															ENG	SINEER	
Р	ROJ	ECT NO.	TC113921	DRI	LLEF	R <u>M</u> a	arathor	n Drillin	g		В	ORING MET	HOD 2	200 mm HS	SA, NQ	Corin	g	LOG	GED B	Y PDR
С	LIEN	IT	Rainy River Resources.	LOC	CATIO	ON <u>Pla</u>	ant Site	e Area										CON	NPILED	BY AD
E	LEV	ATION	372.196 m	COC	ORD	. <u>N</u>	5,410,8	874 E	426,5	72	В	ORING DAT	E <u>Star</u>	t: Aug 10,	12 Er	nd: Au	ı <u>g 11, 1</u> 2	CHE	CKED	BY DGR
AB	U A U B	PLE TYPES luger Bulk Dynamic Con	SS Spli TW Thir	t Spoo n Walle	on ed Op	oen (She	lby)			_	P.P. I TV	REVIATIONS Pocket Penetro Torvane Standard Proct	meter	RQD R SCR S	oint Loa ock Qua olid Cor ermeabi	ality De e Reco	ngth Index signation overy	(I ₅₀)	DS	Consolidation Direct Shear Grain Size Analysis
			SOIL PROFILE			SAMPL	.ES		TER			RESISTA	NCE PL	PENETRAT .OT ————————————————————————————————————		<u>∪</u>	KAL URE ENT		(s/u	
DE (I	EV PTH n)	Quanda	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOUL UNDRAINEE	DED	NILCON \ △ INTAC ▲ REMO STRENGTH	΄ ΑΝΕ Γ JLDED		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PERMEABILITY (cm/s)	REMARKS
3	72.2 0.0	Ground s	AY		1	ss	63	5		E	372					24				
		rootlets, Glaciolad	lty clay, varved, firm, trace moist [Upper custrine]		<u> </u>			5												
3	70.7		ning stiff, fine gravel pockets		2	ss	63	9			371						2 8 0			
	1.5	sand, tra	wn to grey silty clay, trace ce fine gravel, occasional		3	ss	79	11		2	370_						30	-		
		plasticity pockets [WML Til	s, stiff, medium to high , occasional oxidized		4	ss	83	11									29 0			
3	69.0 3.2	Silty CL	<u> </u>		5	ss	100	15		13	369					20	30			
3	3.8 3.8	occasion	vel, varved, moist, al oxidized pockets Blaciolacustrine]		. 6	RC	67		¥	4	368_									
		Silty SAI Brown si	ND Ity sand, with cobbles and		7	RC	100			Ē						12				
3	6.9	boulders [WS Till]	, some gravel, dense, wet		. 8	ss	63	34		5	367					12 0				
	5.3	BEDROO Greenish	CK a grey bedrock		9	RC	100	80		6										
48 PM		highly f	fractured from 6.1m to 6.9m		10	RC	85	18			366									
113 3:12:										7	365									
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:12:48 PM					11	RC	100	82			364_									
а GPJ р	63.7 8.5	Stand pip	Borehole at 8.5m be installed with 0.9m stick							-	=									
20120817			vel 4.1m below ground on Sept. 15, 2012																	
BHLOGS																				
ER2012E																				
1_SUMM																				
FC11392																				
EO MWS																				
ormat: AMEC GEO MWSK																				
ormat: 4																				

an	nec	9								R	RECORI) Of	= BC	DREF	IOL	E	No.	BB	BAF-		-2061 E 1 OF 1
PRO	JECT	Rainy River Gold Project																ENG	INEEF		MS
PRO	JECT NO.	TC113921	DRIL	LER	Ma	arathor	n Drillin	ig		В	ORING MET	HOD _	200 m	m HSA,	NQ C	Coring	L	LOG	GED E	3Y _	PDR
CLIE	NT	Rainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area											CON	/IPILED) BY _	DG
ELEV	ATION	374.062 m	COC	ORD.	<u>N</u> :	5,411,	001 E	426,6	87	В	ORING DATI	E <u>Sta</u>	irt: Aug	14, 12	End	l: Aug	<u>14, 1</u> 2	CHE	CKED	BY _	DGR
AU BU	PLE TYPE Auger Bulk Dynamic Cor	SS Split TW Thir	t Spoo n Walle	n ed Op	en (She	lby)				P.P. I TV	REVIATIONS Pocket Penetro Torvane Standard Procto	meter	R S	.L. Point QD Rock CR Solid Perme	Qualit Core I	ty Desi Recov	ignation	(I ₅₀)		Direct	olidation Shear Size Analysis
		SOIL PROFILE		5	SAMPL	ES		LER			DYNAMIC RESISTA	NCE P	LOT -	—×—	9	<u>ں</u>	URE		:m/s)		
ELEV DEPTH (m) 374.1		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO VANE INTACT REMOUL UNDRAINEE	.DED	NILC △ IN ▲ R R STRE	,	ED	W _P	-0+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PERMEABILITY (cm/s)	R	EMARKS
37 9.0 0.2		L /		1	ss	50	4		Ē								55				
	Brown to sand, fin	o grey silty clay, trace fine m to stiff, moist, medium to							Ē.							3	3 0				
	high plas [WML Ti occasi			2	ss	50	9		1 	373						25					
				3	ss	79	14	Į	_2	372						24					
				4	ss	83	12		3	371_						26 •					
		n thick brown sand layer at mpact, wet		5	ss	75	20									13 25)				
				8	ss	92	12		4 	370						21					
	5.0m	thick grey silty sand layer at								369											
368.0 6.1	Silty CL Dark Gre scale), w	ey silty clay, varved (mm		11	ss	92	6		- 7	368							36 0				
7.07/1/07/10 366.4 7.6 366.0 8.1		ND								367						17					
366.0	Brown si	ilty sand, occasional grey silt very dense, wet		12	ss	31	49		8	366					_						
	Glaciof			13		100 100	0		9												
20120817				15		100	85			365											
BHLOGS						100	00		E_10	364						_					
362.8				16	RC	97	33		11	363_											
HIB: 1 C113921_SUMMERZ012BHL0GS_20120817.GFJ	Standpip up. Water le	Borehole at 11.2m be installed with 0.9m stick wel at 2.2m below ground on Sept. 15, 2012																			
ormat: AMEC GEO MWSK F																					

	an	nec ⁽	9								R	REC	ORI	D OI	= B(ORE	HO	LE	No.	BB	BAF-		-2063 E 1 OF 1
	PROJ		Rainy River Gold Project																	ENG	SINEEF	۶ -	MS
			TC113921						g		В	ORINO	G MET	HOD _	200 m	nm HS.	A, NQ	Corir			GED E	-	PDR
	CLIEN		Rainy River Resources.																		/IPILED		
	ELEV	ATION	372.395 m	COC	ORD.	<u>N</u> :	5,411,(008 E	426,56	52	B	ORINO	g dat	E <u>Sta</u>	art: Aug	g 13, 1	2 Er	nd: Au	<u>ug 13, 1</u> 2	CHE	CKED	BY	DGR
	AU A BU E		SS Spli TW Thir	t Spoo Walle	n ed Op	en (She	lby)				P.P. I TV	REVIA ⁻ Pocket I Torvane Standar	Penetro e		F	RQD Ro SCR So	int Load ock Qua Ilid Core rmeabil	lity De Reco	ngth Index esignation overy	(I ₅₀)	DS	Direct	lidation Shear Size Analysis
			SOIL PROFILE		5	SAMPL	.ES		LER					CONE			ON	υ	AL		(s/m		
	ELEV DEPTH (m) 372.4	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINE	06	0 8 NILC △ II ▲ F R STRE	0 10 CON VA NTACT REMOU	ANE ILDED	2	R CONTEN	-8 4 Liquid (%) 1 ⊾ Liquid (%) 1 × Limit	PERMEABILITY (cm/s)	R	EMARKS
	37 9:0	TOPSOI Silty CL	L /		1	ss	50	7		-	372_								29				
		Brown si	lity clay, firm, trace sand and noist, occasional rootlets						81 - 83 - 83		-							23	3 O				
	371.1	[Upper G	Blaciolacustrine] ng sandy, dry at 0.8 m		2	ss	81	50		<u>_</u> 1								°					
	1.3	BEDRO			3	RC	100	87		2	371												
	368.1				4	RC	87	58		3	369												
	4.3		Borehole at 4.3m pe installed with 0.9m stick						<u></u>	-													
		Water le 2012	vel at 2.46 m on Sept. 15																				
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:12:52 PM																							

an	nec	9								F	RECO	ORD	OF B	OR	EHO)LE	No.	BB	BAF-		-2065
PRO.	JECT	Rainy River Gold Project																ENG	SINEER		MS
PRO	JECT NO.	TC113921	DRIL	LER	Ma	arathor	n Drillin	ng		В	ORING	METHO	D <u>200</u>	mm HS	A, NQ	Corir	ng	LOG	GED B	Y_	PDR
CLIEI	NT	Rainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area											CON	/IPILED	BY _	DG
ELEV	ATION	375.942 m	coc	ORD.	N	5,411,	099 E	426,7	58	В	ORING	DATE	Start: A	ug 14, 1	l2 Er	nd: Au	ug 14, 12	2 CHE	CKED	BY _	DGR
AU . BU	PLE TYPE Auger Bulk Dynamic Co	SS Spli TW Thir	t Spoo n Walle	n ed Op	en (She	lby)				P.P. TV	Torvane	enetromet		RQD Ro SCR So	ock Qua	ality De e Reco	ngth Index signation overy	к (I ₅₀)	DS	Direct	lidation Shear Size Analysis
		SOIL PROFILE	sn Sar		SAMPL	FS		ц.			DYN		ONE PEN	IETRATI	ermeabi ON	ŕ				Grain	Size Analysis
ELEV DEPTH (m) 375.9	Ground	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO \ □ INT ■ RE	ANE ACT MOULDEI AINED SH	60 NI △	80 1 LCON V INTACT REMOL RENGTH	00 ANE JLDED	PLASTIC Mate Mate Mate Mate	0 A CONTENT 0 A MOISTURE	UT (%) 0.0 TK	PERMEABILITY (cm/s)	RI	EMARKS
37 8 :9	TOPSO Silty CL			1	ss	66	8		ŧ							0					
	Brown s varved,	ilty clay, trace sand, moist, stiff, occasional rootlets Glaciolacustrine]		2	ss	58	13		1 1 1	375_						24	0 280				
374.4 1.5	Silty CL Brown s	AY ilty clay, trace fine gravel, nd, moist, occasional		3	ss	79	12		2	374							32				
	oxidized stiff [WML T	pockets, medium plasticity,							-	373											
				6	ss	96	14									F	29 - P				
371.4								⊻ 	4 	372											
4.6	Brown s	ilty sand, well graded, t, very wet e Glaciofluvial Sand]		9	ss	58	10		5	371						2	5				
								E.	Ē6	370_						20					
369.8 6.2	BEDRO		\mathbb{K}	10 11	SS RC	100 95	12 0		Ē							Č	þ				
	Dark gre	ey, highly fractured							Ē	260 -											
				12	RC	100	42		– 7	369											
				13	RC	100	44		8	368_											
366.8				14	RC	100	73			367_											
9.2		Borehole at 9.2m be installed with 0.9m stick																			
	Water L Sept. 15	evel at 4 m below ground on 5, 2012																			

an	nec	9								R	RECORD O	FB	OREHO	DLE No.	BB		BH-2069 PAGE 1 OF 2
PRO	JECT	Rainy River Gold Project													ENGI	NEER	
PRO	JECT NO.	TC113921	DRIL	LER	Ma	rathor	n Drillin	g		В	ORING METHOD	200 n	nm HSA, NO	Coring	LOGO	GED B	Y <u>PDR</u>
CLIE	NT	Rainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area								COM	PILED	BY <u>DG</u>
ELEV	ATION	363.244 m	COC	ORD.	<u>N</u> 5	5,411,0	089 E	426,44	42	В	ORING DATE				CHEC	KED I	BY <u>DGR</u>
AU . BU	PLE TYPE Auger Bulk Dynamic Cor	SS Spl TW Thi	it Spoo n Walle	n ed Op	en (She	lby)				P.P. I TV	REVIATIONS Pocket Penetrometer Torvane Standard Proctor Tes	:	RQD Rock Qu	ad Strength Inde ality Designation re Recovery bility	x (I ₅₀)	DS I	Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE			SAMPL	ES		ЦЦ			DYNAMIC CON	E PENE	TRATION				
ELEV DEPTH (m) 363.2	Ground	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	RESISTANCE 20 40 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHE/ 20 40	NIL △ ▲ AR STR	.CON VANE INTACT REMOULDEE			PERMEABILITY (cm/s)	REMARKS
369.0 0.2				1	BS				-	363_				25		_	
<u>362.5</u> 0.8	Silty CL	AY eyish brown silty clay, trace ace roots		2	ss	25	6		1	362_				26			
	Grey silt gravel, r	y clay, some sand, trace fine noist, firm, varved Glaciolacustrine]		3	ss	79	12		2					138	-4		
										361							
				6	ss	83	9		3	360							
									4	359							
	occasi	onal sand lenses		9	ss		6		5	358_			82	19 0			
<u>357.1</u> ≥ 6.1	Silty CL								6	357				37			
3:12:57 P		v silty clay, trace fine gravel, tiff, medium to high plasticity ill]		12	ss	100	9		7					0			
21/2013										356				25			
				15	ss	100	9	Į	_8	355	21	-		35 0			
U817.GPJ									9	354_							
2012				18	ss	50	29							28			
ZBHLOG									10	353_							
MMEK201				21	ss	100	17		11	352_				32 0			
13921_SU									12				83	L ¹⁴²			
				24	ss	100	7			351				35			
MWSK									_13	350		■ ⁶⁸		135			
Format: AMEC GEU MWSK FIIE. 1 C113921_SUMMERZ012BHLUGS_Z0120817.GFU Date: UZ/01/Z013 3:12:5/ PM				27	ss	100	8		14	349				35			
-ormat: A									- 15			66 68		140 142			

	<u>90</u>	nec [©]								R	RECORD	OF I	BOR	EHO	LE	No.	BB	BAF-	BH-2069 PAGE 2 OF 2
	PROJ																	SINEER	
	PROJ	ECT NO. TC113921	DRI	LLEF	R <u>M</u> a	rathor	n Drillin	g		_ В	ORING METH	OD _200) mm HS	SA, NQ	Cori	ng	LOG	GED B	Y <u>PDR</u>
	CLIEN																		BY <u>DG</u>
	ELEV	ATION <u>363.244 m</u>	_ COO	ORD.	<u>N</u> :	5,411,(089 E	426,442		_ В	ORING DATE						CHE	CKED	BY DGR
	AU A BU E	Auger SS S Bulk TW	Rock Core Split Spoc Thin Walle Nash Sar	on ed Op	en (She	lby)			-	P.P.F TV 1	REVIATIONS Pocket Penetrom Torvane Standard Proctor		RQD R SCR S		ility De Rece	ngth Index esignation overy		DS	Consolidation Direct Shear Grain Size Analysis
ŀ	-	SOIL PROFILE			SAMPL	ES		ЕR			DYNAMIC (RESISTAN	CONE PE	NETRAT	ION	ŕ	귀뿝다			
D	ELEV EPTH (m)	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (M)	ELEVATION (m)	1 20 40 MTO VANE INTACT ■ REMOULD UNDRAINED \$ 20 40	60 N PED A SHEAR S	80 NILCON \ NTAC REMO TRENGTH	100 /ANE T ULDED		-03 BLAO 0 MATURAL MOISTURE		PERMEABILITY (cm/s)	REMARKS
									;	348_						31			
				30	ss	100	10									0			
										347_									
				33	ss	100	12			346						35			
				╞															
									8										
				1					:	345			-						
				36	ss	100	14									33	$\left - \right $		
										344_									
										242									
										343									
									1	111									
N				1						342									
3:12:57 PM		ocassional fine sand lenses at 21.3m		37	ss	100	13								:	27 0			
3 3:1								=_2		 341									
1/201																			
: 02/0									3										
Date									;	340			_						
GPJ	339.6 23.6	SAND TILL		38	RC	100	33	Ë.		111									
0817.	339.2 24.1	[Inferred WS Till] BEDROCK								339									
2012																			
OGS				39	RC	100	50			220									
2BHL										338									
ER201								E_2	6	111									
JMME				40	RC	100	44	N SE		337			_						
21_SI										111									
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013	336.1 27.1	End of Borobolo at 07.1m	_2	1				E_2	7				_						
ile: TC	<i>∠</i> 1.1	End of Borehole at 27.1m Standpipe installed with 0.8m stick																	
		up Water lovel 8.0 m below ground																	
Format: AMEC GEO MWSK		Water level 8.0 m below ground surface on Sept. 15, 2012																	
GEO																			
MEC																			
nat: A																			
For																			

	an	nec®									R	RECORD OF	BOREH	OLE N	o. BE	BAF-	BH-2073 PAGE 1 OF 2
	PROJ	ECT R	Rainy River Gold Project												ENG	GINEEF	MS
	PROJ	ECT NO. T	C113921	DRIL	LER	Ma	arathor	n Drillin	Ig		В	ORING METHOD 2	200 mm HSA, N	Q Coring	LOG	GED E	BY PDR
	CLIEN	IT <u>R</u>	ainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area							COM	APILED	BY DG
	ELEV	ATION <u>3</u>	67.505 m	COC	ORD.	N	5,411,	158 E	426,54	7	В	ORING DATE Star	t: Aug 15, 12	End: Aug 1	<u>7, 1</u> 2 CHE	ECKED	BY DGR
	AU A BU E		RC Roc SS Spli TW Thir WS Was	t Spoo v Walle	n ed Op	en (She	lby)				P.P. I TV	REVIATIONS Pocket Penetrometer Torvane Standard Proctor Test	RQD Rock (oad Strength Quality Desigr Core Recover ability	nation	DS	Consolidation Direct Shear Grain Size Analysis
		S	OIL PROFILE		5	SAMPL	ES		L TER			DYNAMIC CONE I RESISTANCE PL	PENETRATION	γ γ	NT	(s/m	
	ELEV DEPTH (m) 367.5	Ground su	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 40 60 MTO VANE □ INTACT ■ REMOULDED UNDRAINED SHEAR 20 40 60	80 100 NILCON VANE △ INTACT ▲ REMOULDE STRENGTH (kPa)	ED W _P a) WATER C 20		PERMEABILITY (cm/s)	REMARKS
	36 9.9 0.1	TOPSOIL Silty CLAY			1	ss	54	7			367_			22 27			
		occasional varved, me	v clay, trace gravel, oxidized pockets, moist, edium plasticity, stiff aciolacustrine]		2	ss	66	15		1				0 26 0			
					3	тw	37			2	366						
											365						
						66	100	11		3				22			
					6	ss	100	11			364				•		
	<u>362.9</u> 4.6									4	363_						at 4 Gm
	4.0	Silty CLAY Dark greys stiff [WML Till]	silty clay, moist, firm to		9	тw	75			5	362_						at 4.6m PP=167.4 kPa TV=71.8 kPa
										6							at 6.1m
3:13:01 PM					12	тw	75				361		99	140			PP=191.3 kPa TV=62.2 kPa
013 3:1										7			99				
Date: 02/01/2013					15	ss	100	6		8	360			3	9		
Date:											359_						
7.GPJ										9							
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ					18	ss	100	8			358_			30			
-OGS_2										10							
012BHI										-	357			_			
IMER2					21	тw	75			11							at 10.7m PP=191.3 kPa TV=119.6 kPa
1_SUN									- 	-	356			_			
C11392										12							
File: T(24	ss	100	11			355			36			
										13							
EO MV	353.8										354						
Format: AMEC GEO MWSK	13.7	BEDROCK Greenish g	(grey, moderately fractured		28	RC	93	86		14	353_						
Forma										15							

≧ AMFC

am	ec	9								F	REC	ORI	0 0	F B(ORE	EHO	LE	No.	BE	BAF-		-2073 E 2 OF 2
PROJE	CT	Rainy River Gold Project																	ENG	SINEEF	ર	MS
PROJE	CT NO.	TC113921	DRII	LER	R <u>M</u> a	arathor	n Drillin	g		E	BORING	G MET	HOD	200 m	nm HS	A, NQ	Corir	ng	LOG	GED E	3Y	PDR
CLIENT	Г	Rainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area												CON	APILED) BY	DG
ELEVA	TION	<u>367.505 m</u>	COC	ORD.	N	5,411,	158 E	426,54	17	E	BORING	g dati	E <u>Sta</u>	art: Au	g 15, 1	2 Er	nd: Ai	u <u>g 17, 1</u> 2	CHE	CKED	BY	DGR
AU Au BU Bu		SS Spli TW Thir	t Spoc n Walle	n ed Op	en (She	lby)				P.P. TV	REVIA ⁻ Pocket Torvane Standar	Penetro e	meter	F	RQD Ro SCR So	oint Load ock Qua olid Core ermeabil	lity De Reco	ngth Index esignation overy	(I ₅₀)		Direc	olidation t Shear Size Analysis
		SOIL PROFILE		· ·	SAMPL	ES		К			DY	NAMIC	CONE	E PENE	TRATI	ON	Ĺ	그뿞드				
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ R UND	VANE ITACT EMOUL RAINEE	DED DSHEA	§0 8 NIL(△ 1 ▲ F IR STRE	30 1 CON V NTACT REMOU ENGTH	00 ANE		W O ER CONTEI		PERMEABILITY (cm/s)	F	REMARKS
350.6				29	RC	93	84		16	352_ 351_												
16.9	Stand pi up	Borehole at 16.9m pe installed with 0.9m stick evel at 11 m below ground on ; 2012																				

	an	nec ^o								F	RECO	ORE) Of	= B(ORE	EHO	DLE	No.	BB	BAF-	BH-207	
	PROJ	ECT Rainy River Gold Project																	ENG	BINEEF		_
	PROJ	ECT NO. <u>TC113921</u>	DRI	LLEF	R <u>M</u> a	arathor	n Drillin	g		В	ORING	METH		200 m	m HS	A, NQ	Corir	ng	LOG	GED E	BY <u>ARM</u>	
	CLIEN	T Rainy River Resources.	LOC	CATIC	ON <u>Pla</u>	ant Site	e Area												CON	<i>I</i> PILED	BY DG	
	ELEV	ATION <u>365.064 m</u>	CO	ORD	. <u>N</u>	5,410,3	335 E	426,6	98	B	ORING	DATE	<u>Sta</u>	art: Aug	g 26, 1	2 Er	nd: Ai	ug 27, 12	CHE	CKED	BY DGR	
	AU A BU E		t Spoo n Wall	on ed Op	oen (She	elby)				P.P. TV	REVIAT Pocket P Torvane Standard	enetro		F	RQD Ro SCR So	oint Loa ock Qua olid Core ermeabi	ality De e Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Ana	alysis
		SOIL PROFILE			SAMPL	.ES		Z TER		_	RE	SISTA	NCE P	LOT	TRATI X		<u></u>	RAL URE		:m/s)		
	ELEV DEPTH (m) 365.1	DESCRIPTION Ground surface	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	20 MTO \ □ INT ■ RE UNDR 20	/ANE ACT MOULI AINED	SHEA	NILO △ II ▲ F R STRE		ANE		W O ER CONTE	00 X [S LIQUID (%) X [(%)	PERMEABILITY (cm/s)	REMARKS	3
	0.0	Topsoil		1	AS		0	Í¥[Ē	-										ш	water flowing from installation	
	<u>364.3</u> 0.8	Sandy SILT Brown sandy silt, trace clay, varved, stiff		2	ss	54	15		1 1 1	364							20	,				
	362.8	[Upper Glaciolacustrine]		3	τw	66			2	363_												
	2.3	Silty CLAY Dark brown silty clay, trace sand, trace gravel, stiff		4	ss	83	15		3	362_							20	Þ				
		[WML Till]		5	ss	100	16										20	Þ				
				6	ss	100	11		_4	361							22	0				
				7	ss	100	6		5	360_		28			92	2	Ê	5				
V									6	359_		_	41 I			(127	36				
File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:13:05 PM				10	ss	100	8		7	358_			51 ■		89	107	115					
2/01/2013						400												35				
J Date: (13	ss	100	10		8 	357				67 ■		[134 158					
120817.GF				14	тw	100			9	356												
HLOGS_20									10	355_			5- ■	1	78	C	119 149					
2012BF									Ē													
SUMMER				17	ss	100	10		11	354_								28				
C113921_{									12	353_								32				
		increased sand content, gravelly below 12.2m [Possible transition zone to WS Till]		18	ss	100	21		13	352								27				
MWS									ŧ	-												
Format: AMEC GEO MWSK									14	351											SPt refusal a 13.7m	ıt
ormat: A	350.6 14.5	COBBLES and BOULDERS [Inferred WS Till]		19	RC	0																

an	nec	3								F	REC	ORI	0 0	F B(ORE	HO	LE	No.	BE	BAF		-2076 E 2 OF 2
PROJ	IECT	Rainy River Gold Project																	ENC	GINEEF	۲.	MS
PROJ	IECT NO.	TC113921	DRI	LLEF	R <u>M</u>	larathor	n Drillin	g		В	ORING	6 MET	HOD _	200 m	nm HS	A, NQ	Corir	ng	LOC	GGED I	BY _	ARM
CLIEN		Rainy River Resources.																		MPILE	-	
ELEV	ATION	<u>365.064 m</u>	COC	ORD.	N	5,410,3	335 E	426,69	8	B	ORING	6 DATI	E <u>Sta</u>	art: Au	g 26, 1	2 Er	nd: Au	ug 27, 12	CHE	ECKED	BY	DGR
AU A BU E		SS Sp TW Th	lit Spoo in Walle	on ed Op	en (Sh	elby)				P.P. TV	REVIAT Pocket F Torvane Standar	Penetro	meter	F	RQD Ro SCR So	ock Qua	ility De Reco	ngth Index esignation overy	: (I ₅₀)		Direct	olidation Shear Size Analysis
		SOIL PROFILE			SAMPI	LES		LER		_	DY RE	NAMIC	CONE	LOT	—×		<u>ں</u>	URE		(s/u		
ELEV DEPTH (m)		DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RE	0 4 VANE TACT EMOUL RAINED	DED DED	0 8 NIL0 △ 1 ▲ F R STRE	30 10 CON V/ NTACT REMOU ENGTH	00 ANE ILDED				PERMEABILITY (cm/s)	R	EMARKS
<u>348.6</u> 16.5		CK ttical fracture from 16.6m to		20	RC	0			16	349_												
	17.0m			21	RC	100	67		17	348_ 												
				22	RC	100	90															
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPU Date: 02/01/2013 3:13:05 PM 6 05 1:00	Standpip up Artesian	Borehole at 19.05m be installed with 0.9m stick flow observed from the well 15, 2012							<u>19</u>													

an	ned	9											R	ECO	ORE) OF	B	ORE	101	LEN		3H-4 1 OF 2
PROJ	ECT	Rainy River Gold Project																	ENG	BINEER		//S
PROJ	ECT NO.	TC113921	DRIL	LER	Ma	arathor	n Drillir	ng		В	ORINO	G METH		200 n	nm HS	A, NQ	Cori	ng	LOG	GED E	BY _/	AD
CLIEN	IT	Rainy River Resources.	LOC	ATIC	N <u>Pla</u>	ant Site	e Area												CON	APILED) BY <u>[</u>)G
ELEV	ATION	369.078 m	COC	ORD.	N	5,410,	181 E	426,	759	В	ORINO	G DATE	Sta	rt: Oc	t 13, 1	2 En	d: Od	<u>ct 14, 12</u>	CHE	ECKED	BY _[DGR
	PLE TYPE											TIONS		F	P.L. Po	oint Load	d Stre	ngth Index	: (I ₅₀)			
AU A BU E DC E		SS Spli TW Thir ne WS Wa	n Walle	ed Op	en (She	lby)				TV '	Torvane	Penetron e rd Proctor		5	SCR So	ock Qua olid Core ermeabil	e Řec	esignation overy		DS	Consolic Direct S Grain Si	
		SOIL PROFILE			SAMPL	ES		ЦЦ				(NAMIC) ESISTAN		PENE	TRATI	ON	ŕ	귀ᇟᄃ				,
ELEV DEPTH (m) 369.1	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	MTO III R UND	VANE VANE TACT EMOULE RAINED	DED SHEAF	D E NIL(△ I ▲ F R STRE	SO 1 CON V NTACT REMOL ENGTH	<u>ψο</u> ANE JLDED		ER CONTENT CON		PERMEABILITY (cm/s)	REI	MARKS
0.0	PEAT	eat, fiberous, damp to moist,	<u></u>							-									Ħ			
368.5 0.6	_ some ro	ootlets																				
	Light broker trace group	own silty clay, some sand, avel, stiff, dry to damp,		1	ss	46	15			368_												
	varved,	occasional oxidized pockets Glaciolacustrine]		2	ss	100	13	Į Į Į	2	367_												
				3	ss	100	12		3								21 H	⊶				
	trace seams a	sand, trace gravel, sand at 3.1m		4	ss	100	11			366												
364.5									4	365												
4.6	Silty CL Dark gro gravel, f [WML T	ey silty clay, trace sand, trace firm, damp, medium plasticity		5	ss	62	12		5	364												
	becon	ning stiffer at 6.1m		6	ss	100	9		6	363							i	27 ↔				
									7	362												
				7	ss	100	8		8	361												
									9	360								6				
				8	ss	100	10		10	359_								⊳				
									11	358												
356.9 12.2	Silty CL						-		2	357							Γ.	34				
	gravel, v	ey silty clay, trace sand, trace varved, soft to firm, damp to		9	ss	100	9		-													
	moist [Lower (Glaciolacustrine]							13 	356									$\left \right $			
									14	355												
354.1																						

Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:14:10 PM

2		ec)											R	ECC	ORD	OF	B	ORE	10		NO. BH-4 PAGE 2 OF 2
PI	ROJEC	ст _	Rainy River Gold Project																	ENG	GINEEF	R <u>MS</u>
PI	ROJEC	CT NO	TC113921	DRII	LLER	<u>M</u>	arathor	n Drillin	g		В	ORING	G MET	HOD _	200 m	nm HS/	A, NQ	Corir	ng	LOG	GED I	BY <u>AD</u>
C	LIENT	-	Rainy River Resources.																			DBY DG
El	LEVAT	ION	369.078 m	COC	ORD.	N	5,410,	181 E	426,7	59	B	ORINO	g dati	E <u>Sta</u>	art: Oc	t 13, 1	2 En	d: Oc	<u>:t 14, 12</u>	CHE	CKED	BY DGR
AB	U Aug U Bull		SS Split TW Thin	t Spoo	on ed Op	en (She	elby)				P.P. I TV	Pocket I Forvane	TIONS Penetro e d Procto	meter	F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index esignation overy	(I ₅₀)	C DS GS	Consolidation Direct Shear Grain Size Analysis
	Í		SOIL PROFILE			SAMPL	ES		ER _			DY	NAMIC ESISTA				ON	0	18 E		(s/u	
	PTH n)		DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	2 MTO □ IN ■ RI UNDI	VANE ITACT EMOUL RAINED	0 6 .DED) SHEA	0 8 NIL(△ I ▲ F R STRE	0 10 CON V/ NTACT REMOU ENGTH	90 ANE LDED			-00 4 LIQUID (%) 4 LIQUID (%)	PERMEABILITY (cm/s)	REMARKS
1		Silty SAN Coarse g	ID rained silty sand, some silt,		10	ss	100															heaving sand at 14.9m
	v [wet WS Till]			11	RC	52	0		È												
		boulder	s and cobbles below 15.5m							E_16	353_											
35	52.3				12	RC	71	0														
1		BEDROC Grey bed			13	RC	100	68		17	352											
					14	RC	92	28		18	351_											
					15	RC	100	75	E	L L L L 19	350_											
					}					Ē												
	49.1				16	RC	100	80														
	19.9 E 5	Standpip Iush-moi	orehole at 19.9m e installed with unted steel casing																			
Format: AMEC GEO MVSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:14:11 PM		Nater lev	rel at 1.4m below ground pon completion																			

an	nec	3											R	ECO	ORD	OF	B	ORE	101			BH-5
PRO	JECT	Rainy River Gold Project																	ENG	INEEF	۲.	MS
PRO.	JECT NO.	TC113921	DRII	LER	Ma	arathor	n Drillin	ıg		В	ORINO	G MET	HOD	200 m	nm HSA	A, NQ	Corir	Ig	LOG	GED E	BY _	AD
CLIEN	T	Rainy River Resources.	LOC	ATIC	ON <u>Pla</u>	ant Site	e Area												CON	/IPILED	DBY	DG
ELEV	ATION	370.995 m	COC	ORD.	N	5,410,2	210 E	426,80)4	В	ORING	g dati	E <u>Sta</u>	art: Oc	t 11, 12	2 En	d: Oc	t 12, 12	CHE	CKED	BY	DGR
AU / BU I		SS Sp TW Thi	lit Spoc n Walle	n ed Op	en (She	elby)				P.P. I TV	Pocket Forvane	TIONS Penetro e d Procto	meter	F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index signation overy	(I ₅₀)		Direct	olidation Shear Size Analysis
		SOIL PROFILE		· ·	SAMPL	.ES		ШШ			DY	'NAMIC	CONE	PENE	TRATIO	NC	ŕ	그꼾드				
ELEV DEPTH (m) <u>371.0</u> 0.0	Ground	DESCRIPTION	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	MTO IN R UND	VANE ITACT EMOUL RAINED	DED DED	0 8 NIL0 △ 1 ▲ F R STRE	CON VA)0 ANE LDED (kPa)		-0 4 MOISTURE CONTENT CONTENT		PERMEABILITY (cm/s)	R	EMARKS
370.4									Ē													
0.6	Silty CL Brown s gravel, v	ilty clay, some sand, some /arved, stiff, damp		1	ss	62	14		1	370												
	LObber	Glaciolacustrine]		2	ss	79	15		2	369							19 •					
<u>368.7</u> 2.3	Dark bro trave gra	own silty clay, trace sand, avel, stiff, damp		3	ss	71	15		- 3	368_												
	[WML T	11]		4	ss	100	11	-⊻										28	-1			
366.4									_4	367												
4.6 365.8 5.2	Grey sill	ND and sand, trace gravel, firm, moist, wet Glaciolacustrine]		5	ss	46	37		5	366_							15					
	BEDRO	es at 5.1m		6	RC RC	61 25	61 12		6	365												
				8	RC	90	53		7	364_												
									8	363_												
				9	RC	100	46		9	362_												
361.4				10	RC	94	23		E													
9.6		Borehole at 9.6m be installed with 0.9m stick																				
	Water le surface	evel at 3.4 m below ground upon completion																				

an	nec ^o										REC	ORD O	F BC	ORE	101	E N	O. BH-7 PAGE 1 OF 2
PROJ	ECT Rainy River Gold Project														ENG	INEER	
PROJ	ECT NO. TC113921	DRI	LLEF	R <u>Ma</u>	arathor	n Drillir	ng		В	ORING METHO	D <u>200 i</u>	mm HSA, NC	Corin	<u>g</u>	LOG	GED B	Y <u>AD</u>
CLIEN	T Rainy River Resources.	LOC	CATIO	ON <u>Pla</u>	ant Site	e Area									CON	IPILED	BY DG
ELEV	ATION <u>369.494 m</u>	CO	ORD	. <u>N</u> :	5,410,	185 E	426,8	07	В		Start: O	ct 12, 12 E	nd: Oct	<u>: 13, 12</u>	CHE	CKED	BY <u>DGR</u>
AU A BU E		lit Spoo in Wall	on ed Op	en (She	lby)				P.P. I TV	REVIATIONS Pocket Penetromet Torvane Standard Proctor T	er	P.L. Point Loa RQD Rock Qu SCR Solid Col k Permeat	ality Des re Reco	signation	: (I ₅₀)	DS	Consolidation Direct Shear Grain Size Analysis
	SOIL PROFILE			SAMPL	ES		LER			DYNAMIC CO RESISTANC	ONE PEN E PLOT		υ	AL		m/s)	
ELEV DEPTH (m) 369.5	DESCRIPTION Ground surface	STRAT PLOT	NUMBER	ТҮРЕ	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER	DEPTH (m)	ELEVATION (m)	20 40 MTO VANE □ INTACT ■ REMOULDEI UNDRAINED SH 20 40	60 NIL D ▲ IEAR STR	80 100 .CON VANE INTACT REMOULDED	WATE	R CONTENT CONT		PERMEABILITY (cm/s)	REMARKS
0.0	TOPSOIL							ŧ	369_								
368.9 0.6	Silty CLAY Brown silty clay, some sand, trace gravel, occasional light grey silt pockets, firm to stiff, dry to damp,		1	ss	67	13			368_								
	trace organics [Upper Glaciolacustrine]		2	ss	87	16		2 2					16 •	1			
	occasional sand seams below 2.4m		3	ss	100	14		3	367								
			4	ss	100	9	Ţ		366								
<u>364.9</u> 4.6	Silty CLAY		5	ss	100	11			365				19 19				
	gravel, stiff, high plasticity, becoming varved, more silty, soft to firm, damp, below 4.83m								364								
<u>363.4</u> 6.1	Silty CLAY Dark grey silty clay, trave gravel, firm to stiff, damp, medium to high plasticity		6	ss	100	13			363								
	[WML Till]								362								
			7	ss	100	13		8	361								
								ŧ.									
357.3			8	ss	100	14			360				23)			
								ŧ	359		_				\vdash		
								E 11									
								ŧ	358_						$\left - \right $		
257.0								12									
357.3 12.2	Silty CLAY Dark brown silty clay, trace sand,		9	ss	100	11		ŧ	357_				2	7			
	trace gravel, varved, occasional brown silty sand pockets, soft to firm.		Ĺ					E 13						•			
	damp [Lower Glaciolacustrine]							Ē	356_								
								ŧ.	300_								
								E_14									
								15	355								

3	mec	Ø											R	ECC	ORD) OF	B	OREI	10		NO. BH-7 PAGE 2 OF 2
PF	ROJECT	Rainy River Gold Project																	ENG	GINEEF	R <u>MS</u>
PF	ROJECT NC	. <u>TC113921</u>	DRII	LLEF	R <u>M</u>	arathor	n Drillin	Ig		В	ORINO	G MET	HOD _	200 m	nm HS/	A, NQ	Corir	ng	LOG	GED I	BY <u>AD</u>
CL	IENT	Rainy River Resources.	LOC	ATIC	ON <u>PI</u>	ant Site	e Area												CON	MPILE	DBY DG
EL	EVATION	<u>369.494 m</u>	COC	ORD.	. <u>N</u>	5,410,	185 E	426,80	07	В	ORINO	G DAT	E <u>Sta</u>	art: Oc	t 12, 1	2 En	d: Oc	<u>t 13, 12</u>	CHE	ECKED	BY DGR
AL BL	AMPLE TYF J Auger J Bulk C Dynamic C	SS Spli TW Thir	it Spoc n Walle	on ed Op	en (She	elby)			_	P.P. I TV	REVIA Pocket I Forvane Standar	Penetro		F	RQD Ro SCR So	ck Qua	lity De Reco	ngth Index esignation overy	(I ₅₀)		Consolidation Direct Shear Grain Size Analysis
		SOIL PROFILE		Ş	Sampl	.ES		TER		_	R	ESISTA	CONE	LOT	— ×	_	<u>∪</u>	LAL URE ENT	_	(s/u	
ELE DEF (n	тн	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	RECOVERY (%)	SPT "N" VALUES or RQD	WELL / PIEZOMETER INSTALLATION	DEPTH (m)	ELEVATION (m)	MTO IN RI UND			NIL(△ I ▲ F R STRE		ANE LDED		-0 a MATURAL -0 a MOISTURE EILAO		PERMEABILITY (cm/s)	REMARKS
<u>35</u> 1	5.2 BOUL	DERS ed WS Till]		10	RC	42	0		16	354_											
35	2.0		8	11	RC	47	0		Ē	353_											
	6.6 BEDR	OCK o black bedrock, fractured		12	RC	100	83		17	352_											
		cal fracture from 18.3m to the the core		13	RC	100	80		18 19	351											Vertical fracture running from 18.3m to the end of borehole at 20.0m
34	9.5			14	RC	100	46		E20	350_											
	0.0 End o	f Borehole at 20.02m bipe installed with 0.9m																			
Format: AMEC GEO MWSK File: TC113921_SUMMER2012BHLOGS_20120817.GPJ Date: 02/01/2013 3:14:18 PM	Water	e upon completion																			

APPENDIX B

SLUG TESTING RESULTS FOR OVERBURDEN AND SHALLOW BEDROCK

		een			n and Shallow Bedrock	Hydraulic				
Borehole ID	Top (mbgs)	Bottom (mbgs)	Date of Test	Data Type	Screen and Sand Pack Lithology	Conductivity (m/s)	Method	Comments	Strat Unit*	Hydrostrat Unit**
BH11-04	13.4	16.5	June 8-9, 2012	Transducer	Highly Weathered/Fractured Bedrock. Sand pack extends into gravel till	4.0E-07	Bouwer-Rice Confined		BR	SBR
BH11-08A	24.0	25.5	June 16, 2012	Flow Measurement	Bedrock	2.6E-06	Constant Head	Flowing Artesian	BR	SBR
BH11-08B	19.8	21.3	June 16, 2012	Flow Measurement	Gravelly Till	1.6E-06	Constant Head	Flowing Artesian	WS	PLGD
BH11-08C	4.6	6.1			Silty Clay Till			Well Blocked; Silted in	WML	PA
BH11-09	4.6	6.1	June 11, 2012		Silty Clay Till	5.0E-07	Bouwer-Rice Unconfined	Sand and Gravel layer between 4.64 and 4.8	WML	PA
BH11-11A	36.3	37.8	June 10, 2012	Transducer	Bedrock	2.8E-07	Bouwer-Rice Confined		BR	SBR
BH11-11B	32.8	34.3	June 10, 2012	Transducer	Silty Sand Till over bedrock	2.7E-06	Bouwer-Rice Confined	Test repeated twice	WS	PLGD
BH11-11C	6.1	7.6	June 10, 2012	Transducer	Silty Sand (Glacial Sand)	1.4E-06	Bouwer-Rice Unconfined	Test repeated twice	GS	NSS
BH11-12A	22.5	27.0	June 12, 2012	Transducer	Highly Weathered/Fractured Bedrock	1.7E-05	Bouwer-Rice Confined	Noisy data; possible underdamped response.	BR	SBR
BH11-12B	4.6	6.1	June 12-13, 2012		Silty Clay Till	1.1E-08	Bouwer-Rice Unconfined		WML	PA
BH11-13A	19.8	22.8			Glaciolacustrine Sandy Silt / Bedrock			Not Assessed	BR/GL	SBR
BH11-13B	13.4	14.9	June 15, 2012		Silty Clay Till	3.7E-07	Constant Head	Flowing Artesian	WML	PA
BH11-17	10.7	12.2	June 9-10, 2012		Silty Clay Till	1.3E-07	Bouwer-Rice Confined		WML	PA
BH11-18A	41.8	43.4			Bedrock					SBR
BH11-18B	24.4	25.9			Gravely Till					PLGD
BH11-18C	9.1	10.7			Silty Clay Till					PA
BH11-19A	28.5	30.1	June 13, 2012		Bedrock	Highly Conductive				SBR
BH11-19C	4.6	6.1	June 13, 2012		Silty Clay Till	1.9E-07	Bouwer-Rice Unconfined			PA
BH11-20A	25.0	26.5			Glaciolacustrine Silty Clay / Gravely Till			Elowing artogian; head above surface not great	WS/GL	PLGD
BH11-21A	37.8	39.3	June 14, 2012	Flow Measurement	Highly Weathered / Fractured Bedrock	1.4E-07	Constant Head		BR	SBR
BH11-21B	16.8	18.3	June 13, 2012		Silty Clay Till	2.3E-08	Bouwer-Rice Unconfined			PA
BH11-21C	7.6	9.1	June 13, 2012		Silty Clay Till	8.6E-10	Bouwer-Rice Unconfined			PA
BH11-22	20.0	21.5	June 14, 2012	Transducer	Bedrock	3.7E-06	Bouwer-Rice Unconfined			SBR
BH11-23A	36.3	37.8	June 14, 2012		Silty Sandy Gravel Till	3.2E-05	Bouwer-Rice Confined			PLGD
BH11-24A	18.3	22.8	June 8, 2012	Manual	Bedrock (Top of screen in Silty Clay Till and Glaciolacustrine Clay)	1.3E-06	Bouwer-Rice Confined			SBR
BH11-24B	10.7	12.2	June 8-9, 2012		Silty Clay Till	1.8E-05	Bouwer-Rice Confined	Test repeated twice; results suggest a seam of coarser material in the silty clay	WML	PA
BH11-25	23.6	25.1	June 15, 2012	Transducer	Gravely Till	1.0E-04	Bouwer-Rice Confined		WS	PLGD
BH11-27	25.9	28.9	June 8-9, 2012	Transducer	Sandy Gravel and Silt Till over Fractured Bedrock	3.6E-06	Bouwer-Rice Confined		BR/WS	PLGD
BH11-28	15.2	16.7			Silty Clay Till				WML	PA
BH11-29	24.4	25.9	June 15, 2012	Manual	Silty Clay Till	3.0E-08	Bouwer-Rice Unconfined		WML	PA
BH11-33A	42.4	43.9	June 14, 2012	Flow Measurement	Highly Weathered Bedrock	6.9E-07	Constant Head	Flowing Artesian	BR	SBR
BH11-33B	12.2	13.7	June 14, 2012	Manual	Silty Clay Till	2.7E-08	Bouwer-Rice Unconfined		WML	PA
BH11-34A	35.1	36.6	June 14, 2012	Flow Measurement	Highly Fractured Bedrock	8.2E-06	Constant Head	Flowing Artesian	BR	SBR
BH11-34B	9.2	10.6			Silty Clay Till			Well blocked	WML	PLGD
BH11-35	11.8	13.3	June 11-13, 2012	Transducer	Bedrock	3.2E-10	Bouwer-Rice Confined		BR	SBR
BH11-36	5.2	6.7			Sand Till over Highly Fractured Bedrock			Dry	BR/WS	PLGD
BH11-38	19.2	20.7	June 12, 2012	Transducer	Gravelly Till	Highly Conductive				PLGD
BH11-39	2.7	4.3			Fractured Bedrock					SBR
BH11-40	10.0	11.6	June 10, 2012	Transducer	Boulders over Bedrock	5.9E-06	Bouwer-Rice Confined			SBR
BH11-41	14.8	16.3			Sandy Till					PLGD
BH11-44A	16.2	17.7			Highly Fractured Bedrock	Highly Conductive				SBR

Table B-1 Summary Details of AMEC Slug Testing in Overburden and Shallow Bedrock

Borehole	Scr	reen				Hydraulic				Hydrostrat
ID	Тор	Bottom	Date of Test	Data Type	Screen and Sand Pack Lithology	Conductivity	Method	Comments	Strat Unit*	Unit**
	(mbgs)	(mbgs)				(m/s)				Unit
BH11-50A	11.9	12.4	June 8, 2012	Manual	Bedrock	1.8E-11	Bouwer-Rice Confined		BR	SBR
BH11-51A	17.4	18.9	June 14, 2012	Flow Measurement	Glaciolacustrine Silty Clay over Highly Weathered/Fractured Bedrock	1.7E-05	Constant Head	Flowing Artesian	BR/GL	SBR
BH11-51B	10.7	12.2			Silty Clay Till			Under ponded water surface	WML	PA

* Interpreted stratigraphic units for the piezometer interval

GL = Glaciolacustrine sediments, either from the Wylie or the Brenna Formations

GS = Glacial sand, most likely from the Brenna Formation

WML = Whitelake Mouth Till

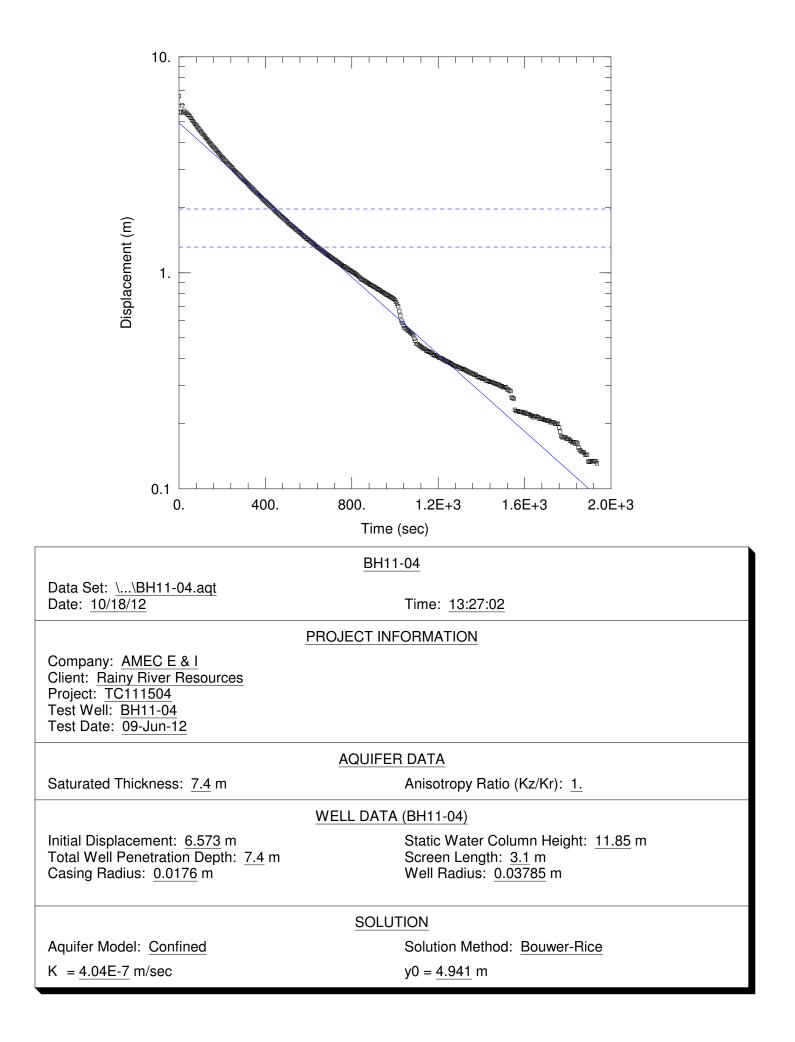
WS = Whiteshell Till

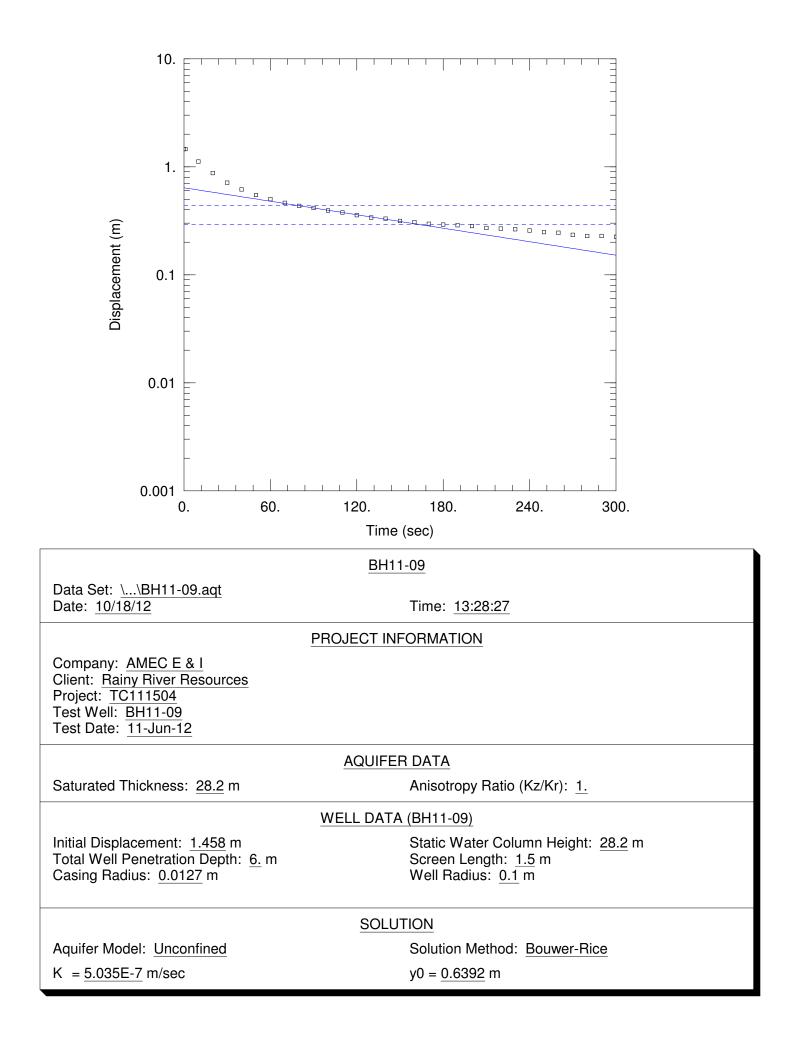
BR = Bedrock

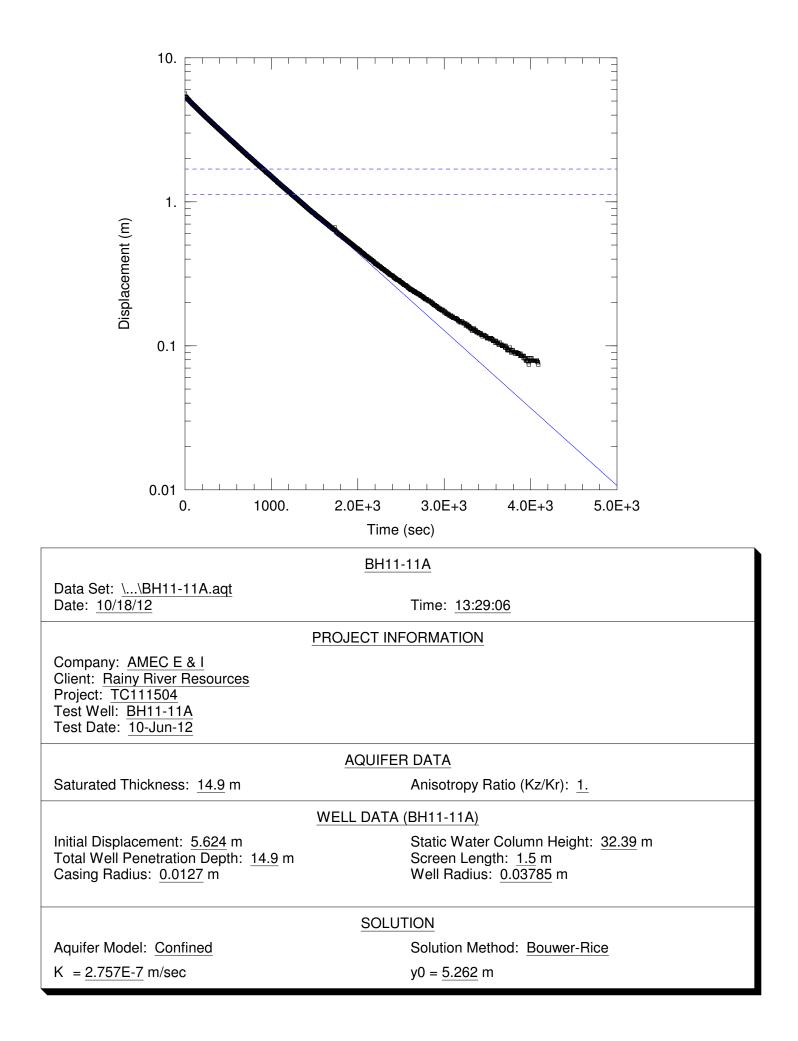
** Hydrostratigraphic units for which the groundwater conditions at the piezometer interval are considered representative

