

STAR-ORION SOUTH DIAMOND PROJECT ENVIRONMENTAL IMPACT ASSESSMENT

APPENDIX 6.2.8-D

Ecotoxicity Study at the Star Diamond Project, Saskatchewan

Canada North Environmental Services Limited Partnership

ECOTOXICITY STUDY AT THE STAR DIAMOND PROJECT, SASKATCHEWAN

Final Report

Prepared for:

Shore Gold Resources Inc. Saskatoon, Saskatchewan

and

Kensington Resources Ltd. Victoria, British Columbia

Prepared by:

Canada North Environmental Services Saskatoon, Saskatchewan

Project No. 1217

November 2008

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES .	iii
1.1 Background.1.2 Study Object1.3 Study Area1.3.1 Ecosys	ON
 2.1 Sampling and 2.2 Water Qualit 2.2.1 QA/Q0 2.3 Toxicity Test 2.3.1 QA/Q0 	4 1 Shipping
 3.1 Water Qualit 3.1.1 Major 3.1.2 Total a 3.2 Toxicity Test 3.2.1 Acute. 3.2.2 Sublet 3.3 Hypothetical 3.4 Potential Imp 	9 y
	ND CONCLUSIONS
APPENDIX A.	WATER QUALITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03, JANUARY 2007.
APPENDIX B.	ACUTE TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03 USING RAINBOW TROUT AND D. MAGNA, JANUARY 2007.
APPENDIX C.	SUBLETHAL TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03 USING C. DUBIA, FATHEAD MINNOW, L. MINOR, AND S. CAPRICORNUTUM, JANUARY 2007.

LIST OF TABLES

- Table 1.Water chemistry results from stations MWS-01 and WRS-03 collected in January
2007 at the Star Diamond Project, Saskatchewan, and stations NSRS-01 and
NSRS-02 on the Saskatchewan River, compared to Saskatchewan Environment
(2006) water quality objectives.
- Table 2.Total and dissolved metal concentrations from stations MWS-01 and WRS-03 at
the Star Diamond Project, Saskatchewan, collected in January 2007.
- Table 3.Major ion balances for water samples from stations WRS-03 and MWS-01
collected in January 2007, and stations NSRS-01 and NSRS-02 collected in July
2006 at the Star Diamond Project, Saskatchewan.
- Table 4.Water chemistry parameters measured in association with toxicity analyses from
stations WRS-03 and MWS-01 at the Star Diamond Project, Saskatchewan.
- Table 5.Frequency of annual 7-day minimum streamflow1 (1975 to 2005) for the
Saskatchewan River near the Star Diamond Project, Saskatchewan.
- Table 6.Hypothetical concentrations of TDS calculated with the 7Q10 streamflow criteria
for the receiving environment the Saskatchewan River near the Star Diamond
Project, Saskatchewan.
- Table 7.
 List of fish species known to occur in the Saskatchewan River in Saskatchewan.

LIST OF FIGURES

- Figure 1. Study location.
- Figure 2. The location of the MWS-01 and WRS-03 water sampling stations at the Star Diamond Project, Saskatchewan.

1.0 INTRODUCTION

1.1 Background

Canada North Environmental Services (CanNorth) was retained by Shore Gold Resources Inc. (Shore Gold) to collect and analyze the toxicity of effluent from their Star Diamond underground exploration mine. The primary parameter of concern in the effluent is elevated total dissolved solids (TDS) concentrations. Thus, a further objective of this study was to assess the impact of a range of hypothetical TDS concentrations at set discharge rates in the receiving environment in the Saskatchewan River.

The Shore Gold Star Diamond Project is located approximately two kilometres north of the Saskatchewan River (Figure 1). At this time, mine effluent is contained in unlined ponds and is not discharged. However, the effluent infiltrates into the groundwater which flows south towards the river and a small ravine called West Ravine. The study involved testing samples collected from the end-of-pipe discharge and West Ravine (Figure 2).