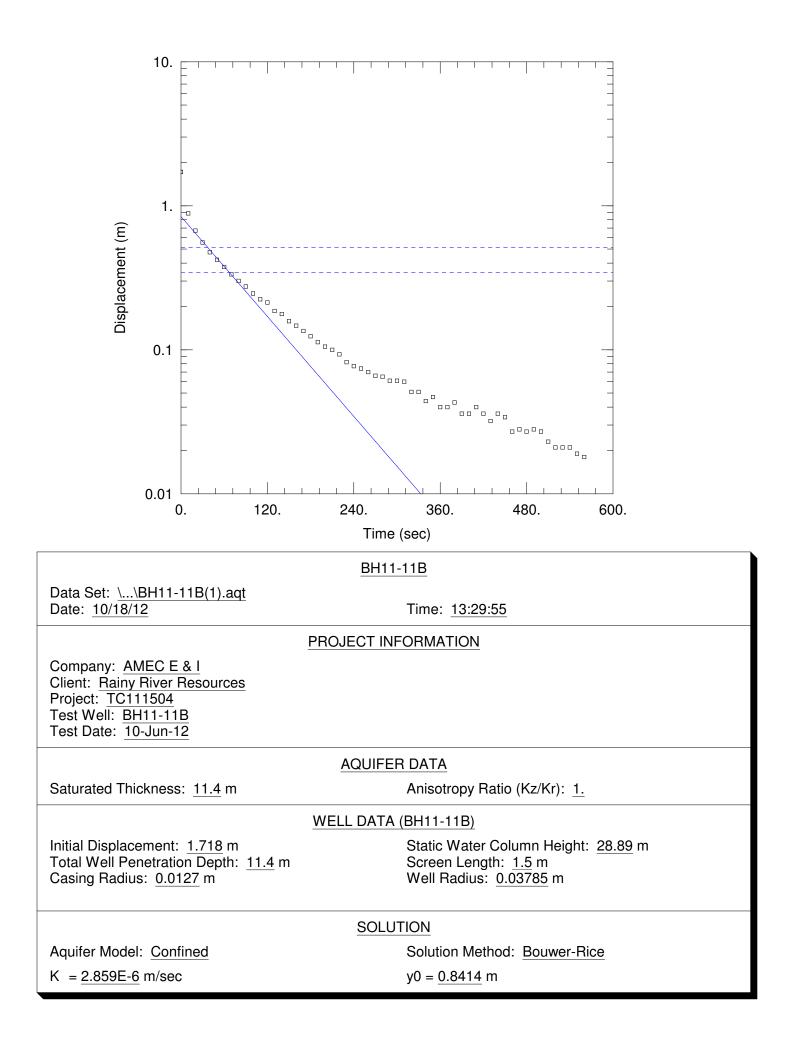
NSS = Near-surface system

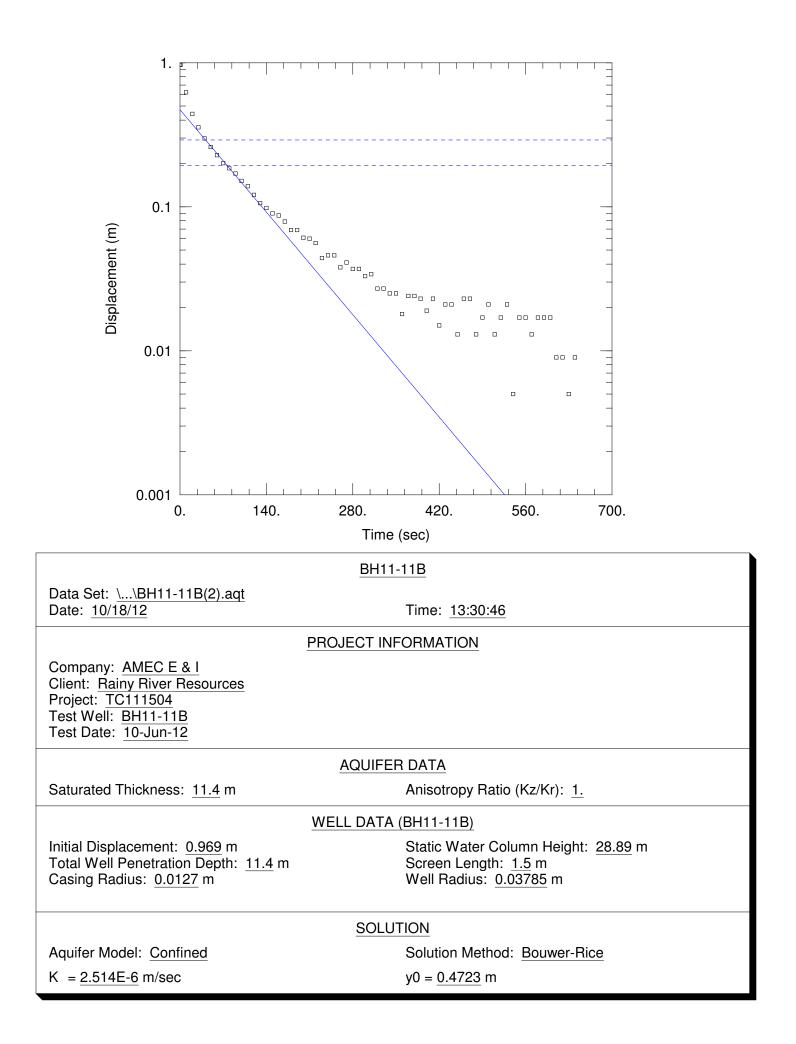
PA = Pleistocene aquitard (in this case all Whitemouth Lake Till)

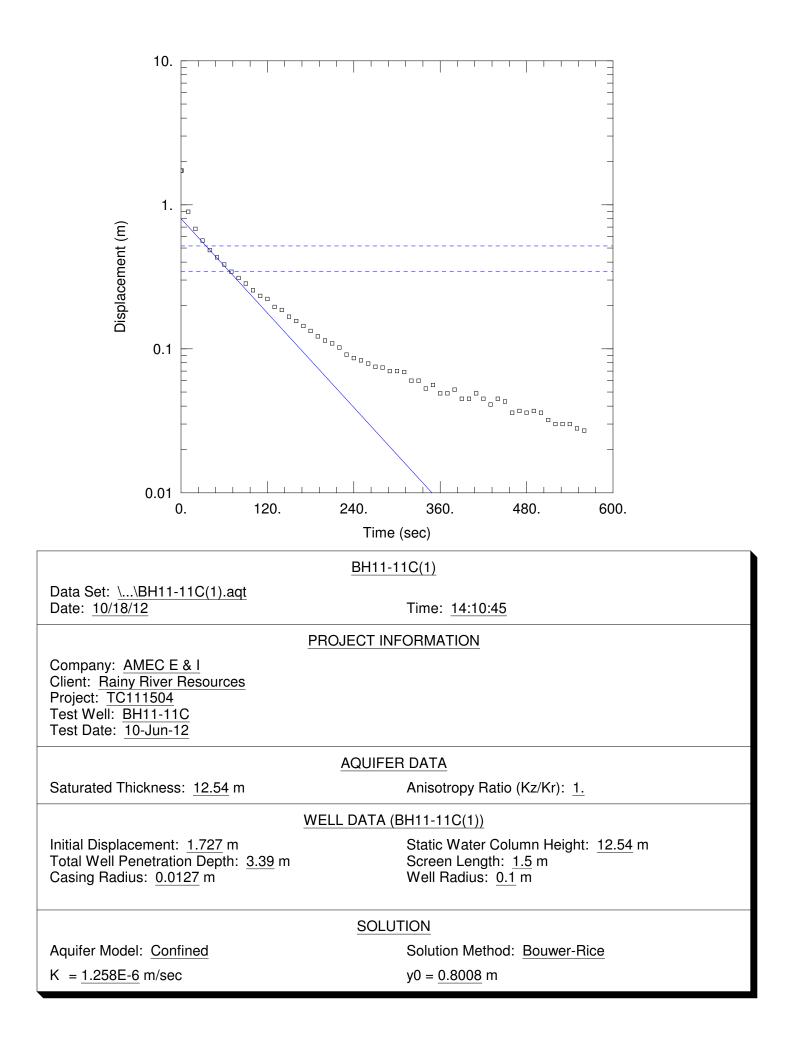

PLGD = Pleistocene lower granular deposits; in this case all Whiteshell Till, with the exception of BH11-21A which is interpreted as glacial sand; always assumed to be more dominant than shallow bedrock, when screen overlaps both SBR = Shallow Bedrock

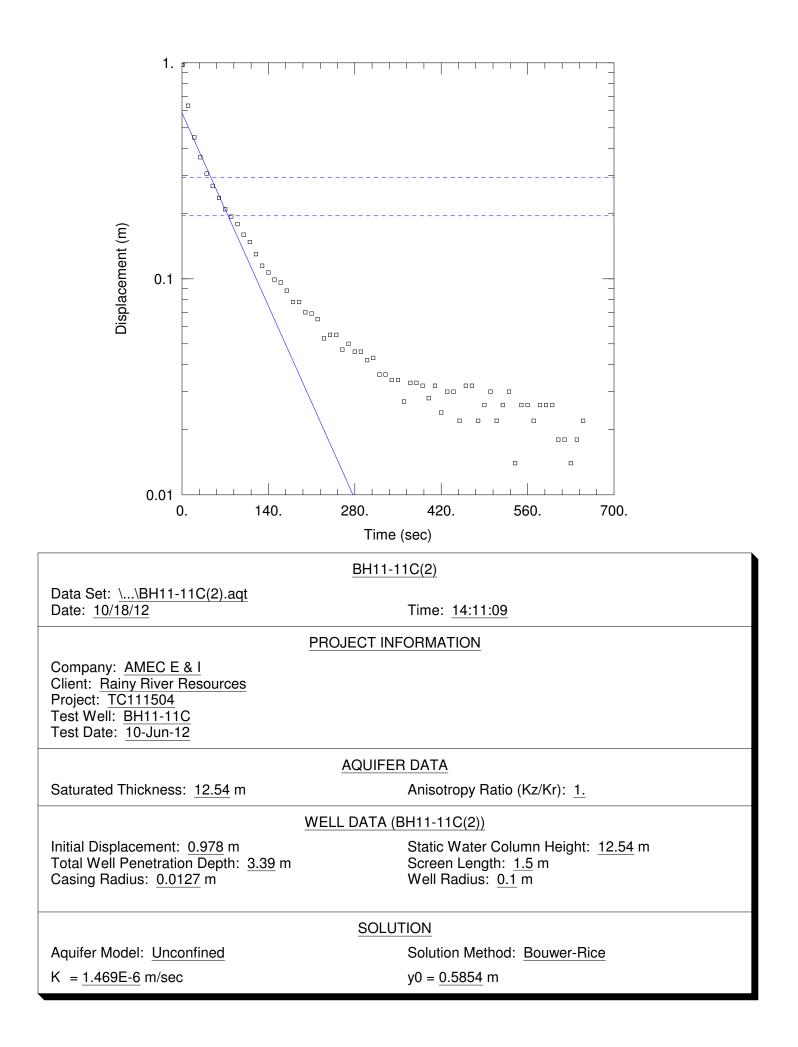


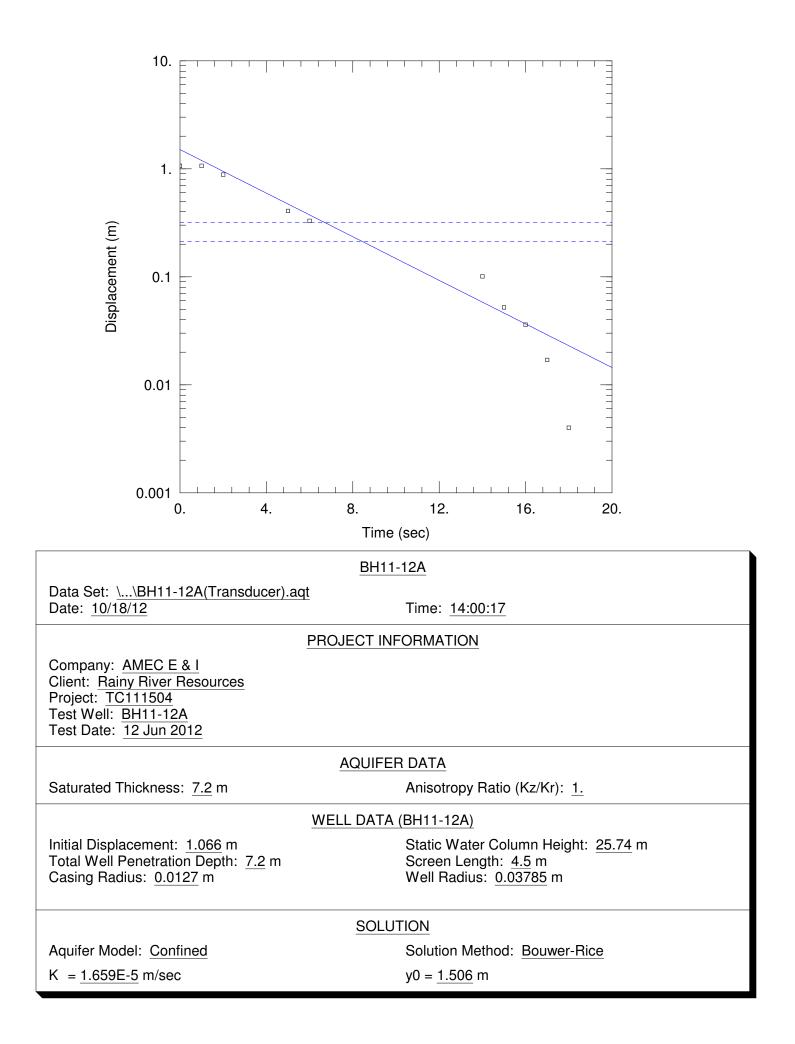


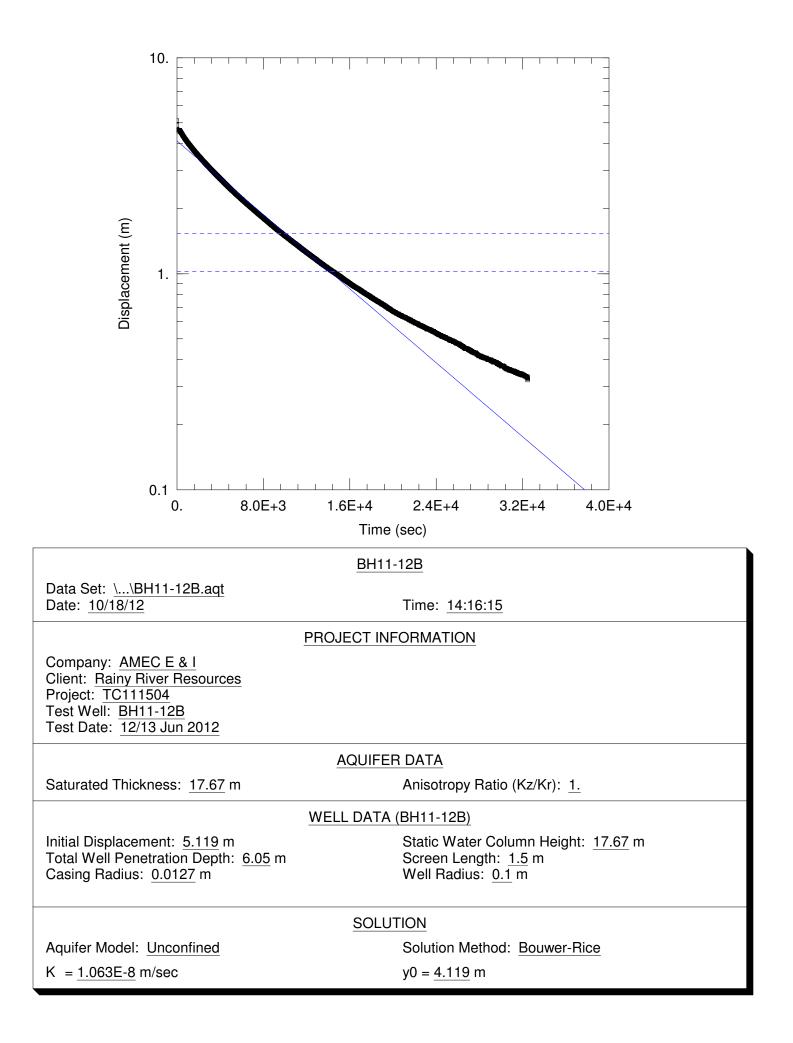

	Field	Calculated	Static Water Level	Height of Discharge
Borehole	Measured	Flowrate	Above Ground	Point Above Ground
	Flowrate	(L/min)	surface (m)	Surface (m)
8A	5.7 L / 10.5 min	0.543	1.6	0.22
8B	0.46 L / 8 min	0.058	0.3	0.07
13 B	0.79 L / 8 min	0.099	1.38	0.09
21 A	0.2 L / 6 min	0.033	1.68	0.1
33 A	0.23 L / 3 min	0.077	0.87	0.2
33 A	0.99 L / 14.5 min	0.068	0.87	0.2
33 A	0.90 L / 13 min	0.069	0.87	0.2
51	1 L / 4.83 min	3.000	1.16	0
34	0.72 L / 2.38 min	0.303	0.54	0.3

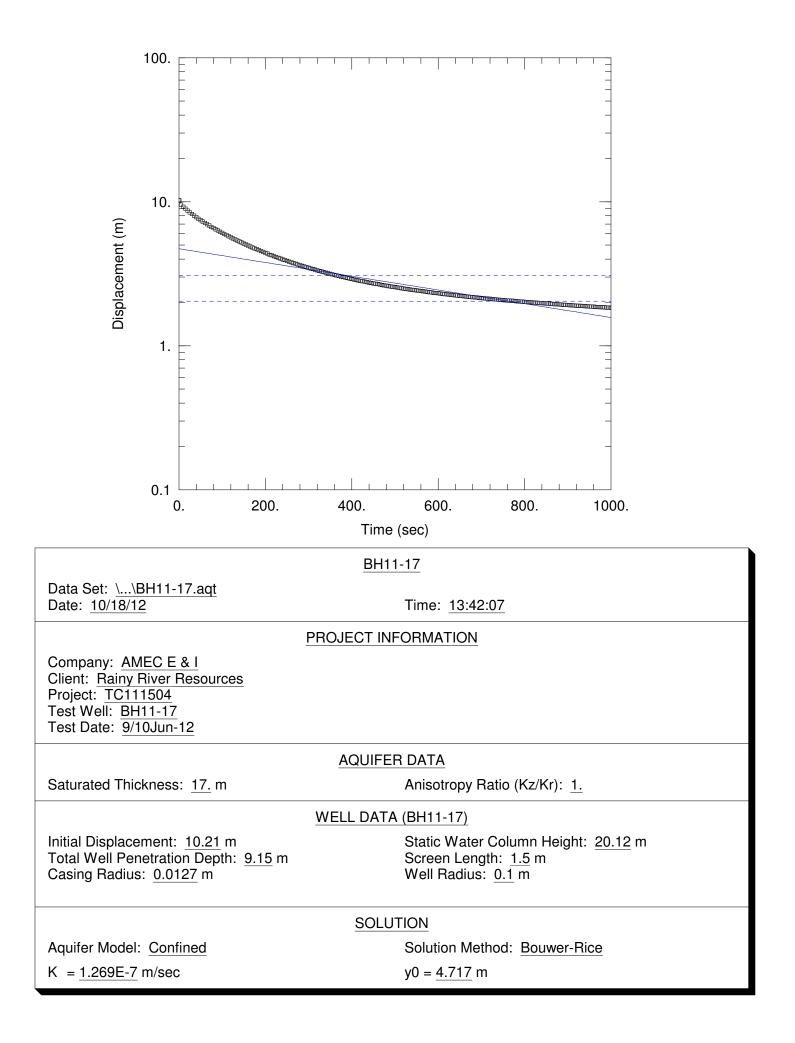

Table B-2 Summary I	Data from Flow and Head Measurements on Art	esian Wells
---------------------	---	-------------

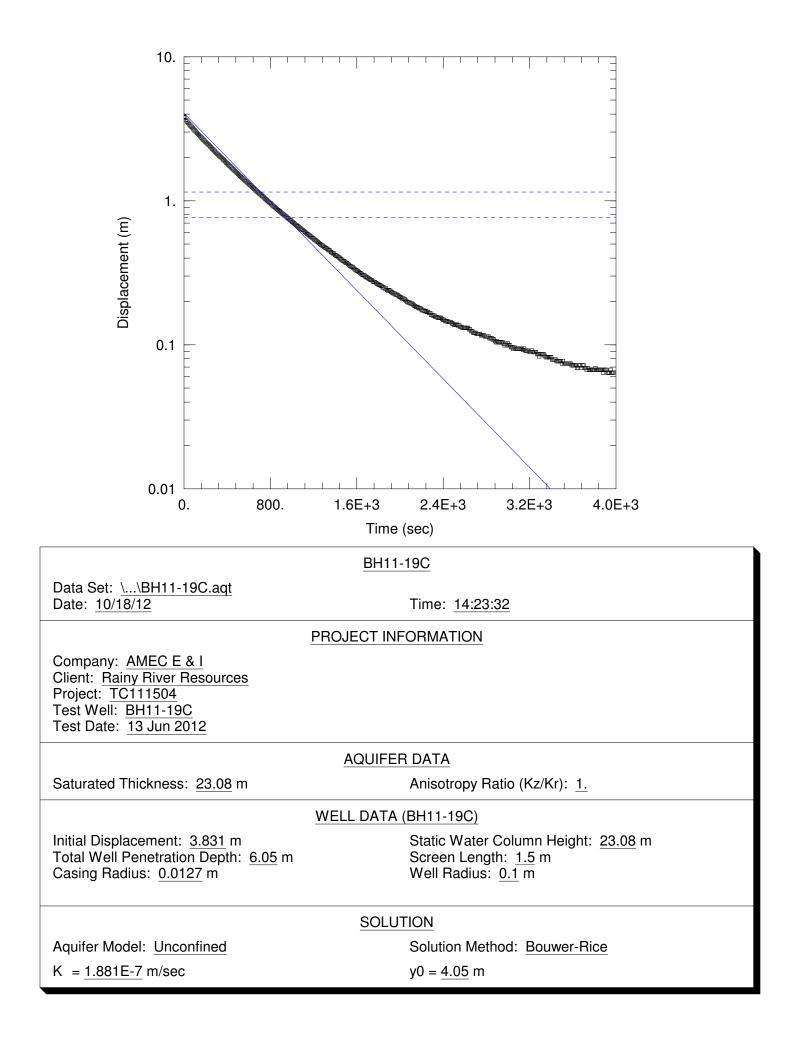


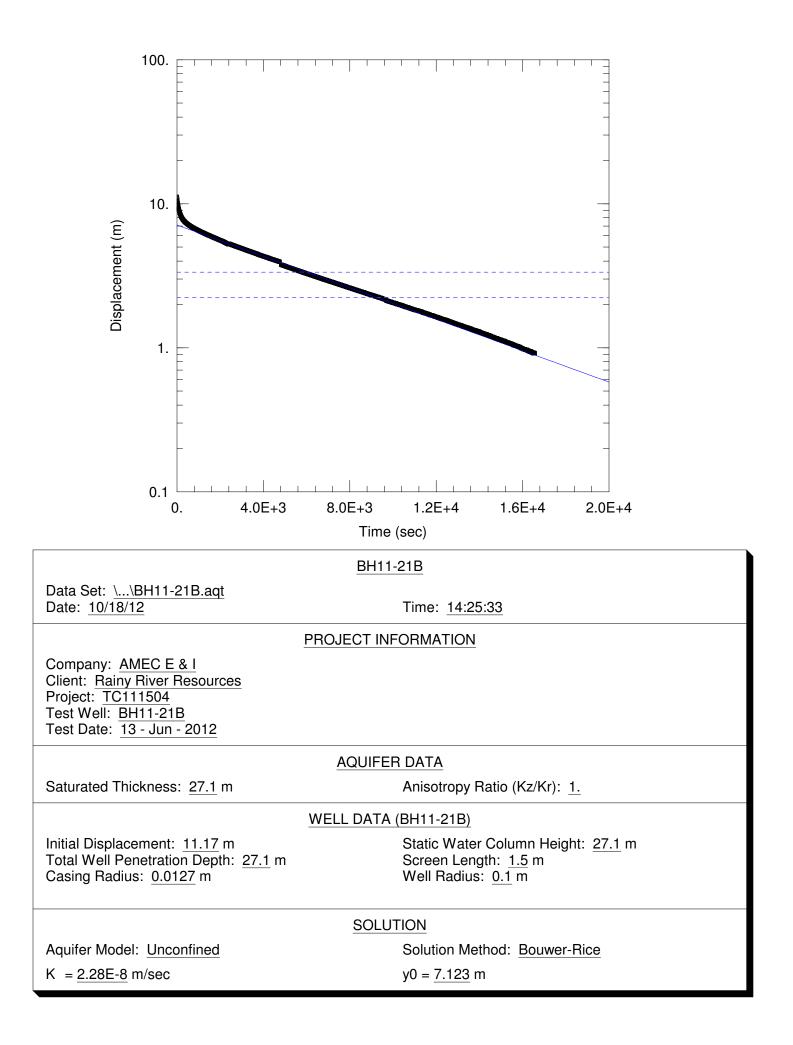


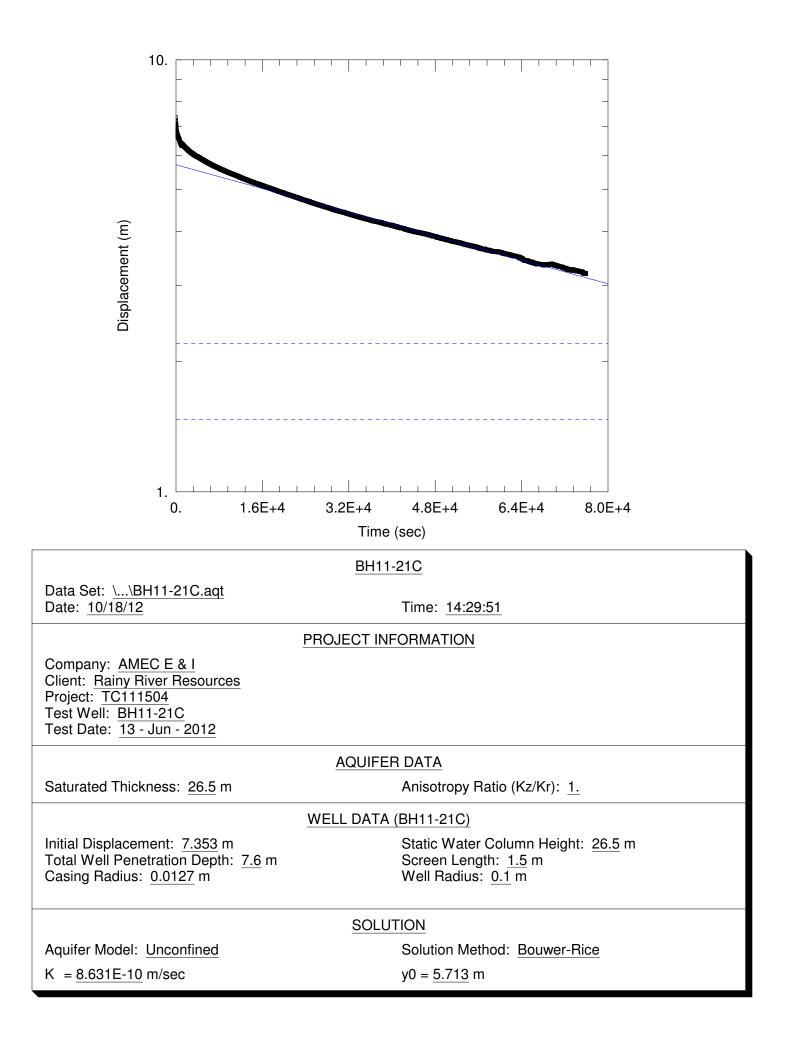


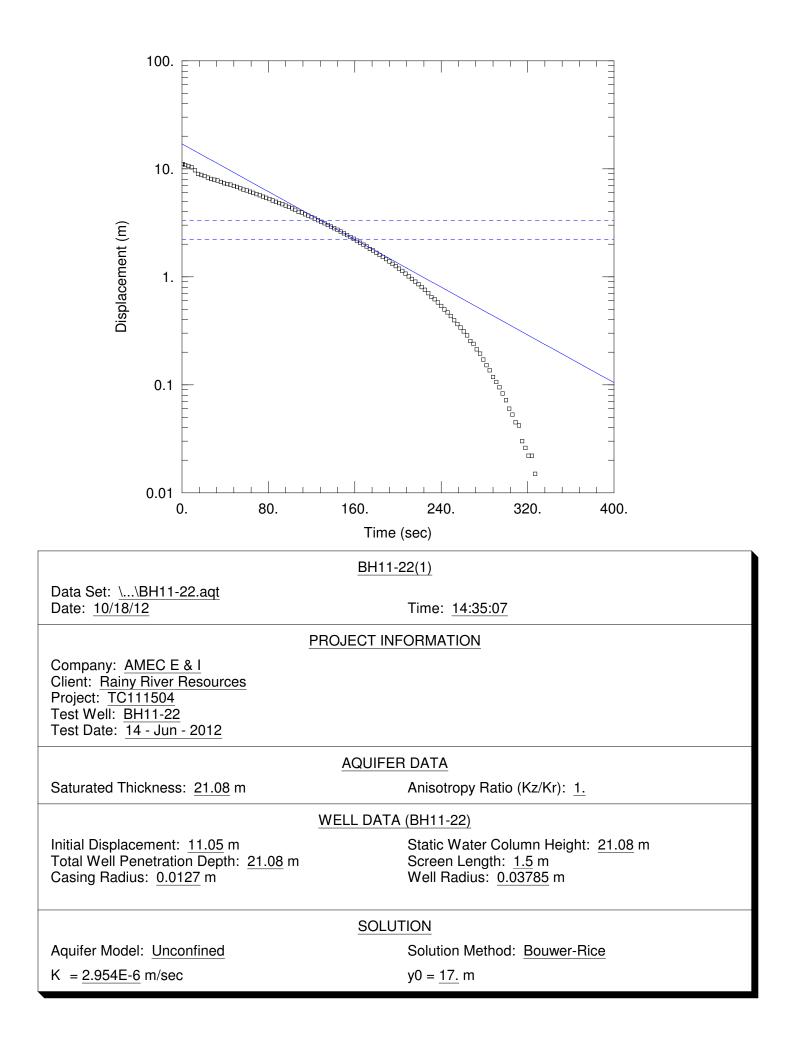


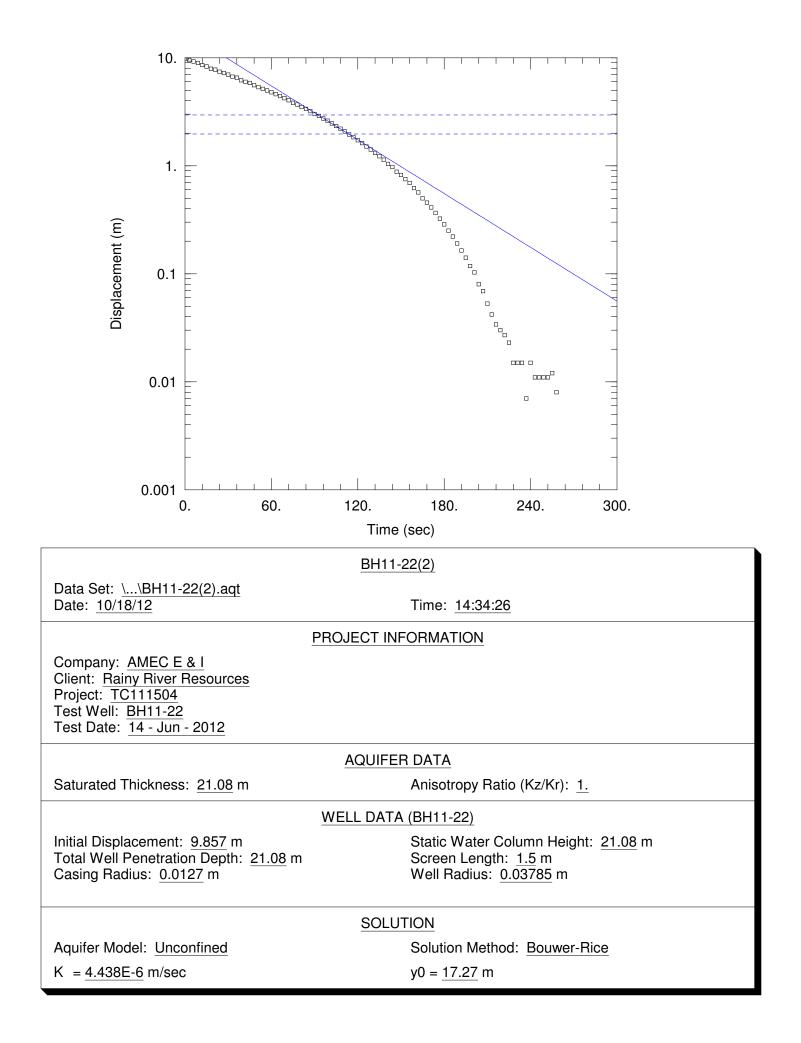


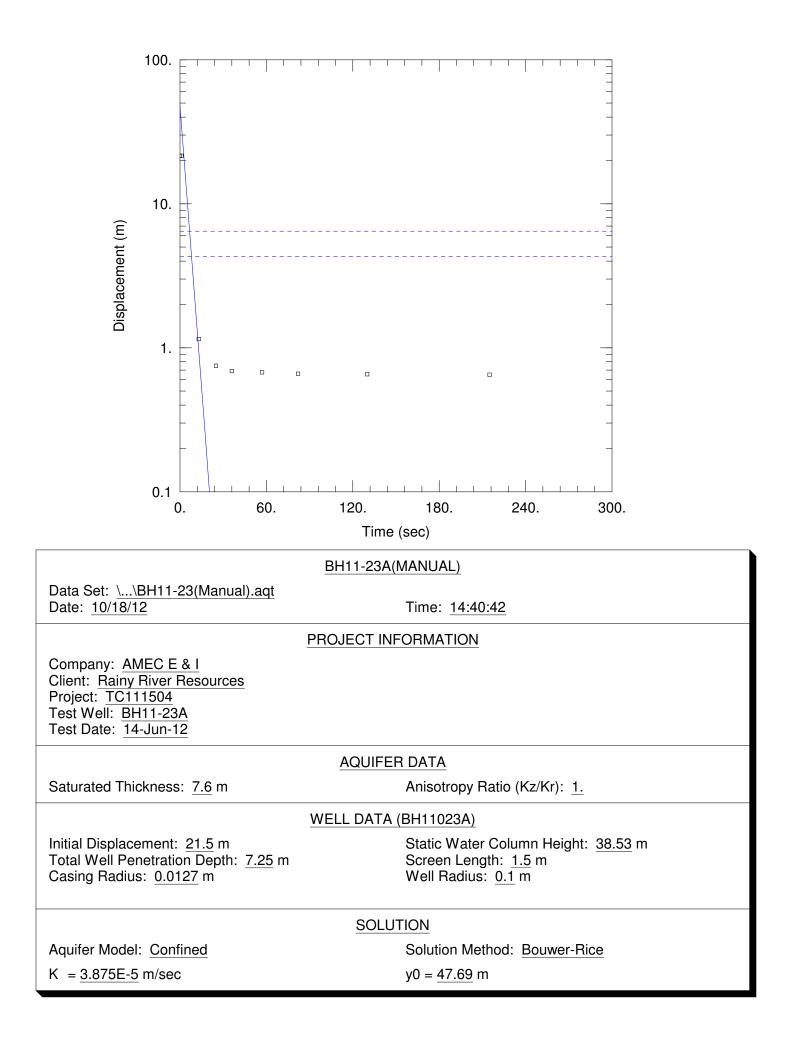


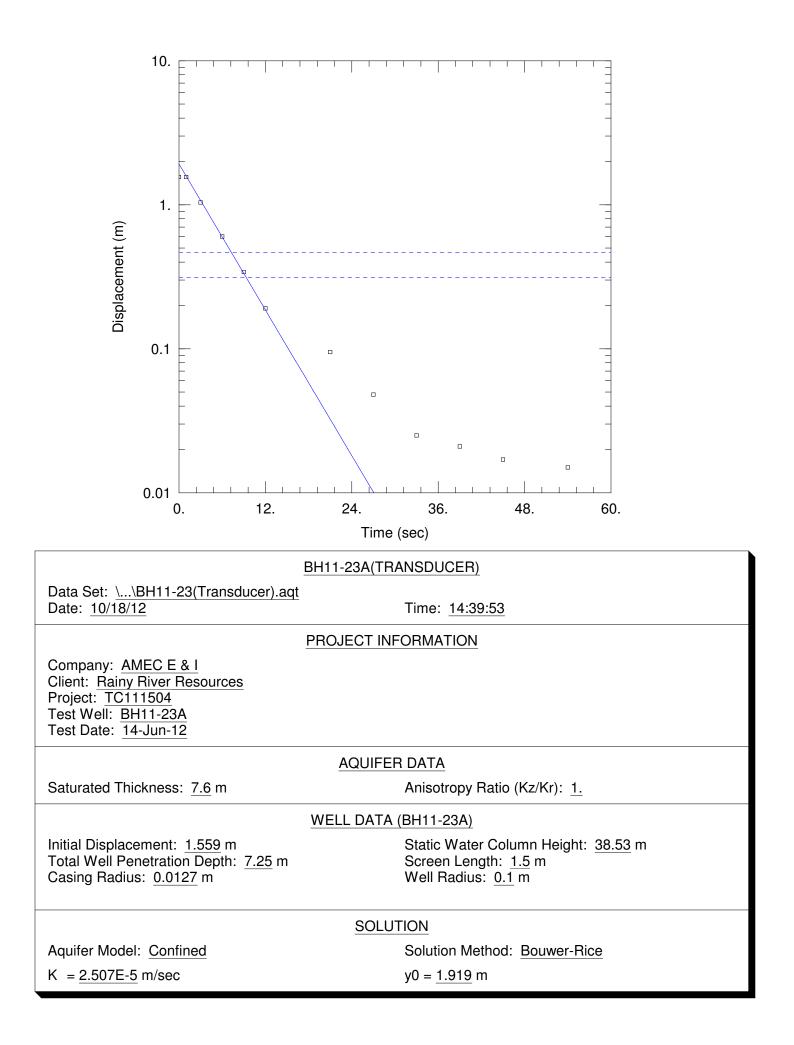


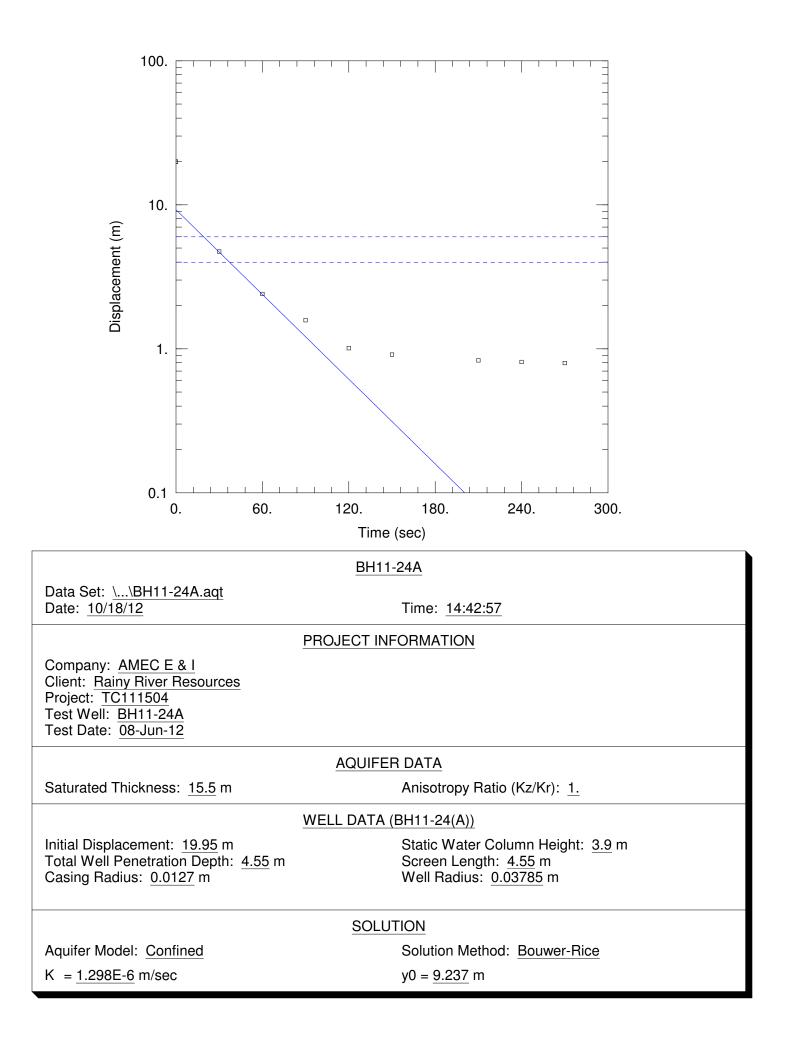


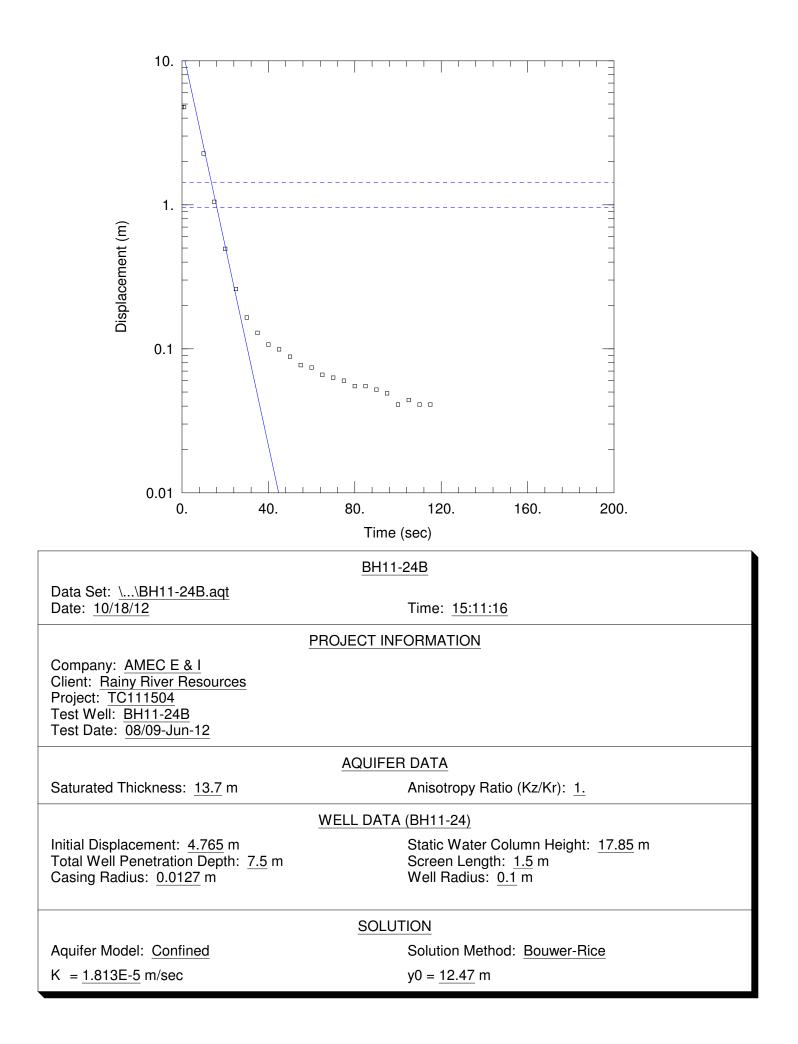


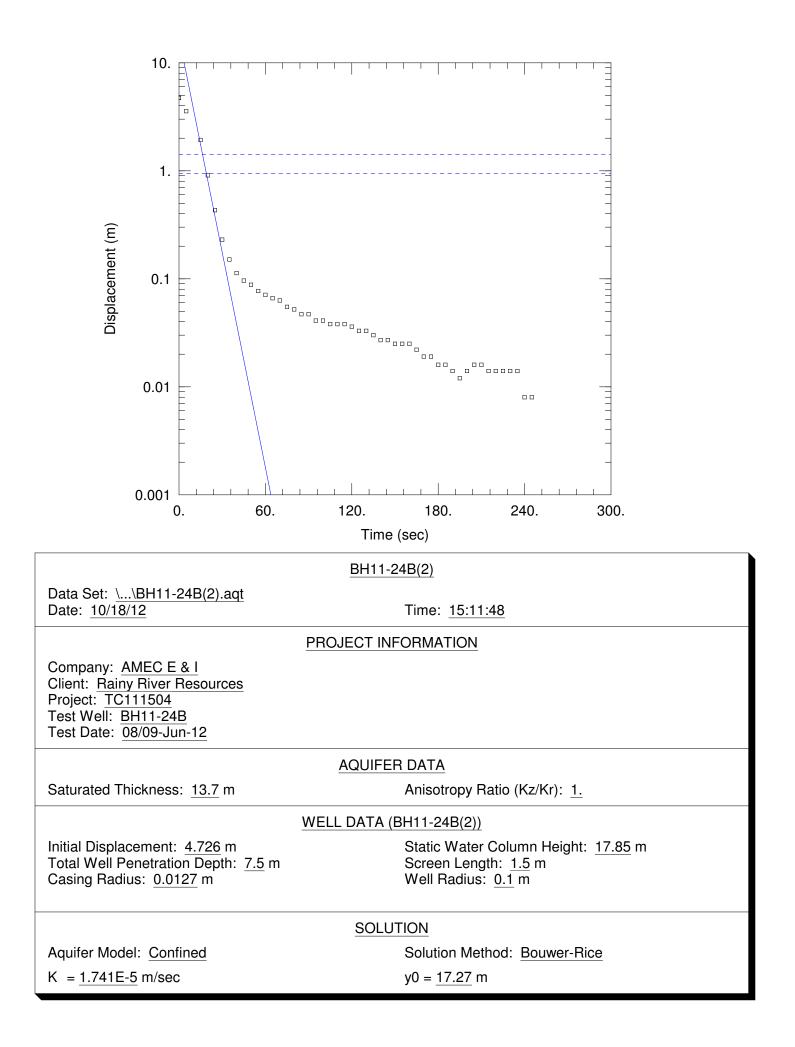


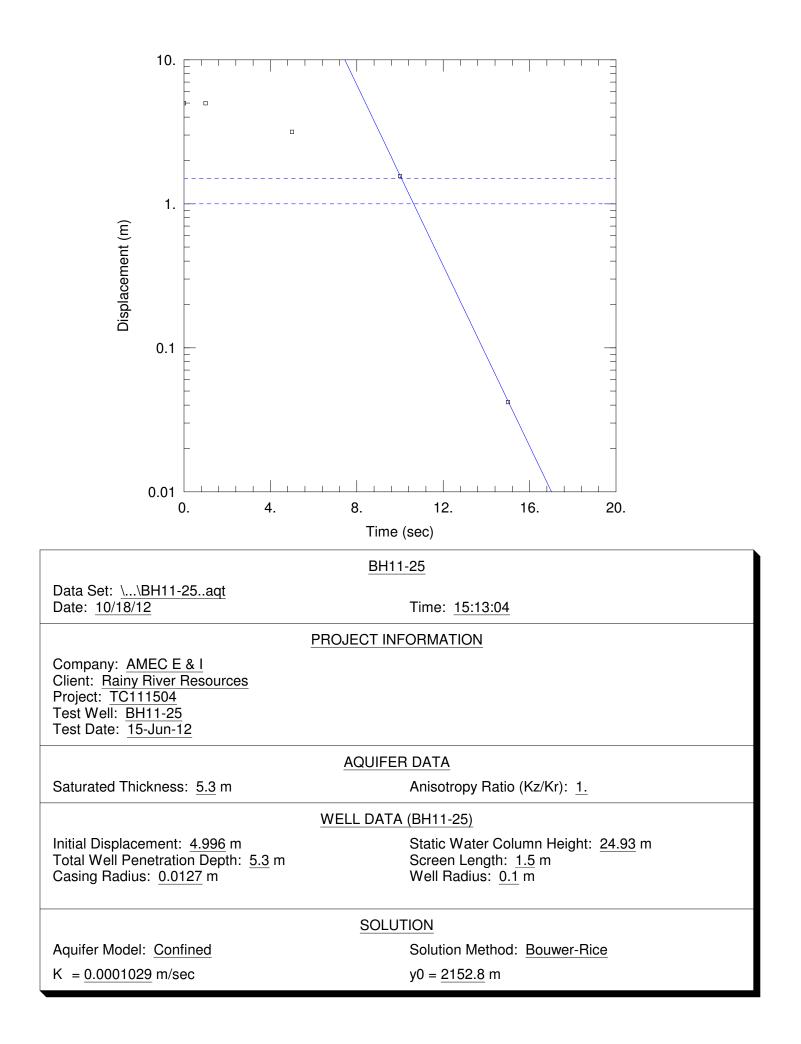


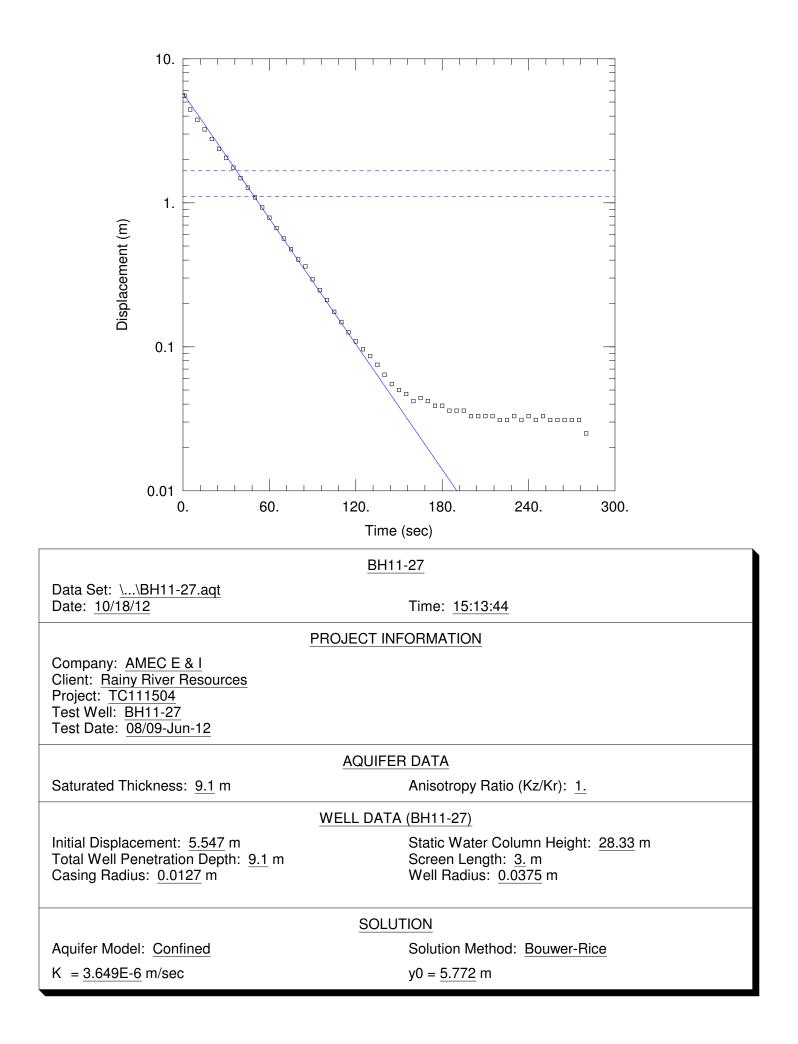


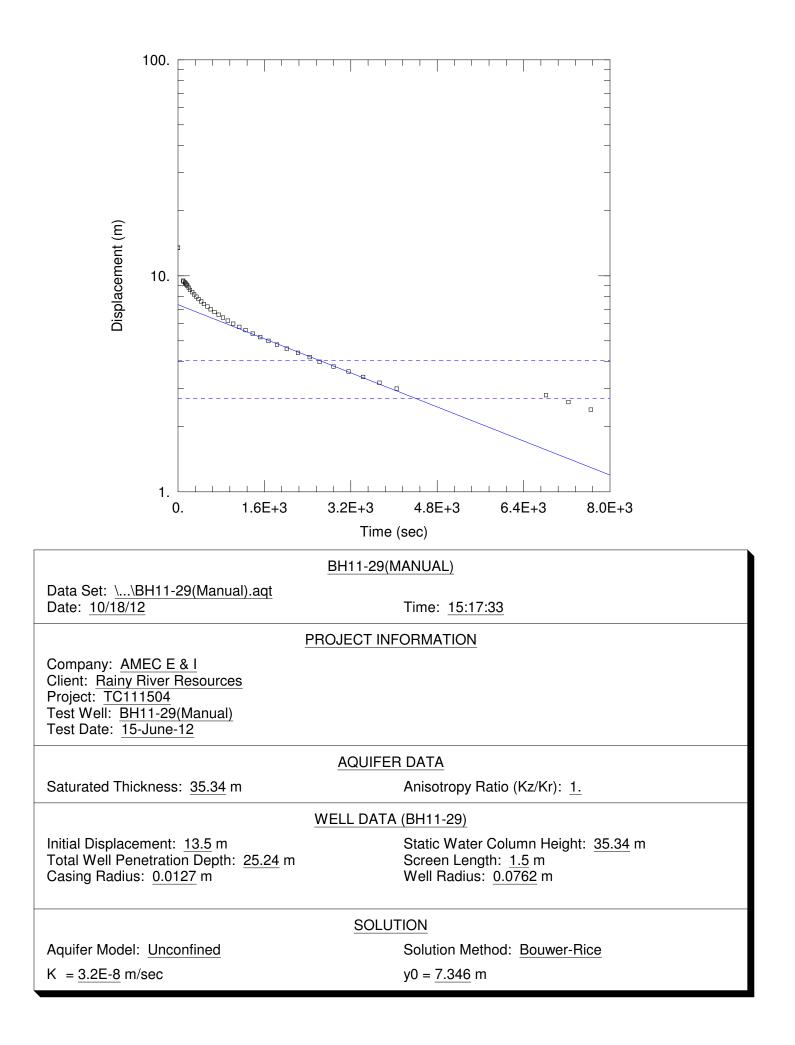


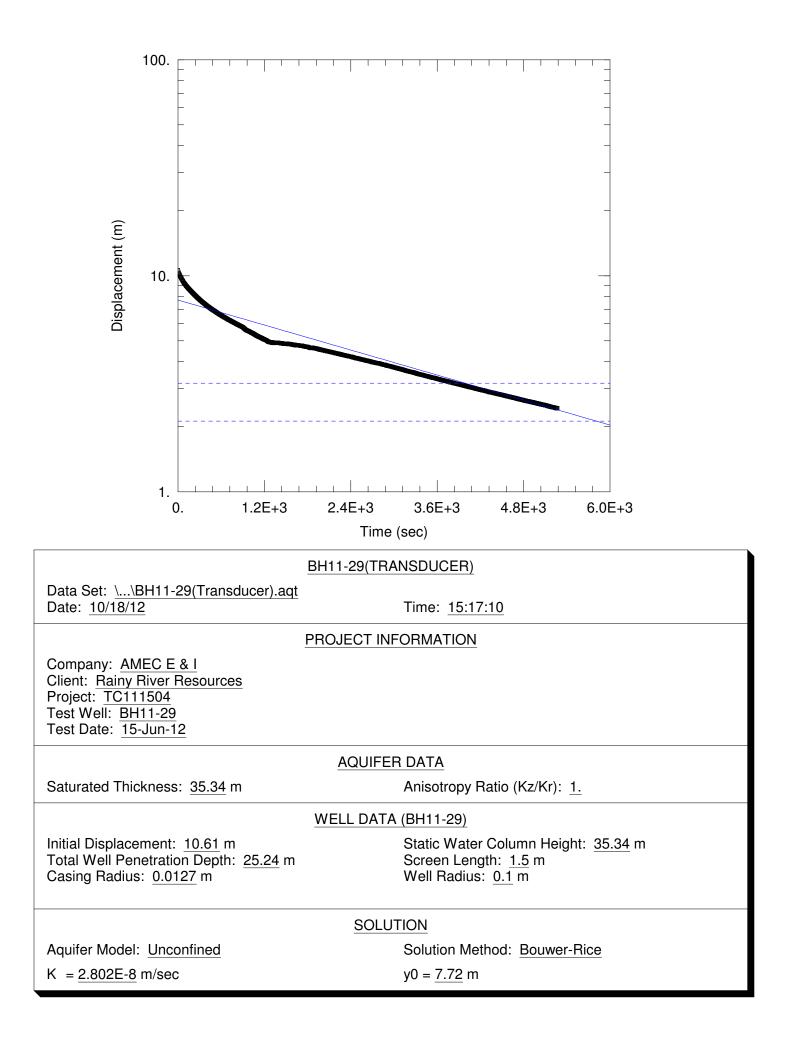


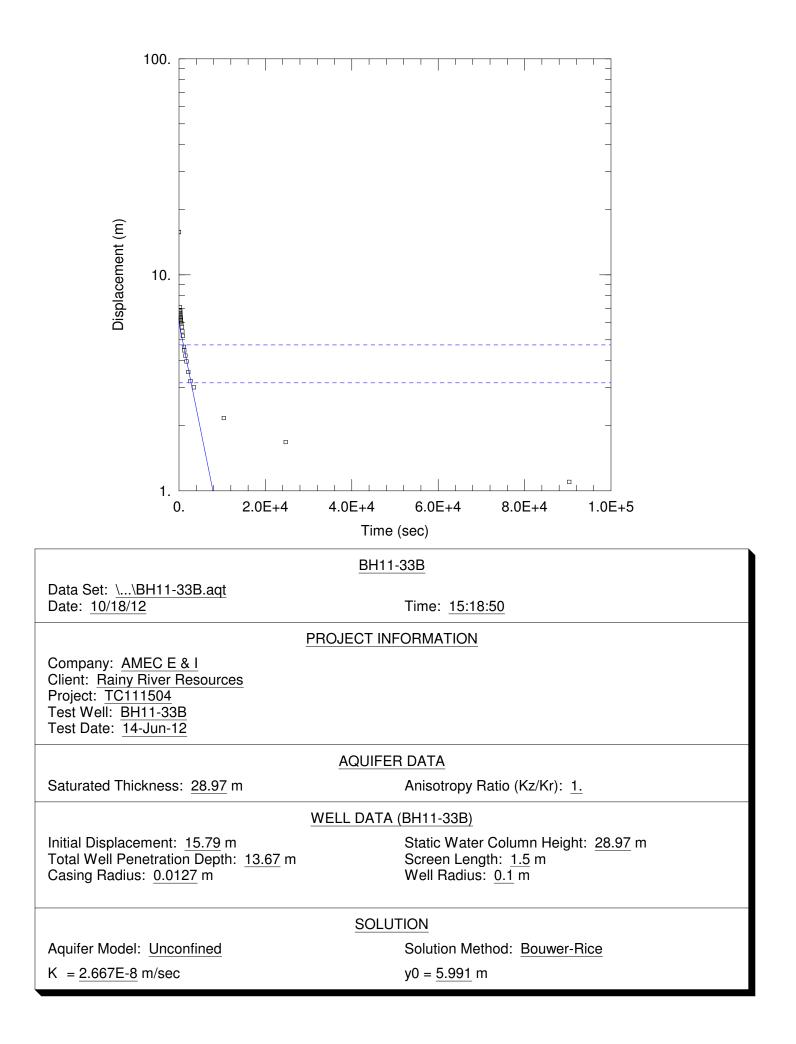


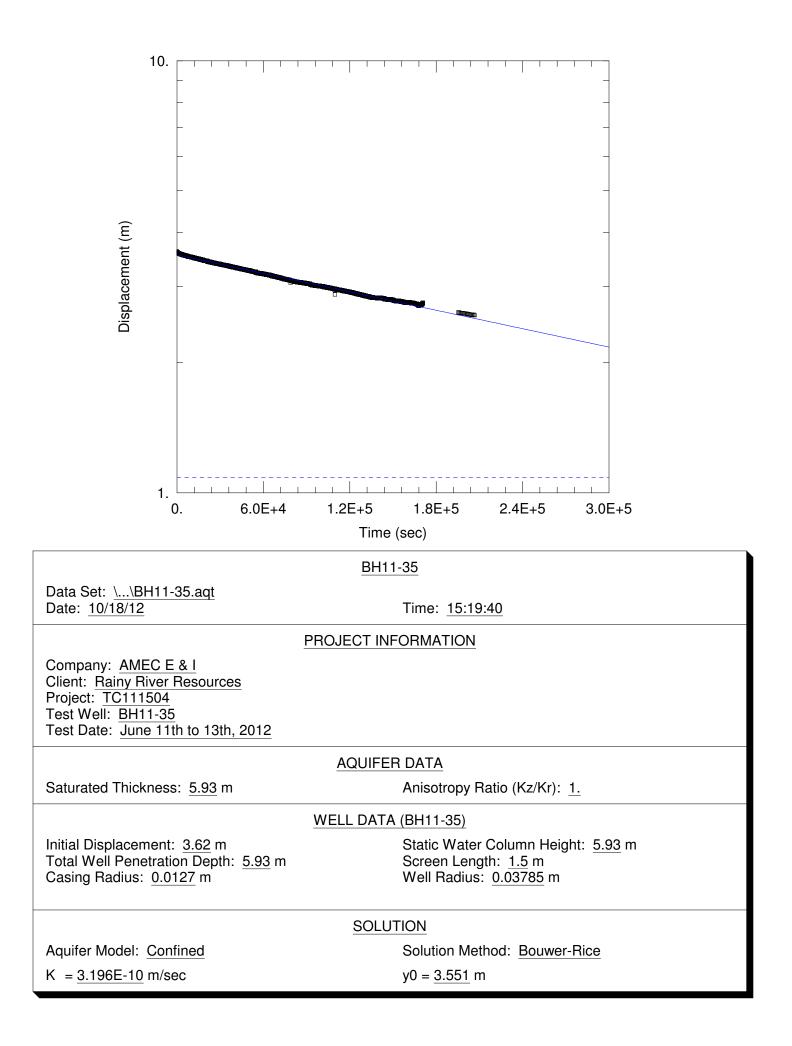


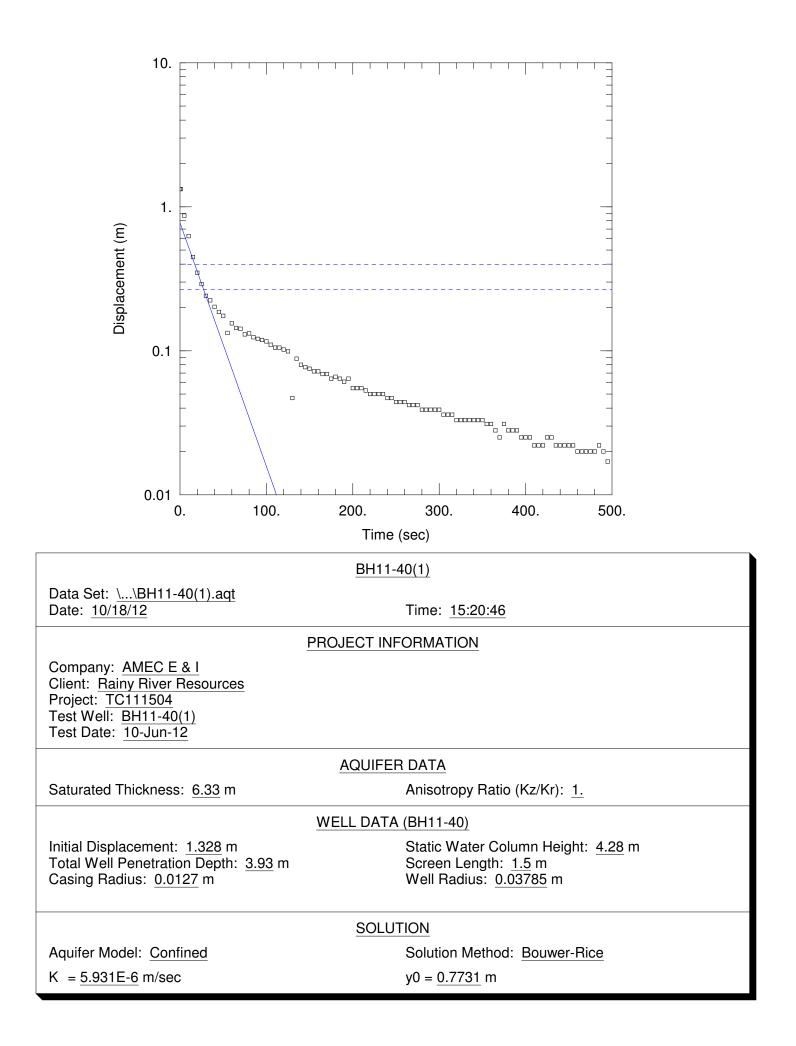


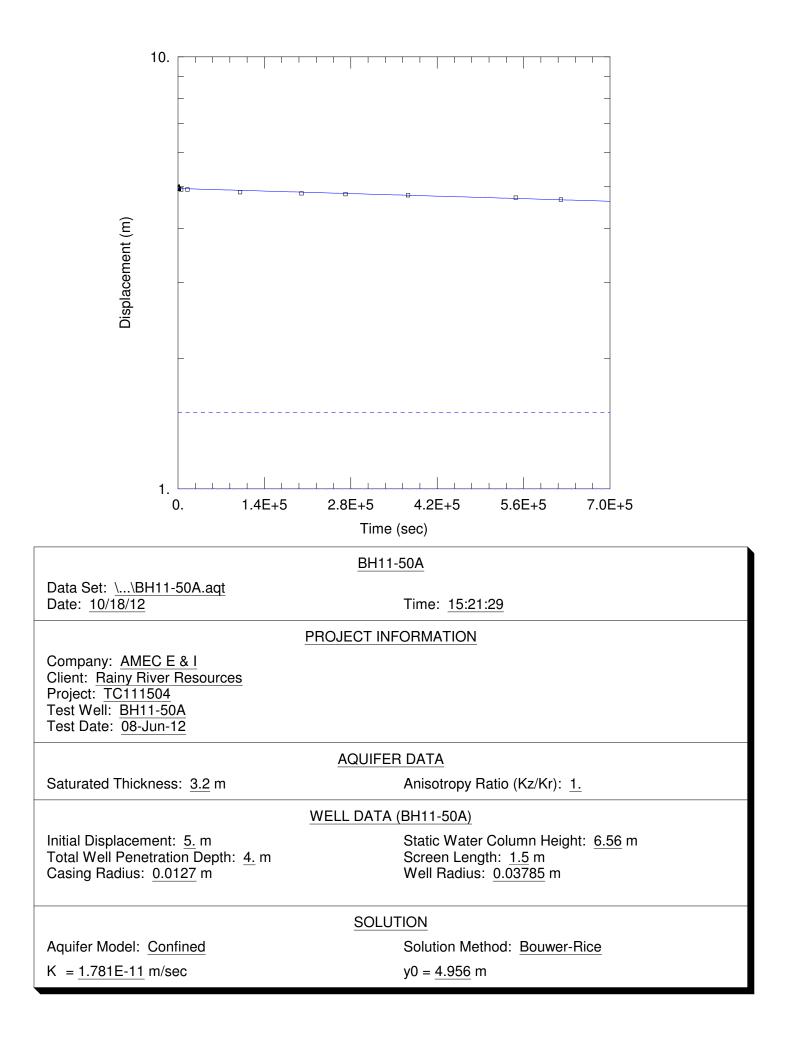






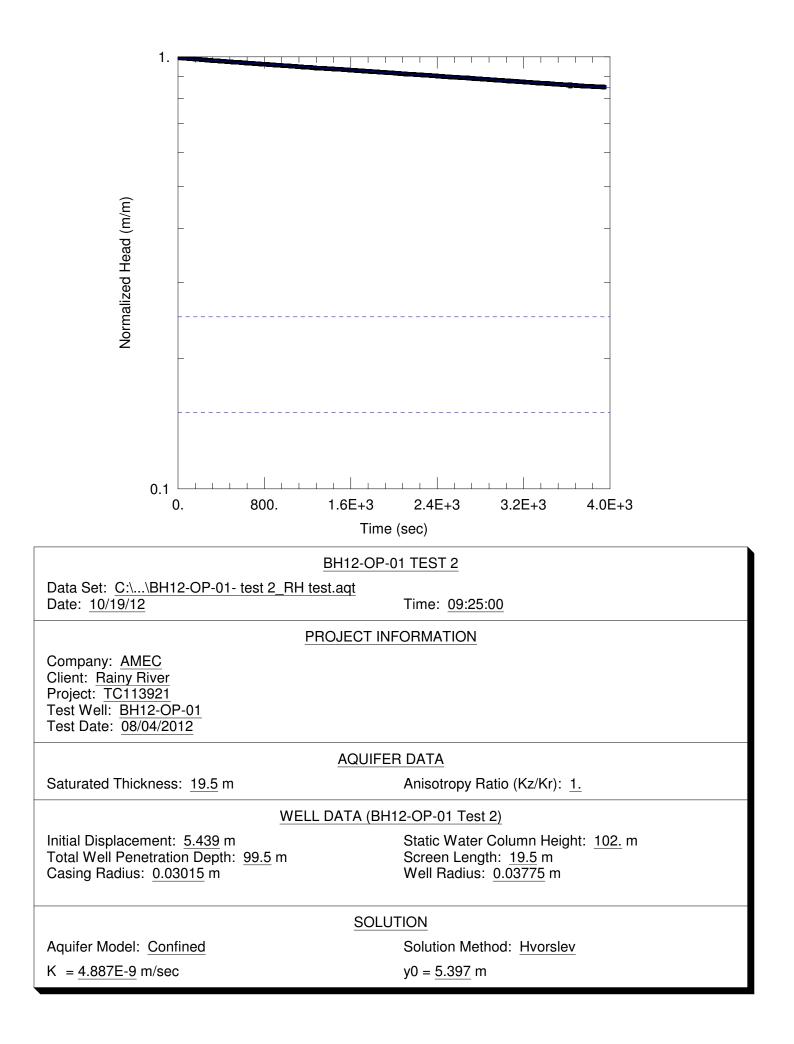


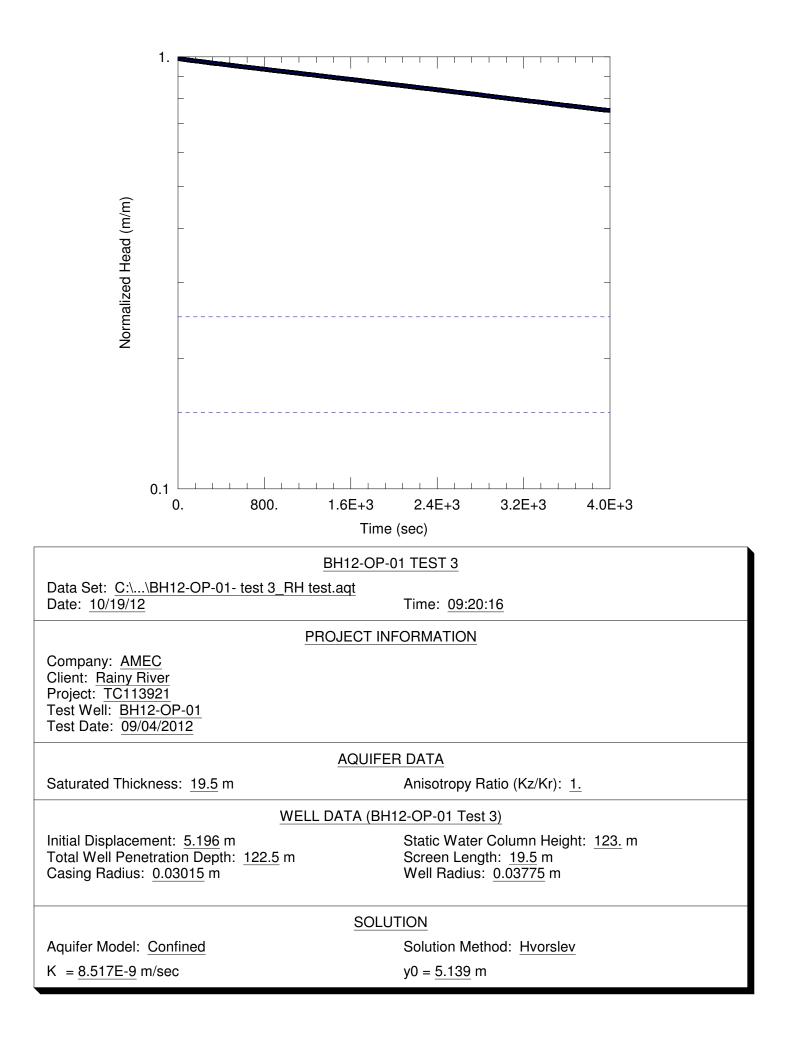


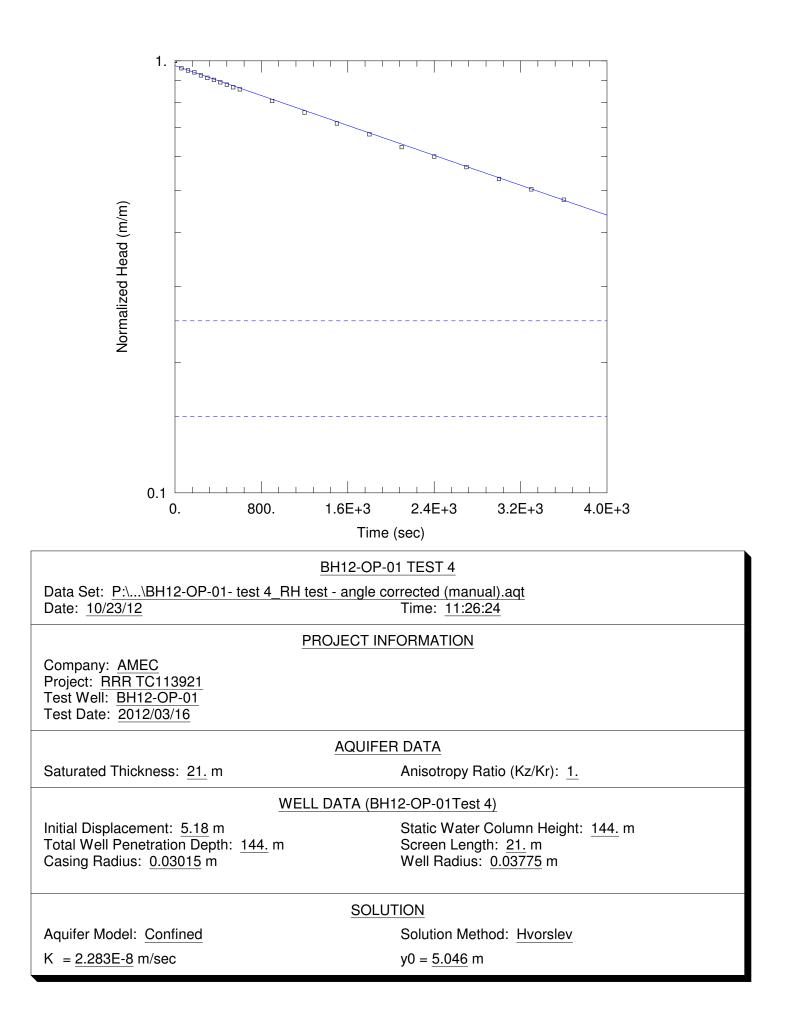


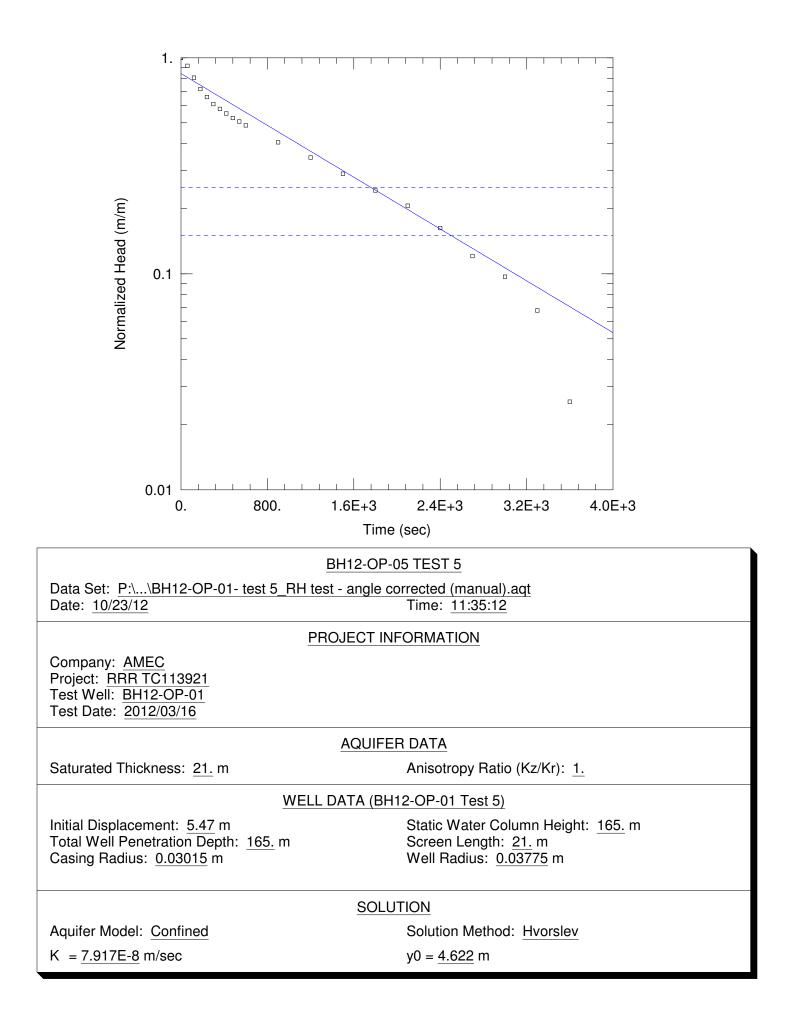
APPENDIX C

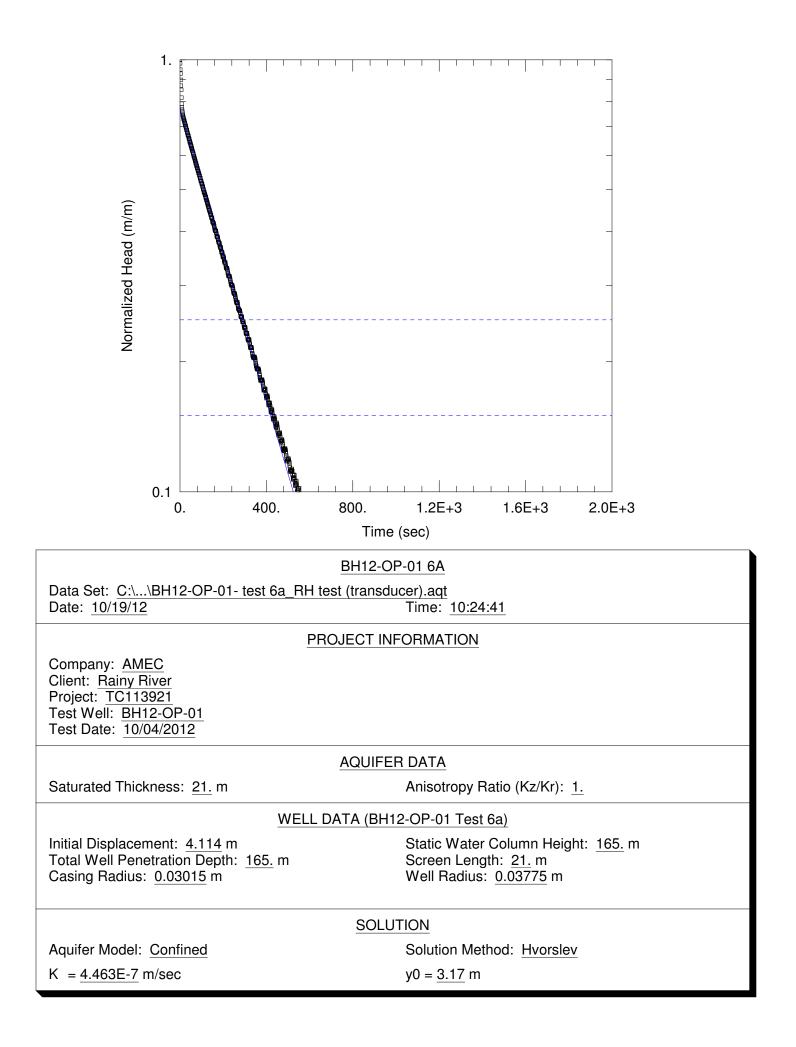
PACKER TESTING RESULTS

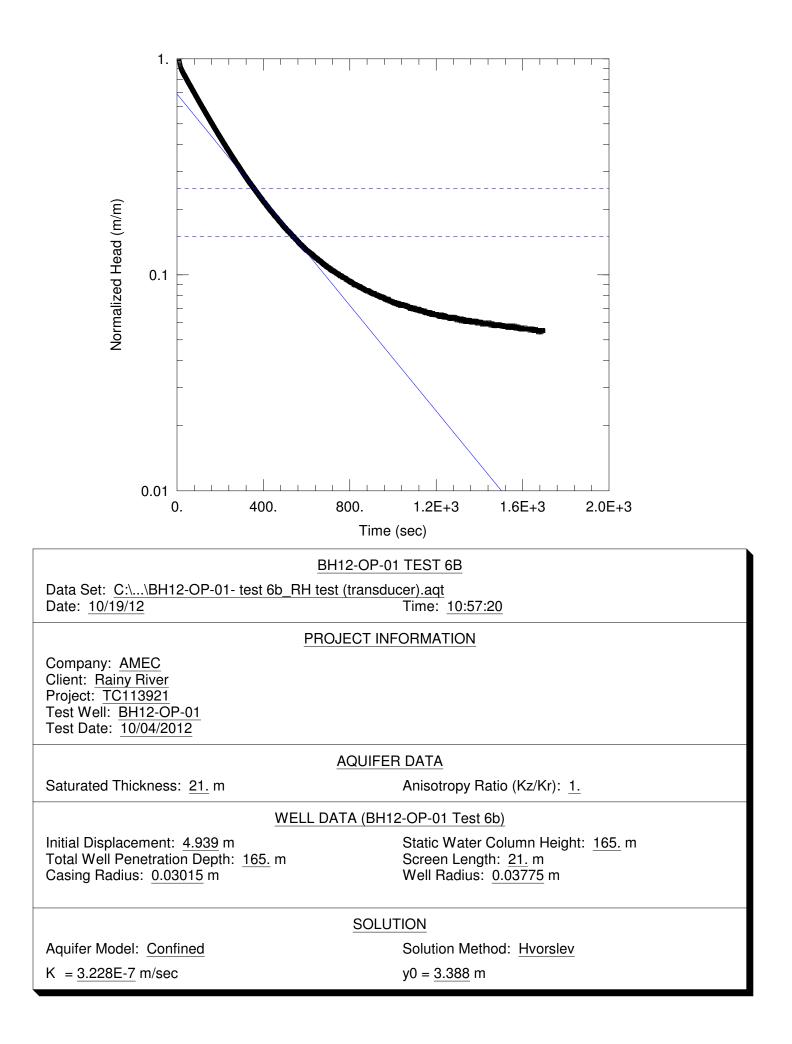

Table C-1 Summary of Hydraulic Conductivities from Packer Testing

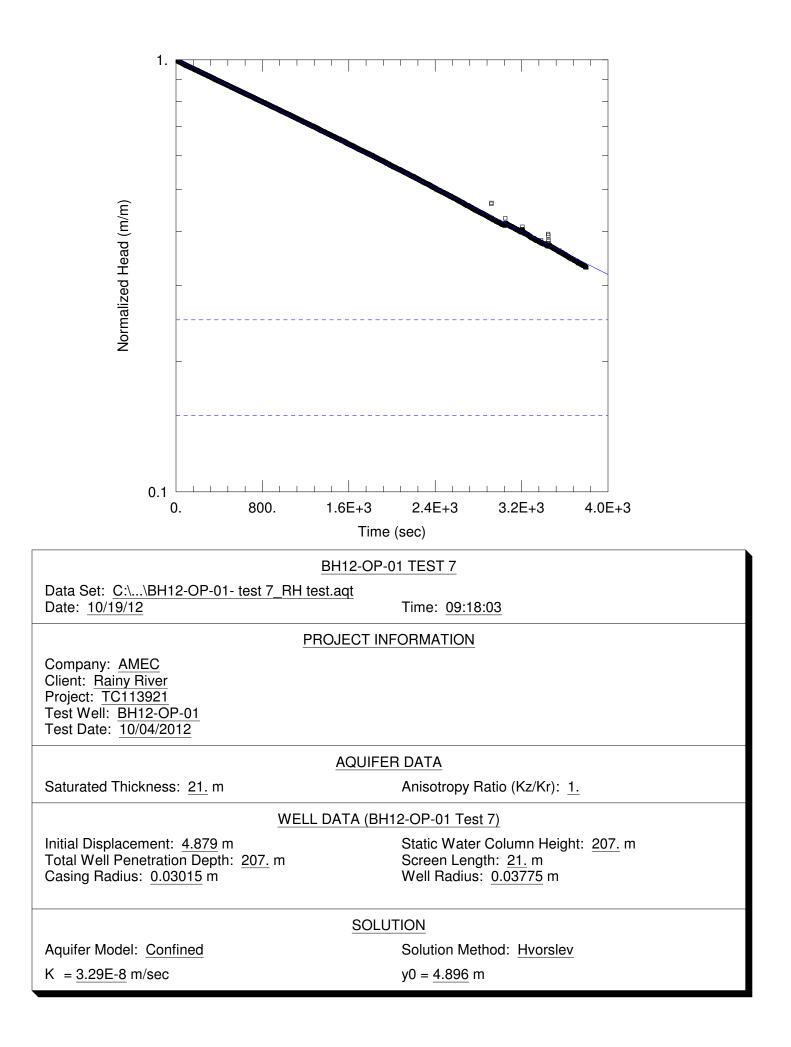

Borehole	Test #	Date	Туре	Top Depth	Bottom Depth	Centre	Centre	Average K	Comments
	rest#			(m along BH)	(m along BH)	(mbbs)*	(mbgs)**	(m/s)	Comments
BH12-UG-02	1	02/12/2012	Constant Head	62.1	80.8	15.9	69.0	1.1E-07	
BH12-UG-02	2	02/12/2012	Constant Head	84.8	103.7	37.9	91.0	3.1E-08	
BH12-UG-02	4	13/02/2012	Falling Head	124.9	143.1	76.3	129.4	3.0E-08	
BH12-UG-02	5	14/02/2012	Falling Head	144.5	162.7	95.2	148.3	4.4E-09	
BH12-UG-02	6	14/02/2012	Falling Head	164.1	182.2	114.1	167.3	1.4E-08	
BH12-UG-02	8	02/15/2012	Rising Head	202.8	221.2	151.7	204.8	5.4E-09	
BH12-UG-02	9	02/15/2012	Constant Head	222.4	240.6	170.5	223.6	5.4E-08	
BH12-UG-02	10	02/16/2012	Constant Head	240.6	259.9	188.6	241.7	1.1E-08	
BH12-UG-02	11b	02/16/2012	Constant Head	257.1	276.4	204.6	257.7	5.5E-07	
BH12-UG-02	12	02/17/2012	Constant Head	276.4	298.4	224.5	277.6	1.2E-08	
BH12-UG-02	13a	02/25/2012	Falling Head						failed test
BH12-UG-02	13b	02/25/2012	Constant Head						failed test
BH12-UG-03	1	31/03/2012	Falling Head	301.5	363.0	303.9	312.2	5.8E-09	
BH12-UG-03	2	01/04/2012	Falling Head	301.5	387.0	315.2	323.5	1.1E-09	
BH12-UG-03	3	02/04/2012	Falling Head	301.5	414.0	327.9	336.2	4.6E-09	
BH12-UG-03	4	03/04/2012	Falling Head	301.5	444.0	342.0	350.3	1.0E-07	
BH12-UG-03	5	04/04/2012	Falling Head	301.5	480.0	358.9	367.2	3.5E-09	
BH12-UG-03	6	04/04/2012	Falling Head	300.0	501.0	368.1	376.3	5.0E-09	
BH12-OP-01	1								failed test
BH12-OP-01	2	08/04/2012	Rising Head	82.5	102.0	31.0	83.6	4.9E-09	
BH12-OP-01	3	09/04/2012	Rising Head	103.5	123.0	50.1	102.6	8.5E-09	
BH12-OP-01	4	09/04/2012	Rising Head	123.0	144.0	68.4	121.0	2.3E-08	
BH12-OP-01	5	10/04/2012	Rising Head	144.0	165.0	87.5	140.0	7.9E-08	
BH12-OP-01	6	10/04/2012	Rising Head	165.0	186.0	106.5	159.1	3.9E-07	
BH12-OP-01	7	10/04/2012	Rising Head	186.0	207.0	125.5	178.1	3.3E-08	
BH12-OP-01	8	11/04/2012	Rising Head	208.5	228.0	145.2	197.8	3.3E-08	
BH12-OP-01	9	11/04/2012	Rising Head	229.5	249.0	164.3	216.8	3.0E-08	
BH12-OP-01	10	12/04/2012	Rising Head	250.5	270.0	183.3	235.9	2.7E-08	
BH12-OP-01	11	12/04/2012	Rising Head	271.5	291.0	202.3	254.9	2.6E-08	
BH12-OP-01	12	12/04/2012	Rising Head	292.5	312.0	221.4	273.9	5.8E-08	
BH12-OP-01	13	13/04/2012	Rising Head	301.5	345.0	240.4	293.0	2.8E-08	
BH12-OP-01	14	13/04/2012	Rising Head	301.5	372.0	252.6	305.2	8.4E-09	
BH12-OP-01	15	14/04/2012	Rising Head	301.5	402.0	266.2	318.8	3.2E-09	
BH12-OP-03	1	02/05/2012	Rising Head	40.0	61.0	18.6	36.1	1.6E-06	
BH12-OP-03	2	02/27/2012	Rising Head	61.0	82.0	37.6	54.2	1.2E-06	
BH12-OP-03	3	02/27/2012	Rising Head	82.0	103.0	56.6	72.3	3.8E-09	
BH12-OP-03	4	02/27/2012	Rising Head	103.0	124.0	75.7	90.5	9.9E-09	

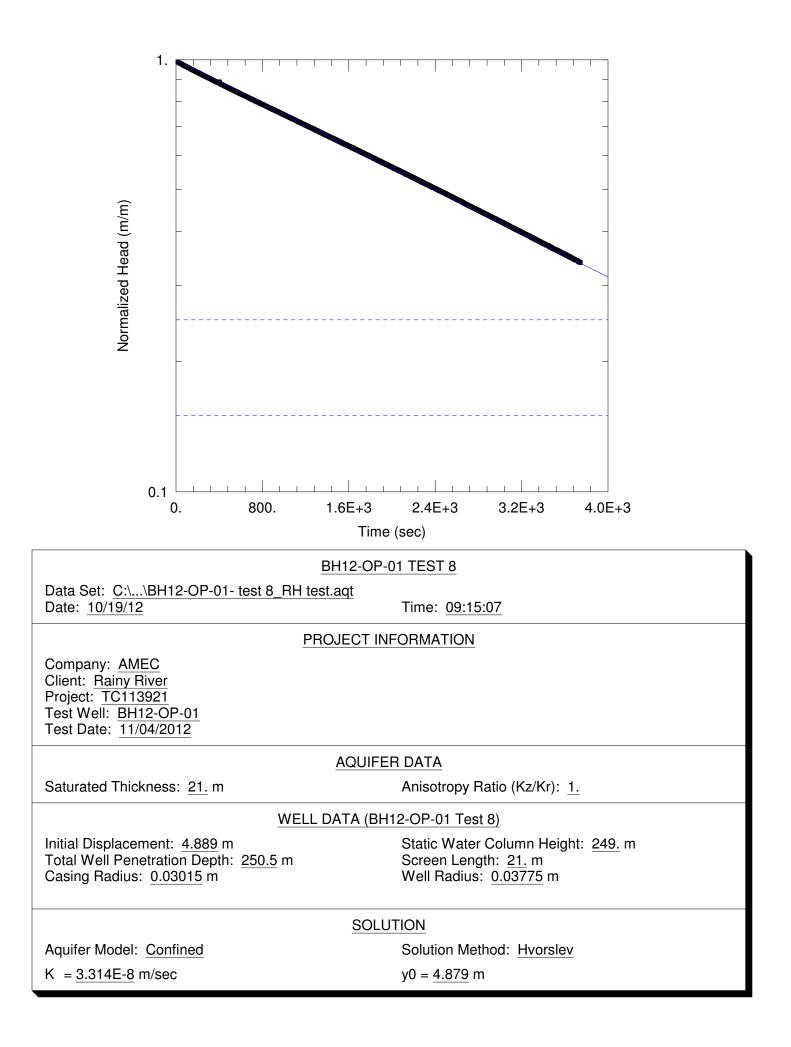


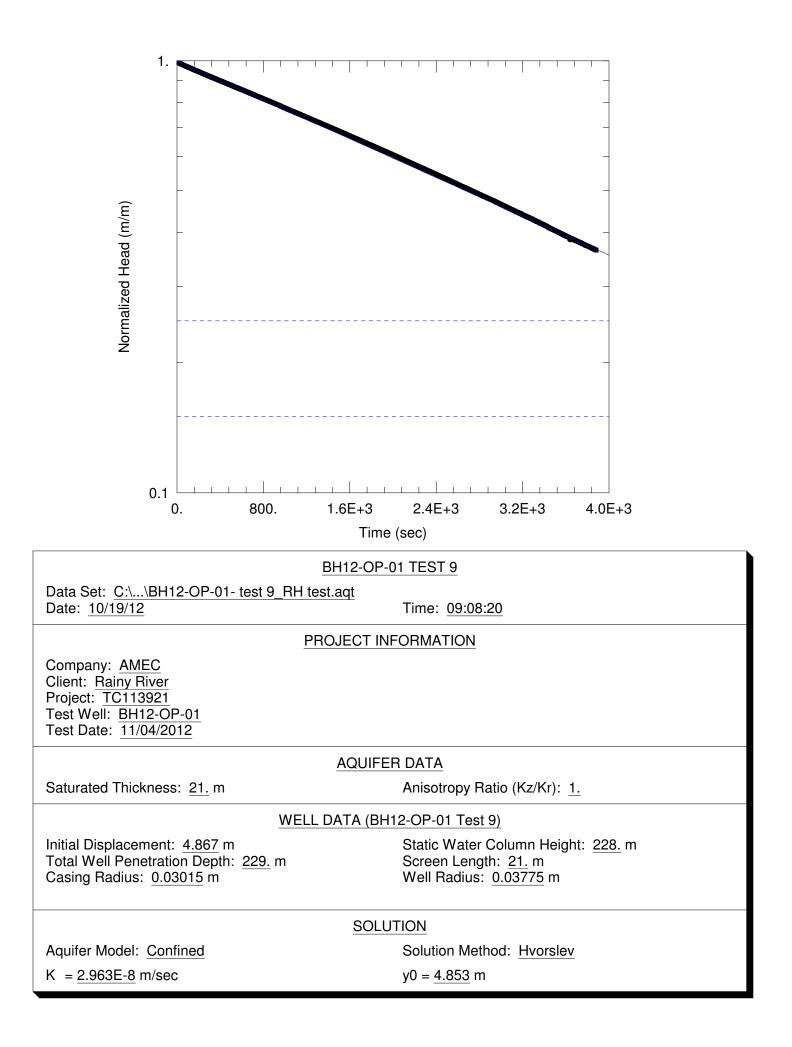

Borehole	Toot #	Dete	Turne	Top Depth	Bottom Depth	Centre	Centre	Average K	Commonto
Borenole	Test #	Date	Туре	(m along BH)	(m along BH)	(mbbs)*	(mbgs)**	(m/s)	Comments
BH12-OP-03	5	02/27/2012	Rising Head	124.0	145.0	94.7	108.6	1.6E-08	
BH12-OP-03	6	02/28/2012	Rising Head	145.0	166.0	113.7	126.8	7.3E-07	
BH12-OP-03	7	02/28/2012	Rising Head	166.0	187.0	132.8	144.9	1.4E-09	
BH12-OP-03	8	02/29/2012	Rising Head	187.0	208.0	151.8	163.0	1.5E-09	
BH12-OP-03	9	02/29/2012	Rising Head	208.0	229.0	170.8	181.2	1.3E-09	
BH12-OP-03	10	02/29/2012	Rising Head	229.0	250.0	189.9	199.3	1.8E-10	
BH12-OP-03	11	03/01/2012	Rising Head	250.0	271.0	208.9	217.5	4.9E-09	
BH12-OP-03	12	03/01/2012	Rising Head	271.0	292.0	227.9	235.6	1.6E-09	
BH12-OP-05	1	03/10/2012	Rising Head	37.0	58.0	10.4	43.0	4.3E-07	
BH12-OP-05	2a	03/11/2012	Rising Head	58.0	79.0	29.5	62.1	3.6E-07	
BH12-OP-05	3	03/11/2012	Rising Head	79.0	100.0	48.5	81.1	1.4E-06	
BH12-OP-05	4	03/12/2012	Rising Head	100.0	121.0	67.5	100.1	2.7E-08	
BH12-OP-05	5	03/12/2012	Rising Head	121.0	142.0	86.6	119.2	5.4E-08	
BH12-OP-05	6	13/03/2012	Rising Head	142.0	163.0	105.6	138.2	2.4E-08	
BH12-OP-05	7	13/03/2012	Rising Head	163.0	184.0	124.6	157.2	1.7E-08	
BH12-OP-05	8	14/03/2012	Rising Head	184.0	205.0	143.6	176.3	1.7E-08	
BH12-OP-05	9	14/03/2012	Rising Head	205.0	226.0	162.7	195.3	2.2E-08	
BH12-OP-05	10	15/03/2012	Rising Head	226.0	247.0	181.7	214.3	7.6E-07	
BH12-OP-05	11	15/03/2012	Rising Head	247.0	268.0	200.7	233.4	4.0E-07	
BH12-OP-05	11a	16/03/2012	Rising Head	268.0	300.0	224.8	257.4	1.2E-07	
BH12-OP-05	12	16/03/2012	Rising Head	60.0	300.0	130.5	163.1	1.1E-07	
BH12-OP-07	1	03/05/2012	Rising Head	87.0	108.0	20.9	68.9	7.9E-09	
BH12-OP-07	2	03/05/2012	Rising Head	108.0	129.0	35.7	83.8	3.1E-08	
BH12-OP-07	3	03/06/2012	Rising Head	129.0	150.0	50.6	98.6	2.0E-08	
BH12-OP-07	4	03/06/2012	Rising Head	150.0	171.0	65.4	113.5		failed test
BH12-OP-07	5	03/06/2012	Rising Head	171.0	192.0	80.3	128.3	1.3E-08	
BH12-OP-07	6	03/07/2012	Rising Head	192.0	213.0	95.1	143.2	8.4E-09	
BH12-OP-07	7	03/07/2012	Rising Head	213.0	234.0	110.0	158.0		failed test
BH12-OP-07	8	03/07/2012	Rising Head	234.0	255.0	124.8	172.9	8.7E-09	I
BH12-OP-07	9	03/08/2012	Rising Head	258.0	279.0	141.8	189.9	2.2E-08	suspect
BH12-OP-07	10	03/08/2012	Rising Head	279.0	300.0	156.6	204.7	3.1E-09	i i
KCBL-101			Constant Head	56.0	76.0	53.2	65.0	3.3E-07	
KCBL-104			Constant Head	59.0	61.0	20.7	56.4	3.3E-06	