1.2 Study Objectives

The objectives of this assessment were to:

- collect water samples from the end-of-pipe discharge (station MWS-01) and West Ravine (station WRS-03) as required for a suite of toxicity tests and chemical analyses;
- conduct two lethal and four sublethal toxicity assays on the samples from stations MWS-01 and WRS-03;
- conduct chemical analyses measuring levels of TDS, major ions, nutrients, total metals, and dissolved metals on the samples from stations MWS-01 and WRS-03;
- assess the impact of a hypothetical discharge of 4.2 m³/s (250,000 L/min) of existing end-of-pipe water quality to the receiving environment (i.e., the Saskatchewan River) given known river flow;
- estimate the impact of a range of hypothetical effluent TDS concentrations from 500 to 10,000 mg/L on the water quality of the Saskatchewan River to identify upper thresholds of TDS that may not harm the aquatic environment; and,
- provide information on the potential effects that the range of TDS concentrations may have on test fish species and fish species indigenous to the Saskatchewan River.

1.3 Study Area

The Star Diamond Project is located approximately 60 km east of Prince Albert, Saskatchewan (Figure 1). The project is situated in a burnt portion of the Fort à la Corne forest, two kilometres north of the Saskatchewan River.

1.3.1 Ecosystem Description

The Star Diamond Project area occurs in the La Corne Plain Landscape Area within the Boreal Transition Ecoregion of the Boreal Plain Ecozone (Acton et al. 1998, SKCDC 2002). This ecoregion represents a transition between the grasslands to the south and the boreal forest to the north. The La Corne Plain is an undulating fluvial-glaciolacustrine plain that occurs along the Saskatchewan River (Simpson 1997). The project is surrounded by the Fort à la Corne sand hills that cover an area of approximately 1200 km² (Wolfe et al. 2006). The underlying bedrock consists of silt and clay shales of the late Cretaceous age. Dominant soil types in the project area are sandy-loam Gray Luvisols; however, Brunisolic soils associated with the sand hills are also prevalent in the region (Fung 1999).

The climate in the study area has been classified as humid continental by the Köppen classification, and dry sub-humid using the Thornthwaite (1948) moisture index (Fung 1999). The climate in this region is typical of the subarctic climate in northern areas and at higher elevations (Acton et al. 1998). Summary climate data for the ecoregion are provided in the following table.

Boreal Transition Ecoregion Climate				
Mean annual precipitation	452 mm			
Mean annual snowfall	143 cm			
Mean July Temperature	17.4°C			
Mean January Temperature	-20.0°C			
Mean annual daily temperature	0.4°C			
Frost free period	94 days			

Source: Acton et al. (1998), SKCDC (2002).

Jack pine (*Pinus banksiana*) and trembling aspen (*Populus tremuloides*) are the two dominant tree species in the project area, and many upland areas are regenerating from a 20-year old burn through the region (CanNorth 2007). Common shrub species in the

2

project area include saskatoon berry (*Amelanchier alnifolia*), prickly rose (*Rosa acicularis*), common blueberry (*Vaccinium myrtilloides*), green alder (*Alnus crispa*), and bearberry (*Arctostaphylos uva-ursi*) (CanNorth 2007). Elk sign was noted in the West Ravine at the time of the water sampling. More extensive vegetation information for the project area is provided in the draft report "Vegetation and rare plant survey of the Shore Gold Project study area near Prince Albert, Saskatchewan" (CanNorth 2007).

1.3.2 General Hydrology

The dominant hydrological feature in the study area is the Saskatchewan River, which is located approximately two kilometres south of the project. Two ravines on either side of the project lead to the river (Figure 2). The drainage area of West Ravine is estimated to be 1.95 km^2 .

The Saskatchewan River Forks is located approximately 45 km upstream (20 km over land) of the Star Diamond Project. The Gardiner and Qu'Appelle dams on the South Saskatchewan River and the Bighorn Dam on the North Saskatchewan River in Alberta regulate streamflow in the Saskatchewan River. The flow regime in the South Saskatchewan River has changed considerably since the completion of the Gardiner Dam in 1968 (Conor Pacific and Clifton 1999). Prior to 1968, peak flows from snowmelt in the foothills and prairie regions occurred in April and May, usually followed by a larger peak flow from mountain snowmelt in June (Richards 1980). From 1968 onward, peak flows tend to occur in the winter months when Lake Diefenbaker is being drawn down to meet power demands, while spring and summer runoff is stored in the reservoir for later use in power generation and irrigation (Conor Pacific and Clifton 1999).