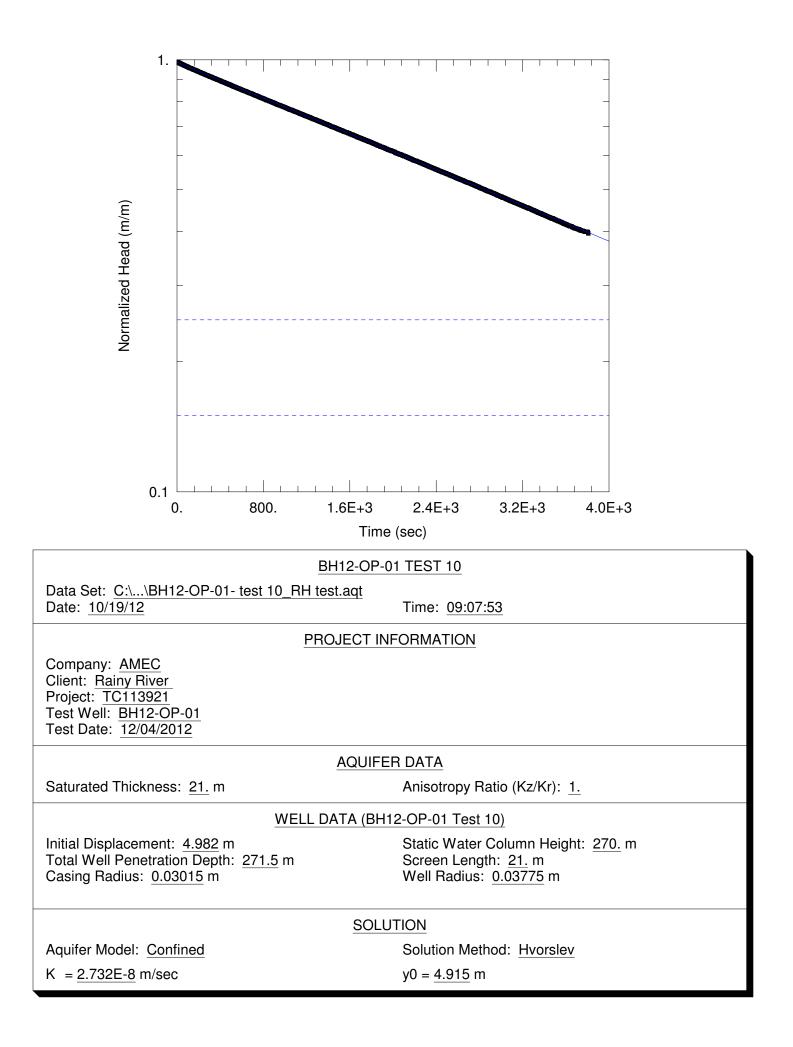

* mmbs = meters below bedrock surface ** mbgs = meters below ground surface

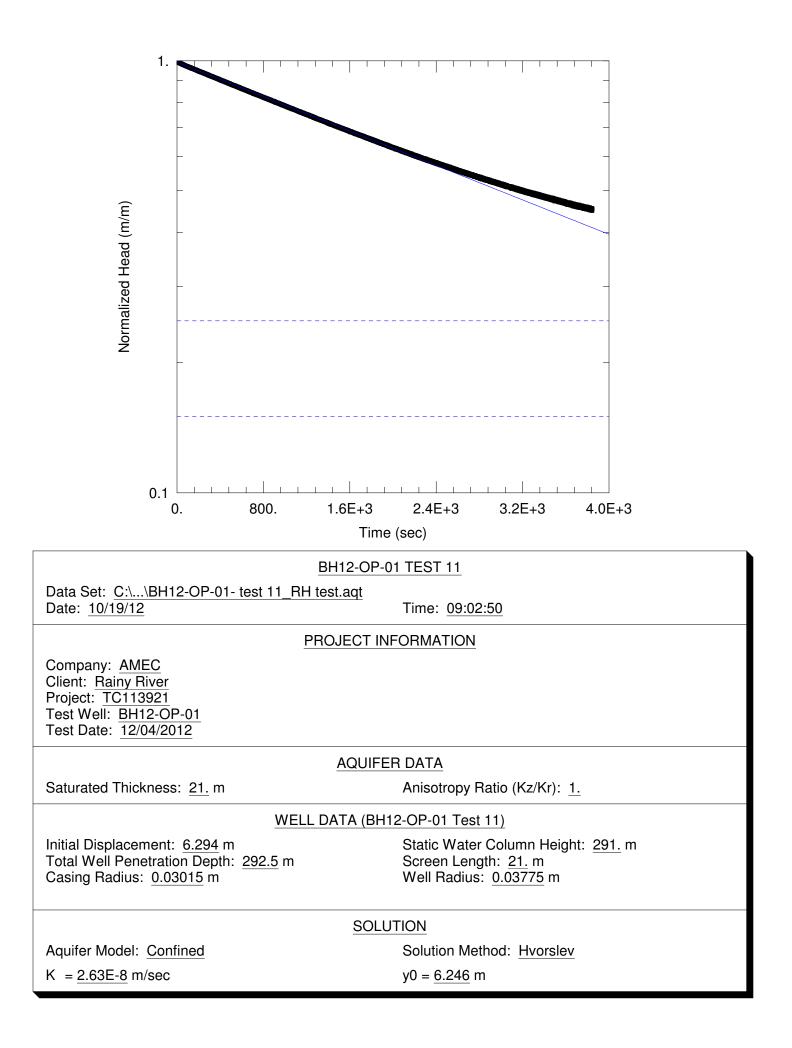


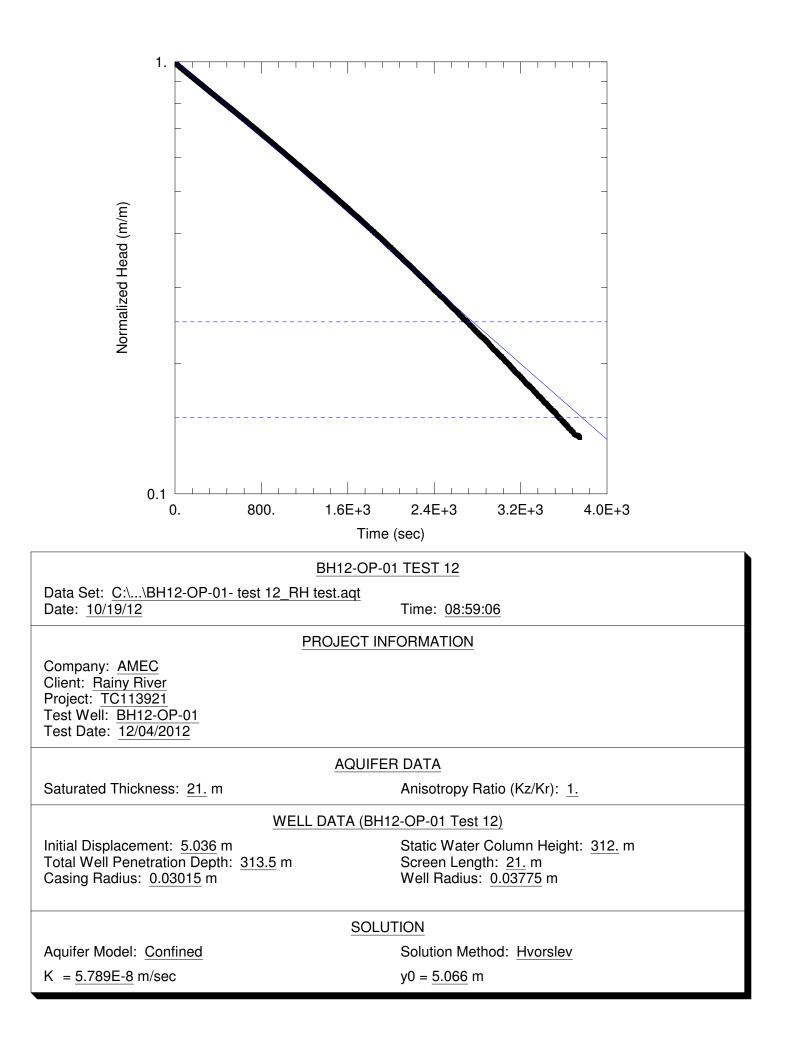


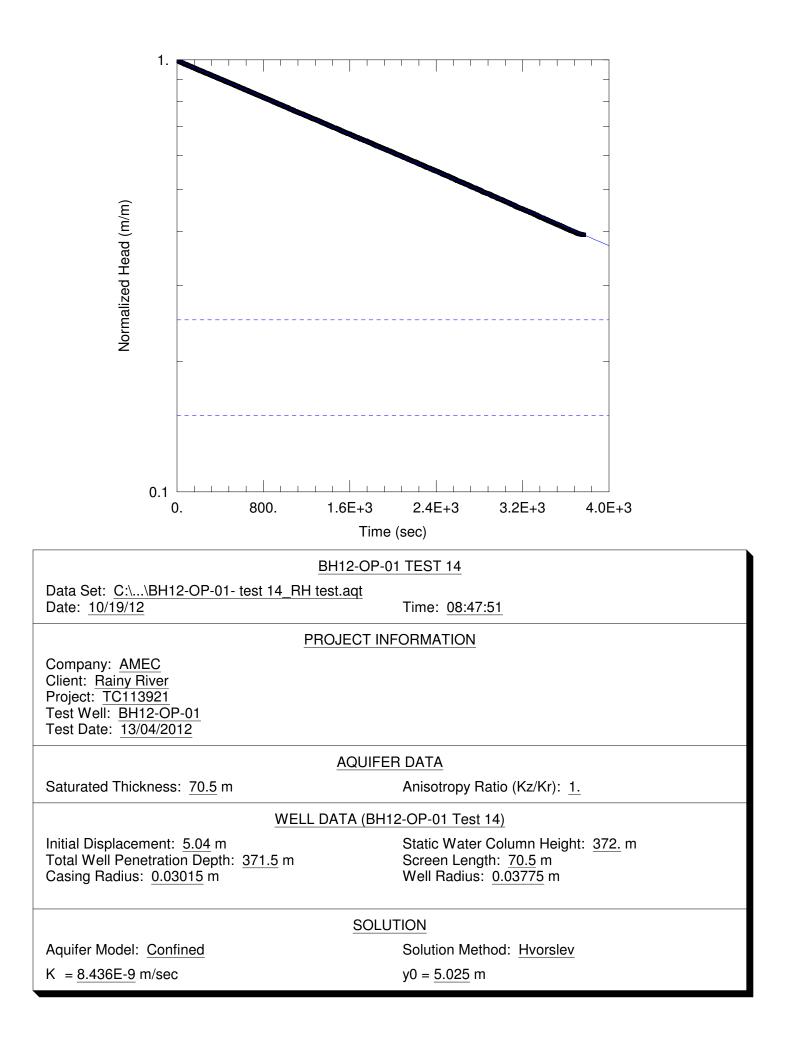


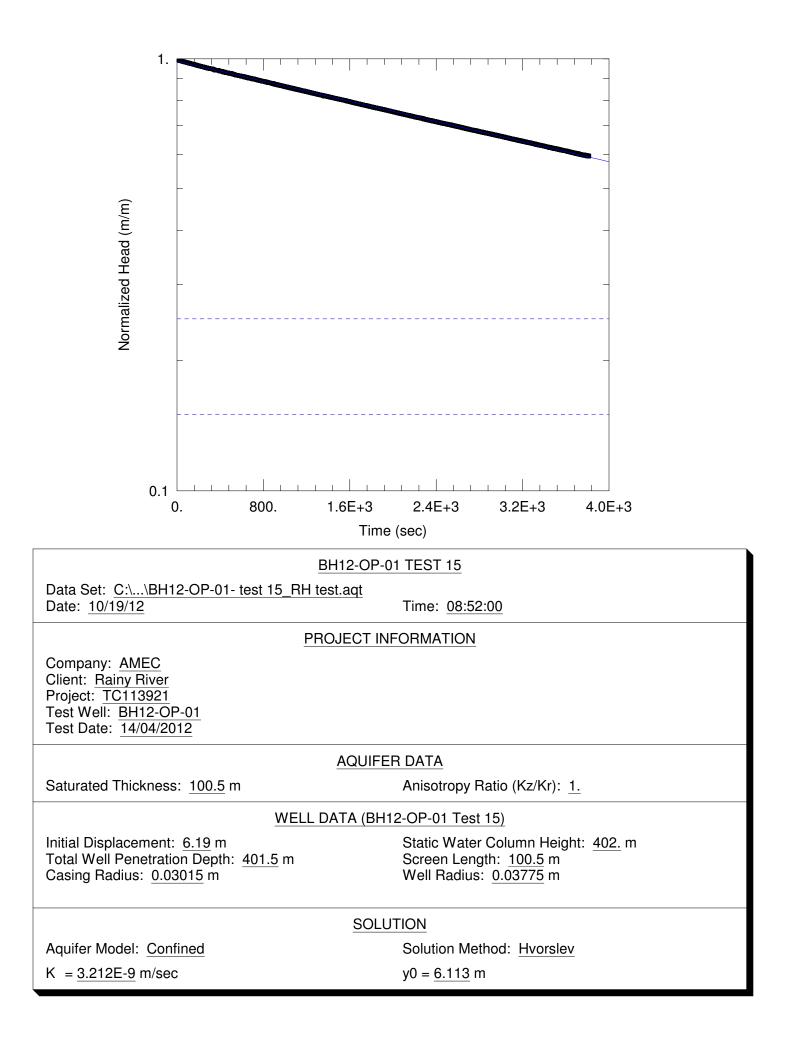


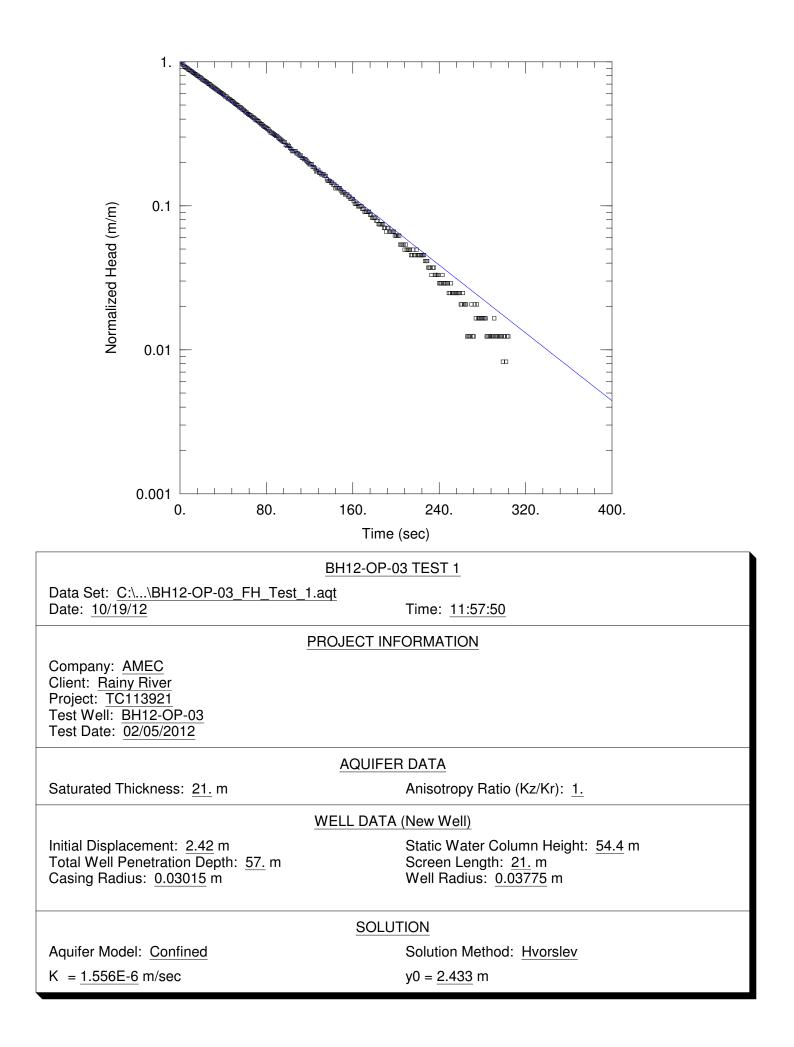


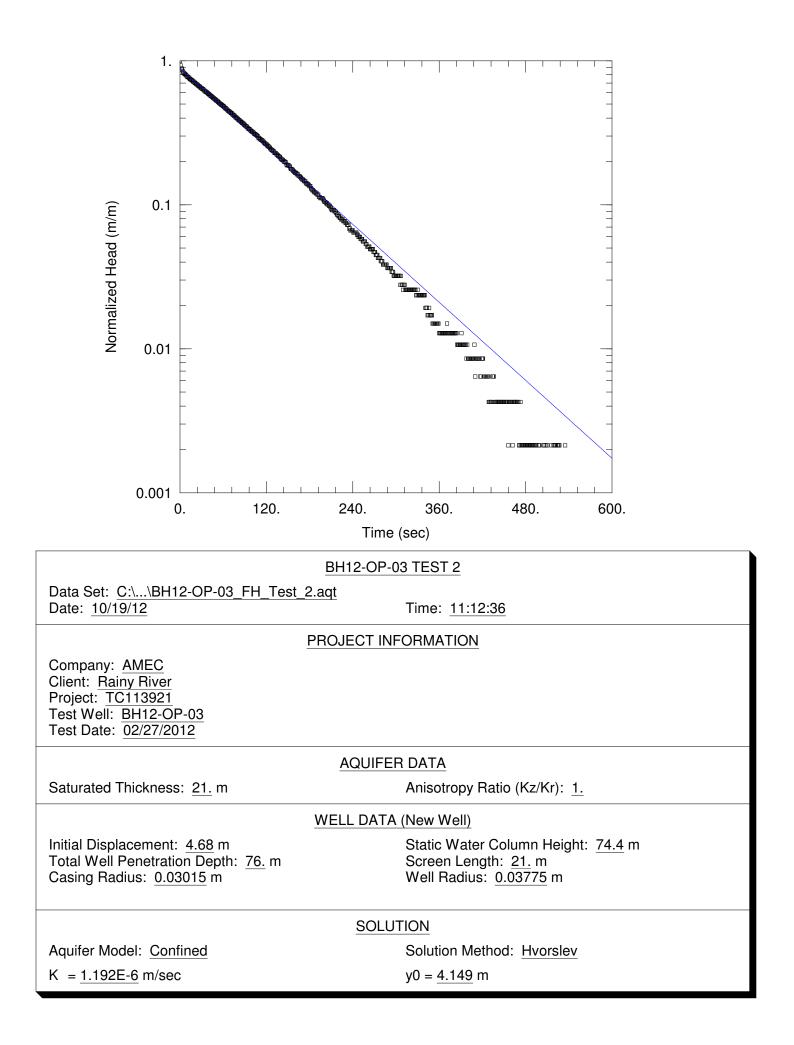


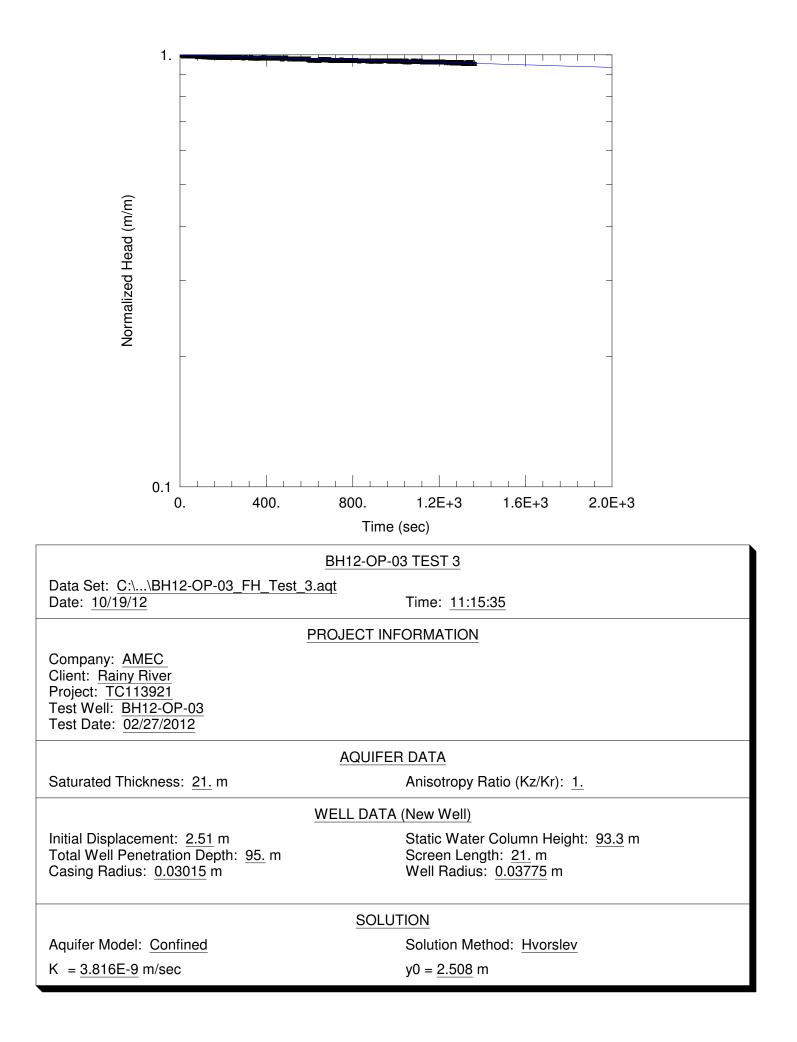


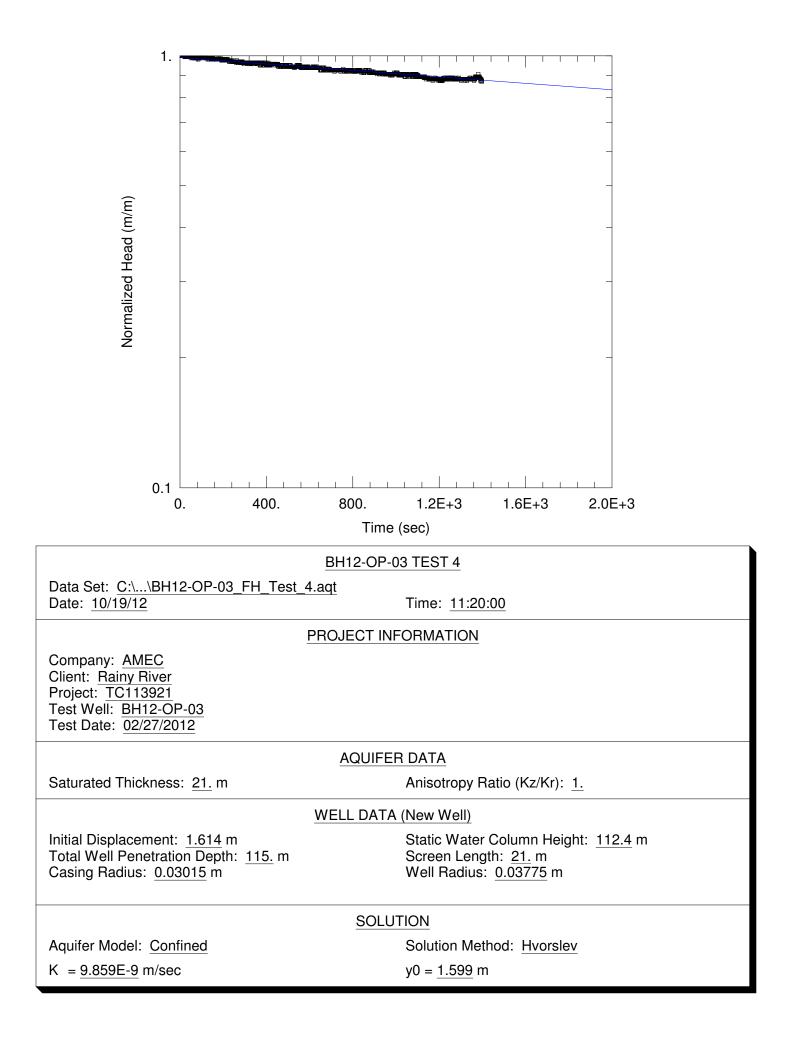


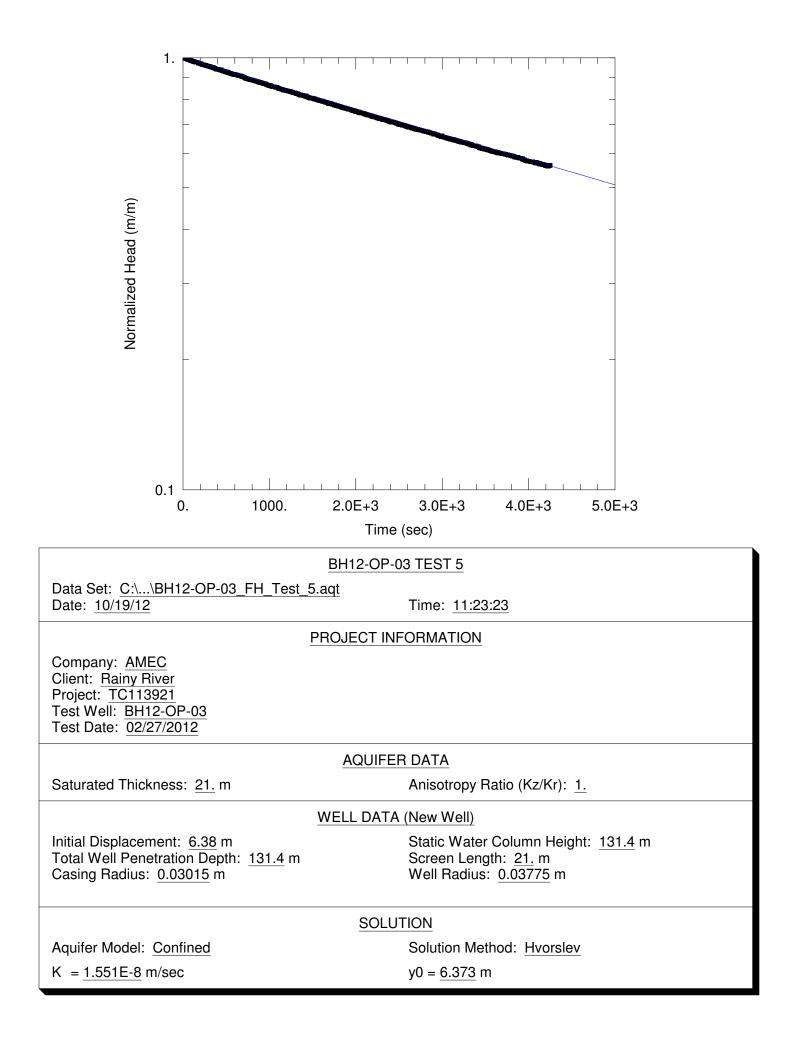


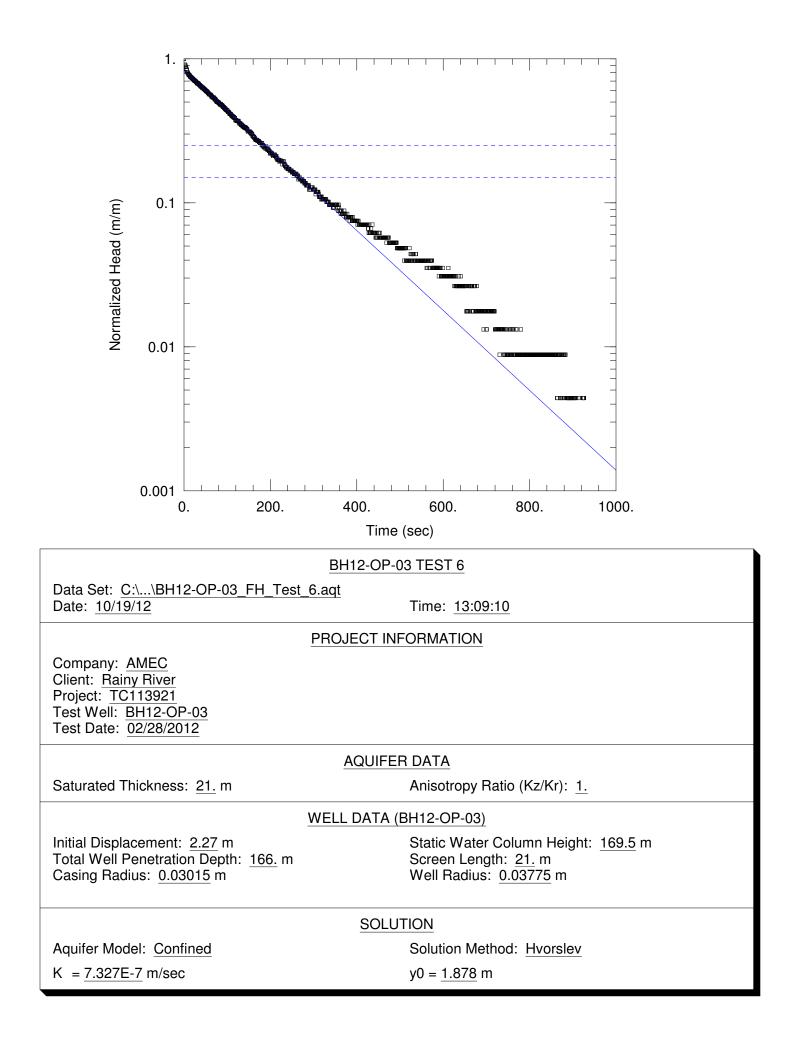


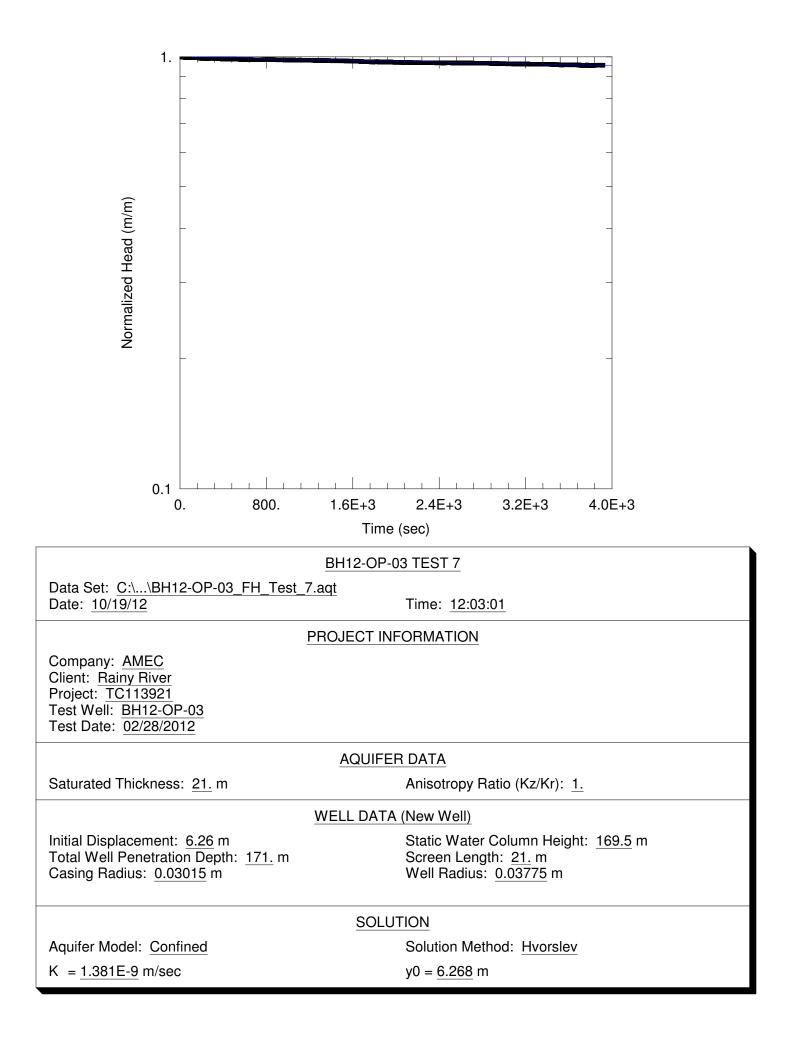


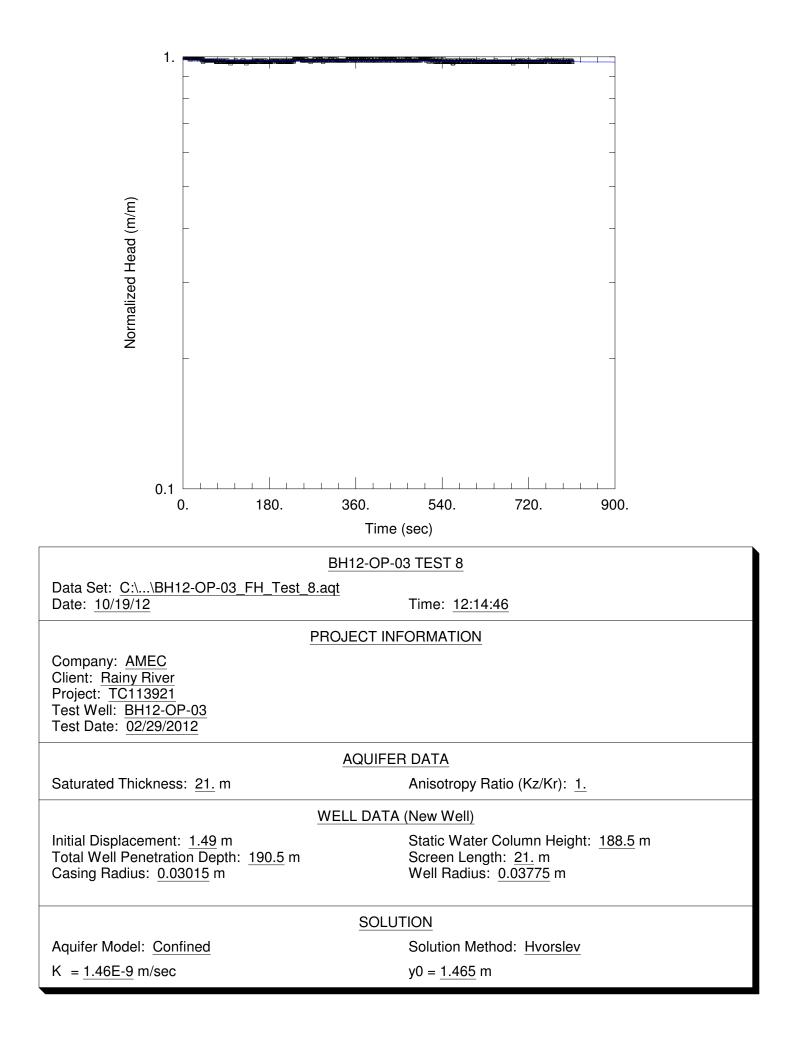


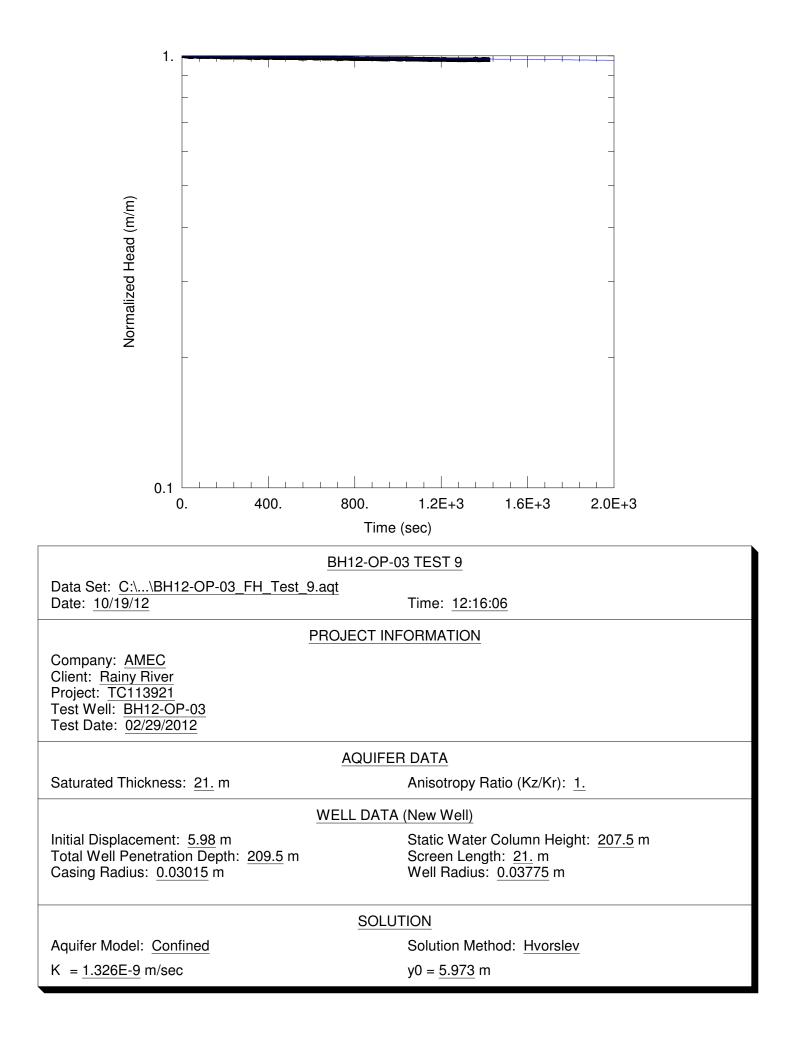


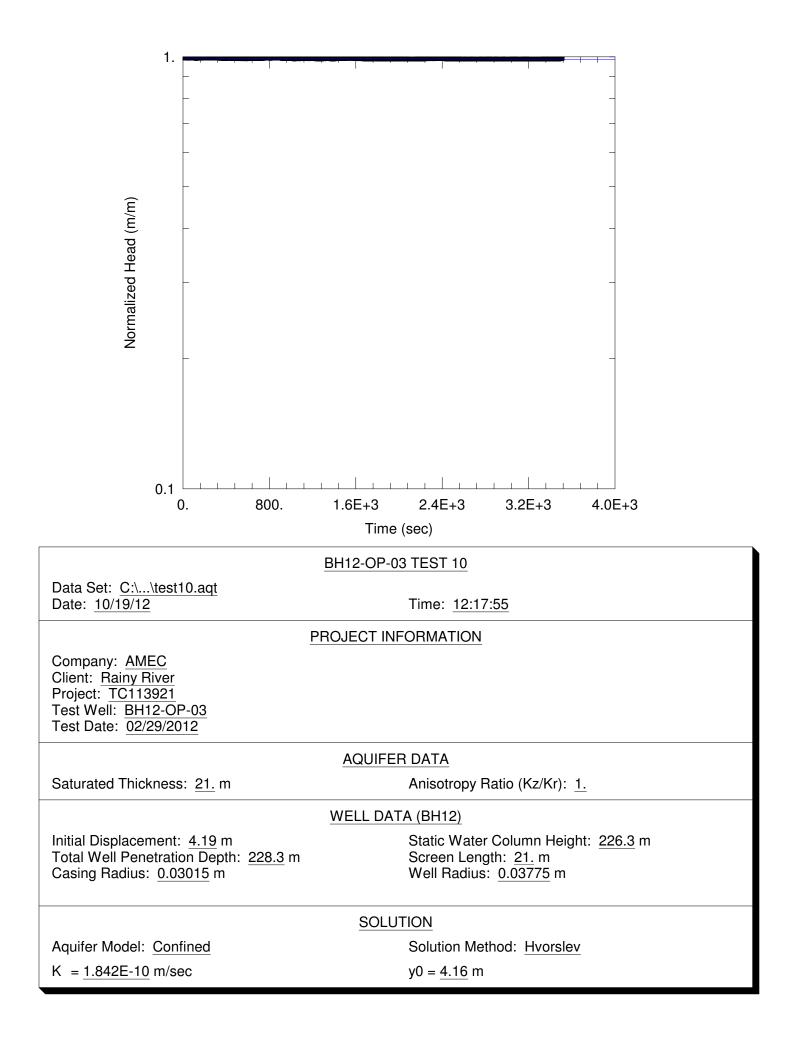


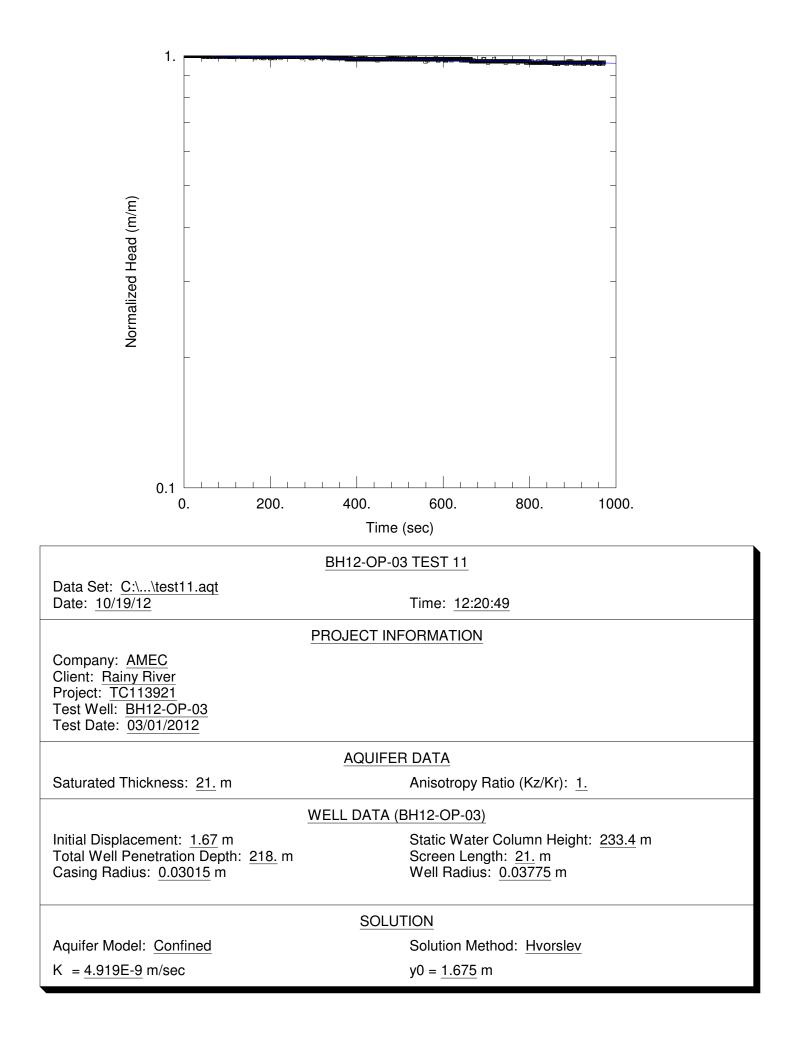


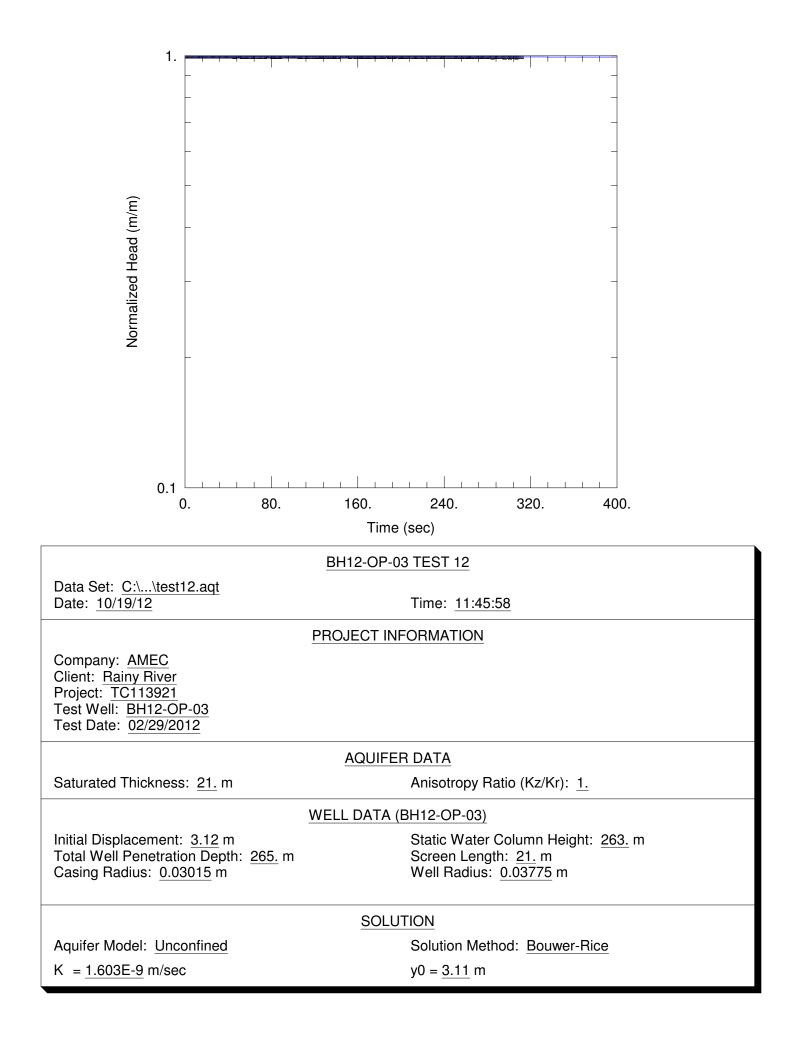


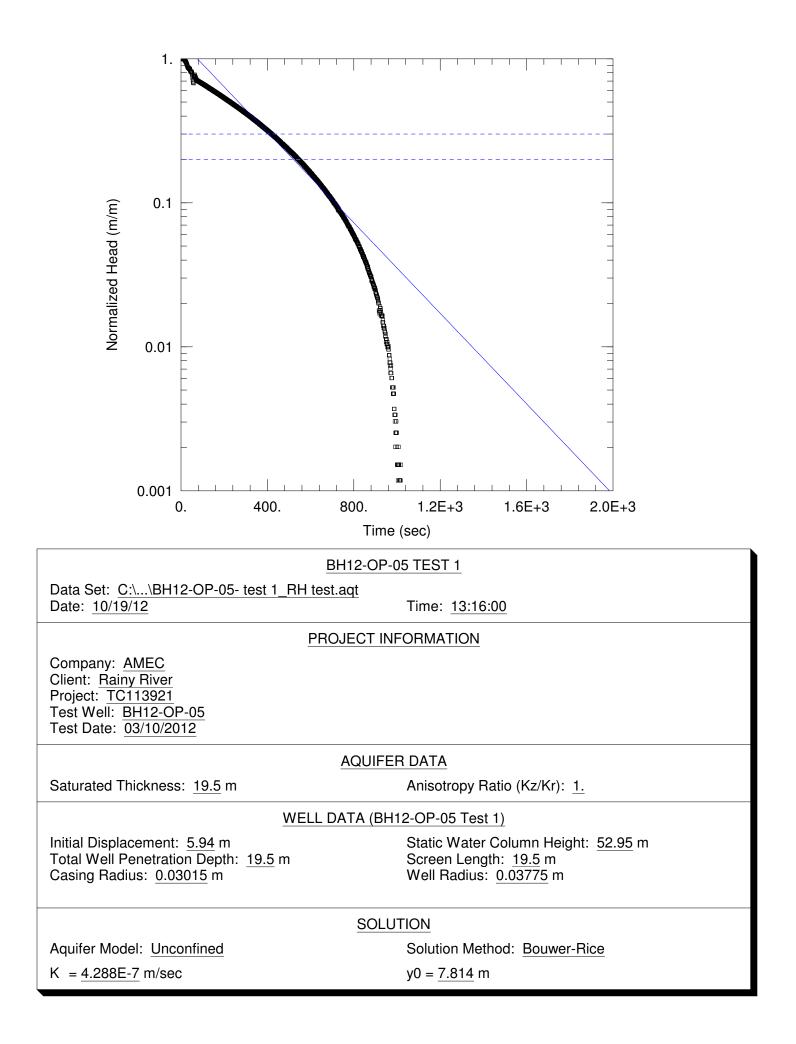


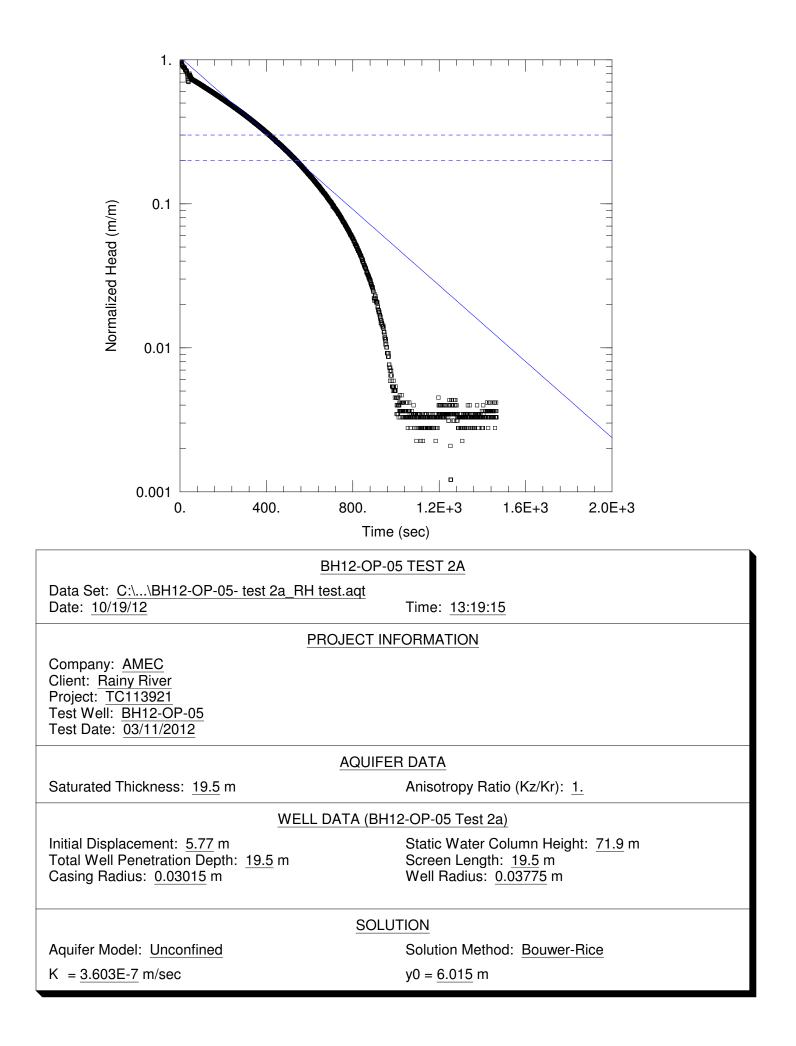


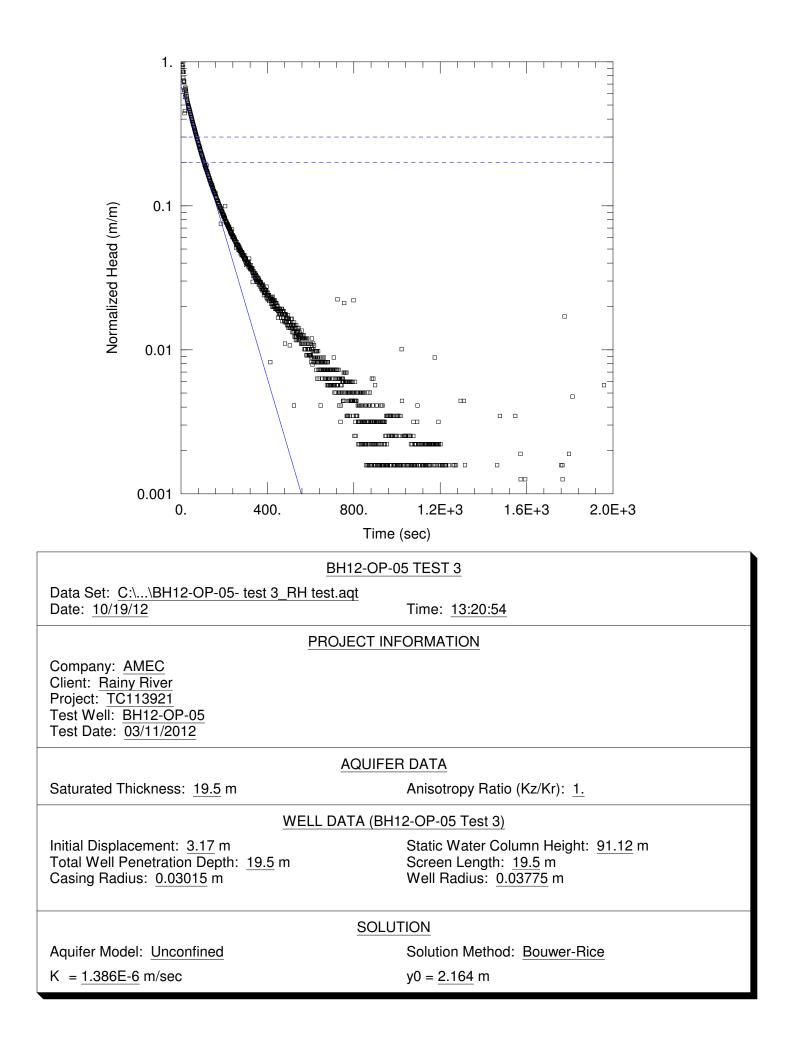


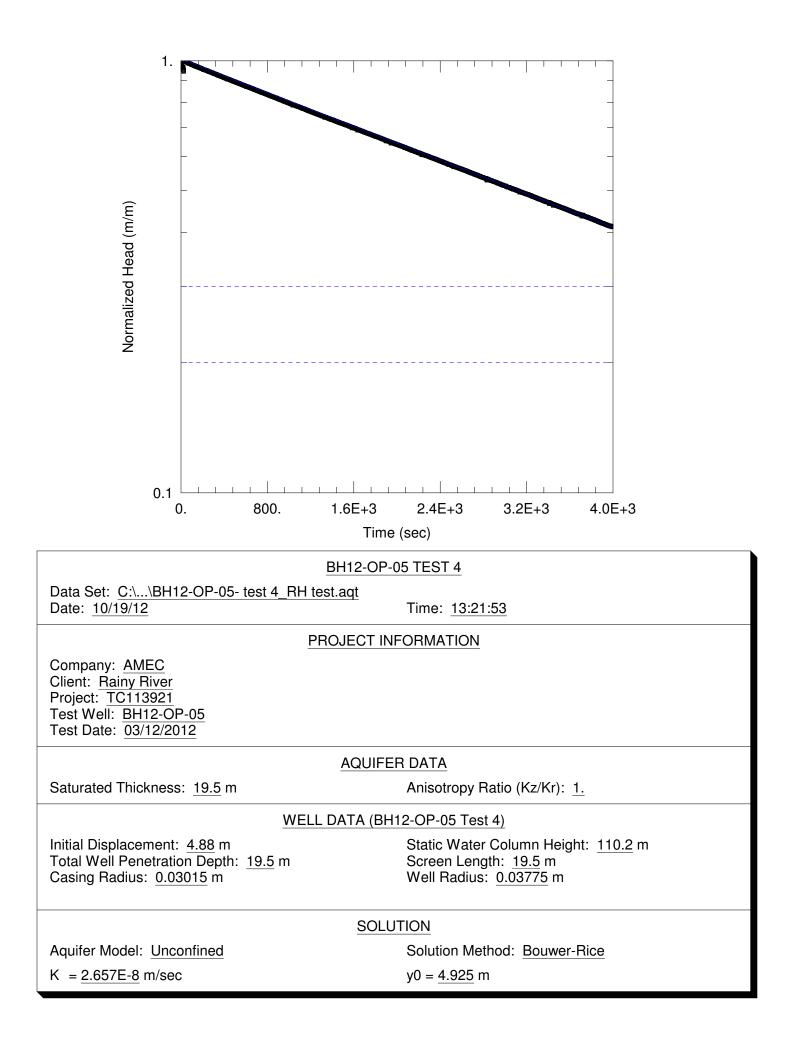


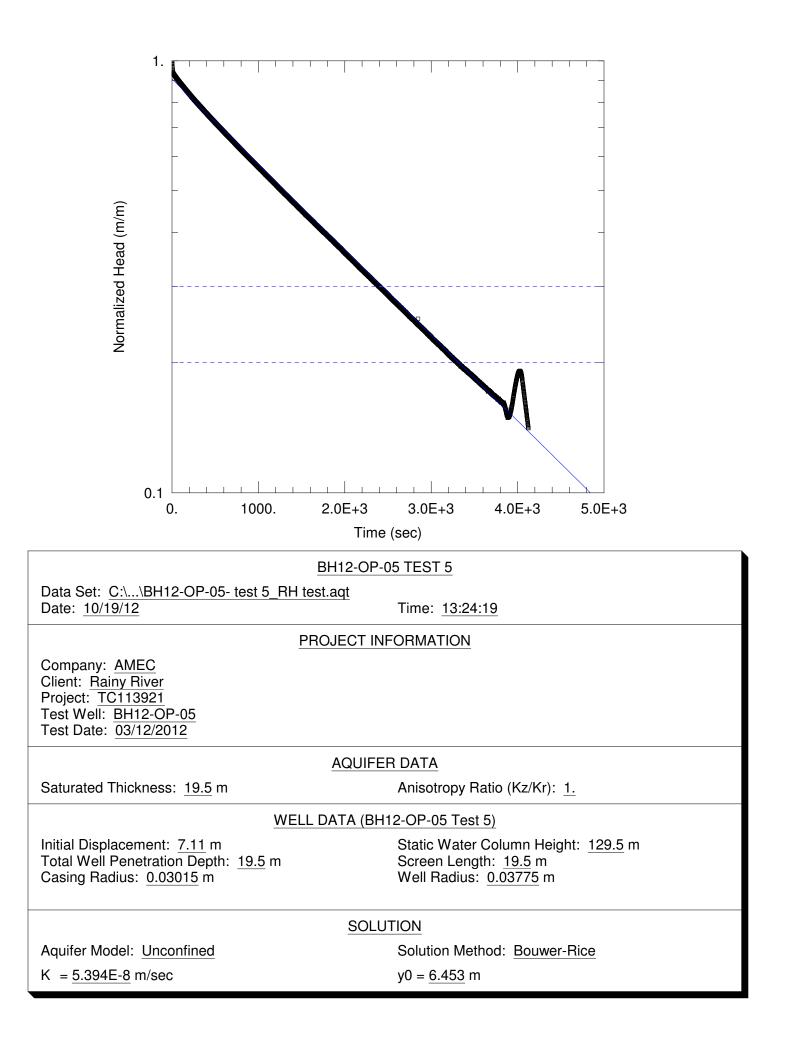


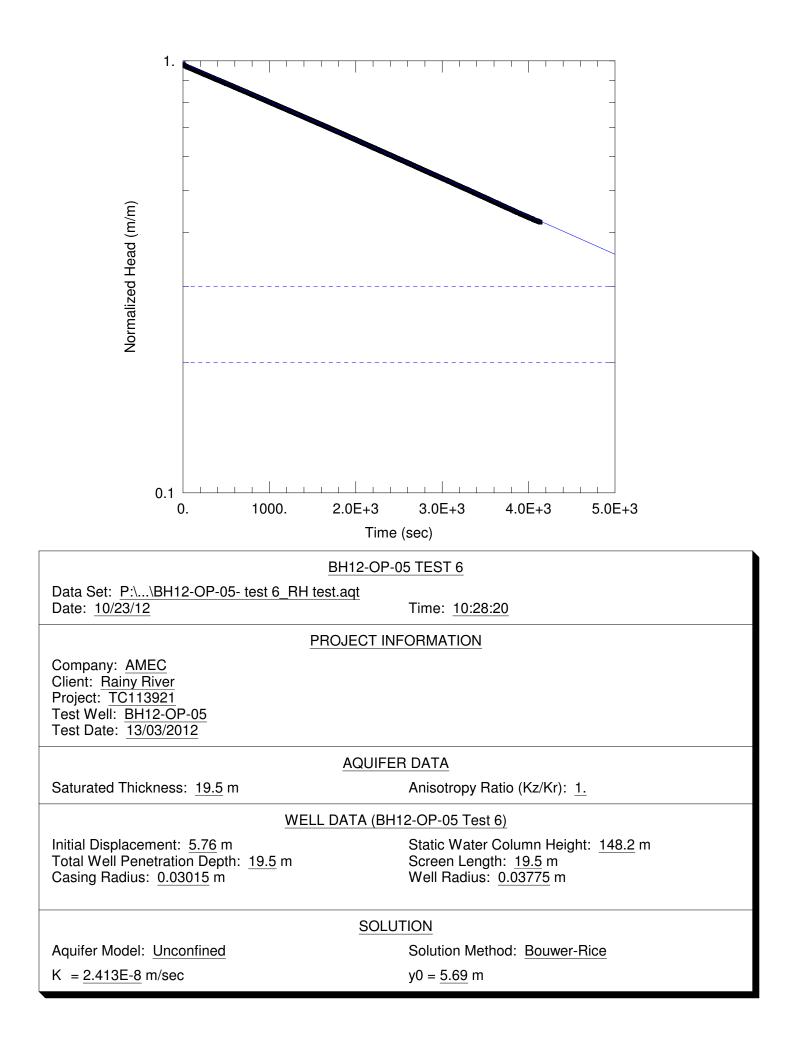


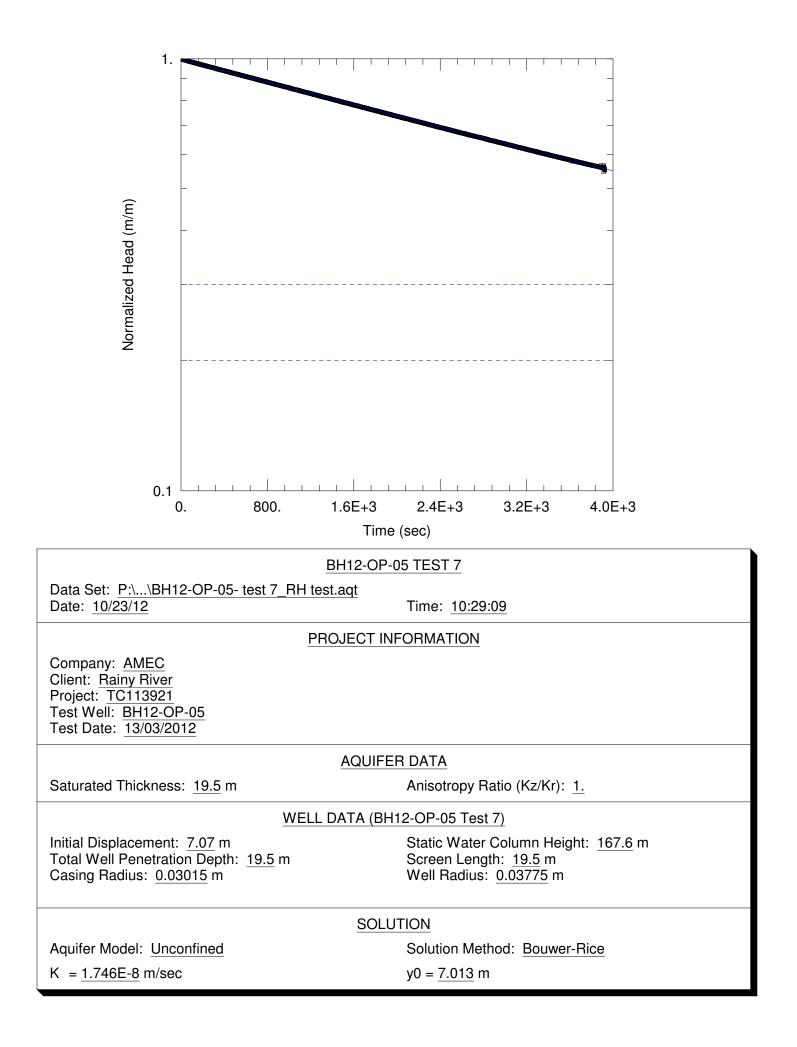


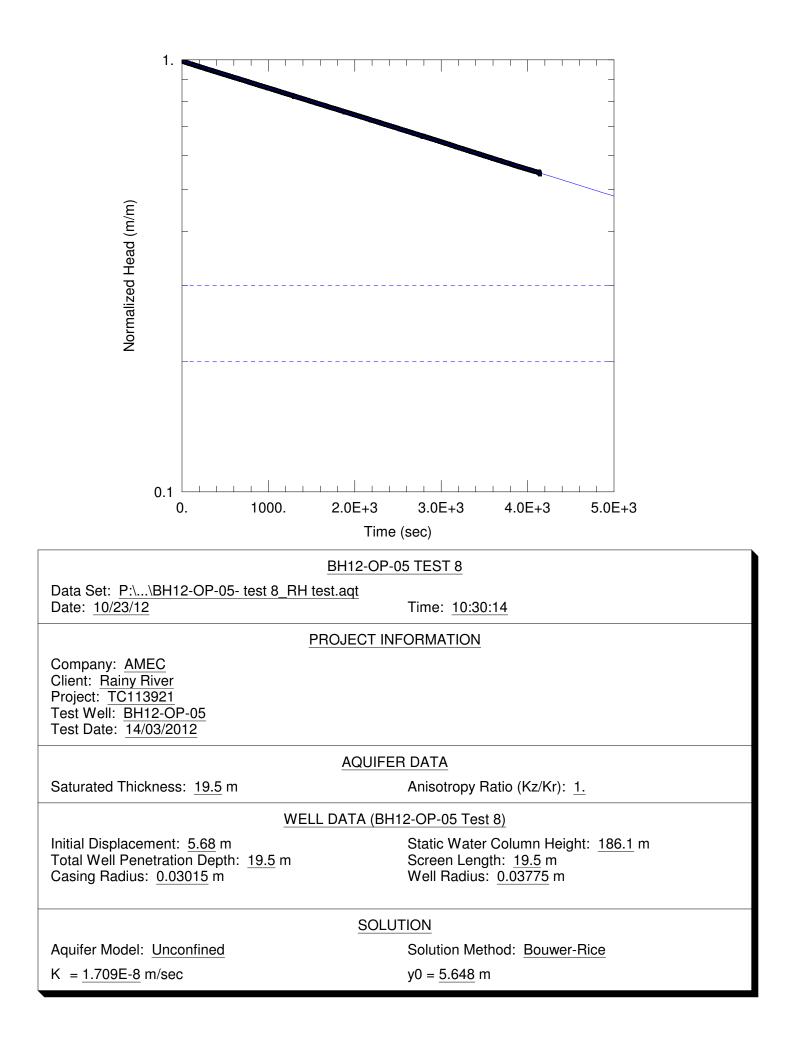


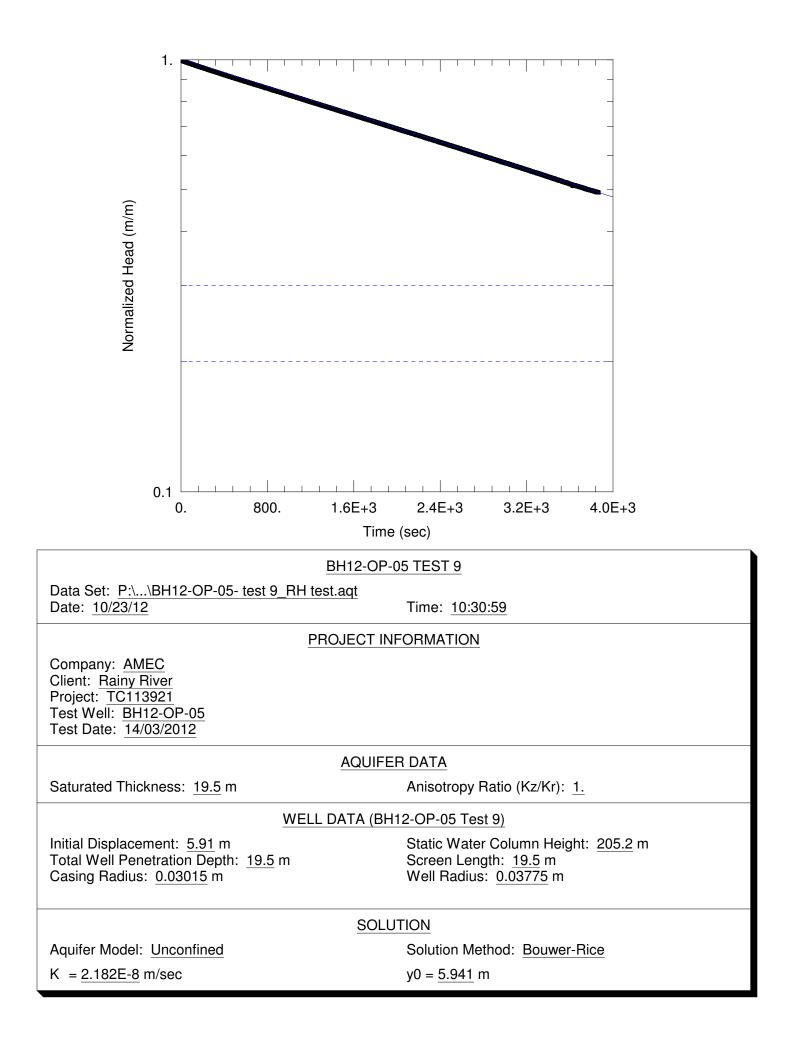


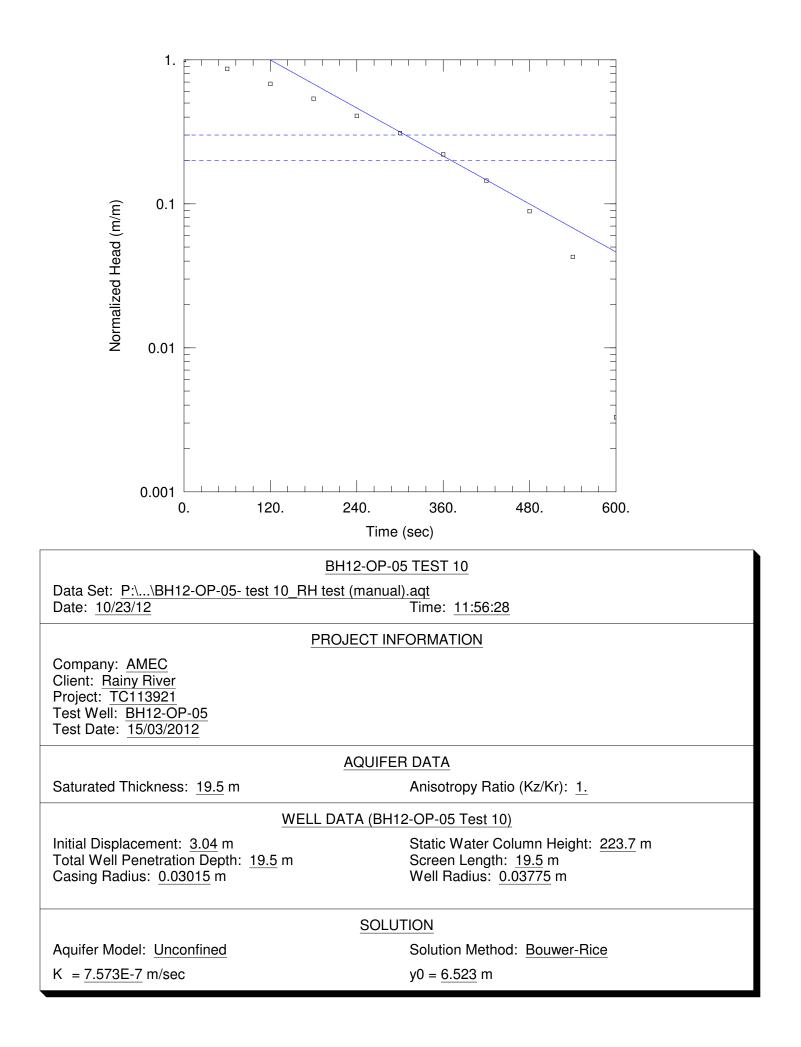


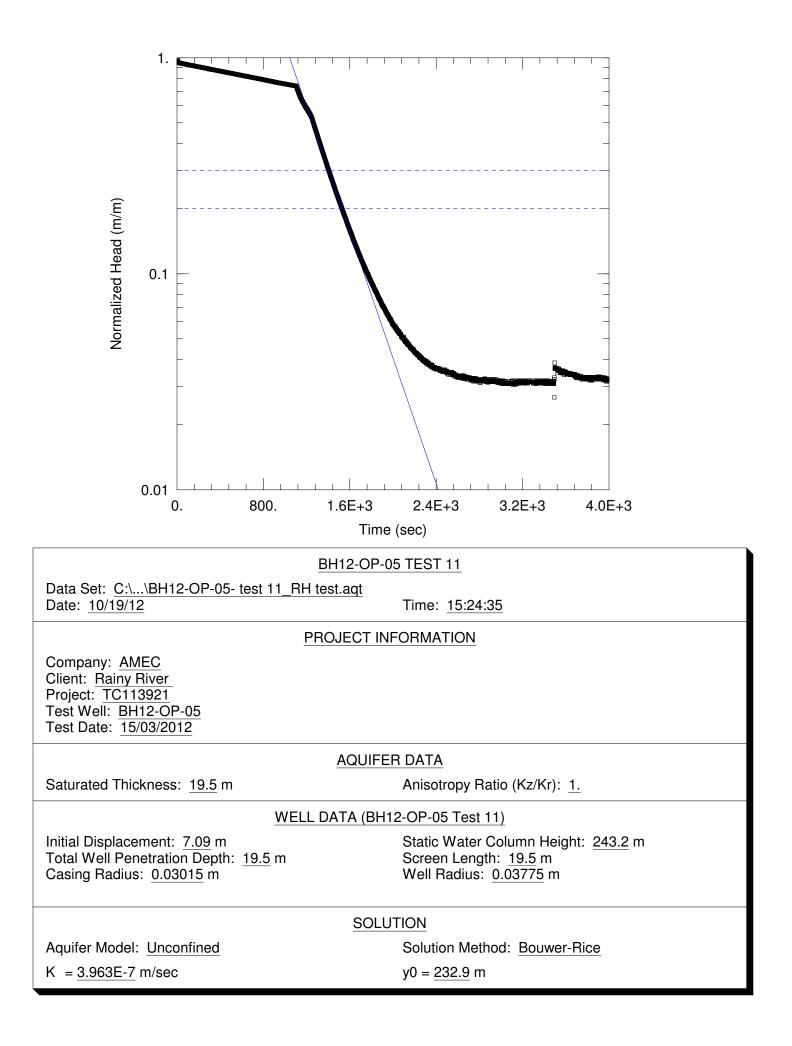


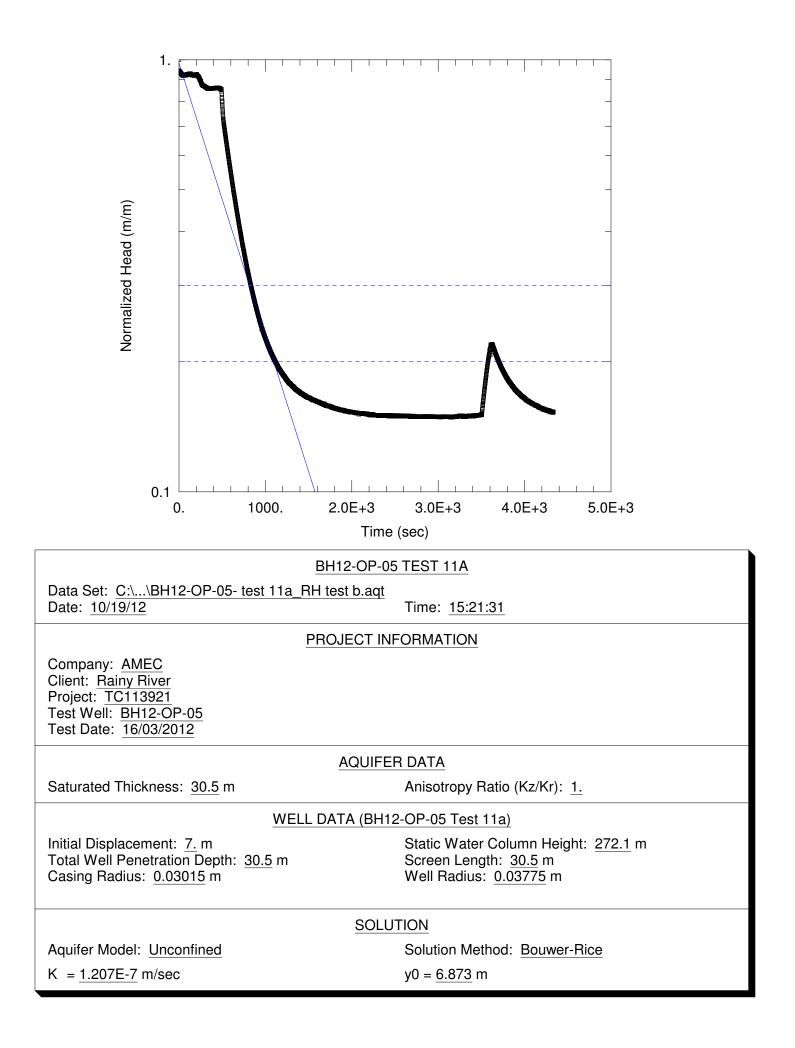


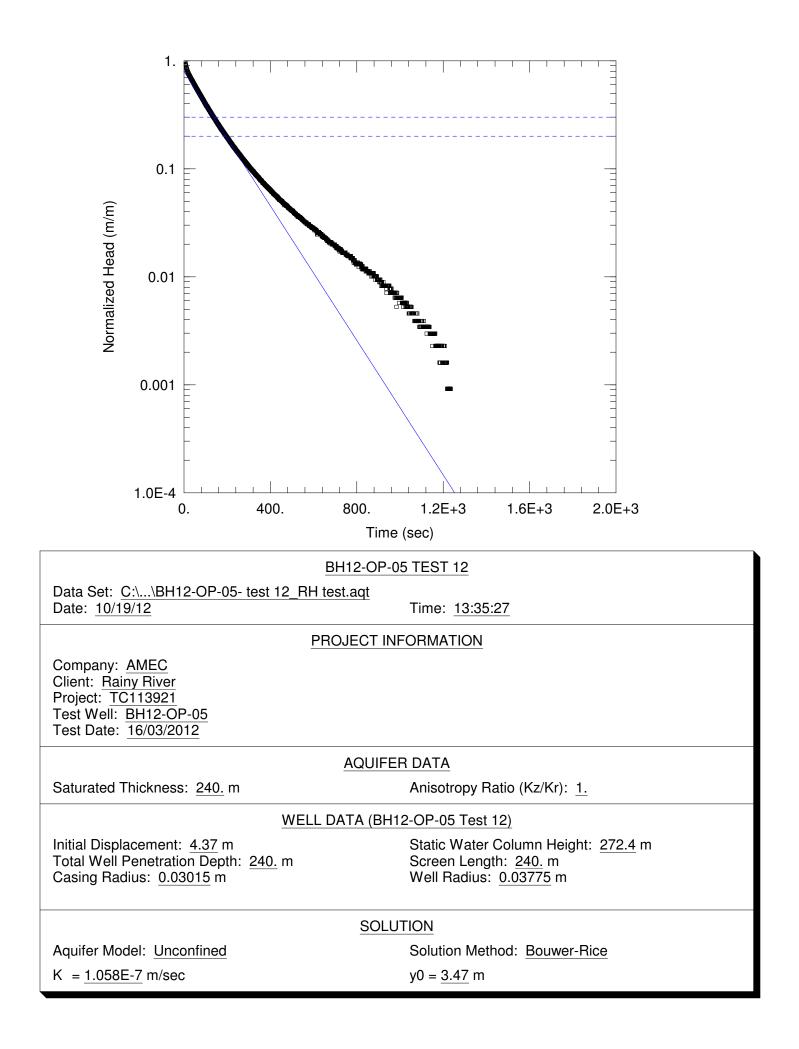


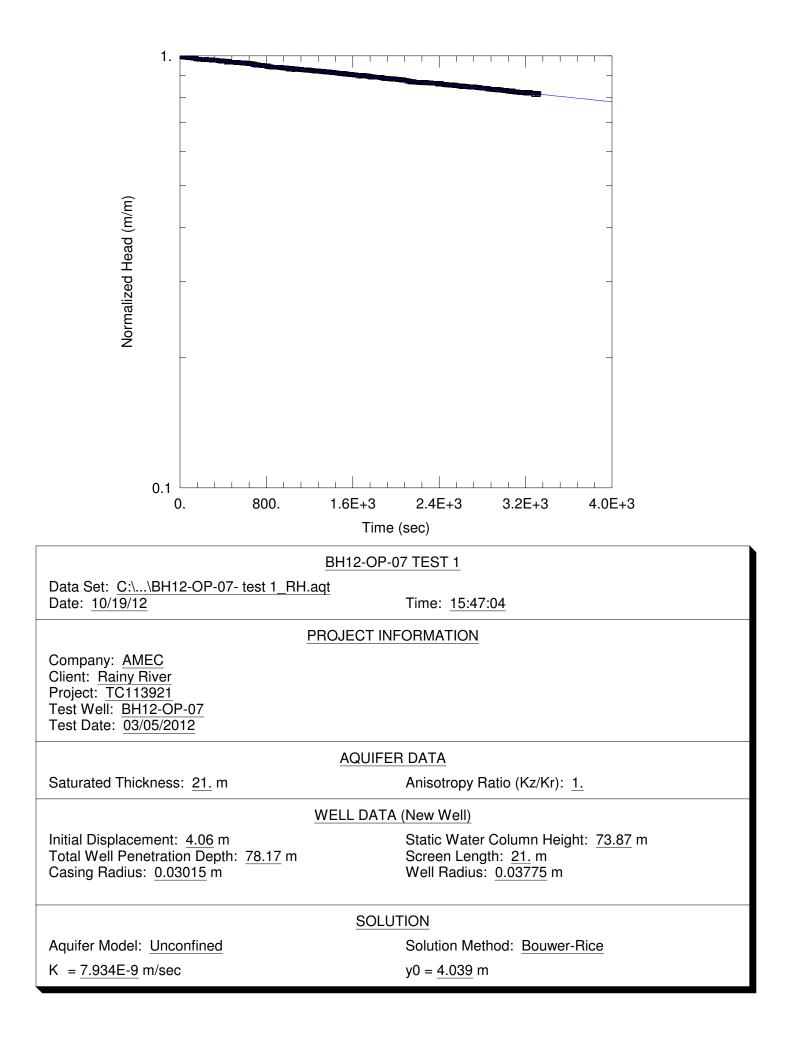


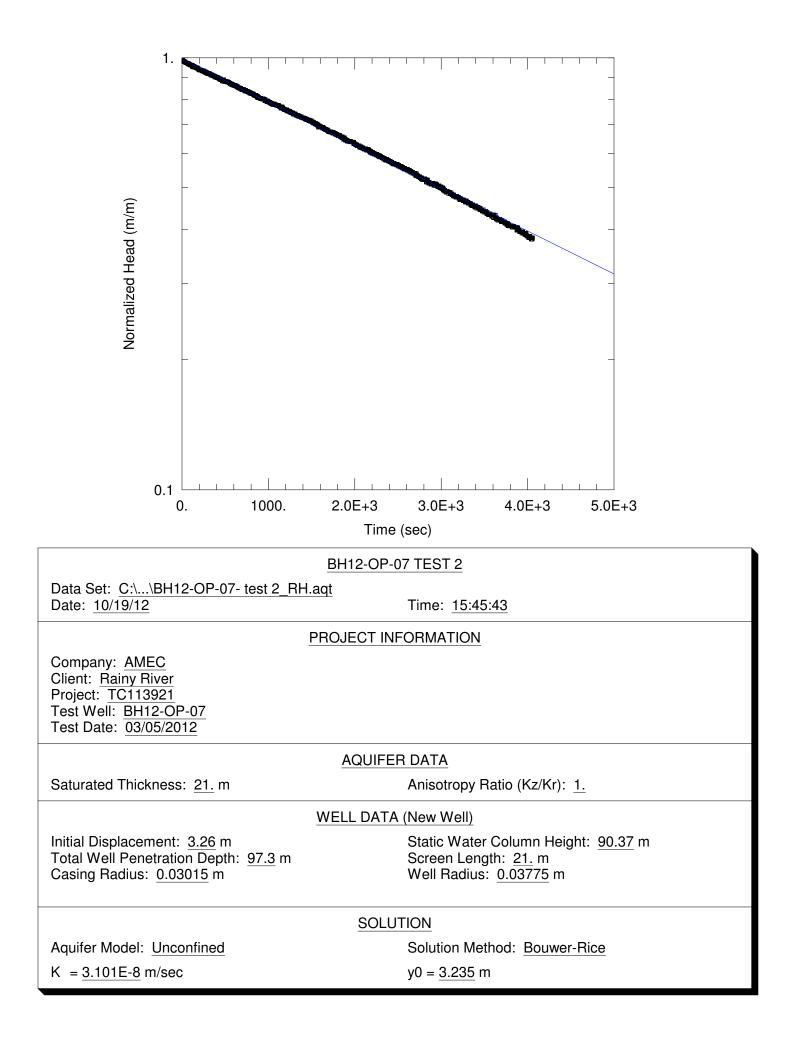


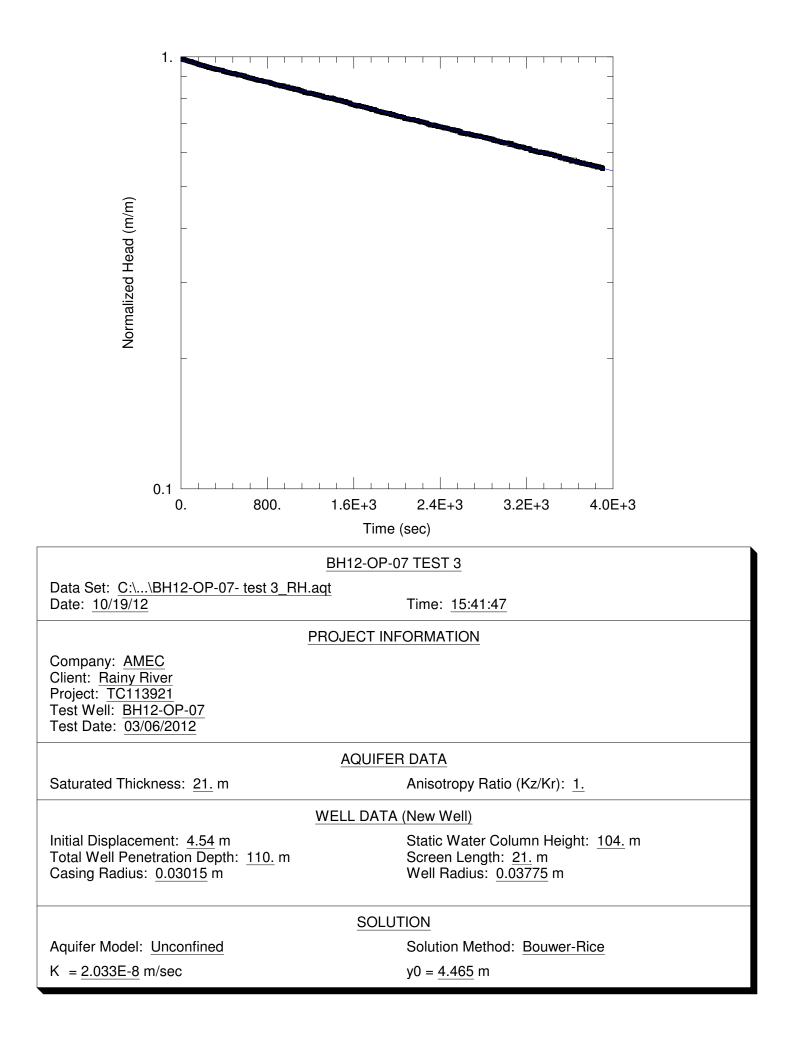


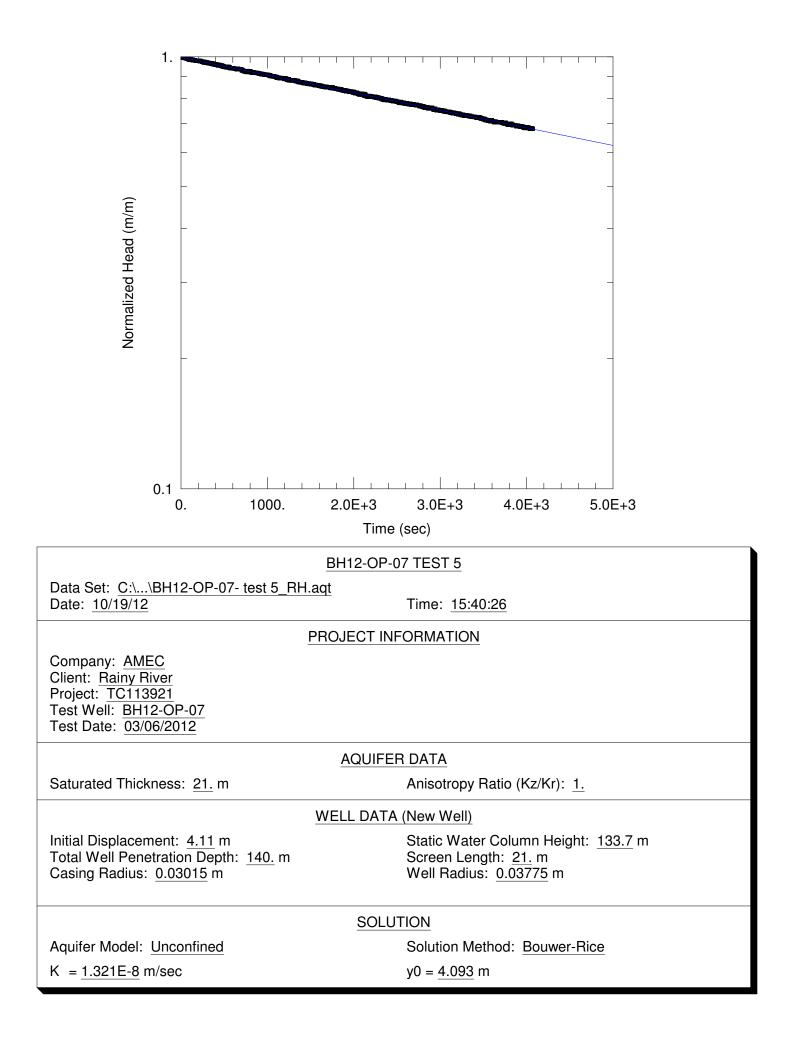


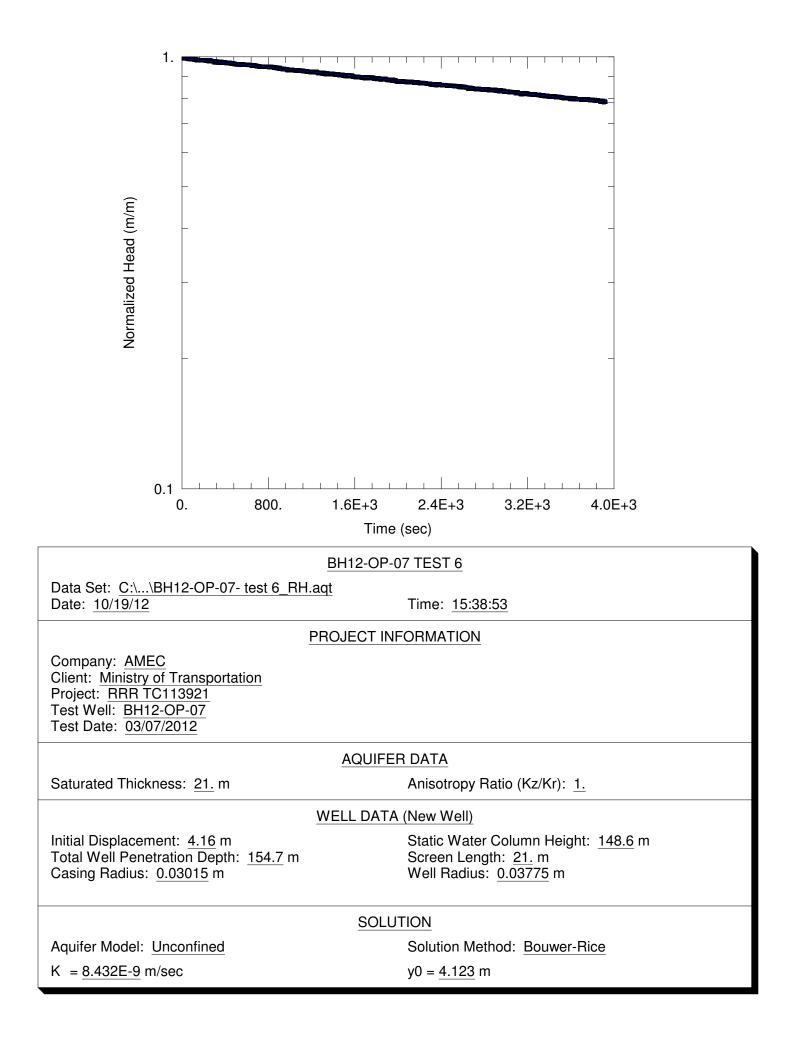


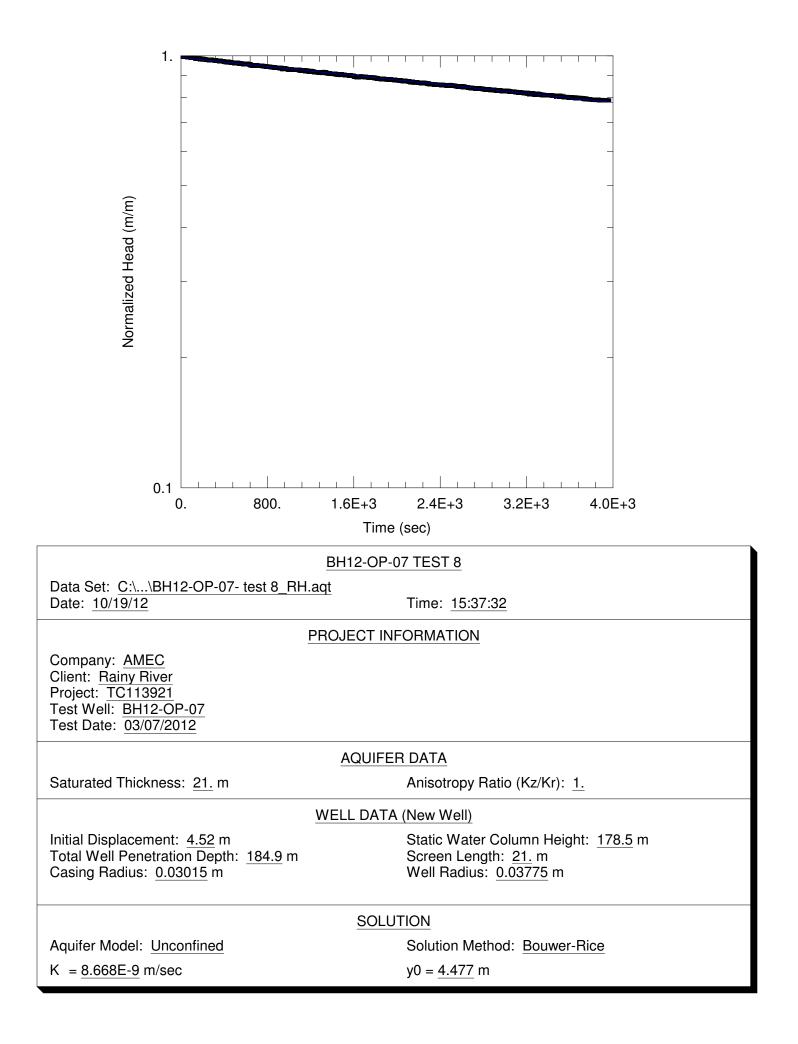


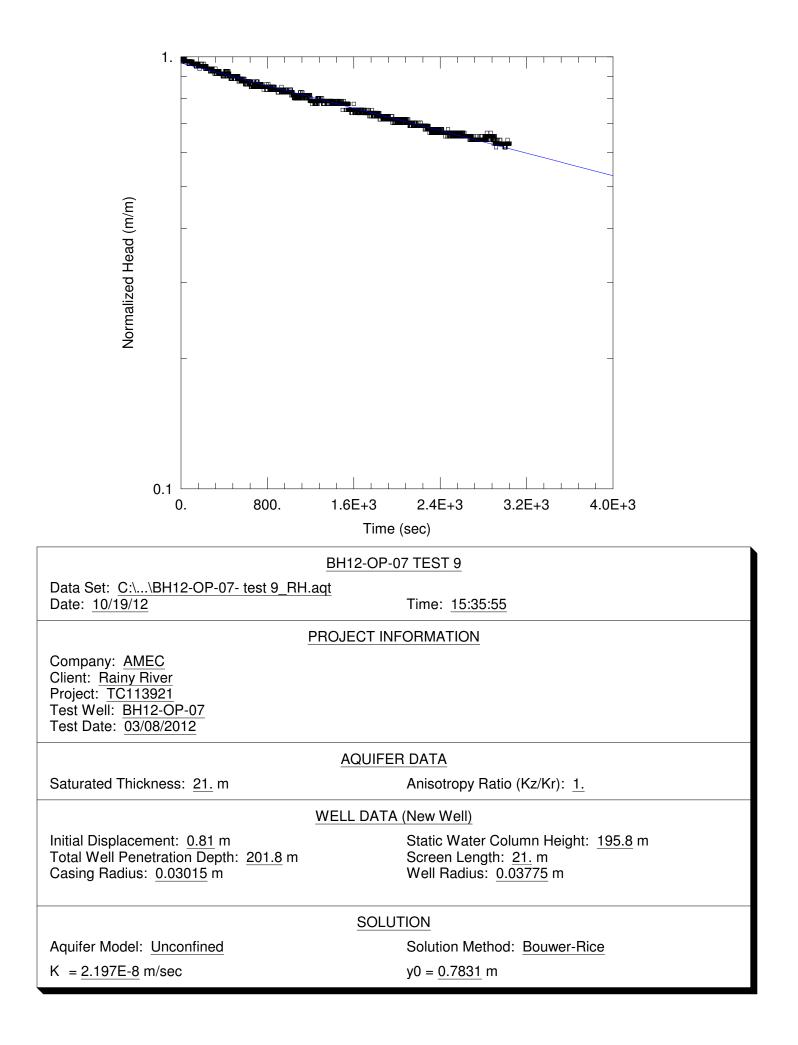


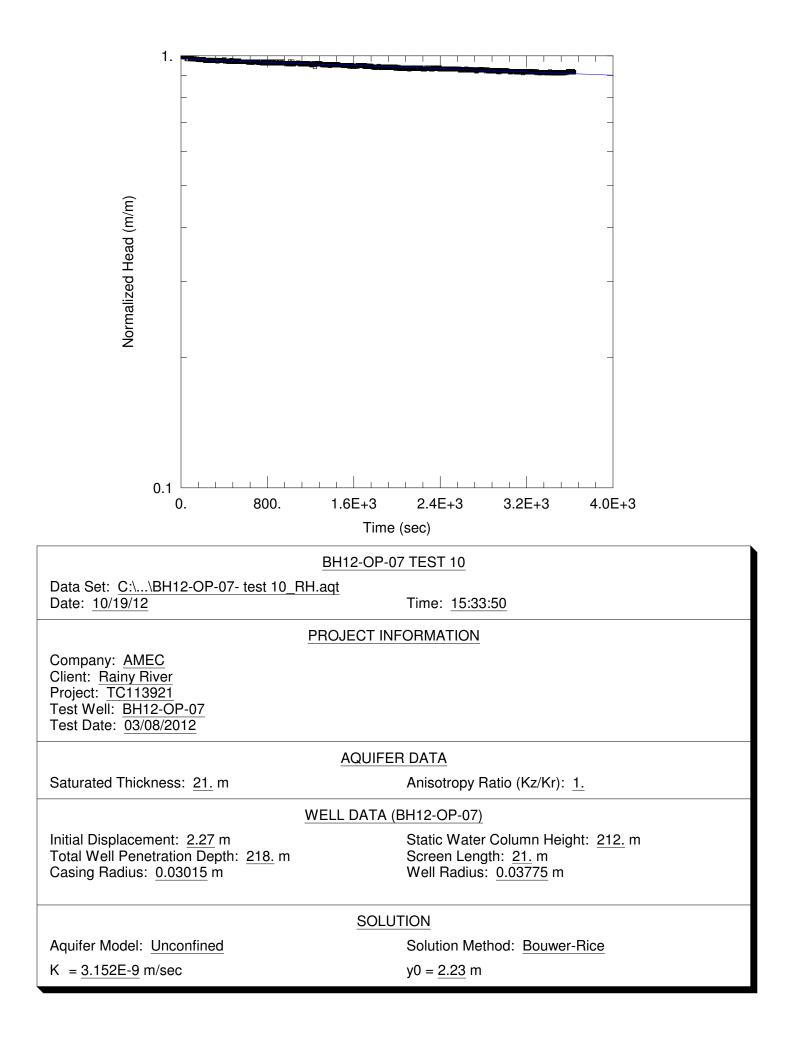












Summary of Packer testing

BH12-UG-02 Date Depth to water table (mbgs) TC113921 0.03 12-Feb-12 Borehole Angle (degrees) 75 Packer Η Κ Depth Depth Depth Depth L R h Pressure Q No. (mbgs) (mbgs) (mbgs) (mbgs) (m) (m) (m)(psi) (m) (m3/s)(m/s)Average K (m/s) 15.92 1.27E-07 64.34 83.84 62.15 80.79 18.6 0.038 1.86 20.0 0.00004 1 62.15 80.79 18.6 0.038 1.86 40.0 29.97 0.00006 1.03E-07 62.15 80.79 18.6 0.038 1.86 60.0 44.03 0.00007 8.82E-08 1.07E-07 80.79 18.6 0.038 1.86 9.72E-08 40.0 62.15 29.97 0.00006 80.79 18.6 20.0 15.92 1.22E-07 62.15 0.038 1.86 0.00004 2 88 108 84.77 103.73 19.0 0.038 1.79 20.0 15.85 0.000012 3.84E-08 84.77 103.73 19.0 0.038 1.79 40.0 29.90 0.000017 2.91E-08 84.77 103.73 19.0 0.038 1.79 60.0 43.96 0.00003 3.31E-08 3.14E-08 1.79 2.91E-08 84.77 103.73 19.0 0.038 40.0 29.90 0.000017 84.77 103.73 19.0 0.038 1.79 20.0 15.85 0.000008 2.75E-08 9 235.25 255 222.37 240.59 18.2 0.038 1.685 20.0 15.74 0.00007 2.23E-07 222.37 240.59 18.2 0.038 1.685 40.0 29.80 0.00001 1.21E-08 222.37 240.59 1.685 60.0 1.03E-08 18.2 0.038 43.86 0.00001 5.38E-08 222.37 240.59 18.2 0.038 1.685 40.0 29.80 0.00001 1.21E-08 222.37 240.59 18.2 0.038 1.685 20.0 15.74 0.00000 1.14E-08 10 255 276 240.59 259.91 19.3 0.038 2.15 20.0 16.21 0.00001 1.59E-08 240.59 259.91 19.3 0.038 2.15 40.0 30.26 0.00001 1.13E-08 240.59 259.91 19.3 0.038 2.15 60.0 44.32 0.00001 9.67E-09 1.12E-08 240.59 259.91 19.3 0.038 2.15 40.0 30.26 0.00001 8.49E-09 240.59 259.91 19.3 0.038 2.15 20.0 16.21 0.00000 1.06E-08 0.000185 11b 273 294 257.15 276.42 19.3 0.038 20.0 15.06 6.33E-07 1 257.15 276.42 19.3 0.038 1 40.0 29.11 0.000282 4.98E-07 257.15 60.0 0.00036 4.29E-07 276.42 19.3 0.038 1 43.17 5.46E-07 257.15 276.42 19.3 0.038 40.0 29.11 0.000272 4.81E-07 1 257.15 276.42 19.3 0.038 1 20.0 15.06 0.000202 6.90E-07 22.0 0.038 12 294 20.0 318 276.42 298.38 1.15 15.21 0.000007 2.02E-08 276.42 298.38 22.0 40.0 29.26 0.000005 7.89E-09 0.038 1.15 276.42 298.38 22.0 0.038 1.15 60.0 43.32 0.000007 7.10E-09 1.17E-08