2.0 METHODS

2.1 Sampling and Shipping

Two stations were sampled in the Star Diamond Project area on January 3, 2007; the end-of-pipe discharge station MWS-01 and the West Ravine station WRS-03. Locations of the sampling stations relative to the project area and the Saskatchewan River are presented in Figure 2.

The Stantec Consulting Ltd. laboratory provided detailed sampling and shipping protocols for water samples taken for toxicity assays, as well as supplying sampling containers, coolers, gel packs, and chain of custody forms. All sampling containers (liners, bottles, and polyethylene jugs) and equipment were rinsed thoroughly with site water prior to sampling. Trapped air was expelled from the sampling containers, and no headspace was left in the sample bottles. Containers were sealed tightly. Shipping labels were attached to all containers, and a waterproof copy of the chain of custody form was included in the shipment. Samples remained in the custody of CanNorth personnel until they were shipped.

It is required that water samples be maintained at temperatures above freezing, and the ideal temperature for shipping and storage is 4° C. Initial water temperatures were 1°C at the receiving water station WRS-03, and 9 to 10°C at the end-of-pipe discharge station MWS-01. Effort was made to cool the acute toxicity sample waters at the MWS-01 station by storing the containers temporarily in the snow and shade during sampling. Thereafter, these samples were packed in coolers with gel packs and loose ice in order to keep them cool (between 1°C and 7°C) during storage. A total of 78 L of water was collected from each sampling site.

The water samples were shipped on January 3, 2007 via Purolator Courier to the Stantec Consulting Ltd. toxicity laboratory in Guelph. Overnight delivery ensured that time limitations were met for the toxicity tests; a maximum of three days is allowed between sampling and analysis for sublethal tests. The water samples arrived to the laboratory on January 4, 2007, and water temperatures measured upon arrival were within the required limits.

2.2 Water Quality

Chemical analyses on the water samples from stations MWS-01 and WRS-03 collected January 3, 2007 included TDS, major ions, nutrients, dissolved metals, and total metals. In addition, Shore Gold provided water chemistry data collected in July 2006 from the Saskatchewan River, upstream and downstream of the West Ravine at stations NSRS-01 and NSRS-02. ALS Laboratories in London, Ontario provided water chemistry testing services for this project.

2.2.1 QA/QC

Quality control reports for the analyses are provided with the water quality laboratory results in Appendix A. CanNorth personnel reviewed the results against water quality objectives (CCME 2005, SE 2006) and compared them to previous water quality monitoring results provided by Shore Gold. Through an examination of major ion balance, anomalous values for sodium from Station MWS-01 were identified. As a result, the sample was re-digested and reanalyzed; the revised report is provided in Appendix A.

2.3 Toxicity Tests

The toxicity tests chosen for this effluent study are standard tests required by the Canadian Metal Mining Effluent Regulations (MMER) (EC 2002). It is noted that the Star Diamond Project is not directly regulated by the MMER. However, these six acute and sublethal tests chosen are based on standard methods from Environment Canada (EC 1990a, 1990b, 1992a, 1992b, 1992c, and 1999), and these test methods are the accepted industry standard in Canada for toxicity testing. The following table provides information on the acute and sublethal tests and protocols included in this study.