276.42

276.42

298.38

298.38

22.0

22.0

0.038

0.038

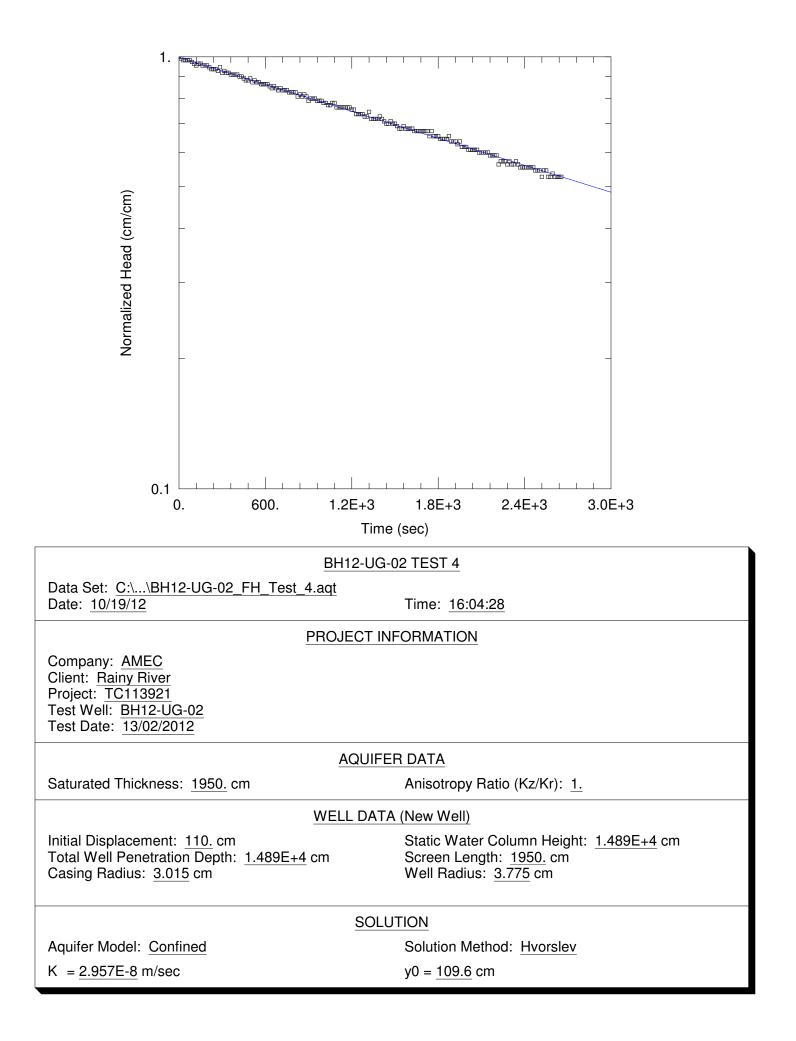
1.15

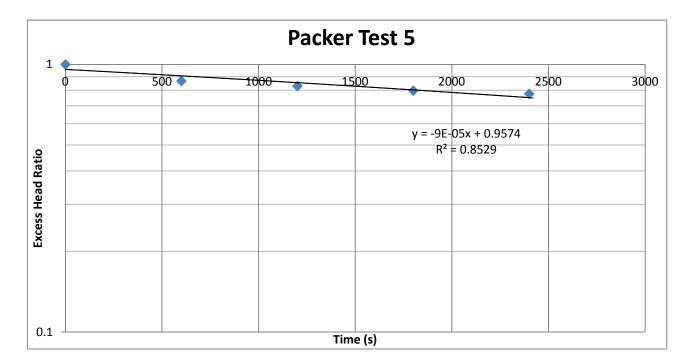
1.15

40.0

20.0

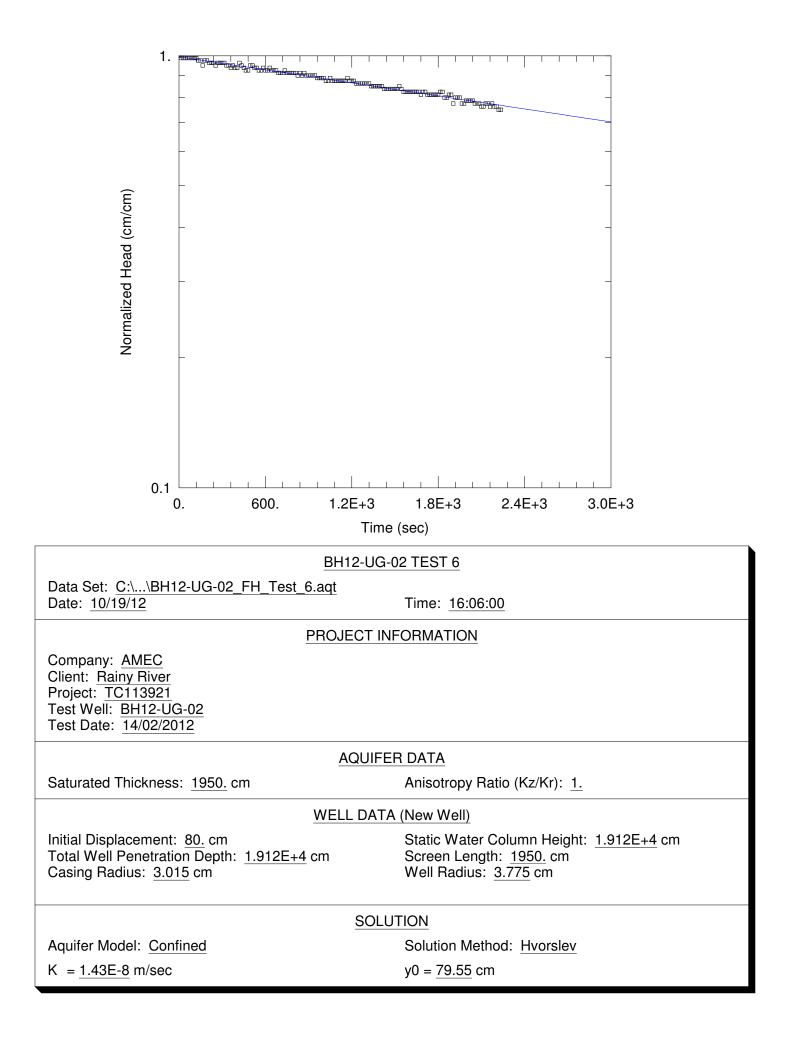
29.26

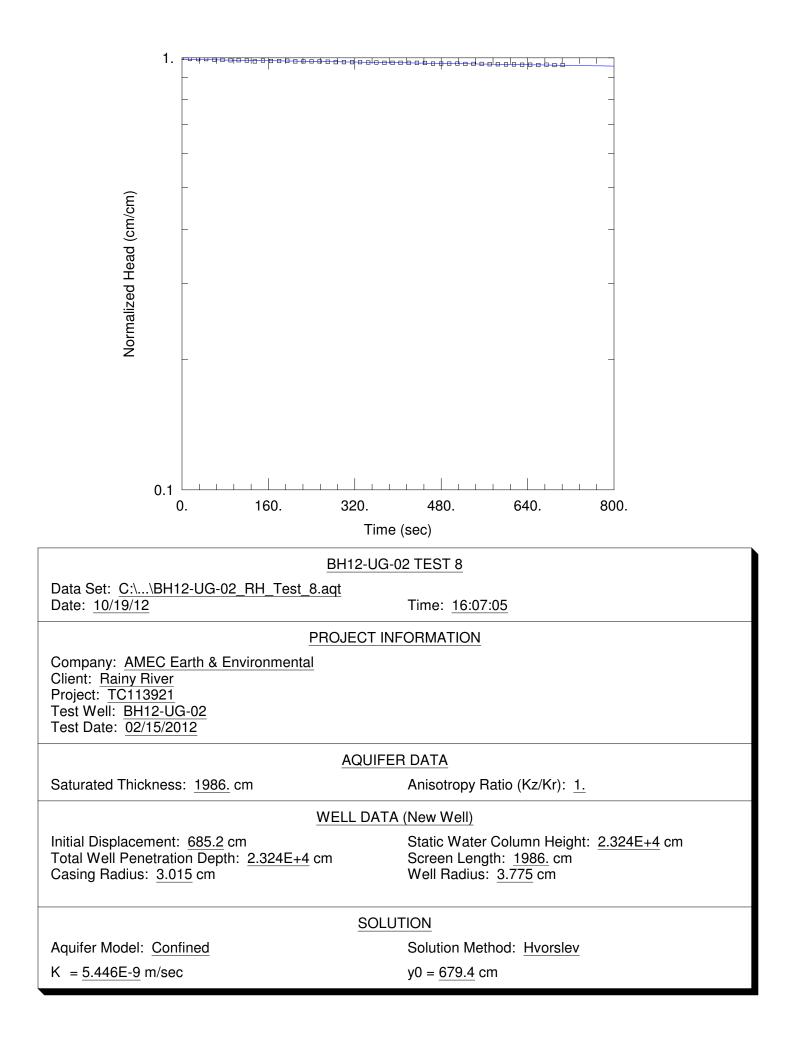

15.21

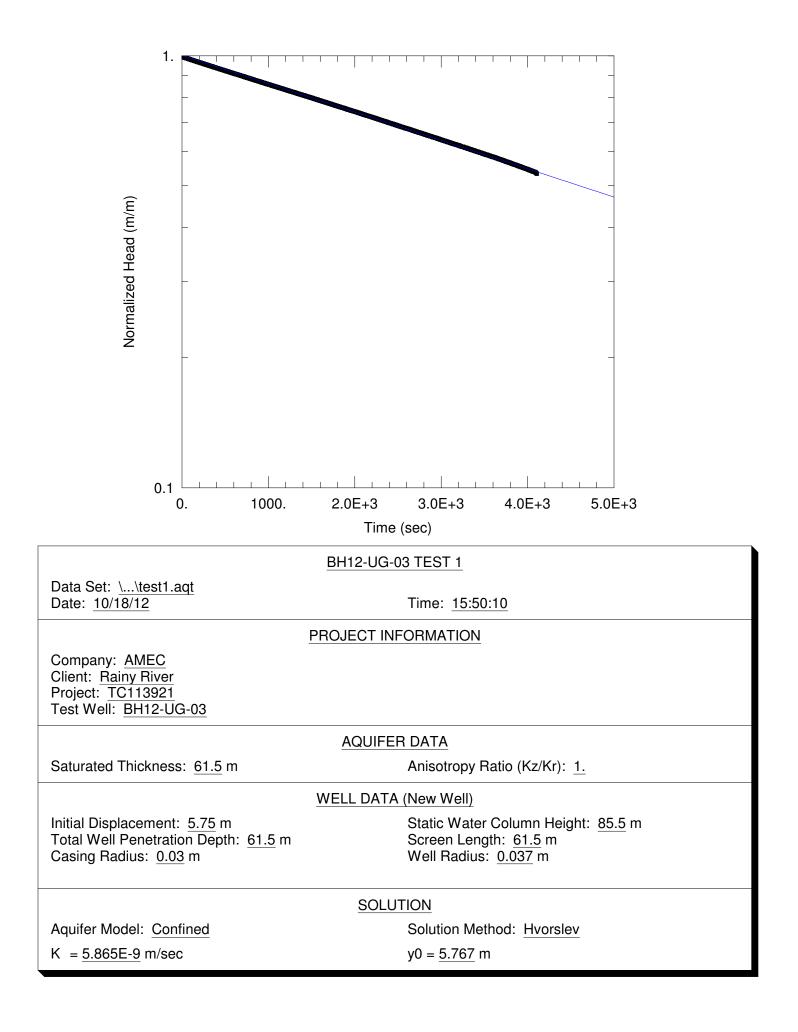

0.000005

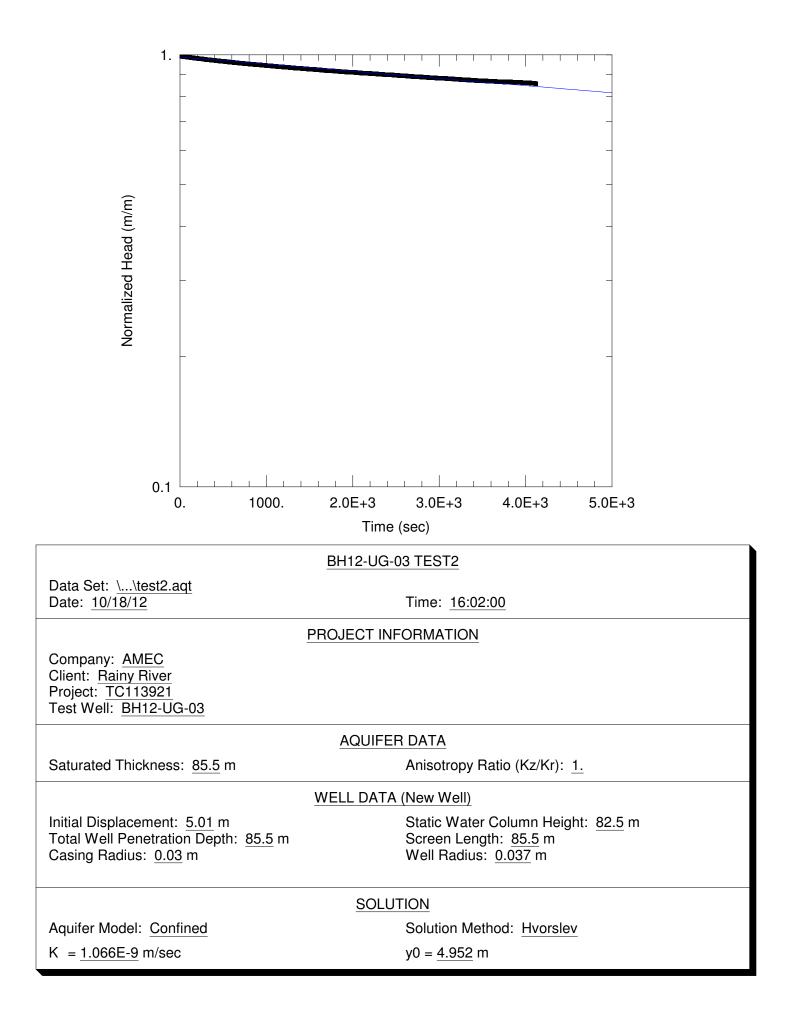
0.000005

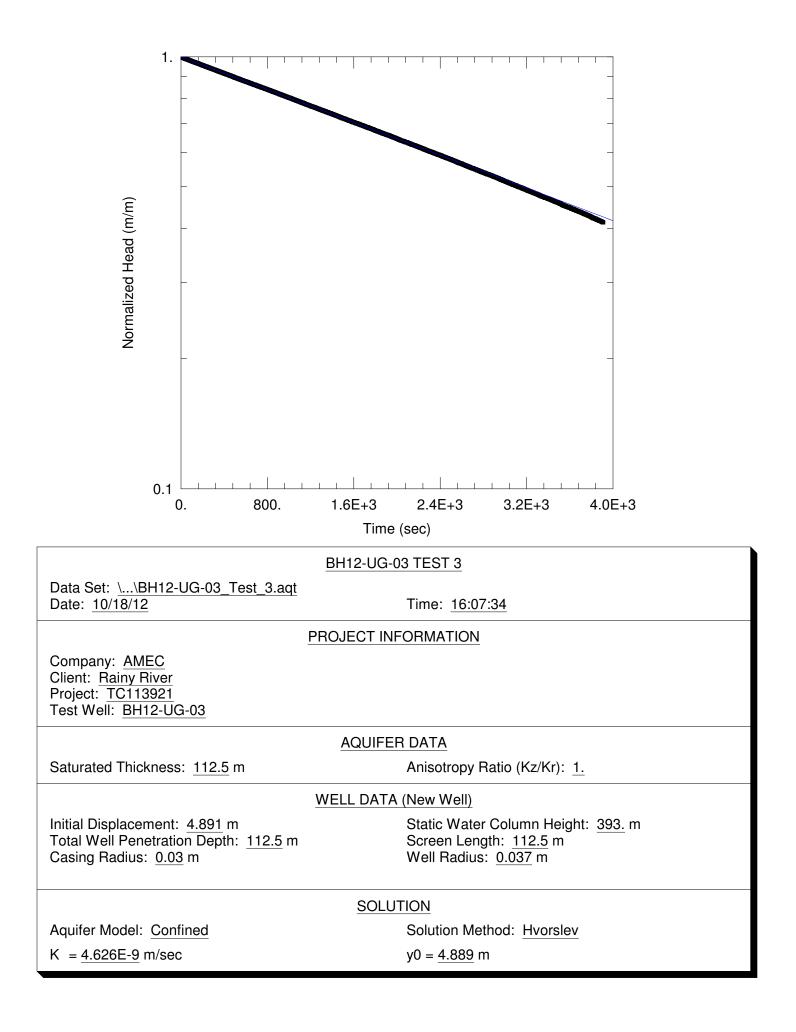
7.89E-09

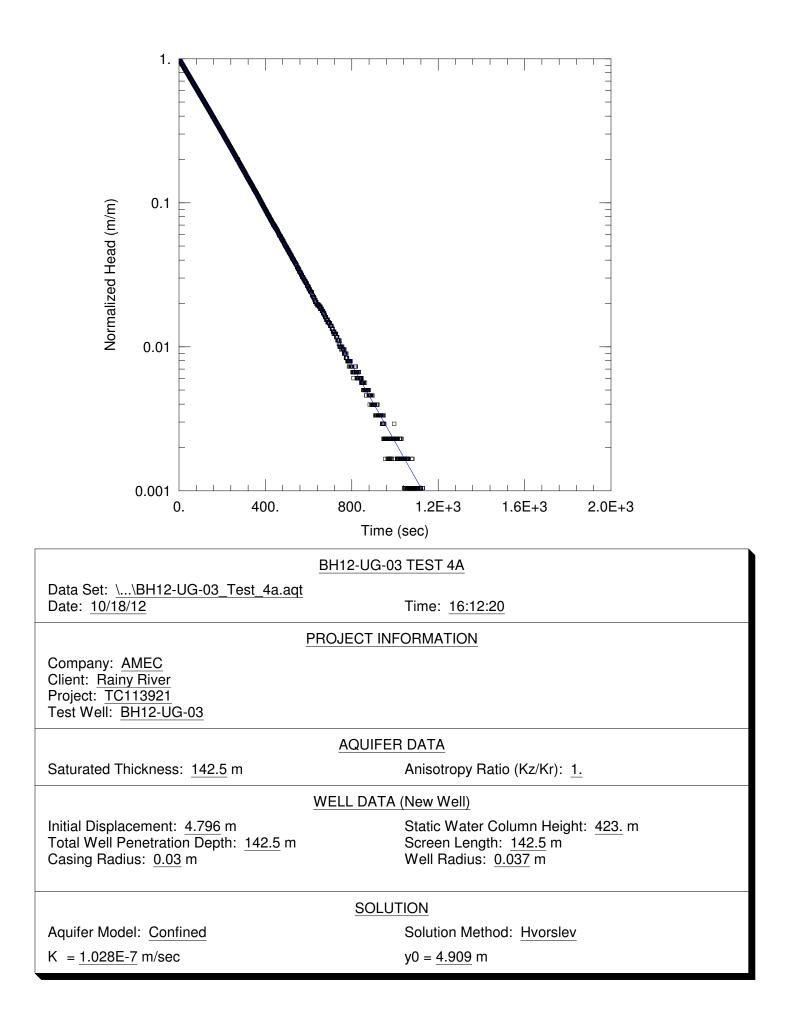

1.52E-08

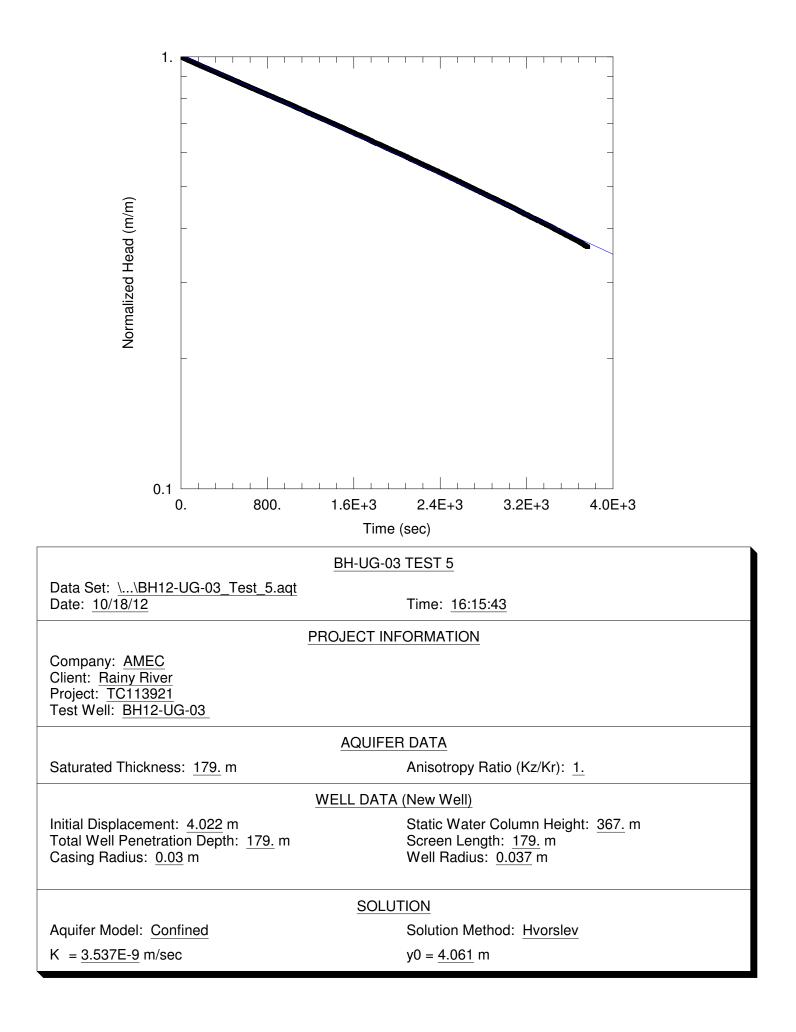


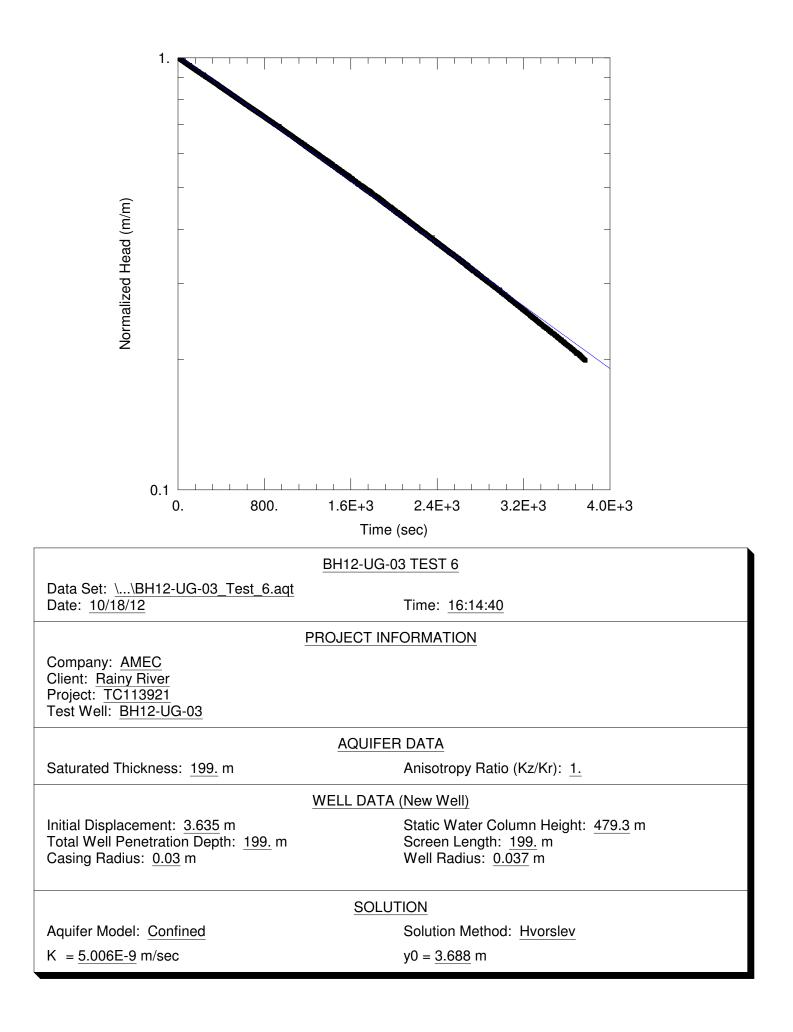



	Packer test #	Time Elapsed (s)	H(m)	H _o (m)	h (m)	Excess Head Ratio	Т _{о (s)}
_		0	0	1.88	0	1	34685.3826
		600	0	1.88	0.25	0.867021277	
		1200	0	1.88	0.32	0.829787234	
		1800	0	1.88	0.38	0.79787234	
		2400	0	1.88	0.42	0.776595745	

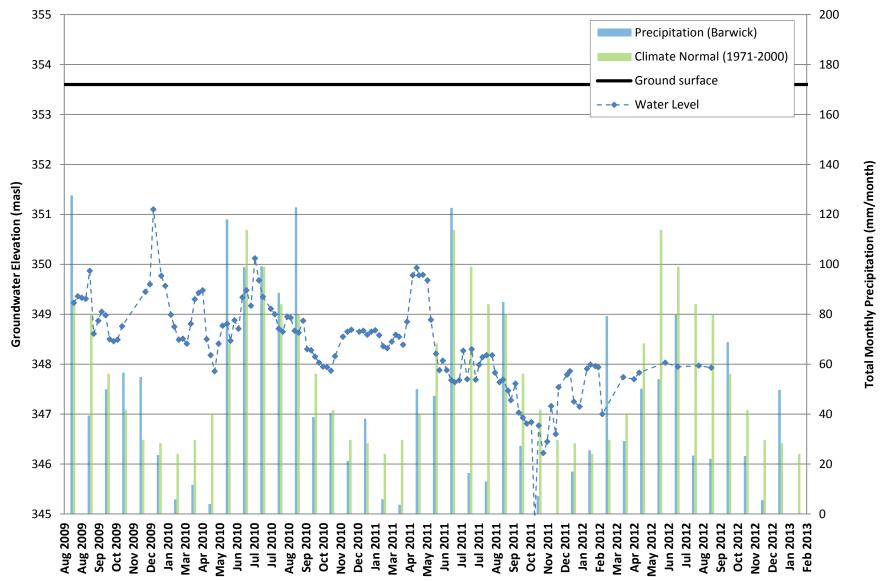

K (m/s) 4.44939E-09



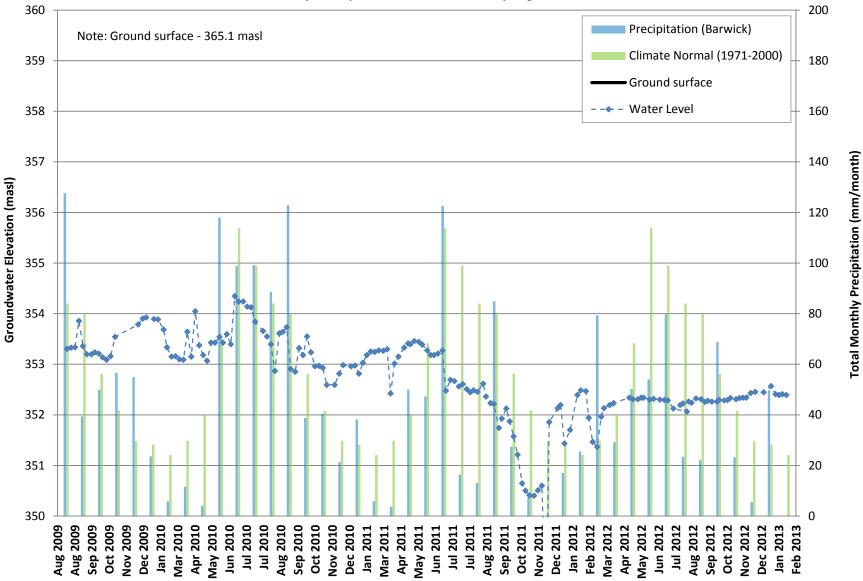




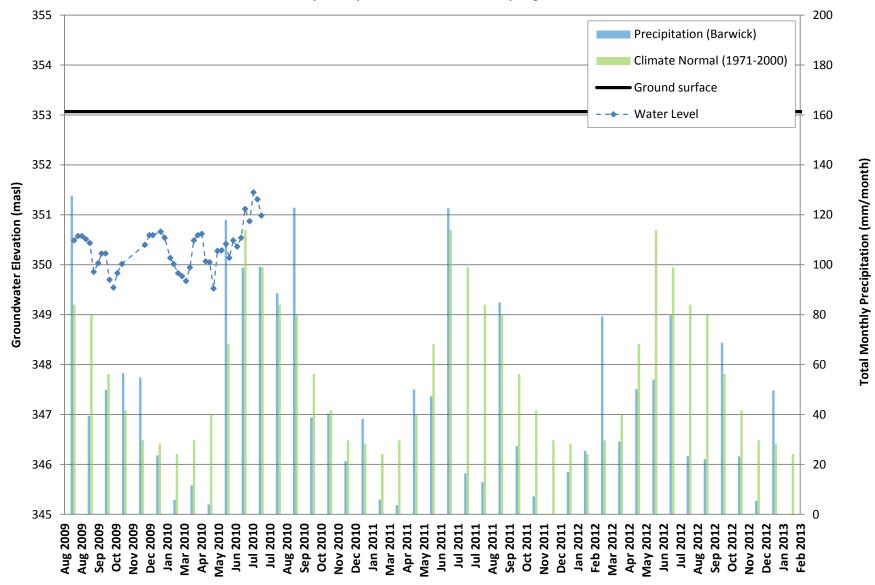
APPENDIX D


GROUNDWATER LEVEL HYDROGRAPHS

Hydrograph of NR9628, 2009-2013 Completion in Bedrock

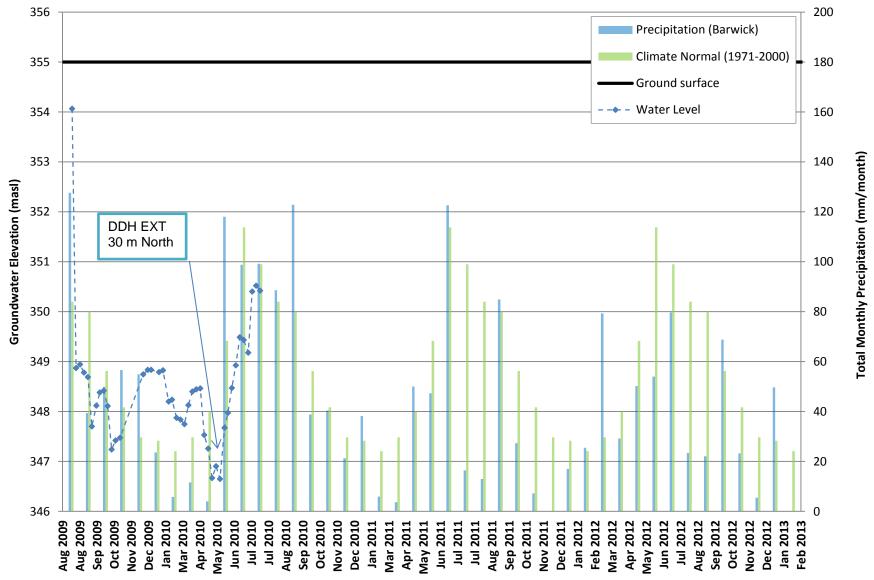

Depth of open hole well: 243 m at a dip angle of -60°

Hydrograph of NR9664, 2009-2013 Completion in Bedrock


Depth of open hole well: 275 m at a dip angle of -50°

Hydrograph of NR06104, 2009-2013 Completion in Bedrock

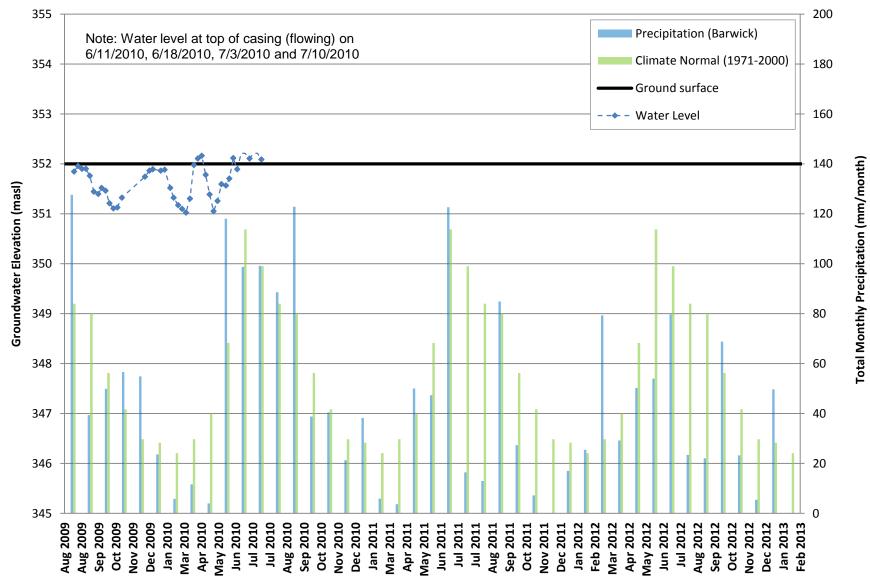
Depth of open hole well: 500 m at a dip angle of -61°



Hydrograph of NR06115, 2009-2013

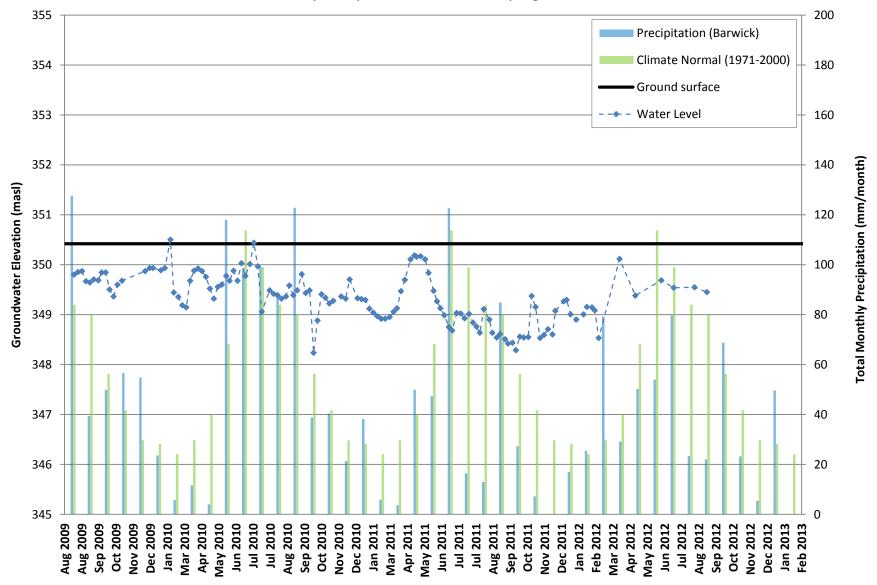
Completion in Bedrock

Depth of open hole well: 480 m at a dip angle of -65°



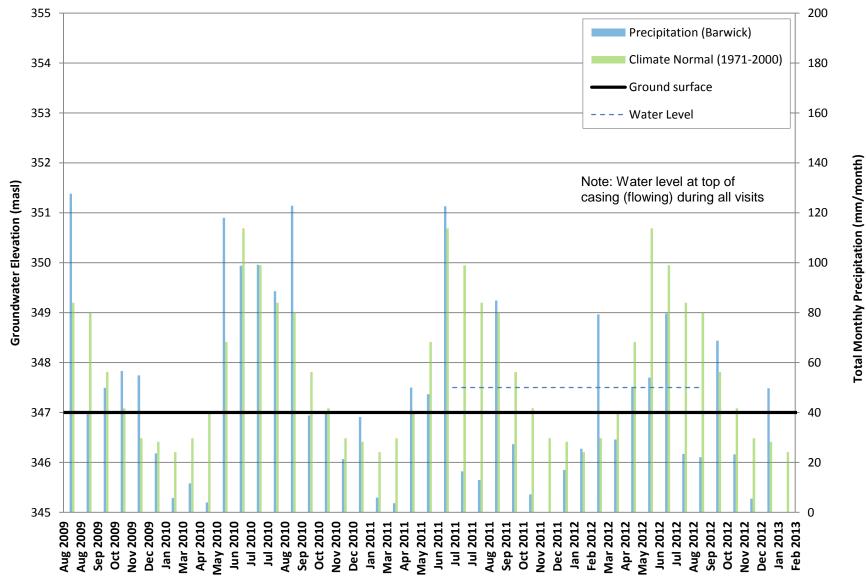
Hydrograph of NR07151, 2009-2013

Completion in Bedrock


Depth of open hole well: 489 m at a dip angle of -69°

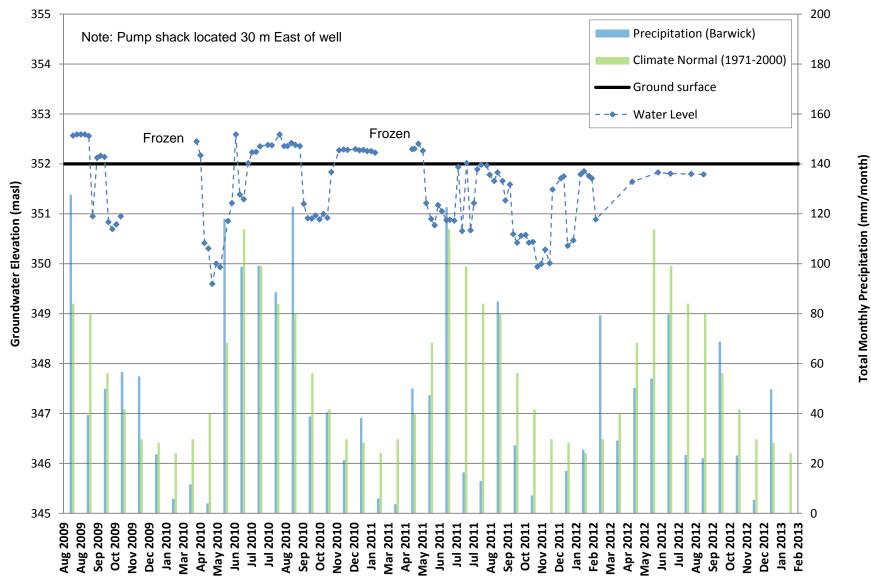
Hydrograph of NR07190, 2009-2013 Completion in Bedrock

Depth of open hole well: 593 m at a dip angle of -61°

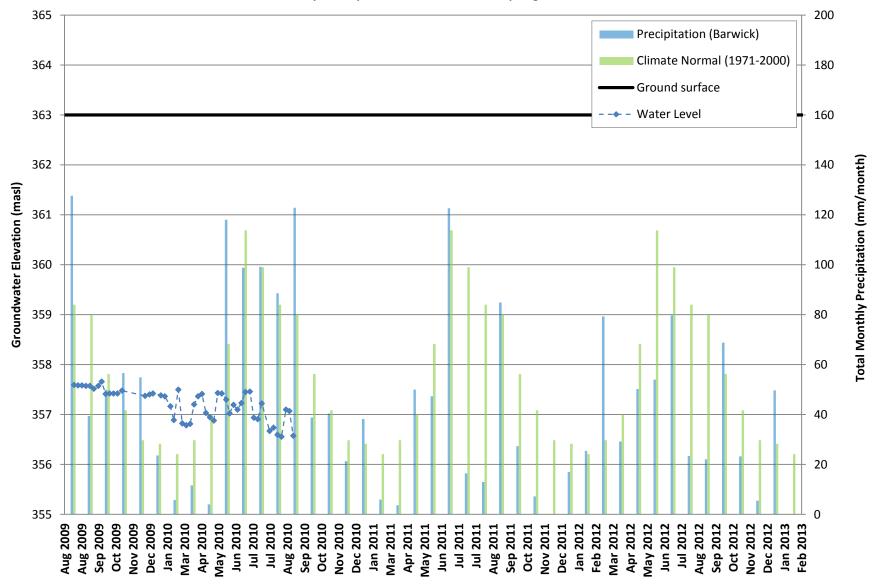


Hydrograph of NR07214, 2009-2013

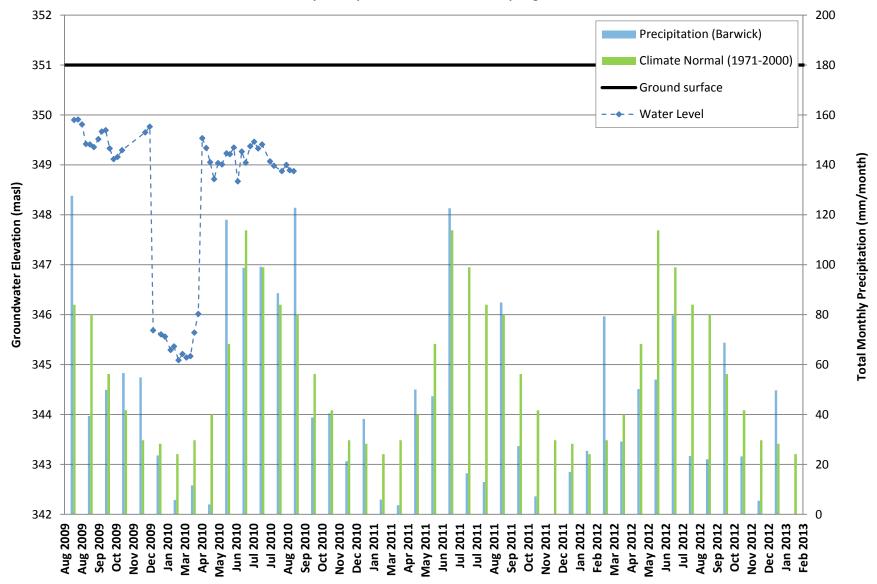
Completion in Bedrock


Depth of open hole well: 1090 m at a dip angle of -71°

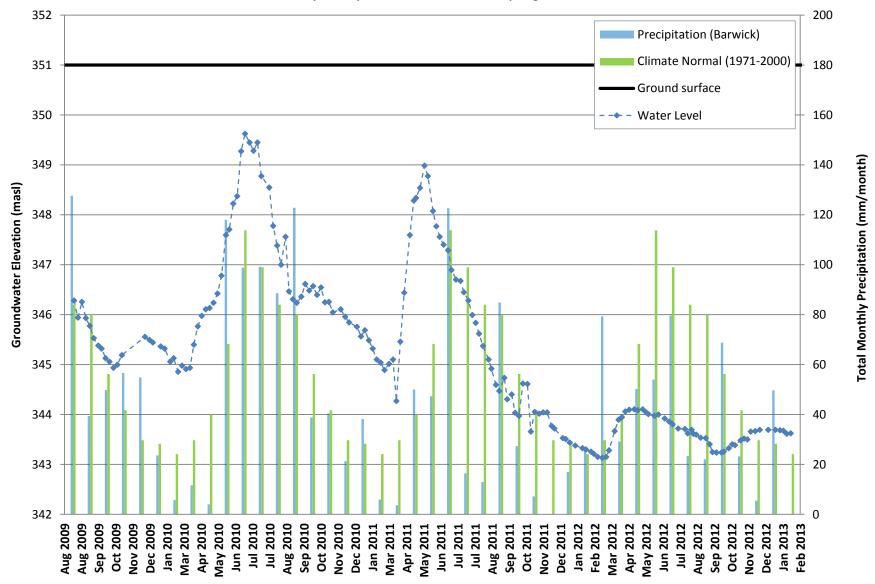
Hydrograph of NR08246, 2009-2013 Completion in Bedrock


Depth of open hole well: 350 m at a dip angle of -51°

Hydrograph of NR08257, 2009-2013 Completion in Bedrock

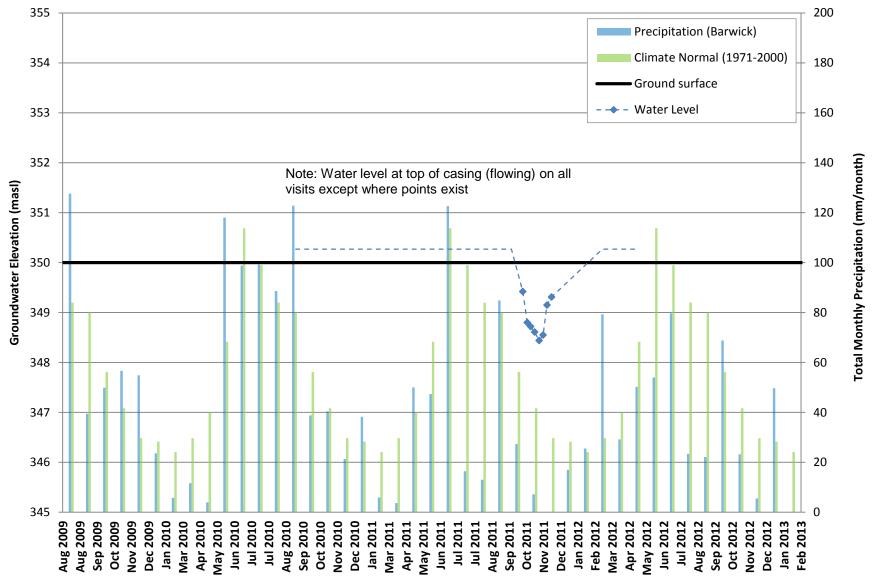

Depth of open hole well: 792 m at a dip angle of -72°

Hydrograph of NR08278, 2009-2013 Completion in Bedrock


Depth of open hole well: 626 m at a dip angle of -61°

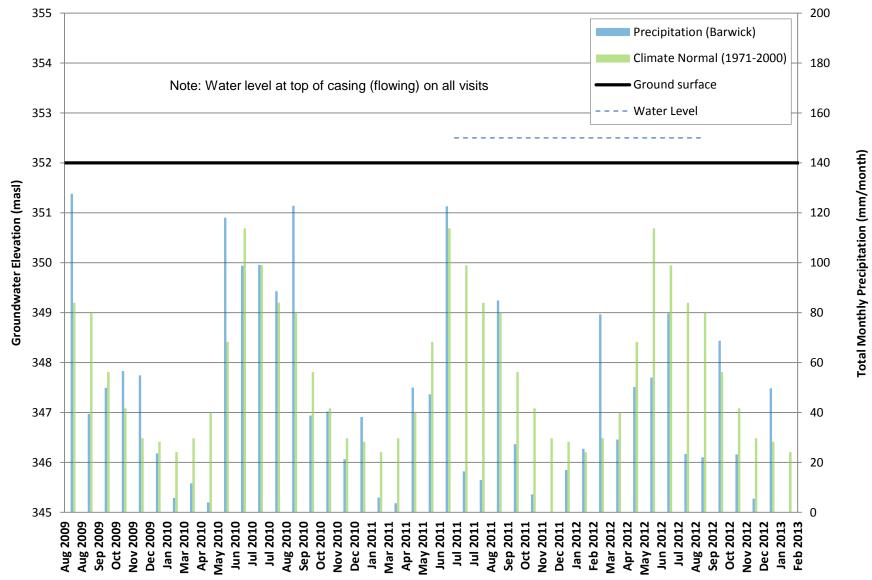
Hydrograph of NR08287, 2009-2013 Completion in Bedrock

Depth of open hole well: 548 m at a dip angle of -61°

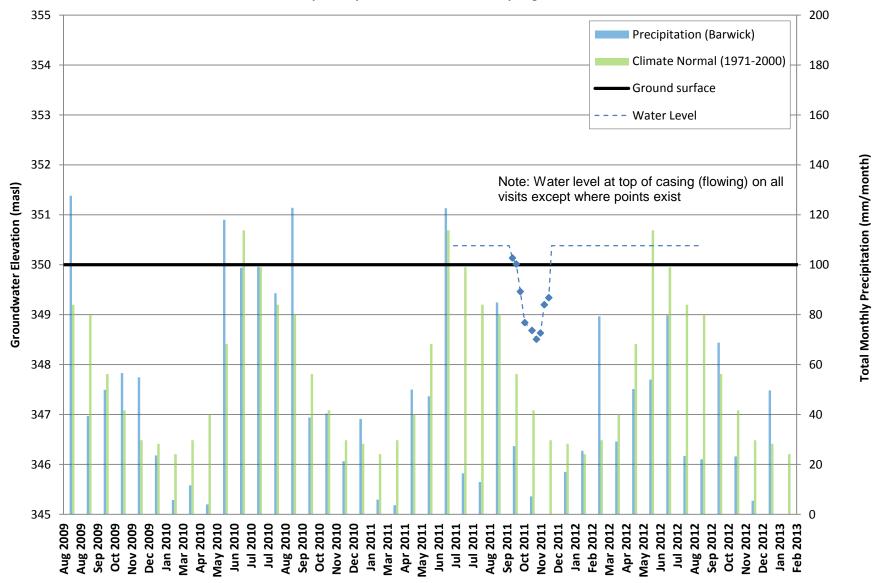


Hydrograph of RR09213, 2009-2013

Completion in Bedrock

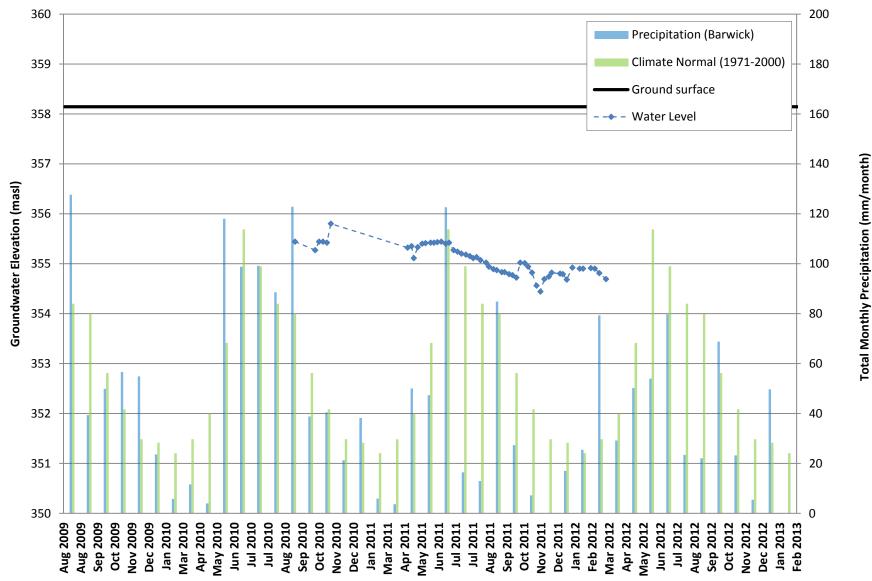

Depth of open hole well: 46.5 m at a dip angle of -90°

Hydrograph of NR09367, 2009-2013 Completion in Bedrock


Depth of open hole well: 354 m at a dip angle of -62°

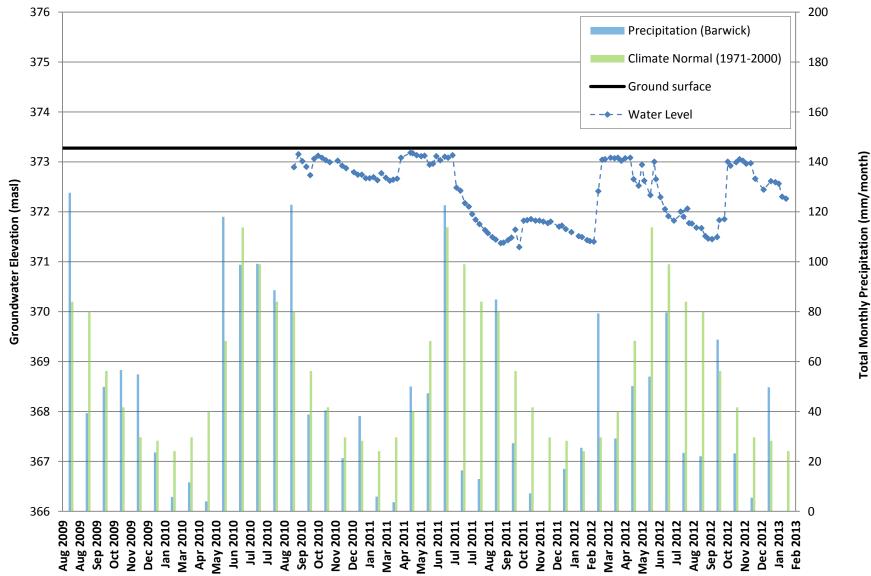
Hydrograph of NR09428, 2009-2013 Completion in Bedrock

Depth of open hole well: 476 m at a dip angle of -61°

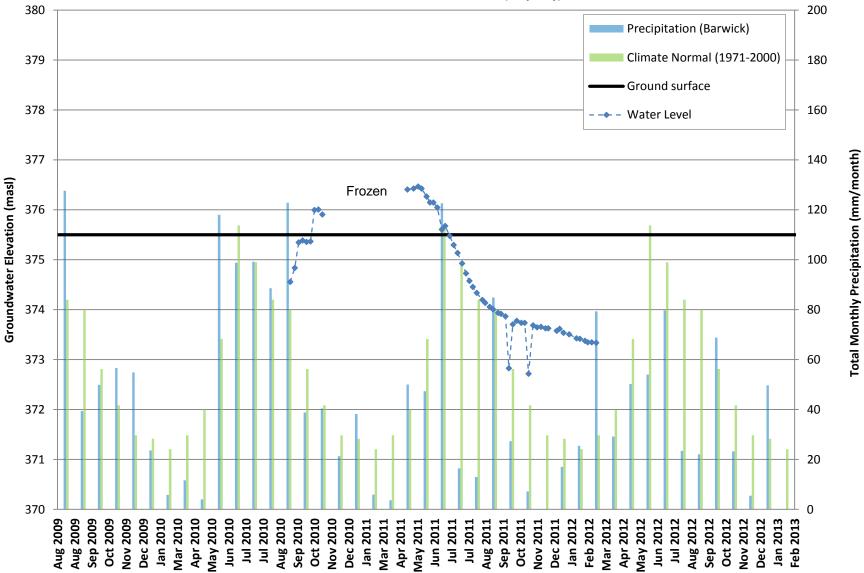


Hydrograph of BH10-04 2009-2013

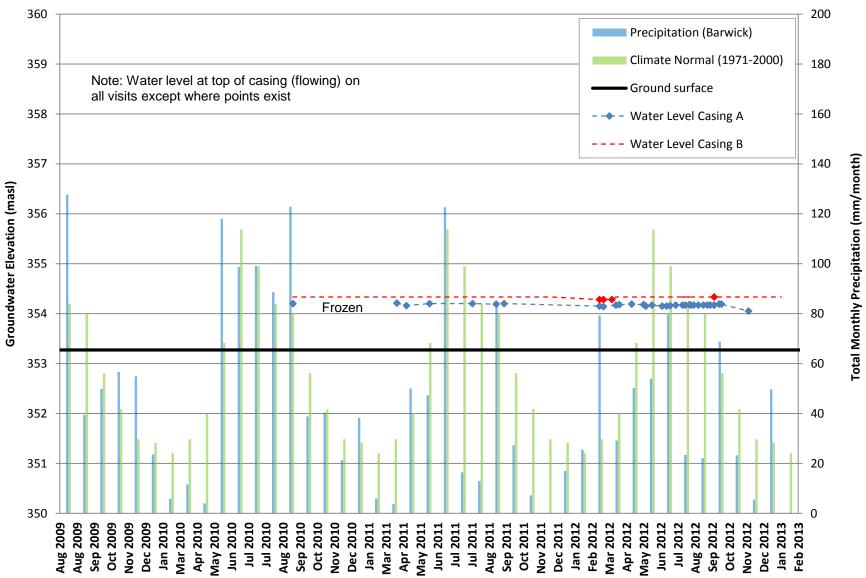
Whiteshell Till


Screen interval: 339.6-336.6 masl (Alternating Layers of Sand and Silty Clay)

Hydrograph of BH10-05 2009-2013 Whitemouth Lake Till

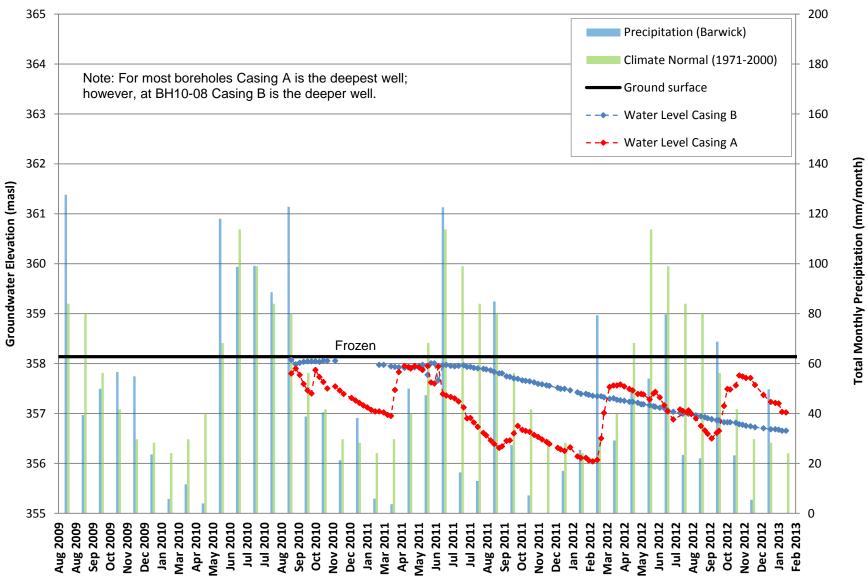

Screen interval: 370.3 - 367.3 masl (Silty Clay)

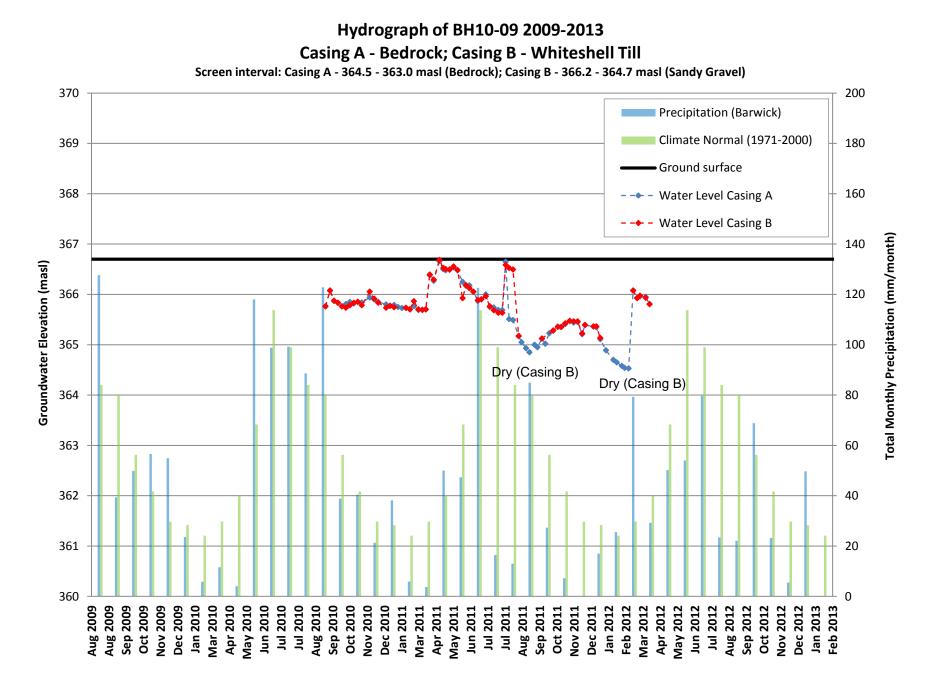
Hydrograph of BH10-06 2009-2013 Whitemouth Lake Till


Screen interval: 371.9 - 368.9 masl (Silty Clay)

Hydrograph of BH10-07 2009-2013 Casing A - Whitemouth Lake Till; Casing B - Whitemouth Lake Till

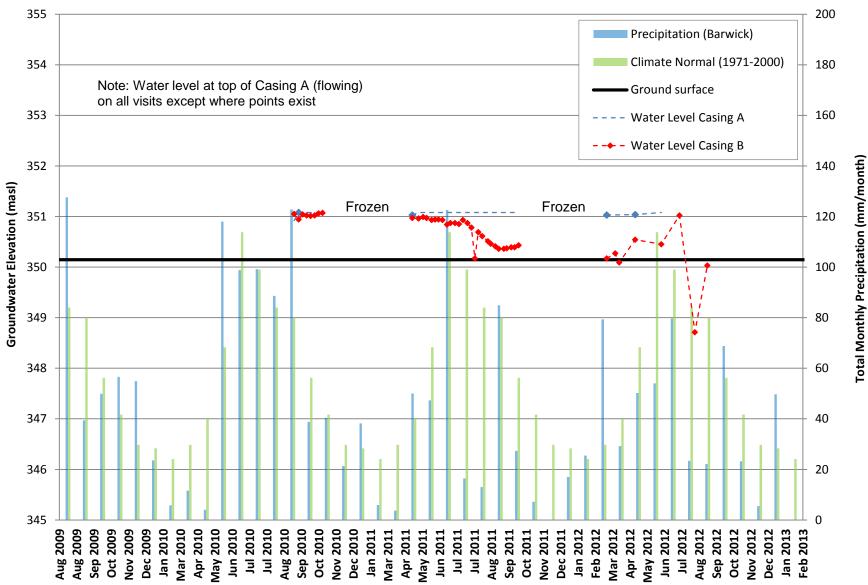
Screen interval: Casing A - 331.3 - 328.3 masl (Silty Clay); Casing B - 351.9 - 348.9 masl (Silty Clay)



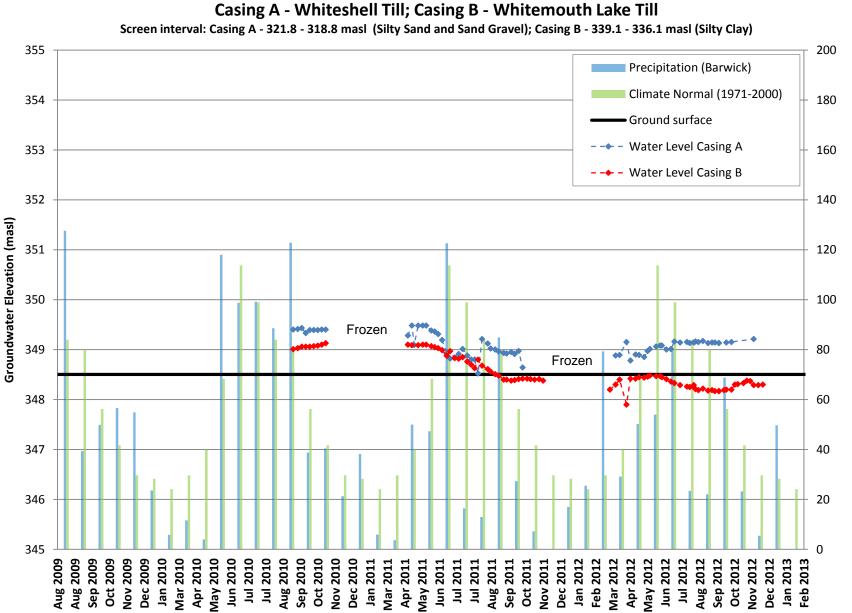

Hydrograph of BH10-08 2009-2013

Casing A - Whitemouth Lake Till; Casing B - Whitemouth Lake Till

Screen interval: Casing A - 354.4 - 351.4 masl (Silty Clay); Casing B - 346.4 - 343.4 masl (Silty Clay and Varved Clay)

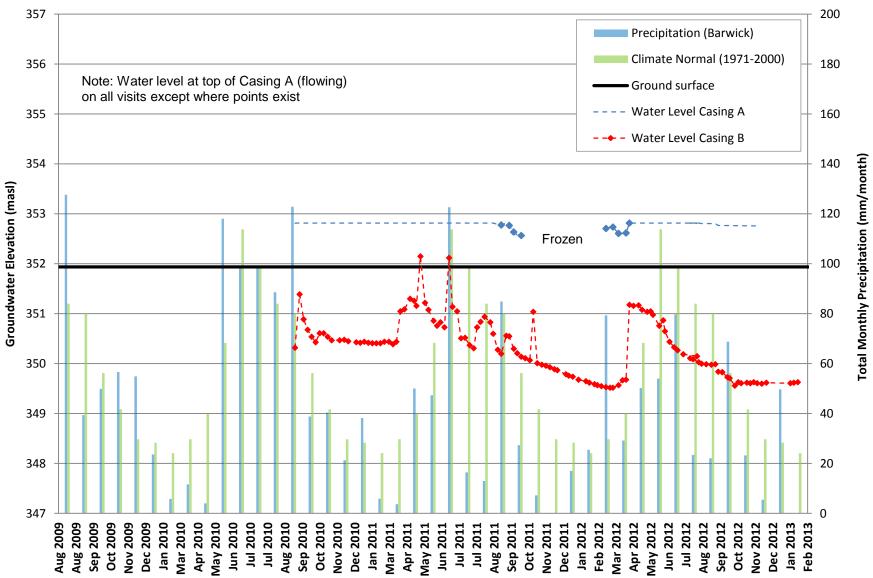


Hydrograph of BH10-10 2009-2013



Screen interval: Casing A - 322.9 - 319.9 masl (Silty Clay and Silty Sand); Casing B - 340.3 - 337.3 masl (Silty Sand and Silty Clay)

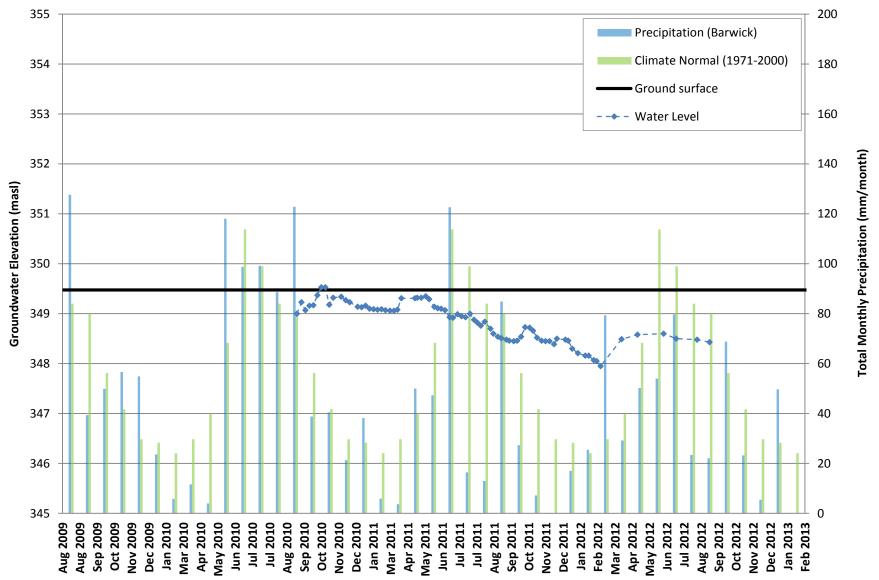
Total Monthly Precipitation (mm/month)



Hydrograph of BH10-11 2009-2013

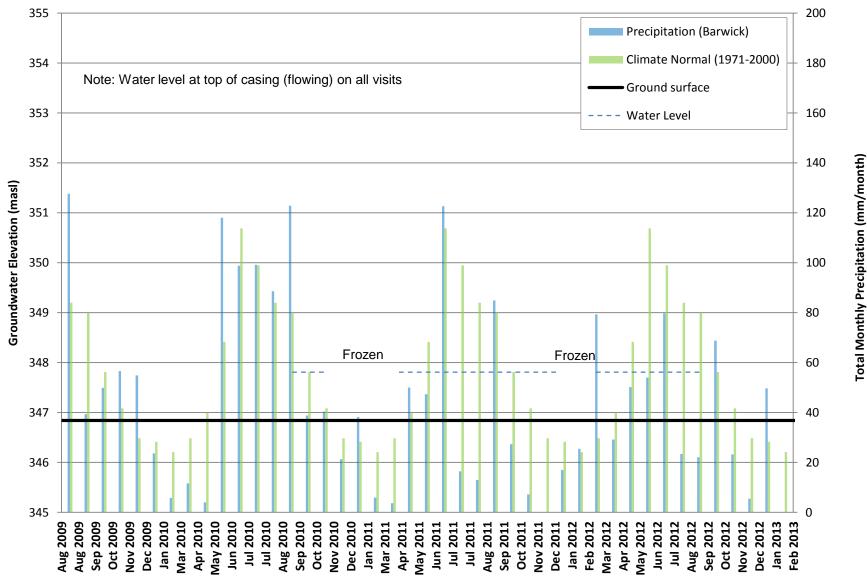
Hydrograph of BH10-12 2009-2013 Casing A - Whiteshell Till and Bedrock; Casing B - Whitemouth Lake Till

Screen interval: Casing A - 335.4 - 332.4 masl (Silty Sand and Bedrock); Casing - 345.9 - 342.9 masl (Silty Clay)

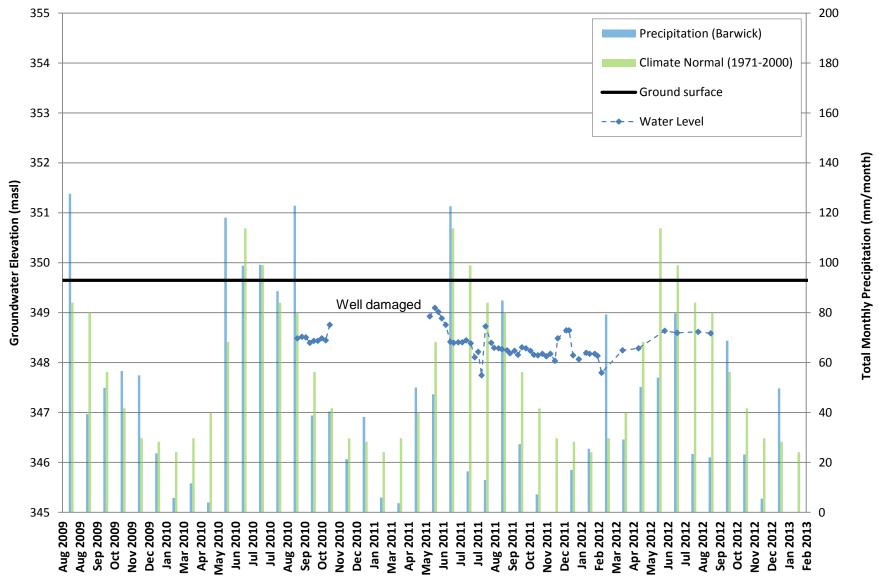


Hydrograph of BH10-13 2009-2013

Whiteshell Till


Screen interval: 333.2 - 330.2 masl (Sandy Gravel, Silty Clay, and Sand)

Hydrograph of BH10-14 2009-2013 Whitemouth Lake Till and Whiteshell Till


Screen interval: 330.2 - 327.3 masl (Silty Clay and Sandy Gravel)

Hydrograph of BH10-15 2009-2013 Whitemouth Lake Till and Whiteshell Till

Screen interval: 334.1 - 331.1 masl (Silty Clay and Sandy Silt)

APPENDIX E

FACTUAL REPORT ON AMEC 2011 LOW-FLOW SURVEY

RAINY RIVER RESOURCES LOW FLOW FIELD INVESTIGATIONS

FIELD OBSERVATIONS REPORT

Submitted by:

AMEC Environment & Infrastructure, a Division of AMEC Americas Limited 160 Traders Blvd., Suite 110 Mississauga, Ontario L4Z 3K7

> On behalf of: Rainy River Resources Ltd.

> > September 2011

TC111504.2010

TABLE OF CONTENTS

PAGE

1.0	BACKGROUND	.1
2.0	METHODOLOGY	.1
3.0	WEATHER RECORD	. 3
4.0	FLOW STATION GPS LOCATIONS	. 4
5.0	FIELD RECORD	. 5
6.0	STATION RECOMMENDATIONS	32
7.0	SUMMARY	34
8.0	REFERENCES	34

LIST OF TABLES

Table 4-1: GPS Locations	4
Table 6-1: Flow Station Summary and Recommendations	33
Table 6-2: Klohn 2010 Streamflow Measurements	

LIST OF PHOTOS

Picture 1: Culvert outlet on west side of the road, pool at basin of culvert.	5
Picture 2: Vegetated channel	5
Picture 3: Bottom of creek bed at Pine 2 GPS location.	
Picture 4: AMEC Employee standing in creek channel.	
Picture 5: Culvert outlet on west side of road, private property with cattle	7
Picture 6: Culvert inlet on east side of Clark road	7
Picture 7: Evidence of flow seen in an upstream section of the channel at Clark 1	8
Picture 8: Flow Measurement taken across 1.3 m cross section	9
Picture 9: AMEC employee taking flow measurement across channel section	9
Picture 10 : West side of road, culvert outlet into marshy area	. 10
Picture 11: East side of Roen Road, culvert inlet dry	. 10
Picture 12: AMEC employee standing channel <15 cm deep, 0.5 to 1 m wide	. 11
Picture 13: A potential cross section found north of the GPS location provided.	. 12
Picture 14: Facing north, culvert inlet basin	
Picture 15: One of three culverts on the south side of Highway 600	. 13
Picture 16: The Jones 2 flow station found to be without flow	. 13
Picture 17: The culvert on the south side of Jones Road.	
Picture 19: Creek bed at the GPS location (ditch).	
Picture 20: Culvert inlet on the south side of the road	
Picture 21: Channel bed dry to creek bottom	. 16
Picture 22: Creek outlet at culvert on north side of creek crossing	. 16
Picture 23: Small <0.5 m wide channel through midsection of low-lying area	. 17
Picture 24: Area of suspected intermittent stream channel.	. 17

Picture 25: Rainy River employee stands upon the crest of the beaver dam	18
Picture 26: The yellow dot above indicates the location with which the Rainy River employee is standing in Picture 25 above.	18
Picture 27: West shoreline of flooded channel at Tait 2.	
Picture 28: Photo location represented by yellow dot. Beaver dam location shown as red line	
Picture 29: Facing upstream while standing on bridge	
Picture 30: WSC benchmark - note it has been broken by plow	20
Picture 31: Facing downstream, tributary channel that feeds main channel.	
Picture 32: upstream log jam at the bridge	
Picture 33 (Left): Standing at the other shore, facing along cross section.	22
Picture 34 (Right): Levelogger Silver series transducer out of water.	
Picture 35: Facing upstream standing on wood box culvert.	23
Picture 36: Facing downstream with AMEC employee doing flow measurement.	23
Picture 37: Culvert outlet on west side of the road.	24
Picture 38: Facing downstream.	24
Picture 39: Flooded channel at SW1 facing downstream.	25
Picture 40: Network of man-made and natural watercourse features.	25
Picture 41: GPS location of SW1A, appears to be man-made channel.	
Picture 42: Outlet of culvert on west side of the road	26
Picture 43: AMEC employee stands in the dry basin at the outlet of the culvert basin on the south side of the road.	27
Picture 44: Culverts outlets on the south side of the road.	
Picture 45: Facing downstream, potential straight portion of channel to conduct flow	
measurement.	28
Picture 46: Culvert outlet on the south side of the road	28
Picture 47: Culvert on south side of road, facing north	29
Picture 48: Facing downstream, some flow evident	29
Picture 49: Facing upstream.	30
Picture 50: Location of GPS and potential beaver dam	
Picture 51: Beaver lodge on west side of Highway 71	31
Picture 52: Ponding water on east side of Highway 71	31

LIST OF APPENDICES

Appendix A:Field MapsAppendix B:Klohn 2010 Field Photo Record

1.0 BACKGROUND

AMEC undertook a stream flow monitoring program in late August to early September 2011 with the objective of characterizing stream flows near the proposed Rainy River Project site under low flow conditions. The following report provides a summary of the field notes, results, photographs¹ and general observations, at each of the Rainy River Low flow stations in late August to early September 2011. The report also includes initial recommendations for each of the stations in regards to future flow monitoring.

The general conditions encountered at site were very dry. Only two stations yielded visible flow: Clark 1 and SW14, and were estimated visually to be less than 0.01 m³/s. Flow measurements using the FlowTracker were not possible at these stations because the depth of body of water was less than 5 cm. All other stations were dry or had no visible flow due to impoundment of the creek by beaver activity.

Personal communication with Rainy River Resources staff (Bevin Burnell and Alyson Bisson) who reside in the immediate area of the site commented that from July 4, 2011 to present (August 29, 2011) there were no precipitation events. They also commented that the creeks / streams that normally exhibit flow were without flow. Mr. Burnell also stated that these conditions have not been experienced in years, and this is a phenomenon that is atypical. This staff member also recollects he has not seen these conditions since his early childhood (estimated by AMEC staff to be sometime between 1960 and 1970).

The order in which the stations appear in this report are the order in which they were investigated during the site visit.

2.0 METHODOLOGY

Twenty-five sites were selected for flow measurements, based on a desk top review of available information including historical stream flow measurements, surficial geology mapping and topography. Sites were selected on a number of local creeks, at locations to accommodate access to private lands, and where changes in physiography and surficial geology might indicate groundwater discharge conditions were likely to occur. The locations of the flow stations, as recorded in the field by hand held GPS are listed in Table 2.1.

Prior to taking flow measurements, field staff visually inspected the channels for water and to identify suitable channel locations. Where water was present and suitable access available, a few spot measurements were collected from the channel using the Sontek FlowTracker to determine that stream flows above the instrument threshold were present. Where sufficient flow was found, manual flow measurement were taken using the Sontek FlowTracker, using a 60/40 split along a cross section perpendicular to flow at 10 cm intervals where possible. Given the

¹ The order in which the stations are discussed in this report correspond to the order they were investigated during the site visit.

low flow found during this field campaign, this was not possible for the majority of the stations, and flow measurements without the depth rod were required to roughly estimate flow. If conditions were acceptable the measurements are undertaken using Water Survey Canada procedures for the use of the Sontek FlowTracker Acoustic Doppler Velocimeters (Document No. qSOP-NA022-02).

3.0 WEATHER RECORD

During the period staff were onsite, the following weather observations were recorded:

- August 30, 2011: 29°C, intermittent clouds, no rain previous night, no wind.
- August 31, 2011: 20°C, overcast skies, light drizzle in the morning, no wind. 3 mm of rain previous night.
- September 1, 2011: thunderstorms and lightning (with rain) in the morning, intermittent clouds in the afternoon.

The precipitation for the three months prior to the field visit were reviewed using publicly available data. The Weather Network website for Emo, Ontario recorded a total precipitation accumulation from July 1 to Sept 1, 2011 of 64.2 mm. The Environment Canada record for Fort Frances (30 minutes east of Emo) yielded similar results.

Figure 1-1: Weather record for Emo, Ontario. Source:

http://www.theweathernetwork.com/index.php?product=historical&placecode=caon0573

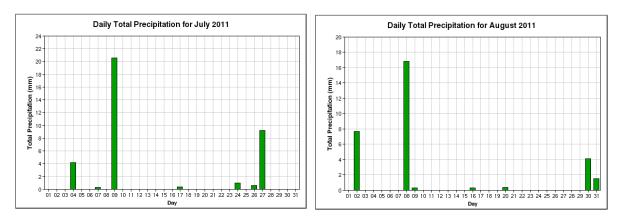


Figure 1-2: Environment Canada Weather Record for Fort Frances Ontario. Source: <u>http://www.climate.weatheroffice.gc.ca/climateData/generate_chart_e.html?StationID=46507&timeframe=2&M</u> <u>onth=7&Year=2011&cmdB2=Go&Day=12&type=bar&MeasTypeID=totprecip</u>

4.0 FLOW STATION GPS LOCATIONS

Table 4-1 below provides a GPS record of all the stations investigated.

Station ID	Easting	Northing
SW1	426311.63	5408489.8
SW1A	426149.82	5408767.96
SW2	425266.62	5410114.77
SW3	419493.55	5408095.73
SW4	432798.69	5413360.84
SW5	424634.14	5416585.94
SW10	427823.37	5407033.85
SW13	422183.98	5410152.15
SW14	426282.54	5411689.04
Clark 1	427956.89	5409190.52
Pine 1	429233.65	5406711.77
Pine 2	430089.53	5408419.07
Pine 3	425546.11	5408124.27
Pine 4	430950.67	5407633.79
West 1	426433.31	5411094.92
West 2	426431.62	5411616.04
West 3	426429.64	5410320.55
Marr 1	423675.03	5410238.04
Marr 2	423689.1	5411785.35
Loslo 1	422912.45	5412040.13
Tait 1	423668.81	5403689.19
Tait 2	418419.54	5405320.71
Jones 1	416577.56	5411820.76
Jones 2	418846.53	5413449.76
05PC023	413028.49	5405668.7

Table 4-1: GPS Locations

5.0 FIELD RECORD

The following section provides a description of conditions at each of the flow monitoring stations. They are listed in the order the work was undertaken in the field.

Pine 4 (E430950.67 N5407633.79) August 30, 2011

This location was accessed from the west side of the road or from the field adjacent to Rainy River accommodations house location. Out of bank diffuse flow is evident and is likely the result of beaver activity. The stream channel is heavily vegetated and overgrown by dense alder thickets. Flow is minimal, with a 15 cm depth, and 2 m cross section (at largest) in some areas. The stream bed is a thick muck. There is a cattle pasture on the east side of the road, where cattle have direct access to the creek. Exploration drilling was ongoing nearby and there was an associated water taking directly from the watercourse. A flow measurement was not recorded due to the slow velocity of the creek at this location.

Picture 1: Culvert outlet on west side of the road, pool at basin of culvert.

Picture 2: Vegetated channel.

Pine 2 (E430089.53 N5408419.07) August 30, 2011

This location was accessed from the west side of the road. Accessibility is good by means of a steep river rock embankment adjacent to the road. A poor flow measurement was obtained from this location by taking an instantaneous reading (with the flow tracker sensor detached from the depth rod) for 60 seconds and averaging the recorded values. This methodology was best suited due to the constraints provided by the shallow water, cobble stone bottom and physical limitations of the flow tracker. The water levels recorded at this station ranged from 3 to 8 cm in a channel that was approximately 1.5 to 3 m wide. Discharge was recorded at approximately 0.0062 m³/s and may not be representative to the normal conditions of this channel under typical low flow conditions. Aquatic life was encountered (small minnows of unknown species).

Picture 3: Bottom of creek bed at Pine 2 GPS location.

Picture 4: AMEC Employee standing in creek channel.

Clark 1 (E427956.89 N5409190.52) August 30 2011

This location was accessed from the west side of the road. Accessibility is decent and access into the GPS location is via a steep river rock embankment adjacent to the road. The GPS location and the immediate area surrounding were investigated. A poor flow measurement was obtained from this location by taking an instantaneous reading (with FlowTracker sensor detached from the depth rod) for 60 seconds and averaging the recorded values. This methodology (described above) was best suited due to the constraints provided by the shallow water, cobble stone bottom and physical limitations of the FlowTracker. The water levels recorded at this station ranged from 3 to 8 cm in a channel that was approximately 1.5 to 3 m wide. Discharge was recorded at approximately 0.0062 m³/s and may not be representative to the normal conditions of this channel under typical low flow conditions. Aquatic life was encountered – small minnows of unknown species.

Picture 5: Culvert outlet on west side of road, private property with cattle.

Picture 6: Culvert inlet on east side of Clark road.

Picture 7: Evidence of flow seen in an upstream section of the channel at Clark 1.

West 3 (E426429.64 N5410320.55) August 30, 2011

This location was accessed from the west side of Roen Road. A flow measurement was obtained from this location based on the methodology described above. Average discharge was recorded at 0.0013 m³/s. The water levels recorded at were approximately 32 cm in a channel that was approximately 1.3 to 1.8 m wide. Aquatic life was encountered (small minnows of unknown species.

Picture 8: Flow Measurement taken across 1.3 m cross section.

Picture 9: AMEC employee taking flow measurement across channel section.

West 1 (E426433.31 N5411094.92) August 30, 2011

This location was accessed from the west side of Roen Road. A flow measurement was not obtained from this location as the upstream portion of creek was dry. The culvert contained some wood debris at the outlet of the culvert (west side); however, not enough to contain flow. The channel on the west side of the road contained standing water. The channel on the east portion of the road was approximately 2 m wide and appeared to only have a depth of 10 to 20 cm.

Picture 10 : West side of road, culvert outlet into marshy area.

Picture 11: East side of Roen Road, culvert inlet dry.

West 2 (E426431.62 N5411616.04) August 30, 2011

This location was accessed from the west side of Roen Road approximately 75 to 100 m adjacent to the road. Access is limited by a barbed wire fence. A flow measurement was not obtained from this location as the creek bed was dry. The channel was 0.5 to 1 m wide, and appeared to be 15 cm in depth under flow conditions.

Picture 12: AMEC employee standing in channel <15 cm deep, 0.5 to 1 m wide.

Marr 1 (E423675.03 N5410238.04) August 30, 2011

This location was accessed from the north side of Highway 600 approximately 40 m adjacent to the road. Access was available by means of a drilling trail accessible by walking or ARGO only. During this investigation exploration drilling (including water taking) were underway immediately adjacent to the location. A flow measurement was not obtained from this location as the creek bed was found to be dry. The channel in most areas was 1 to 2 m wide, and appeared to be <15 cm in depth under flow conditions. The channel in areas exhibits out of bank flow under higher flows.

Picture 13: A potential cross section found north of the GPS location provided.

Picture 14: Facing north, culvert inlet basin.

Jones 2 (E418846.53 N5413449.76) August 30, 2011

This location was accessed from the north side of Highway 600 immediately adjacent to the highway. Access is via private property, and was not permitted. The GPS location and the immediate area surrounding were visually investigated from the road. A flow measurement was not obtained from this location as culvert and channel were found to be dry. The channel is approximately 0.5 m wide; with a potential depth of approximately 5 to 10 cm. A portion of this channel is connected to the roadside ditch.

Picture 15: One of three culverts on the south side of Highway 600.

Picture 16: The Jones 2 flow station found to be without flow.

Jones 1 (E416577.56 N5411820.76) August 30, 2011

This location was accessed from the south side of Jones Road immediately adjacent to the road. The GPS location and the immediate area surrounding were visually investigated from the road. A flow measurement was not obtained from this location as the channel was found to be dry. The creek is demarcated by a sign which reads McCallum Creek. The channel is approximately 2 m wide in the main channel and 3 to 4 m wide at meanders, with a potential depth of approximately 1m during higher flows. The area is surrounded by agricultural field primarily hay.

Picture 17: The culvert on the south side of Jones Road.

Picture 18: AMEC employee stands in McCallum Creek which is dry to the bottom.

Tait 1 (E423668.81 N5403689.19) August 30, 2011

This location was accessed from the south side of an unmarked side road. The GPS location and the immediate area surrounding were visually investigated from the road. The creek flows immediately adjacent to the road in what appears to be the ditch. When flowing, the creek enters a culvert on the south side of the road flows north then west along the ditch for a 100 to 120 m on the north side of the road. A flow measurement was not obtained from this location as the channel was found to be dry. The channel appears to be 0.5 m wide and approximately 20 to 30 cm deep well incised channel.

Picture 19: Creek bed at the GPS location (ditch).

Picture 20: Culvert inlet on the south side of the road.

Pine 3 (E425546.11 N5408124.27) August 31, 2011

This location was accessed from the north of a private road. The creek flows in between two agricultural fields and appears to be intermittent in nature. Access is provided via private property through a farm field trail. The GPS location and the immediate area surrounding were visually investigated from the road. A flow measurement was not obtained from this location as the channel was found to be dry. The channel appears to be 0.5 metres wide and approximately 5 to 15 cm deep well incised channel.

Picture 21: Channel bed dry to creek bottom.

Picture 22: Creek outlet at culvert on north side of creek crossing.

Marr 2 (E423689.10 N5411785.35) August 31, 2011

This location was accessed through a community/municipal farm. The stream flows into private land owner parcels (owner is not a local citizen). The GPS location and the immediate area surrounding were visually investigated. A flow measurement was not obtained from this location as the channel was found to be dry. The stream is poorly defined and flows into a low lying area which appears to be inundated during wetter conditions, indicative of the type of swamp/sedge grass found in this area. A smaller channel through the midsection of area was found and is <0.5 m wide and approximately 5 cm.

Picture 23: Small <0.5 m wide channel through midsection of low-lying area.

Picture 24: Area of suspected intermittent stream channel.

Loslo 1 (E422912.45 N5412040.13) August 31, 2011

This location was accessed by means of an approximately one kilometre through dense bush at the end of Eluik Road. The GPS location and the immediate area surrounding were inaccessible due to a large, well-established beaver dam. The crest of the dam measured approximately 3 m above the smaller channel 1 to 2 m channel below the crest. No flow was observed.

Picture 25: Rainy River employee stands upon the crest of the beaver dam.

Picture 26: The yellow dot above indicates the location with which the Rainy River employee is standing in Picture 25 above.

Tait 2 (E418419.54 N5405320.71) August 31, 2011

This location was inaccessible due to unsafe conditions (flooding caused by potential of beaver activity on the watercourse). A boat would be required to access this location in the future. The condition of the watercourse and the level of impact imposed by the beaver activity is unknown; however, a lodge was observed near to the GPS location. The channel presently appears to be 30 to 40 m in width with unknown depth. Substrate is likely that of muck, based on conditions near to the shore.

Picture 27: West shoreline of flooded channel at Tait 2.

Picture 28: Photo location represented by yellow dot. Beaver dam location shown as red line.

05PC023 (E413028.49 N5405668.70) August 31, 2011

This location was easily accessible and was adjacent to the road. The watercourse appears to provide sufficient flow to establish a flow station; however, because the watercourse was dry along portions of channel a flow measurement was not obtainable. The channel is 8 to 10 m wide in areas, and depth appears to be 1 to 1.5 m deep, under normal conditions. Substrate is likely that of muck and sand, based on conditions near to the shore.

Picture 29: Facing upstream while standing on bridge.

Picture 30: Damaged WSC benchmark.

Picture 31: Facing downstream, tributary channel that feeds main channel.

Picture 32: Upstream log jam at the bridge.

SW3 (E419493.55 N5408095.73) August 31, 2011

This location was easily accessible although on private property. The previous cross section is adequate; however, there are other more suitable locations available. The watercourse appears to provide sufficient flow to maintain a flow monitoring station but there was insufficient flow to obtain a measurement. The channel is 6 to 9 m wide in areas, and depth appears to be 1 to 1.5 m deep under normal conditions. In personal communications with Rainy River staff it was mentioned that a boat is required for safe flow measurements during higher flow conditions. Substrate is a mixture of muck and sand. A Levelogger Silver Series is currently installed; however a more permanent fixture (static level) is required as the logger needs to be removed for downloading each time, which could compromise data if the logger is not replaced properly (too deep into muck). See Appendix B for additional photo of the site taken in June 2010 in wetter conditions.

Picture 33 (Left): Standing at the other shore, facing along cross section. Picture 34 (Right): Levelogger Silver series transducer out of water.

Pine 1 (E429233.65 N5406711.77) August 31, 2011

This location was easily accessible by means of a municipal travelled road. A flow measurement at Pine 1 was taken; however, it was of poor quality (likely a beaver dam downstream). Average discharge was recorded at 0.0020 m³/s approximately 2 m downstream from the outlet of a wood box culvert. The team was unable to investigate the potential for beaver activity because of private property constraints. The channel is 3 m wide with a straight section of channel (GPS location) which would provide a representative cross section.

Picture 35: Facing upstream standing on wood box culvert.

Picture 36: Facing downstream with AMEC employee doing flow measurement.

SW10 (E427823.37 N5407033.85) August 31, 2011

This location was easily accessible via a municipal road. Portions of the stream were saturated but did not show water. This location was similar to Jones 1 in characteristics, in that it appeared to promote flow under saturated conditions, but pockets of the channel were dry. The channel is 2 to 3.5 m wide and 20 to 40 cm deep in some areas. Substrate is a mixture of muck with some boulders present. A flow measurement was not recorded.

Picture 37: Culvert outlet on west side of the road.

Picture 38: Facing downstream.

SW1 (E426311.63 N5408489.80) August 31, 2011

This location was easily accessible by a municipal road. A flow measurement at this location is not currently possible due to safety (too deep without boat) and the impact of beaver activity on the area. A flow measurement was not recorded.

Picture 39: Flooded channel at SW1 facing downstream.

Picture 40: Network of man-made and natural watercourse features.

SW1A (E426149.82 N5408767.96) August 31, 2011

This location was easily accessible by a municipal road. A flow measurement at this location is not currently possible due to safety (nearby drilling / pumping) and pumping activity from drilling immediately adjacent to (10 m away) from the GPS location. In addition, beaver activity in the area is evident. The conditions of the creek appear to have been impacted by drilling activity as hydrocarbons and sediment entrainment (murky discoloured water) was evident along this portion of the channel. This area maintains a good straight portion for a potential flow measurement however, not with present conditions. A flow measurement was not recorded. See Appendix B for additional photo record.

Picture 41: GPS location of SW1A, appears to be man-made channel.

Picture 42: Outlet of culvert on west side of the road.

SW2 (E425266.62 N5410114.77) August 31, 2011

This location was easily accessible by a municipal road. A flow measurement at this location was not possible as the creek bed was dry. This area maintains a good straight portion for a potential flow measurement however, not with present conditions.

Picture 43: AMEC employee stands in the dry basin at the outlet of the culvert basin on the south side of the road.

Picture 44: Culverts outlets on the south side of the road.

SW13 (E422183.98 N5410152.15) August 31, 2011

This location was easily accessible by a municipal road. While the creek bed was saturated, the flow present did not exceed the instrument threshold. This area maintains a good straight portion for a potential flow measurement however, not with present conditions. A flow measurement was not recorded. See Appendix B for additional photo record.

Picture 45: Facing downstream, potential straight portion of channel to conduct flow measurement.

Picture 46: Culvert outlet on the south side of the road.

SW14 (E426282.54 N5411689.04) August 31, 2011

This location was easily accessible from the municipal road. Flow was present at this location; however, a flow measurement was not obtained as the water was too shallow (<10 cm) to obtain accurate measurements. The creek bed was bedrock controlled and well defined in areas. The flow was estimated (based on instantaneous flow) of 0.0100 m³/s. See Appendix B for additional photo record.

Picture 47: Culvert on south side of road, facing north.

Picture 48: Facing downstream, some flow evident.



SW5 (E424634.14 N5416585.94) September 1, 2011

This location was easily accessible by a municipal road. This location is in what appears to be a low-lying marshy area, with an abundance of grasses. A straight section of channel is available to collect a flow measurement; however, given the out of bank flow conditions, a representative measurement was not available. A flow measurement was taken regardless, and it was recorded at -0.0019 m³/s, likely a result of the diffuse flow. Beaver activity is hypothesized.

Picture 49: Facing upstream.

Picture 50: Location of GPS and potential beaver dam.

SW4 (E432798.69 N5413360.84) September 1, 2011

This location was easily accessible from the road. A flow measurement at this location is not currently possible due to safety (boat required) the impact of beaver activity on the area.

Picture 51: Beaver lodge on west side of Highway 71.

Picture 52: Ponding water on east side of Highway 71.

6.0 STATION RECOMMENDATIONS

Table 6-1 provides recommendation for removal, continued or future investigations and/or flow monitoring at the locations investigated. These recommendations are based on the physical attributes (channel width and depth) of the watercourse and the evidence of that watercourses ability to maintain flow under normal conditions. As such the following recommendations are based on optimizing the collection of data on additional flow monitoring campaigns in the future should normal conditions be present.

Station	Average Discharge (m³/s)	Flow Conditions	Removal/ContinueReason forMonitoring/MoveRemoval/Continue/Move		Beaver Activity
05PC023	0	Disconnected pools in creek	Continue	Well defined channel	Not evident
*Clark 1	0.0062	Visible flow	Continue	Good cross section/flow	Not evident
Jones 1	0	Disconnected pools in creek	Continue	Well defined channel	Not evident
Jones 2	0	Creek bed dry	Removal/Move	Move to better location	Not evident
Loslo 1	0	No Flow	Removal	Heavy beaver influence	Yes
Marr 1	0	Disconnected pools in creek	Move	Needs defined cross section	Possible
Marr 2	0	Creek bed dry	Removal	No real defined channel	No
*Pine 1	0.0020	Water in creek, no visible flow	Continue	Address Beaver Issue	Likely
Pine 2	0	Creek bed dry	Removal	Channel not well defined	No
Pine 3	0	Creek bed dry	Continue	Good cross section avail.	No
Pine 4	0	No visible flow	Move	Channel not well defined	Likely
SW1	0	No visible flow	Removal	Beaver	Yes
SW1A	0	No visible flow	Move	Unnatural channel in use	Yes
SW2	0	Disconnected pools in creek	Continue	Well defined channel	No
SW3	0	Disconnected pools in creek	Continue	Well defined channel	No
SW4	0	No visible flow	Remove	Beaver	Yes
*SW5	0.0019	Water in creek, no visible flow	Remove or Move	Beaver	Yes
SW10	0	Water in creek, too shallow	Continue	Well defined channel	No
SW13	0	Water in creek, too shallow	Continue	Well defined channel	No
**SW14	0.0100	Visible flow	Continue	Well defined channel	No
Tait 1	0	Creek bed dry	Move	Better location upstream	No
Tait 2	0	No visible flow	Remove	Beaver	Yes
West 1	0	Creek bed dry	Move Beaver		Likely
West 2	0	Creek bed dry	Continue	Well defined channel	No
*West 3	0.0013	Water in creek, no visible flow	Continue Well defined channel		No

Table 6-1: Flow Station Summary and Recommendations

*Although a flow measurement was taken the methodology due to poor conditions impacted measurement, and this is not a representative record. ** Estimate of flow based on visual observations comparable to other watercourses in the area.

Table 6-2 below is an excerpt from the Klohn 2010 report which highlights measurements collected during the June 2010 field program.

Streamflow Section	Coordinates	Date	Calculated Flow (m3/s)
SW-1A	426152E, 5408779N	June 1	0.10
SW-3	419490E, 540813N	June 1	1.36
SW-13	422205E, 5410218N	May 31	0.20
SW-14	426279E, 5411745N	June 1	0.07

Table 6-2: Previous Klohn 2010 Streamflow Measurements

Source: Klohn 2010.

7.0 SUMMARY

The 2011 field program conditions are atypical. In communication with local residents (Rainy River Staff) it was confirmed that the levels in the surrounding watercourses do not reflect water conditions that are normally sustained during the months of August and September. This phenomenon has also been confirmed through review of past reports (Klohn 2010) where the flow measurements recorded and a photographic record comparison yield considerable differences in the conditions observed. The lack of flow data collected is a reflection of these conditions. Table 6-1 provides a summary of the conditions encountered while visiting the flow monitoring stations the lack flow, and poor data collecting conditions (beaver activity) is evident.

8.0 REFERENCES

Environment Canada Website 2011 Accessed September 13, 2011.

<http://www.climate.weatheroffice.gc.ca/climateData/generate_chart_e.html?StationID=465 07&timeframe=2&Month=7&Year=2011&cmdB2=Go&Day=12&type=bar&MeasTypeID=totp recip>.

Google Maps Airphoto Screen Capture, 2011. Accessed September 11, 2011.

Klohn Crippen Berger, 2010. Rainy River Resources Ltd - Rainy River Project. June 2010 Hydrogeology/Hydrology Field Investigation.

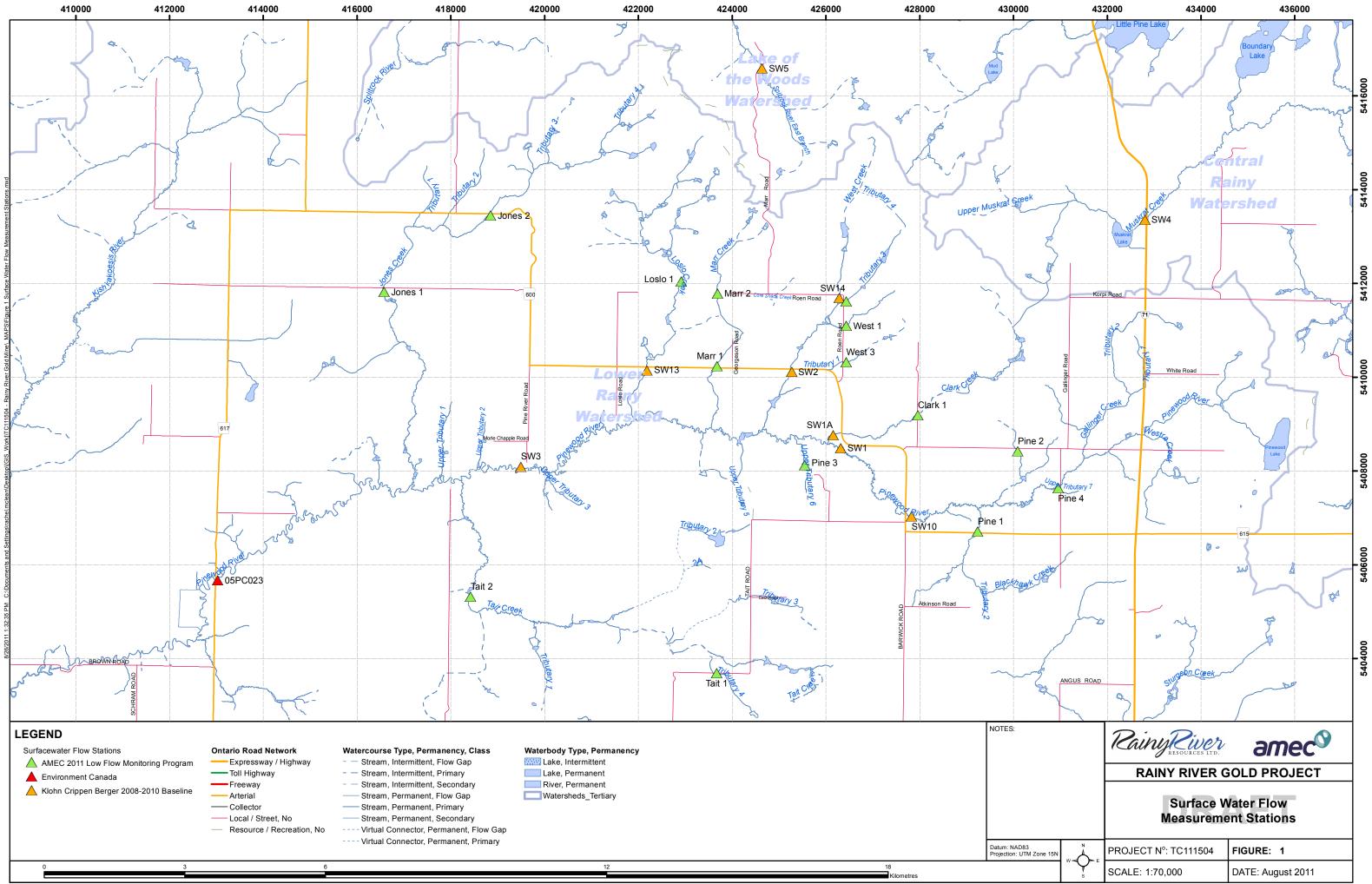
Personal Communication Rainy River Staff – Bevin Burnell. August 30, 2011.

Personal Communication Rainy River Staff – Alyson Bisson. August 30, 2011.

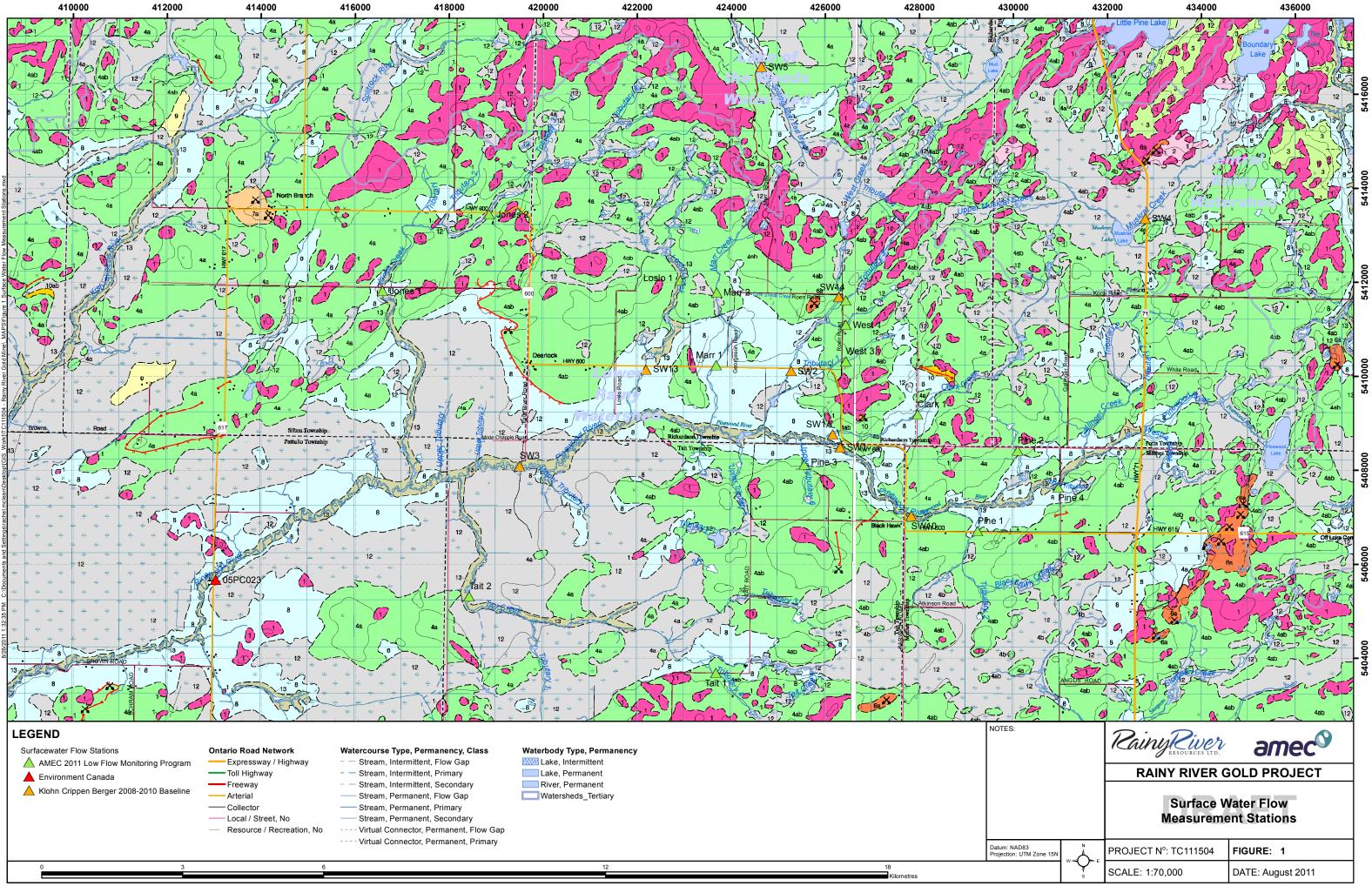
The Weather Network Website 2011, Accessed September 13, 2011. http://www.theweathernetwork.com/index.php?product=historical&placecode=caon0573>.

If you have any questions regarding this report, or require further information, please feel free to contact the undersigned or Sheila Daniel (905-568-2929).

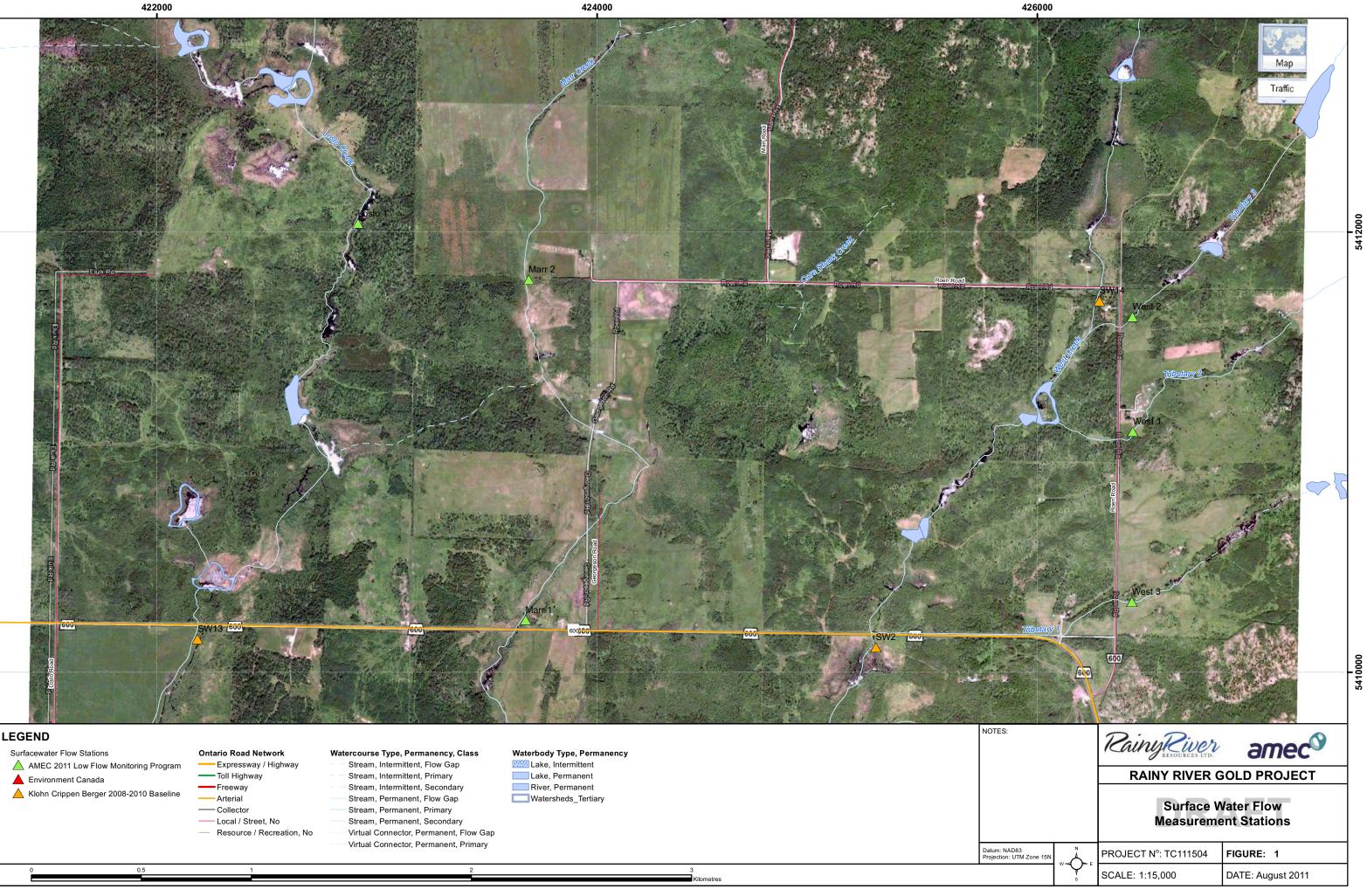
Author:

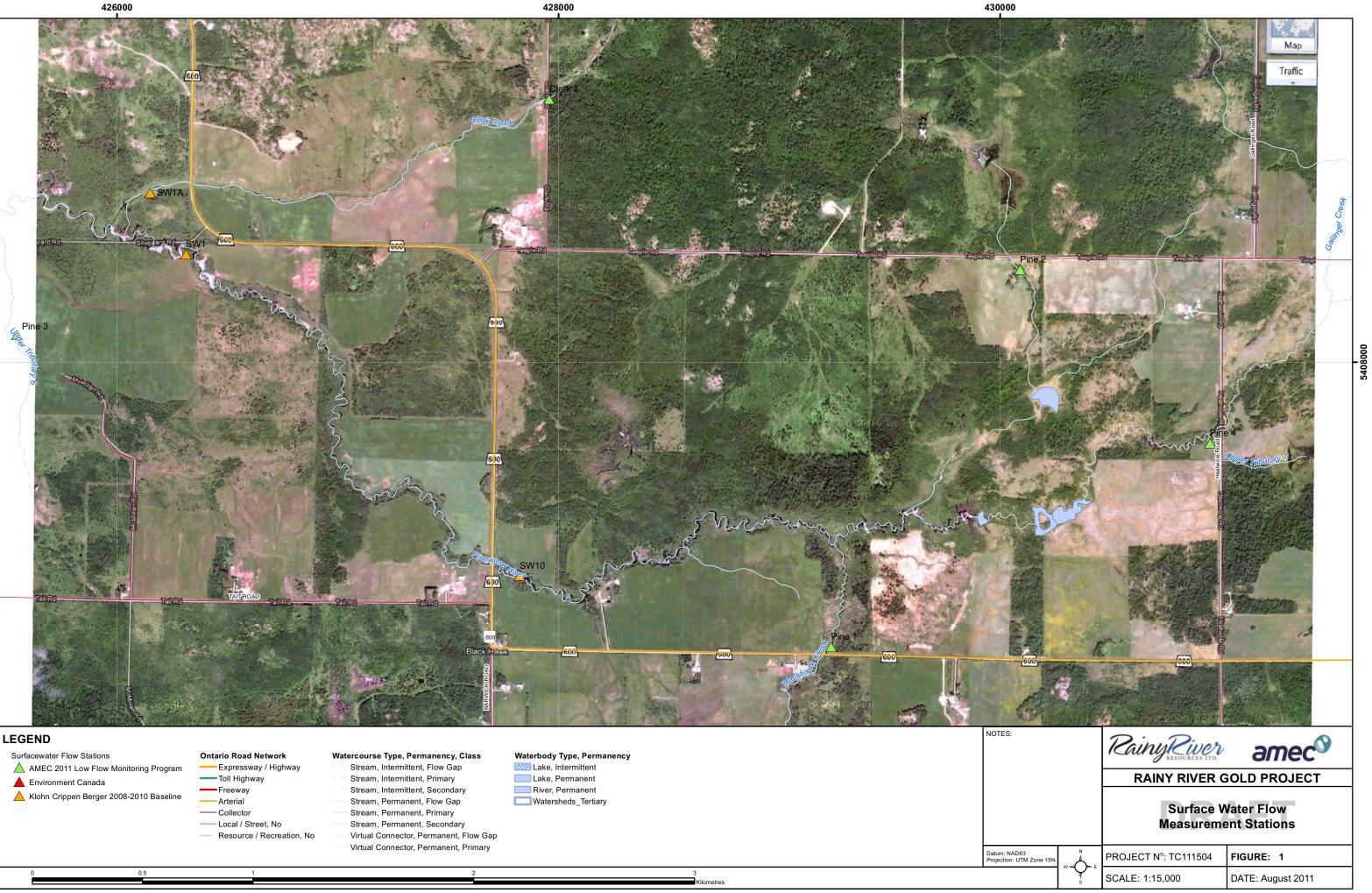

Reviewer:

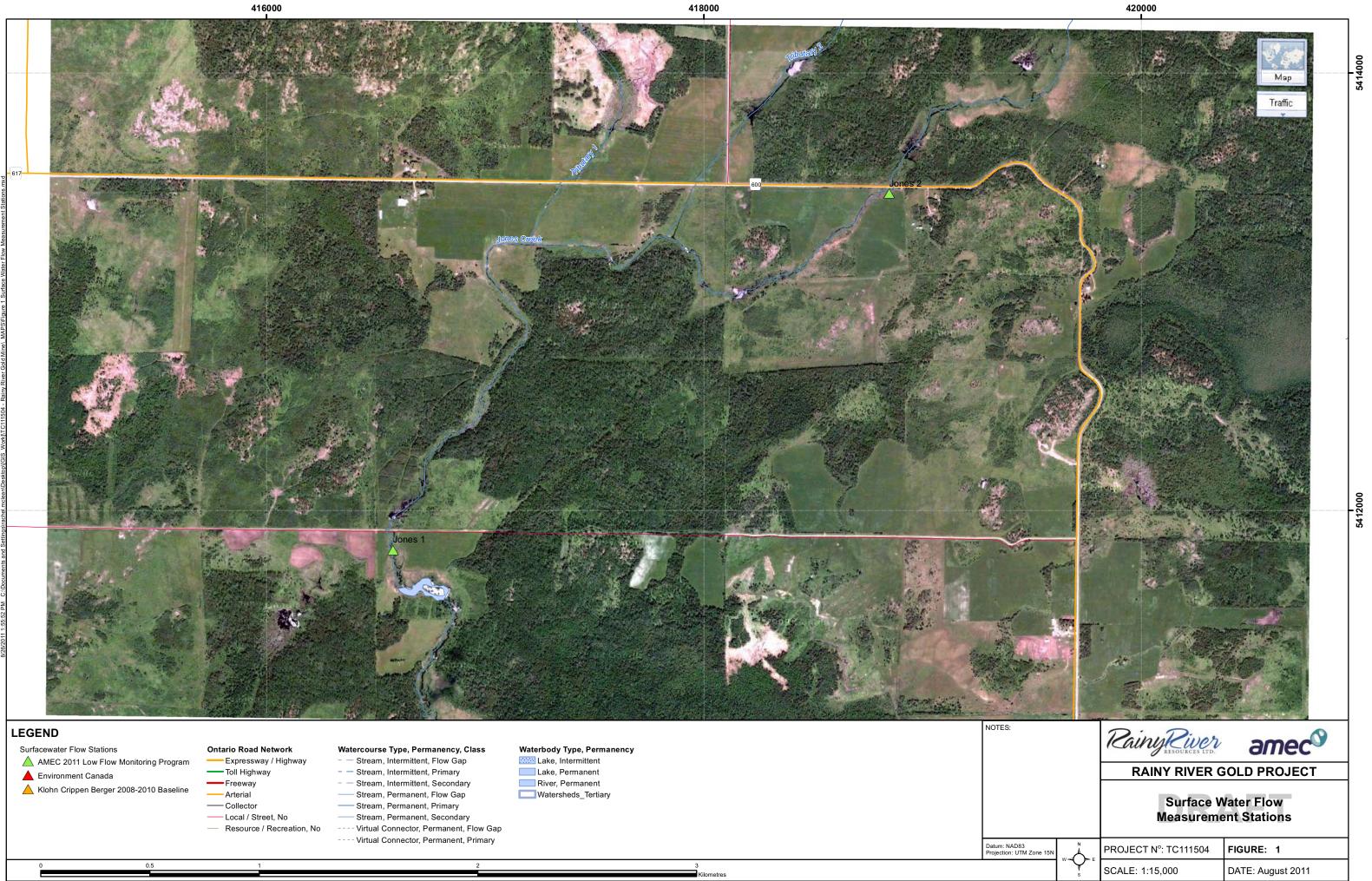
Antonio DiFebo, M.Sc. Environmental Scientist

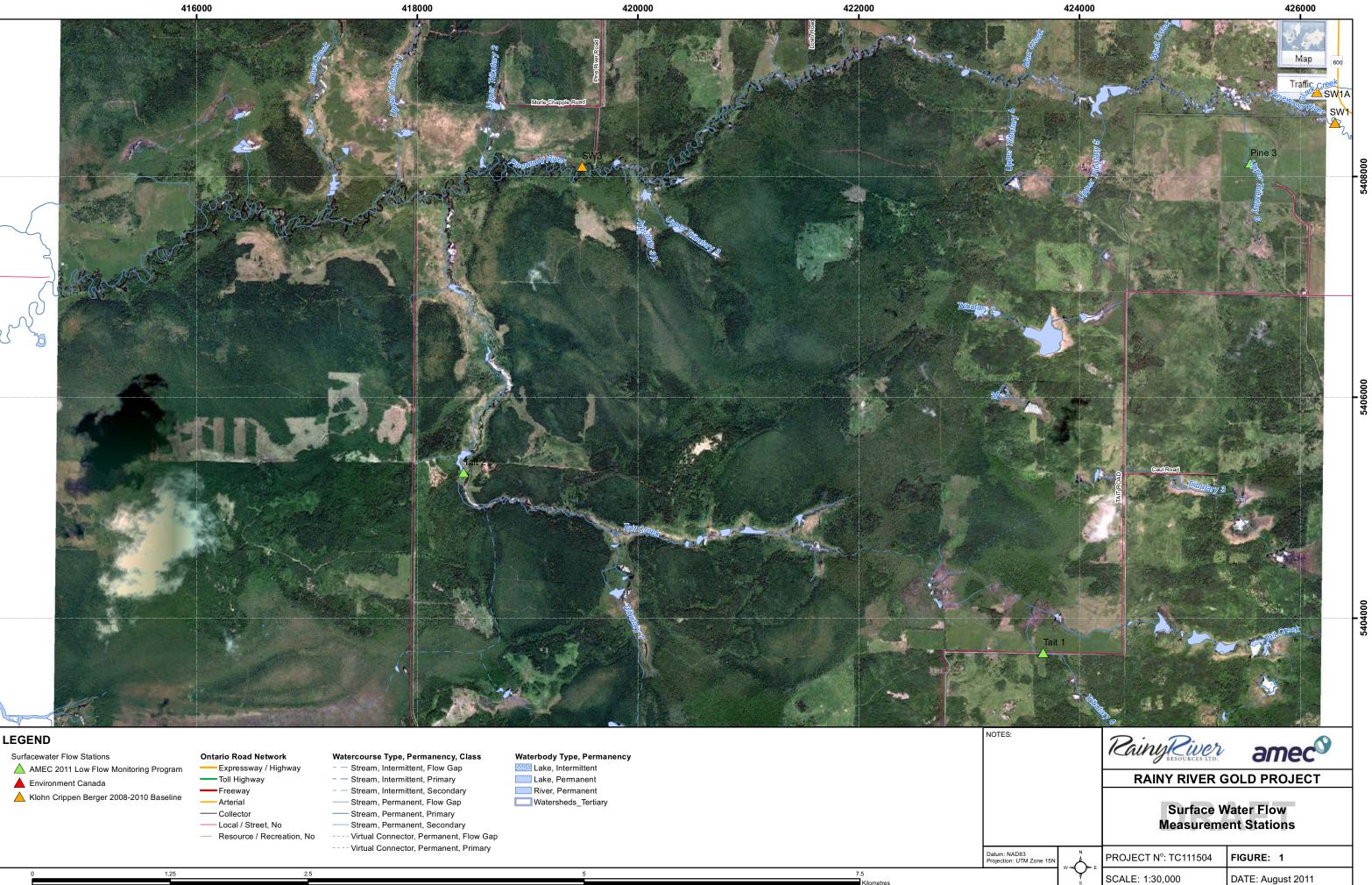

Simon Gautrey, M.Sc., P.Geo. Senior Hydrogeologist

APPENDIX A


FIELD MAPS







APPENDIX B

KLOHN 2010 FIELD PHOTO RECORD

Photo I-20 May 31, 2010 SW-13 Flow Measurement

Photo I-21 June 1, 2010 SW-14 Flow Measurement

Photo I-22 June 1, 2010 SW-1A Flow Measurement

Photo I-23 June 1, 2010 SW-3 Flow Measurement

APPENDIX F

SUMMARY OF RRR WATER QUALITY SAMPLING 2011 TO 2012

				Parameters	рН	Conductivity	Total Dissolved Solids	Colour	Total Ammonia	Dissolved Chloride	Fluoride	Orthophosp hate	Nitrate	Nitrite	Nitrate + Nitrite	Alkalinity	Acidity	Total Cyanide	тос	Hardness
				Units		μS/cm	mg/L	тси	as N mg/L	mg/L	mg/L	mg/L	as N mg/L	as N mg/L	as Nmg/L	mg/L as CaCO ₃	mg/L as CaCO ₃	mg/L	mg/L	mg/L as CaCO ₃
				ODWS	6.5-8.5		500	5		250			10 ^d	1 ^d	1 ^d	30-500		0.2		
				PWQO	6.5-8.5													0.005		
	UTN	1 15		CEQG	6.5-9															
Station Name	Easting	Northing	Lithology	Date																
NR-08-240				24-Oct-2011	8.10	845	456	<1.0	0.159	44.1	0.160	<0.0050	<0.030	<0.020	<0.030	386	8.2	<0.0020	3.1	
NR-08-240	424771	5410129	BR	16-Jan-2012	7.56	834	424	2.3	0.400	56.6	0.128	<0.0050	<0.030	<0.020	<0.030	392	6.4	<0.0020	3.3	395
NR-08-240	424771	5410125	DIX	25-Apr-2012	7.83	766	407	<1.0	0.247	59.4	0.059	<0.0050	<0.030	<0.020	<0.030	312	9.6	<0.0020	6.1	
NR-08-0240				10-Jul-2012	8.00	673	376	<1.0	0.196	60.1	<0.030	<0.0050	<0.030	<0.020	<0.030	268	7.2	<0.0020	16.8	
NR-09-367				24-Oct-2011	8.12	788	436	<1.0	0.137	20.6	0.163	<0.0050	<0.030	<0.020	<0.030	396	7.2	<0.0020	3.0	
NR-09-367	452814	5410139	BR	16-Jan-2012	7.62	707	358	3.0	0.137	20.9	0.202	<0.0050	<0.030	<0.020	<0.030	377	7.0	<0.0020	3.7	398
NR-09-367	452014	3410133	DIX	25-Apr-2012	7.52	741	422	<1.0	0.137	10.1	0.209	<0.0050	<0.030	<0.020	<0.030	370	15.4	<0.0020	2.2	
NR-09-367				10-Jul-2012	7.67	703	410	<1.0	0.147	0.17	<0.030	<0.0050	<0.030	<0.020	<0.030	380	13.6	<0.0020	2.9	
NR-09-428				24-Oct-2011	8.20	713	385	<1.0	0.348	14.7	0.707	<0.0050	<0.030	<0.020	<0.030	386	7.0	<0.0020	5.8	
NR-09-428	425835	5409700	BR	25-Apr-2012	7.66	773	440	1.6	0.224	10.5	0.146	<0.0050	<0.030	<0.020	<0.030	387	15.6	<0.0020	3.2	
NR-09-428				10-Jul-2012	8.06	594	304	<1.0	0.227	14.9	<0.030	<0.0050	<0.030	<0.020	<0.030	305	6.2	<0.0020	7.7	
NR-10-12			BR	25-Apr-2012	7.57	758	451	<1.0	0.241	2.19	0.162	<0.0050	<0.030	<0.020	<0.030	389	15.2	<0.0020	2.4	
RR-09-213A				24-Oct-2011	8.03	765	452	<1.0	0.210	7.86	0.081	<0.0050	<0.030	<0.020	<0.030	404	7.8	<0.0020	3.3	
RR-09-213A	425850	5409786	BR	25-Apr-2012	7.61	784	457	1.2	0.234	8.14	0.178	<0.0050	<0.030	<0.020	<0.030	398	15.6	<0.0020	2.8	
RR-09-213A				10-Jul-2012	7.72	761	442	2.5	0.230	7.03	0.117	0.0061	<0.030	<0.020	<0.030	399	16.0	<0.0020	2.9	
RR-09-214	425206	E 4000EC		24-Oct-2011	8.04	753	443	<1.0	0.190	5.16	0.085	<0.0050	<0.030	<0.020	<0.030	400	6.8	<0.0020	3.4	0.0236
RR-09-214	425286	5409856	BR	25-Apr-2012	7.65	763	429	<1.0	0.196	5.54	0.136	<0.0050	<0.030	<0.020	<0.030	394	16.4	<0.0020	2.7	
BH-10-04				24-Oct-2011	8.21	771	446	<1.0	0.165	1.34	0.251	<0.0050	<0.030	<0.020	<0.030	417	4.4	<0.0020	2.8	
BH-10-04				16-Jan-2012	7.50	729	436	<1.0	0.147	0.58	0.279	<0.0050	<0.030	<0.020	<0.030	406	6.6	<0.0020	3.2	383
BH-10-04	425813	5410648	PLGD	25-Apr-2012	7.87	797	458	<1.0	0.189	0.56	0.254	0.0074	<0.030	<0.020	<0.030	414	15.4	<0.0020	1.9	
BH-10-04				10-Jul-2012	7.83	777	463	1.0	0.193	0.57	0.201	<0.0050	<0.030	<0.020	<0.030	416	16.0	<0.0020	2.3	
BH-10-05				24-Oct-2011	8.03	1020	630	2.0	0.075	1.11	0.288	< 0.0050	0.073	<0.020	0.073	465	6.4	<0.0020	3.5	
BH-10-05 BH-10-05				16-Jan-2012	7.62	981	692	2.5	<0.020	0.46	0.288	<0.0050	0.073	<0.020	0.073	405	15.2	<0.0020	4.7	690
	426397	5411994	PA																	090
BH-10-05				25-Apr-2012	7.49	1050	701	1.0	<0.020	0.25	0.226	< 0.0050	< 0.030	<0.020	< 0.030	483	21.2	<0.0020	2.4	
BH-10-05				10-Jul-2012	7.70	1030 E 81	718	3.9	0.044	0.35	0.125	< 0.0050	0.043	<0.020	0.043	486	23.0	<0.0020	3.1	┣───┤
BH-10-7A BH-10-7A	424608	5411634	PA	24-Oct-2011 25-Apr-2012	8.01 7.63	581 570	320 337	<1.0 1.1	0.099 0.118	1.00 0.53	0.058 0.121	0.0124 <0.0050	<0.030 <0.030	<0.020 <0.020	<0.030 <0.030	293 275	4.4 7.4	<0.0020 <0.0020	2.2 1.7	
BH-10-7A BH-10-7A	424000	5411054		10-Jul-2012	7.63	606	337	1.1	0.118	0.53	0.121	<0.0050	<0.030	<0.020	<0.030	300	12.0	<0.0020	2.9	
BH-10-11A				24-Oct-2012	7.86	686	402	<1.0	0.423	2.15	0.093	<0.0050	<0.030	<0.020	<0.030	447	5.0	<0.0020	3.4	┠────┤
BH-10-11A	424736	5409865	PLGD	25-Apr-2012	7.86	732	488	2.6	0.202	1.78	0.170	< 0.0050	<0.030	<0.020	<0.030	444	10.0	<0.0020	3.5	
BH-10-11A				10-Jul-2012	7.74	707	484	1.8	0.697	1.72	0.125	<0.0050	0.030	<0.020	0.030	392	8.8	<0.0020	<5.0	
BH-10-12	423964	5410512	PLGD	24-Oct-2011	8.08	767	424	<1.0	0.325	2.53	0.169	<0.0050	<0.030	<0.020	<0.030	412	6.2	<0.0020	2.7	
BH-10-12A	423904	5410512	PLGD	10-Jul-2012	7.67	753	452	2.8	0.316	<0.10	<0.030	<0.0050	<0.030	<0.020	<0.030	393	14.4	<0.0020	2.8	
BH-10-14				24-Oct-2011	8.13	795	457	<1.0	0.305	4.51	0.100	<0.0050	<0.030	<0.020	<0.030	434	9.8	<0.0020	2.8	
BH-10-14	425173	5408923	PLGD	25-Apr-2012	7.77	836	471	<1.0	0.314	4.48	0.152	<0.0050	<0.030	<0.020	<0.030	414	16.2	<0.0020	2.2	
BH-10-14				10-Jul-2012	7.86	782	470	2.0	0.309	3.83	0.136	< 0.0050	< 0.030	<0.020	<0.030	425	16.0	<0.0020	2.8	\mid
BH-10-20				24-Oct-2011	8.07	765	434	<1.0	0.224	7.68	0.182	< 0.0050	< 0.030	<0.020	< 0.030	405	9.0	< 0.0020	2.7	200
BH-10-20				16-Jan-2012	7.58	826	516	<1.0	0.303	56.4	0.126	<0.0050	< 0.030	<0.020	<0.030	388	9.0	<0.0020	4.4	396
BH-10-20				10-Jul-2012	7.82	703	406	4.2	0.153	3.70	0.086	<0.0050	<0.030	<0.020	<0.030	379	16.0	<0.0020	2.4	

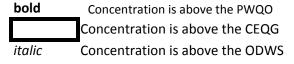
Notes: PWQO: Provincial Water Quality Objective (provided for information purposes only) CEQG: Canadian Environmental Quality Guidelines ODWS: Ontario Drinking Water Standard as per O. Reg 169/03

a Aesthetic Objective

b Aesthetic Objective for sodium in drinking water is 200 mg/L

c When sulphate levels exceed 500 mg/L, water may have a laxative effect on some people

d Where both nitrate and nitrite are present, the total of the two should not exceed 10 mg/L (as nitrogen)


e Applies to water at point of consumption. Since lead is a component in some plumbing systems, first flush water may contain higher concentrations of lead than water that has been flushed for five minutes

f 0.005 mg/L if pH<6.5 or 0.1 mg/L if pH>6.5

o Operational Guideline

PA = Pleistocene aquitard (in this case all Whitemouth Lake Till)

PLGD = Pleistocene lower granular deposits (in this case all Whiteshell Till)

	Parameters	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Lithium	Magnesium	Manganese	Mercury	Nickel
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	ODWS	0.1	0.006	0.025	1			5	0.005		0.05		0.100	0.3 ^a	0.01			0.05	0.001	
	PWQO	0.075	0.02	0.1		1.1		0.2	0.0005		0.0089	0.0009	0.005	0.3	0.025				0.0002	0.025
	CEQG	0.005-0.1 ^f		0.005				1.5	0.00002		0.001		0.004	0.3	0.007				0.000026	0.15
Station Name	Date																			
NR-08-240	24-Oct-2011	<0.0010	<0.00020	0.000634	0.0464	<0.000060	<0.00010	0.115	<0.000030	100	<0.00020	<0.000030	<0.00040	0.0275	<0.00010	0.0223	33.5	0.158	<0.000020	0.00115
NR-08-240	16-Jan-2012	<0.030	<0.0010	<0.0010	0.0495	<0.00060	<0.0020	0.145	<0.00010	94.9	<0.0050	<0.00050	<0.0070	0.55	<0.0010	0.023	38.0	0.214	<0.000010	<0.010
NR-08-240	25-Apr-2012	<0.0030	<0.00010	0.00018	0.0434	<0.000060	<0.00020	0.115	0.000014	70.5	<0.00050	<0.000050	<0.00070	<0.010	<0.00010	0.0228	39.5	0.250	<0.000010	<0.0010
NR-08-0240	10-Jul-2012	<0.0050	<0.00060	<0.0010	0.180	<0.0010	<0.0010	0.123	<0.000017	51.8	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	39.7	0.152	<0.000010	<0.0020
NR-09-367	24-Oct-2011	<0.0010	<0.00020	0.00158	0.0495	<0.000060	<0.00010	0.0757	<0.000030	96.0	<0.00020	<0.000030	<0.00040	0.0329	<0.00010	0.0340	39.7	0.122	<0.000020	0.00165
NR-09-367	16-Jan-2012	<0.030	<0.0010	<0.0010	0.0208	<0.00060	<0.0020	0.059	0.00019	76.9	<0.0050	0.00158	<0.0070	0.91	<0.0010	0.026	35.6	0.191	<0.000010	<0.010
NR-09-367	25-Apr-2012	<0.0030	<0.00010	0.00166	0.0511	<0.000060	<0.00020	0.0642	0.000012	92.9	0.00052	<0.000050	<0.00070	<0.010	<0.00010	0.0349	45.1	0.147	0.000028	<0.0010
NR09-0367	10-Jul-2012	<0.0050	<0.00060	<0.0010	0.038	<0.0010	<0.0010	0.059	<0.000017	90.1	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	43.9	0.195	<0.000010	<0.0020
NH-09-428	24-Oct-2011	<0.0010	<0.00020	0.000819	0.0129	<0.000060	<0.00010	0.130	<0.000030	67.4	<0.00020	<0.000030	<0.00040	0.0306	<0.00010	0.0267	32.7	0.171	<0.000020	0.00117
NR-09-428	25-Apr-2012	<0.0030	<0.00010	0.00232	0.0252	<0.000060	<0.00020	0.103	0.000010	100	0.00050	<0.000050	<0.00070	0.054	<0.00010	0.0291	40.1	0.301	<0.000010	<0.0010
NR-09-428	10-Jul-2012	<0.0050	<0.00060	<0.0010	<0.010	<0.0010	<0.0010	0.126	0.000021	49.3	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	37.6	0.128	<0.000010	<0.0020
NR-10-12	25-Apr-2012	<0.0030	<0.00010	0.00593	0.0678	<0.000060	<0.00020	0.0657	<0.000010	98.4	0.00062	<0.000050	<0.00070	0.533	<0.00010	0.0358	44.4	0.180	<0.000010	<0.0010
RR-09-213A	24-Oct-2011	<0.0010	0.00187	0.00287	0.0502	<0.000060	<0.00010	0.0785	<0.000030	91.6	<0.00020	0.000727	<0.00040	0.0309	0.00060	0.0299	37.2	0.175	<0.000020	0.00193
RR-09-213A	25-Apr-2012	<0.0030	0.00117	0.00248	0.0603	<0.000060	<0.00020	0.0768	0.000024	99.1	<0.00050	0.000575	<0.00070	<0.010	0.00016	0.0370	44.9	0.251	<0.000010	0.0013
RR-09-213A	10-Jul-2012	<0.0050	0.00123	0.0045	0.056	<0.0010	<0.0010	0.079	<0.000017	99.9	<0.0010	0.00055	<0.0010	<0.020	<0.0010	<0.050	46.2	0.202	<0.000010	<0.0020
RR-09-214	24-Oct-2011	<0.0010	<0.00020	0.00267	0.0735	<0.000060	<0.00010	0.0701	<0.000030	91.5	<0.00020	0.00800	<0.00040	0.0298	<0.00010	0.0330	36.5	0.143	<0.000020	0.00169
RR-09-214	25-Apr-2012	<0.0030	<0.00010	0.00265	0.0886	<0.000060	<0.00020	0.0678	0.000018	95.6	<0.00050	0.00689	<0.00070	<0.010	<0.00010	0.0365	40.7	0.188	<0.000010	0.0021
BH-10-04	24-Oct-2011	0.0015	<0.00020	0.0195	0.0685	<0.000060	<0.00010	0.175	<0.000030	64.3	<0.00020	0.000670	0.00050	0.0278	<0.00010	0.0727	46.5	0.103	<0.000020	0.00181
BH-10-04	16-Jan-2012	<0.030	<0.0010	0.0188	0.0713	<0.00060	<0.0020	0.186	<0.00010	72.5	<0.0050	0.00075	<0.0070	<0.10	<0.0010	0.076	52.1	0.0967	<0.000010	<0.010
BH-10-04	25-Apr-2012	<0.0030	<0.00010	0.0222	0.0740	<0.000060	<0.00020	0.176	0.000018	81.9	<0.00050	0.000723	<0.00070	<0.010	<0.00010	0.0803	53.0	0.114	<0.000010	0.0012
BH-10-04	10-Jul-2012	<0.0050	<0.00060	0.0200	0.068	<0.0010	<0.0010	0.193	0.000020	78.4	<0.0010	0.00072	<0.0010	<0.020	<0.0010	0.079	52.8	0.103	<0.000010	<0.0020
BH-10-05	24-Oct-2011	0.0032	0.00026	0.00141	0.0492	<0.000060	<0.00010	0.187	0.000036	119	<0.00020	0.000946	0.00072	0.0377	<0.00010	0.107	68.2	0.152	<0.000020	0.00378
BH-10-05	16-Jan-2012	<0.030	<0.0010	<0.0010	0.0394	<0.00060	<0.0020	0.164	<0.00010	113	<0.0050	<0.00050	<0.0070	<0.10	<0.0010	0.095	73.3	0.0267	<0.000010	<0.010
BH-10-05	25-Apr-2012	<0.0030	0.00010	0.00090	0.0422	<0.000060	<0.00020	0.106	0.000026	121	0.00051	<0.000050	0.00193	<0.010	<0.00010	0.0872	79.8	0.0578	<0.000010	0.0028
BH-10-05	10-Jul-2012	<0.0050	<0.00060	<0.0010	0.045	<0.0010	<0.0010	0.131	0.000033	118	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	0.090	78.0	0.0439	<0.000010	<0.0020
BH-10-7A	24-Oct-2011	<0.0010	<0.00020	0.00619	0.0569	<0.000060	<0.00010	0.0493	<0.000030	64.9	<0.00020	0.000052	<0.00040	0.0255	<0.00010	0.0310	24.2	0.209	<0.000020	0.00086
BH-10-7A	25-Apr-2012	<0.0030	<0.00010	0.00666	0.0647	<0.000060	<0.00020	0.0495	<0.000010	80.1	<0.00050	<0.000050	<0.00070	<0.010	<0.00010	0.0327	27.1	0.263	<0.000010	<0.0010
BH-10-7A	10-Jul-2012	<0.0050	<0.00060	0.0103	0.076	<0.0010	<0.0010	0.103	<0.000017	82.8	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	27.7	0.315	<0.000010	<0.0020
BH-10-11A	24-Oct-2011	0.0011	0.00028	0.00349	0.116	<0.000060	<0.00010	0.0652	<0.000030	96.5	<0.00020	0.000135	<0.00040	0.0403	<0.00010	0.0325	34.2	0.135	<0.000020	0.00154
BH-10-11A	25-Apr-2012	<0.0030	0.00016	0.00478	0.118	<0.000060	<0.00020	0.0603	0.000017	97.4	0.00050	0.000113	<0.00070	<0.010	<0.00010	0.0339	40.4	0.206	<0.000010	0.0012
BH-10-11A	10-Jul-2012	0.0052	<0.00060	0.0031	0.126	<0.0010	<0.0010	0.058	<0.000017	96.8	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	40.5	0.156	<0.000010	<0.0020
BH-10-12	24-Oct-2011	<0.0010	<0.00020	0.00320	0.0587	<0.000060	<0.00010	0.0784	<0.000030	85.4	<0.00020	<0.000030	<0.00040	<0.0050	<0.00010	0.0412	35.6	0.154	<0.000020	0.00101
BH-10-12A	10-Jul-2012	<0.0050	<0.00060	0.0046	0.069	<0.0010	<0.0010	0.086	<0.000017	92.9	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	41.2	0.206	<0.000010	<0.0020
BH-10-14	24-Oct-2011	0.0011	<0.00020	0.00911	0.0687	<0.000060	<0.00010	0.103	<0.000030	96.4	<0.00020	<0.000030	0.00066	0.0230	<0.00010	0.0331	37.3	0.158	<0.000020	0.00109
BH-10-14	25-Apr-2012	<0.0030	<0.00010	0.0114	0.0770	<0.000060	<0.00020	0.0982	0.000013	108	<0.00050	<0.000050	<0.00070	<0.010	<0.00010	0.0348	39.4	0.202	<0.000010	<0.0010
BH-10-14	10-Jul-2012	<0.0050	<0.00060	0.0104	0.073	<0.0010	<0.0010	0.110	<0.000017	94.9	<0.0010	<0.00050	<0.0010	<0.020	<0.0010	<0.050	40.5	0.179	<0.000010	<0.0020
BH-10-20	24-Oct-2011	<0.0010	0.00290	0.00253	0.0531	<0.000060	<0.00010	0.0809	<0.000030	94.0	<0.00020	0.000829	0.00052	0.0274	0.00031	0.0327	39.2	0.182	<0.000020	0.00167
BH-10-20	16-Jan-2012	<0.030	<0.0010	<0.0010	0.0860	<0.00060	<0.0020	0.137	<0.00010	94.9	<0.0050	<0.00050	<0.0070	2.21	<0.0010	0.019	37.6	0.228	<0.000010	<0.010
BH-10-20	10-Jul-2012	<0.0050	<0.00060	<0.0010	0.040	<0.0010	<0.0010	0.063	<0.000017	92.7	<0.0010	<0.00050	<0.0010	0.257	<0.0010	<0.050	43.2	0.190	<0.000010	<0.0020

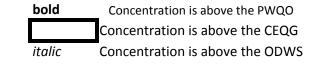
	Parameters	Phosphorus	Potassium	Selenium	Silver	Sodium	Strontium	Tellurium	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc	Zirconium
	Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	ODWS			0.01 ^ª		200 ^b							0.02		5 [°]	
	PWQO	0.02-0.03		0.1					0.0003			0.03	0.005		0.02	0.004
	CEQG			0.001					0.001				0.015		0.03	
Station Name	Date															
NR-08-240	24-Oct-2011	<0.0050	4.52	<0.0010	<0.000010	26.3	0.579	<0.000070	<0.000010	<0.00010	<0.00050	0.000494	0.000362	0.00010	<0.0020	0.000043
NR-08-240	16-Jan-2012	<0.0100	4.48	<0.0050	<0.00050	30.2	0.761	<0.00070	<0.00030	<0.0010	<0.0050	<0.0010	0.00042	<0.0020	<0.020	<0.0010
NR-08-240	25-Apr-2012	0.0064	5.03	<0.00050	<0.000050	34.2	0.503	<0.000070	<0.000030	<0.00010	<0.00050	0.00073	0.000027	<0.00020	<0.0020	<0.00010
NR-08-0240	10-Jul-2012	0.0113	4.78	<0.0010	<0.00010	32.9	0.352	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
NR-09-367	24-Oct-2011	<0.0050	3.57	<0.0010	<0.000010	15.0	0.420	<0.000070	<0.000010	<0.00010	0.00071	0.000415	0.000556	<0.00010	<0.0020	0.000065
NR-09-367	16-Jan-2012	<0.0100	3.18	<0.0050	<0.00050	12.3	0.379	<0.00070	<0.00030	<0.0010	<0.0050	<0.0010	0.00055	<0.0020	<0.020	<0.0010
NR-09-367	25-Apr-2012	<0.0050	3.79	<0.00050	<0.000050	12.8	0.417	<0.000070	<0.000030	<0.00010	0.00067	0.00032	0.000496	<0.00020	<0.0020	<0.00010
NR09-0367	10-Jul-2012	<0.0050	3.76	<0.0010	<0.00010	10.6	0.389	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
NH-09-428	24-Oct-2011	<0.0050	3.55	<0.0010	<0.000010	19.3	0.424	<0.000070	<0.000010	<0.00010	<0.00050	0.00271	0.0000393	<0.00010	<0.0020	<0.000020
NR-09-428	25-Apr-2012	<0.0050	3.84	<0.00050	<0.000050	17.7	0.558	<0.000070	<0.000030	<0.00010	0.00052	0.00193	0.000144	<0.00020	0.0038	<0.00010
NR-09-428	10-Jul-2012	0.0050	3.67	<0.0010	<0.00010	20.7	0.257	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
NR-10-12	25-Apr-2012	<0.0050	5.07	<0.00050	<0.000050	12.3	0.380	<0.000070	<0.000030	<0.00010	0.00075	0.00053	0.000160	<0.00020	<0.0020	<0.00010
RR-09-213A	24-Oct-2011	<0.0050	3.33	<0.0010	<0.000010	13.4	0.393	<0.000070	<0.000010	<0.00010	<0.00050	0.000533	0.000570	<0.00010	0.0035	0.000063
RR-09-213A	25-Apr-2012	<0.0050	3.71	<0.00050	<0.000050	14.0	0.448	<0.000070	<0.000030	<0.00010	0.00059	0.00020	0.000497	<0.00020	0.0097	<0.00010
RR-09-213A	10-Jul-2012	<0.0050	3.66	<0.0010	<0.00010	13.5	0.465	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	0.0067	<0.0010
RR-09-214	24-Oct-2011	<0.0050	4.68	<0.0010	<0.000010	15.2	0.340	<0.000070	<0.000010	<0.00010	<0.00050	0.0449	0.00142	<0.00010	<0.0020	0.000099
RR-09-214	25-Apr-2012	<0.0050	5.13	<0.00050	<0.000050	16.3	0.384	<0.000070	<0.000030	<0.00010	<0.00050	0.0491	0.00136	<0.00020	<0.0020	0.00010
BH-10-04	24-Oct-2011	<0.0050	3.62	<0.0010	<0.000010	22.3	0.435	<0.000070	<0.000010	<0.00010	0.00061	0.000111	0.00960	<0.00010	0.0039	0.000135
BH-10-04	16-Jan-2012	<0.0100	3.66	<0.0050	<0.00050	19.6	0.495	<0.00070	<0.00030	<0.0010	<0.0050	<0.0010	0.00888	<0.0020	<0.020	<0.0010
BH-10-04	25-Apr-2012	0.0075	3.89	<0.00050	<0.000050	19.9	0.506	<0.000070	<0.000030	<0.00010	0.00072	<0.00010	0.0103	<0.00020	<0.0020	<0.00010
BH-10-04	10-Jul-2012	0.0076	3.64	<0.0010	<0.00010	18.4	0.500	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	0.0102	<0.0010	<0.0030	<0.0010
BH-10-05	24-Oct-2011	<0.0050	3.54	<0.0010	<0.000010	19.4	0.620	<0.000070	<0.000010	<0.00010	0.00273	0.00145	0.0186	0.00075	<0.0020	0.000195
BH-10-05	16-Jan-2012	<0.0100	2.87	<0.0050	<0.00050	16.1	0.664	<0.00070	<0.00030	<0.0010	<0.0050	<0.0010	0.0145	<0.0020	<0.020	<0.0010
BH-10-05	25-Apr-2012	0.0052	2.73	<0.00050	<0.000050	16.0	0.623	<0.000070	<0.000030	<0.00010	0.00275	0.00049	0.0152	0.00054	<0.0020	0.00017
BH-10-05	10-Jul-2012	<0.0050	2.87	<0.0010	<0.00010	15.5	0.633	<0.0010	<0.00030	<0.0010	0.0031	<0.010	0.0162	<0.0010	<0.0030	<0.0010
BH-10-7A	24-Oct-2011	<0.0050	3.90	<0.0010	<0.000010	9.32	0.217	<0.000070	<0.000010	<0.00010	0.00060	0.000142	0.00139	<0.00010	<0.0020	<0.000020
BH-10-7A	25-Apr-2012	<0.0050	4.02	0.00054	<0.000050	9.18	0.267	<0.000070	<0.000030	<0.00010	0.00075	0.00033	0.00155	<0.00020	<0.0020	<0.00010
BH-10-7A	10-Jul-2012	<0.0050	4.06	<0.0010	<0.00010	13.6	0.367	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
BH-10-11A	24-Oct-2011	<0.0050	5.79	<0.0010	<0.000010	10.5	0.350	<0.000070	<0.000010	<0.00010	<0.00050	0.000068	0.00237	0.00069	<0.0020	0.000052
BH-10-11A	25-Apr-2012	<0.0050	5.59	<0.00050	<0.000050	10.5	0.393	<0.000070	<0.000030	<0.00010	0.00067	<0.00010	0.00107	0.00046	<0.0020	<0.00010
BH-10-11A	10-Jul-2012	<0.0050	6.12	<0.0010	<0.00010	10.2	0.385	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	0.0010	<0.0030	<0.0010
BH-10-12	24-Oct-2011	<0.0050	4.63	<0.0010	<0.000010	19.2	0.343	<0.000070	<0.000010	<0.00010	0.00052	0.000431	0.000526	<0.00010	<0.0020	0.000054
BH-10-12A	10-Jul-2012	<0.0050	4.81	<0.0010	<0.00010	15.7	0.404	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
BH-10-14	24-Oct-2011	<0.0050	4.59	<0.0010	<0.000010	17.1	0.426	<0.000070	<0.000010	<0.00010	<0.00050	0.000152	0.000740	<0.00010	<0.0020	0.000174
BH-10-14	25-Apr-2012	<0.0050	4.73	0.00056	<0.000050	16.8	0.536	<0.000070	<0.000030	<0.00010	0.00052	<0.00010	0.000719	<0.00020	<0.0020	<0.00010
BH-10-14	10-Jul-2012	<0.0050	4.45	<0.0010	<0.00010	16.2	0.476	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010
BH-10-20	24-Oct-2011	<0.0050	3.52	<0.0010	<0.000010	14.0	0.393	<0.000070	0.000019	<0.00010	<0.00050	0.000659	0.000605	<0.00010	0.0051	0.000050
BH-10-20	16-Jan-2012	<0.0100	4.61	<0.0050	<0.00050	29.9	0.784	<0.00070	<0.00030	<0.0010	<0.0050	<0.0010	0.00031	<0.0020	<0.020	<0.0010
BH-10-20	10-Jul-2012	<0.0050	3.74	<0.0010	<0.00010	10.2	0.385	<0.0010	<0.00030	<0.0010	<0.0020	<0.010	<0.0050	<0.0010	<0.0030	<0.0010

Notes: PWQO: Provincial Water Quality Objective (provided for information purposes only) CEQG: Canadian Environmental Quality Guidelines ODWS: Ontario Drinking Water Standard as per O. Reg 169/03

^^ PWQO and/or CEQG is an interim value

a Aesthetic Objective

b Aesthetic Objective for sodium in drinking water is 200 mg/L


c When sulphate levels exceed 500 mg/L, water may have a laxative effect on some people

d Where both nitrate and nitrite are present, the total of the two should not exceed 10 mg/L (as nitrogen)

e Applies to water at point of consumption. Since lead is a component in some plumbing systems, first flush water may contain higher concentrations of lead than water that has been flushed for five minutes

f 0.005 mg/L if pH<6.5 or 0.1 mg/L if pH>6.5

o Operational Guideline

APPENDIX G

ESTIMATING MAXIMUM POTENTIAL PERCOLATION RATE FOR THE RAINY RIVER PROJECT AREA

APPENDIX G

ESTIMATING MAXIMUM POTENTIAL PERCOLATION RATE FOR THE RAINY RIVER PROJECT AREA

1.0 HELP MODEL

The Hydrologic Evaluation of Landfill Performance model (HELP), developed by the United States EPA (EPA 1995a,b) was used to estimate maximum potential percolation/recharge rate that may be encountered during the open pit operation (i.e. under reversed vertical gradient and depressed water table conditions). Although the HELP model was designed primarily to evaluate cover options for landfill applications, it is considered to be a useful tool for estimating water balance of soil profiles at other types of sites.

For estimating the water balance of soil profiles the HELP model utilizes weather, soil and stratigraphy data to account for the effects of:

- surface storage;
- snowmelt;
- runoff;
- vegetative growth;
- evapotranspiration;
- soil moisture storage; and
- unsaturated vertical drainage and leakage through soil.

Detailed description of the HELP model is provided in its documentation (EPA 1995a,b).

2.0 HELP MODEL INPUT PARAMETERS

HELP model input parameters are subdivided into two major groups:

- weather data; and
- soil and design data.

2.1 Weather Data

According to the HELP's manual input weather data consists of the following components:

- precipitation;
- temperature;
- solar radiation; and
- evapotranspiration parameters.

The precipitation and temperature daily data for the Rainy River Project area for 10 years was generated by the HELP (synthetic data) based on:

- normal mean monthly temperature and precipitation values for Barwick, ON over the period from 1971 – 2000 (Table F-1); and
- statistics of historical data for Duluth (MN) the closest US city to Rainy River with climatological data included in the HELP database.

		· ·
Month	Temperature (°C)	Precipitation (mm)
January	-15.9	28.3
February	-11.6	24.1
March	-4.4	29.7
April	4.2	40
May	11.7	68.3
June	16.2	113.8
July	18.8	99.0
August	17.8	84.0
September	12.1	80.0
October	5.5	56.2
November	-3.8	41.7
December	-12.7	29.7
(1) Concelier Climete Ner		viale ONL (Otations L.D. 000

TABLE F-1 NORMAL MEAN DAILY TEMPERATURE AND PRECIPITATION FOR BARWICK⁽¹⁾

⁽¹⁾ Canadian Climate Normals 1971-2000 for Barwick, ON (Station I.D. 6020559)

The solar radiation data for the Rainy River Project area was generated by the HELP model based on the available data for Duluth (MN), corrected for the actual latitude of the Project area location (48° 83' North).

The evapotranspiration input data for the HELP model is summarized in Table F-2.

EVAPOTRANSPIRATION INPUT DATA									
Parameter	Value	Units	Comments						
Evaporative zone depth	50	cm	Default HELP value for Duluth, MN						
			with a fair stand of grass						
Maximum leaf area index	2-3		HELP recommended value for fair to						
			good stand of grass						
Growing season start day	144	Julian day	Default HELP value for Detroit, MI						
Growing season end day	261	Julian day	Default HELP value for Detroit, MI						
Average wind speed	17	km/hr	Average wind speed at the Sarnia						
			airport according to Canadian Climate						
			Normals for 1971-2000						
First quarter relative	70.0%		Reported average relative humidity						

TABLE F-2EVAPOTRANSPIRATION INPUT DATA

humidity		data for Duluth, MN
Second quarter relative	66.0%	Reported average relative humidity
humidity		data for Duluth, MN
Third quarter relative	74.0%	Reported average relative humidity
humidity		data for Duluth, MN
Fourth quarter relative	74.0%	Reported average relative humidity
humidity		data for Duluth, MN

2.2 Soil and Design Data

The soil and design parameters affecting the estimated percolation rates include the following:

- percent of the area where runoff is possible;
- soil layer thicknesses;
- moisture retention parameters (total porosity, field capacity and wilting point);
- saturated hydraulic conductivities of soil layers;
- slope;
- slope length;
- soil texture number; and
- vegetation index of the uppermost layer.

For the purpose of this study the HELP model was used to estimate the percolation rate through a typical overburden profile encountered for the Project area in the low-lying areas, where glaciolacustrine clay deposits (Brenna Formation) are present at surface.

Soil and design parameters utilized in the HELP model runs are summarized in Table F-3.

TABLE F-3SOIL AND DESIGN INPUT PARAMETERS

Slope 1% Characteristic distance from higher ground north of the mine site to the Pinewood River Desiccated Upper Clay – HELP Percolation Layer Characteristic distance from higher ground north of the mine site to the Pinewood River Desiccated hydraulic conductivity 1.2x10 ⁻⁶¹¹ m Starrated hydraulic conductivity Total porosity 0.452 vol/vol Default HELP value for soil texture #28, silty clay. Witting point 0.311 vol/vol Run-off curve number for soil texture #28, silty clay. Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer Run-off curve number for soil texture #28, silty clay. Default HELP value for soil texture #28, silty clay. Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer Default HELP value for soil texture #28, silty clay. Witting point 0.452 vol/vol Default HELP value for soil texture #28, silty clay. Witting point 0.311 vol/vol Default HELP value for soil texture #28, silty clay. Witting point 0.321 vol/vol Default HELP value for soil texture #28, silty clay. Witting point 0.321 vol/vol Default HELP values for soil texture #28, silty clay. Witting point 0.321 vol/vol Default HE	Parameter	Value/Range	Units	Comments
Desiccated Upper Clay - HELP Percolation Layerground north of the mine site to the Pinewood RiverDesiccated Upper Clay - HELP Percolation LayermThickness1mSaturated hydraulic conductivity1.2x10*10''Field capacity0.452vol/volField capacity0.411vol/volWitting point0.311vol/volRun-off curve number83Run-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) - HELP Barrier Soil LayerRun-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) - HELP Barrier Soil LayerDefault HELP value for soil texture #28, Silty clay.Thickness1mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWhitemouth Lake Till - HELP Percolation LayerSilty clay.Thickness20mAverage thickness of tillsilty clay.Saturated hydraulic conductivity3.3x10*5Total porosity0.321Vol/volVol/volWitting point0.221Vol/volUpfault HELP values for soil texture #13Field capacity0.452Vol/volDefault HELP values for soil texture #28Vitting point0.211Vol/volUpfault HELP values for soil texture #28Field capacity0.452Vol/volDefault HELP values for soil texture #28Field capacity0.452Vol/volUpfault HELP valu	Slope	1%		
Desiccated Upper Clay - HELP Percolation LayerThickness1mSaturated hydraulic conductivity1.2x10 ⁻⁰⁴⁽¹⁾ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWiting point0.311vol/volRun-off curve number83Run-off curve number for soil texture #28, silty clay.Upper Lacustrine Clay (Brenna) - HELP Barrier Soil LayerThickness1mSaturated hydraulic conductivity1.2x10 ⁻⁶ Total porosity0.452vol/volField capacity0.411vol/volField capacity0.411vol/volWitimg point0.311vol/volField capacity0.411vol/volWitimg point0.311vol/volWitimg point0.311vol/volWitimg point0.311vol/volWitimg point0.311vol/volWitimg point0.311vol/volSaturated hydraulic conductivity3.3x10 ⁻⁵ cm/sThickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10 ⁻⁵ cm/sTotal porosity0.432Total porosity0.432Total porosity0.432Total porosity0.452Total porosity0.452Total porosity0.452Total porosity0.452Total porosity0.452Total porosity0.452Total porosity0.452Total porosity<	Slope length	5,500	m	-
Desiccated Upper Clay – HELP Percolation Layer Thickness 1 m Saturated hydraulic conductivity 1.2x10 ⁻⁸⁽¹⁾ cm/s Total porosity 0.452 vol/vol Wilting point 0.311 vol/vol Wurding point 0.311 vol/vol Run-off curve number 83 Run-off curve number for soil texture #28, Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer #28 Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer Default HELP value for soil texture #28, Total porosity 0.452 vol/vol Vilting point 0.311 vol/vol Vilting point 0.311 vol/vol Vilting point 0.311 vol/vol Whitemouth Lake Till – HELP Percolation Layer Default HELP value for soil texture #28, silty clay. Thickness 20 m Average thickness of till Saturated hydraulic conductivity 3.3x10 ⁻⁵ cm/s Total porosity 0.430 vol/vol Vilting point 0.221 vol/vol Vilting point 0.321				•
Thickness 1 m Saturated hydraulic conductivity 1.2x10 ⁻⁶⁽¹¹⁾ cm/s Total porosity 0.452 vol/vol Field capacity 0.411 vol/vol Witting point 0.311 vol/vol Run-off curve number 83 Run-off curve number for soil texture #28 Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer #28 Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer #28 Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer Default HELP value for soil texture #28, silty clay. Saturated hydraulic conductivity 1.2x10 ⁻⁶ m/s Saturated hydraulic conductivity 0.452 vol/vol Whitemouth Lake Till – HELP Percolation Layer Default HELP value for soil texture #28, silty clay. Witting point 0.311 vol/vol Whitemouth Lake Till – HELP Percolation Layer Default HELP value for soil texture #28, silty clay. Total porosity 0.430 vol/vol Vitting point 0.321 vol/vol Saturated hydraulic conductivity 3.3x10 ⁻⁵ cm/s Total porosity 0.432 vol/vol Witting point 0.				Pinewood River
Saturated hydraulic conductivity1.2x10 ⁻⁶⁽¹¹⁾ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWitting point0.311vol/volRun-off curve number83Run-off curve number for soil texture #28, silty clay.Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer#28Upper Lacustrine Clay (Brenna) – HELP Parrier Soil Layer#28Upper Lacustrine Clay (Brenna) – HELP Parrier Soil Layer#28Upper Lacustrine Clay (Brenna) – HELP Parrier Soil Layer#28Ustima point0.452vol/volField capacity0.4411vol/volWitting point0.311vol/volWhitemouth Lake Till – HELP Percolation Layer#28Thickness20mSaturated hydraulic conductivity3.3x10 ⁻⁵ Total porosity0.430Vol/vol#29Witting point0.321Vol/vol#20Witting point0.321Vol/vol#20Witting point0.311Vol/vol#20Field capacity0.452Vol/vol#20Witting point0.311Vol/vol#20Field capacity0.452Vol/vol#20Field capacity0.411Vol/vol#20Field		Percolation Lay	/er	
Total porosity0.452vol/volDefault HELP value for soil texture #28, silty clay.Field capacity0.411vol/volSilty clay.Silty clay.Wilting point0.311vol/volRun-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerRun-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerBefault HELP value for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerDefault HELP value for soil texture #28Thickness1mSaturated hydraulic conductivity1.2x10*6Cm/sTotal porosity0.452vol/volField capacity0.411vol/volWhitemouth Lake Till – HELP Percolation LayerDefault HELP value for soil texture #28, silty clay.Thickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5cm/sTotal porosity0.321VolivolVolivolWitting point0.221VolivolDefault HELP values for soil texture #13Field capacity0.411VolivolDefault HELP values for soil texture #28Vitting point0.311VolivolDefault HELP values for soil texture #28Field capacity0.411VolivolDefault HELP values for soil texture #28Field capacity0.411VolivolDefault HELP values for soil texture #28Vitting point0.311VolvolDefault HELP values for soi		1		
Field capacity0.411vol/volsilty clay.Wilting point0.311vol/volsilty clay.Run-off curve number83Run-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerThickness1mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWhitemouth Lake Till – HELP Percolation LayerDefault HELP value for soil texture #28, silty clay.Thickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5cm/sTotal porosity0.430Vol/volVol/volWhitemouth Lake Till – HELP Percolation LayerThickness20Saturated hydraulic conductivity3.3x10*5Field capacity0.321vol/volVol/volWiting point0.221Vol/volDefault HELP values for soil texture #13Field capacity0.452Vol/volCm/sThickness5Saturated hydraulic conductivity1.2x10*6Saturated hydraulic conductivity0.452Vol/volDefault HELP values for soil texture #28Field capacity0.411Vol/volDefault HELP values for soil texture #28Field capacity0.411Vol/volDefault HELP values for soil texture #28Field capacity0.431Vol/volDefault HELP values for soil texture #28				
Wilting point 0.311 vol/vol Run-off curve number 83 Run-off curve number for soil texture #28 Upper Lacustrine Clay (Brenna) – HELP Barrier Soil Layer Run-off curve number for soil texture #28 Thickness 1 m Saturated hydraulic conductivity 1.2x10* Default HELP value for soil texture #28, silty clay. Wilting point 0.411 vol/vol Whitemouth Lake Till – HELP Percolation Layer Default HELP value for soil texture #28, silty clay. Whitemouth Lake Till – HELP Percolation Layer Marcage thickness of till Saturated hydraulic conductivity 3.3x10* cm/s Total porosity 0.430 vol/vol Field capacity 0.321 vol/vol Witting point 0.321 vol/vol Vilting point 0.321 vol/vol Vilting point 0.221 vol/vol Lower Lacustrine (Wylie) – HELP Barrier Soil Layer Thickness Thickness 5 m Saturated hydraulic conductivity 1.2x10* cm/s Total porosity 0.452 vol/vol Field capacity 0.411 vol/vol Witting point 0.311 vol/vol Vilting point 0.311 vol/vol Field capacity				
Run-off curve number83Run-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerRun-off curve number for soil texture #28Upper Lacustrine Clay (Brenna) – HELP Barrier Soil LayerDefault HELP value for soil texture #28, Saturated hydraulic conductivityThickness1mSaturated hydraulic conductivity1.2x10*6cm/sField capacity0.452vol/volWhitemouth Lake Till – HELP Percolation LayerDefault HELP value for soil texture #28, silty clay.Thickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5Saturated hydraulic conductivity0.430vol/volVilting point0.221vol/volUower Lacustrine (Wylie) – HELP Barrier Soil LayerDefault HELP values for soil texture #13Field capacity0.452vol/volUmmonstree (Wylie) – HELP Barrier Soil LayerDefault HELP values for soil texture #28Thickness5mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWitting point0.311vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/vol				silty clay.
Upper Lacustrine Clay (Brenna) - HELP Barrier Soil LayerThickness1mSaturated hydraulic conductivity1.2x10 ⁻⁶ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volWhitemouth Lake Till - HELP Percolation Layersilty clay.Thickness20mAverage thickness of till3.3x10 ⁻⁵ Saturated hydraulic conductivity3.3x10 ⁻⁵ Total porosity0.430Vol/volVol/volWilting point0.221Total porosity0.430Vol/volVol/volWilting point0.221Total porosity0.452Total porosity0.452Vol/volDefault HELP values for soil texture #13Field capacity0.452Vol/volDefault HELP values for soil texture #28Field capacity0.452Vol/volDefault HELP values for soil texture #28Field capacity0.411Vol/volDefault HELP values for soil texture #28Field capacity0.437Vol/volDefault HELP values for soil texture #24Field capacity0.437Vol/volDefault HELP values for soil texture #24 <td>Wilting point</td> <td>0.311</td> <td>vol/vol</td> <td></td>	Wilting point	0.311	vol/vol	
Thickness1mSaturated hydraulic conductivity1.2x10*cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volWhitemouth Lake Till - HELP Percolation Layersilty clay.Thickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWitting point0.221vol/volKitting point0.221vol/volWitting point0.221vol/volKaturated hydraulic conductivity1.2x10*6cm/sThickness5mSaturated hydraulic conductivity1.2x10*6Kitting point0.431vol/volUitting point0.431vol/volField capacity0.411vol/volField capacity0.411vol/volWitting point0.311vol/volField capacity0.431vol/volWitting point0.311vol/volField capacity0.431vol/volWitting point0.311vol/volField capacity0.437vol/volField capacity0.437vol/volSaturated hydraulic conductivity5.8x10*3cm/sThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivityField capacity0.437vol/vol <td>Run-off curve number</td> <td>83</td> <td></td> <td></td>	Run-off curve number	83		
Saturated hydraulic conductivity1.2x10°cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volWhitemouth Lake Till - HELP Percolation LayerThickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10°5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWhitemouth Lake Till - HELP Barrier Soil LayerDefault HELP values for soil texture #13Field capacity0.321vol/volWitting point0.221vol/volWitting point0.221vol/volLower Lacustrine (Wylie) - HELP Barrier Soil LayerDefault HELP values for soil texture #28Thickness5mSaturated hydraulic conductivity1.2x10°6cm/sTotal porosity0.452vol/volField capacity0.311vol/volWilting point0.311vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD - HELP Percolation LayerThickness4.5Thickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10°3Conductivity5.8x10°3cm/sThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10°	Upper Lacustrine Clay (Brenna) – HELP Barrier	Soil Lay	er
Total porosity0.452vol/volDefault HELP value for soil texture #28, silty clay.Field capacity0.411vol/volSilty clay.Silty clay.Witting point0.311vol/volSilty clay.Silty clay.Whitemouth Lake Till – HELP Percolation LayermAverage thickness of tillThickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWitting point0.221vol/volWitting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerDefault HELP values for soil texture #13Thickness5mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWitting point0.311vol/volField capacity0.411vol/volWitting point0.311vol/volField capacity0.411vol/volWitting point0.311vol/volWitting point0.311vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/vol	Thickness	1	m	
Field capacity 0.411 vol/vol silty clay.Wilting point 0.311 vol/vol silty clay.Whitemouth Lake Till – HELP Percolation Layer Vol/vol M Thickness 20 mAverage thickness of tillSaturated hydraulic conductivity $3.3x10^5$ cm/sTotal porosity 0.430 vol/vol Vol/vol Field capacity 0.321 vol/vol Vol/vol Wilting point 0.221 vol/vol Vol/vol Wilting point 0.221 vol/vol Vol/vol Thickness 5 mSaturated hydraulic conductivity $1.2x10^6$ cm/sTotal porosity 0.452 vol/vol Field capacity 0.411 vol/vol Wilting point 0.311 vol/vol Field capacity 0.411 vol/vol Field capacity 0.411 vol/vol Wilting point 0.311 vol/vol Field capacity 0.431 vol/vol Wilting point 0.311 vol/vol Field capacity 0.437 vol/vol Field capacity 0.437 vol/vol Field capacity 0.437 vol/vol Field capacity 0.437 vol/vol	Saturated hydraulic conductivity	1.2x10 ⁻⁶	cm/s	
Wilting point0.311vol/volWhitemouth Lake Till – HELP Percolation LayerThickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10*5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWilting point0.221vol/volWilting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volField capacity0.311vol/volField capacity0.411vol/volField capacity0.411vol/volField capacity0.411vol/volField capacity0.437vol/volPLGD – HELP Percolation LayerThickness of PLGDSaturated hydraulic conductivity5.8x10*3cm/sThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10*3Total porosity0.437vol/volPlage thickness of PLGDSaturated hydraulic conductivity5.8x10*3Total porosity0.437vol/vol	Total porosity	0.452	vol/vol	
Whitemouth Lake Till – HELP Percolation LayerThickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10 ⁻⁵ cm/sTotal porosity0.430vol/volDefault HELP values for soil texture #13Field capacity0.321vol/volDefault HELP values for soil texture #13Wilting point0.221vol/volDefault HELP values for soil texture #13Lower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10 ⁻⁸ cm/sDefault HELP values for soil texture #28Thickness5mDefault HELP values for soil texture #28Field capacity0.411vol/volDefault HELP values for soil texture #28Wilting point0.311vol/volDefault HELP values for soil texture #28PLGD – HELP Percolation LayerThickness4.5mThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10 ⁻³ cm/sThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volDefault HELP values for soil texture #2Field capacity0.437vol/vol	Field capacity	0.411	vol/vol	silty clay.
Thickness20mAverage thickness of tillSaturated hydraulic conductivity3.3x10-5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWilting point0.221vol/volLower Lacustrine (Wylie) - HELP Barrier Soil LayerThicknessThickness5mSaturated hydraulic conductivity1.2x10-6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volField capacity0.431vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.437vol/volField capacity0.437vol/volPlace - HELP Percolation LayerEndut HELP values for soil texture #28Thickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10-3cm/sTotal porosity0.437Vol/volDefault HELP values for soil texture #2	Wilting point	0.311	vol/vol	
Saturated hydraulic conductivity3.3x10-5cm/sTotal porosity0.430vol/volField capacity0.321vol/volWilting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10-6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/volField capacity0.437vol/vol	Whitemouth Lake Till – HELP F	Percolation Layer	r	
Total porosity0.430vol/volField capacity0.321vol/volWilting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mThickness5mSaturated hydraulic conductivity1.2x10*6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity0.411vol/volWilting point0.311vol/volField capacity5.8x10*3cm/sThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10*3Conductivity0.437vol/volField capacity0.437vol/vol	Thickness	20	m	Average thickness of till
Field capacity0.321vol/volWilting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10 ⁻⁶ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD – HELP Percolation LayerThickness of PLGDSaturated hydraulic conductivity5.8x10 ⁻³ cm/sField capacity0.437vol/vol	Saturated hydraulic conductivity	3.3x10⁻⁵	cm/s	
Wilting point0.221vol/volLower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10-6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD – HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10-3cm/sField capacity0.437vol/vol	Total porosity	0.430	vol/vol	Default HELP values for soil texture #13
Lower Lacustrine (Wylie) – HELP Barrier Soil LayerThickness5mSaturated hydraulic conductivity1.2x10 ⁻⁶ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD – HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sThickness0.437vol/volField capacity0.437vol/vol	Field capacity	0.321	vol/vol	
Thickness5mSaturated hydraulic conductivity1.2x10 ⁻⁶ cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD - HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/vol	Wilting point	0.221	vol/vol	
Saturated hydraulic conductivity1.2x10-6cm/sTotal porosity0.452vol/volField capacity0.411vol/volWilting point0.311vol/volPLGD - HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol	Lower Lacustrine (Wylie) – HEI	P Barrier Soil La	ayer	
Total porosity0.452vol/volDefault HELP values for soil texture #28Field capacity0.411vol/volDefault HELP values for soil texture #28Wilting point0.311vol/volDefault HELP values for soil texture #28 PLGD - HELP Percolation Layer Thickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol	Thickness	5	m	
Field capacity0.411vol/volWilting point0.311vol/volPLGD - HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol	Saturated hydraulic conductivity	1.2x10 ⁻⁶	cm/s	
Wilting point0.311vol/volPLGD - HELP Percolation LayerThickness4.5mSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol	Total porosity	0.452	vol/vol	Default HELP values for soil texture #28
PLGD – HELP Percolation LayerThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volDefault HELP values for soil texture #2Field capacity0.062vol/vol	Field capacity	0.411	vol/vol	
PLGD – HELP Percolation LayerThickness4.5mAverage thickness of PLGDSaturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volDefault HELP values for soil texture #2Field capacity0.062vol/vol	Wilting point	0.311	vol/vol	
Saturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol				
Saturated hydraulic conductivity5.8x10 ⁻³ cm/sTotal porosity0.437vol/volField capacity0.062vol/vol	Thickness	4.5	m	Average thickness of PLGD
Total porosity0.437vol/volDefault HELP values for soil texture #2Field capacity0.062vol/vol	Saturated hydraulic conductivity	5.8x10 ⁻³	cm/s	-
Field capacity 0.062 vol/vol				Default HELP values for soil texture #2
		0.062		
				1

Note: ⁽¹⁾To account for root channels in the top half of evaporative zone (0.5m) saturated hydraulic conductivity of this layer was multiplied by 3 by the HELP model.

.

3.0 HELP MODEL RESULTS

Table F-4 shows average water balance components estimated by running the HELP model over a period of 100 years.

TARI F F-4

AVERAGE ANNUAL TOTALS ESTIMATED OVER A PERIOD OF 100 YEARS										
Component	Value	Percent								
	(mm)									
Precipitation	682	100								
Runoff	153	22								
Evapotranspiration	481	71								
Percolation/leakage through layer 2	48	7								
Average head on top of layer 2	8	NA								
Percolation/leakage through layer 4	46	7								
Average head on top of layer 4	<1	NA								
Percolation/leakage through layer 5	44	6								
Change in water storage	5	<1								

The HELP model runs conducted for the proposed dewatered mine conditions (water table depressed to below the PLGD unit) showed that maximum potential percolation rate in the low-lying areas of the mine site with clay layer at/near surface are expected to be close to 50 mm/yr. This rate was utilized simulating the Base Case scenario. The impact of lower (25 mm/yr) and higher (75 mm/yr) maximum potential percolation/leakage rates on the groundwater model predictions was examined by the conducted sensitivity analysis (Section 4-6 of main report)

REFRENCES

EPA. 1995a. The Hydrologic Evaluation of Landfill Performance Model, User's Guide for Version 3. Cincinnati, Ohio.

EPA. 1995b. The Hydrologic Evaluation of Landfill Performance Model. Engineering Documentation for Version 3. Cincinnati, Ohio.