Acute tests:	Test Method	Length
LC50 using rainbow trout (Oncorhynchus mykiss)	EPS 1/RM/13	96-hour
LC50 using the water flea (Daphnia magna)	EPS 1/RM/14	48-hour
Sublethal tests:		
Survival and reproduction of the water flea (Ceriodaphnia dubia)	EPS 1/RM/21	7-day
Survival and growth of fathead minnow (Pimephales promelas)	EPS 1/RM/22	7-day
Growth inhibition of green algae (Selenastrum capricornutum)	EPS 1/RM/25	72-hour
Growth inhibition lesser duckweed (Lemna minor)	EPS 1/RM/37	7-day

Toxicity analyses were completed in January 2007 on large-bodied fish, smallbodied fish, plant, and algae species at the Stantec Consulting Ltd. laboratory in Guelph, Ontario. A 96-hour acute lethality test was performed on rainbow trout, and a 48-hour acute lethality test was performed on the crustacean, *D. magna*. The endpoint for the test is an LC50, which is the concentration of sample that is calculated to be lethal to 50% of the test organism over the exposure period. Sublethal tests were completed for *C. dubia*, fathead minnow, *S. capricornutum*, and lesser duckweed. Sublethal test methods calculate the IC25 for each test species in each sample. The IC25 is the "inhibition" concentration of the test substance in water that is estimated to cause 25% reduction in growth or reproduction.

A dilution factor of 0.5 was used for the acute tests, while a dilution factor of 0.3 was used for the sublethal tests. Acute test concentrations were 0% (control), 6.25%, 12.5%, 25%, 50%, and 100%. There were four *D. magna* replicates and ten rainbow trout test organisms. Sublethal test substance concentrations were 0%, 0.81%, 2.7%, 9%, 30%, and 100% in order to be representative of the actual dilution effect of the Saskatchewan River at low to median streamflow on a hypothetical effluent discharge. There were ten test replicates for each concentration of *C. dubia*, and three test replicates for each concentration of fathead minnow, lesser duckweed, and *S. capricornutum*.

Standard laboratory water was used for the dilutions in the toxicity testing¹. Some of the merits of using laboratory water include: 1) that it provides a measure of the inherent toxicity of the effluents and allows comparison of effluent quality over time, 2) no additional acclimation or screening procedures are necessary, 3) it can be maintained at a consistent quality with less risk of contamination by harmful chemicals or biota, and 4) the volume of sample required for shipping is greatly reduced. The hardness, conductivity, and pH of the laboratory water were similar to background values measured in the Saskatchewan River at the Shore Gold site in July 2006.

¹ Standard laboratory water is used for culturing and testing requirements (including dilutions) at most laboratories in Canada (EC 2002).

2.3.1 QA/QC

Stantec Consulting Ltd. laboratory is certified with the Canadian Association for Environmental Analytical Laboratories (CAEAL) and regularly performs acute and sublethal testing. Quality control for the toxicity tests is required by the MMER regulations, and is provided in detail in the standard test methods (EC 1990a, 1990b, 1992a, 1992b, 1992c, and 1999). All test validity criteria as specified in the test methods were satisfied.

Reference toxicant tests were conducted concurrent with all the test methods to ensure that the test organism sensitivity was within acceptable quality control warning chart limits. A sodium-chloride reference test was conducted for the *D. magna*, *C. dubia*, and *S. capricornutum*, and a potassium-chloride reference test was conducted for rainbow trout, lesser duckweed, and fathead minnow.

2.4 Low Flow Calculation

A characteristic low streamflow value was calculated for the Saskatchewan River in the vicinity of the project area. This was completed to estimate the dilution effect from the river on a hypothetical steady effluent discharge containing a range of TDS concentrations from 500 mg/L to 10,000 mg/L. The 7Q10 is a standard low streamflow criterion above which all pollutant loads should conform to water quality objectives (SE 2006). Streamflow lower than this discharge value would occur infrequently, and under such conditions it would not be expected that all water quality objectives would be met for a given watercourse. The 7Q10 is the streamflow equal to or less than the mean seven-day low flow that would occur (on average) once in ten years (Q = discharge, m³/s). It is not practical for use on small streams where streamflow may be intermittent (Elshorbagy et al. 2005), but would be applicable for the Saskatchewan River.

In order to provide low streamflow records for the Saskatchewan River, a daily long-term streamflow dataset was compiled from the combined flows of the North and South Saskatchewan Rivers. The Water Survey of Canada (WSC 2006) stations at Saskatoon (05HG001) and Prince Albert (05GG001) were combined. The 7Q10 streamflow was calculated over the period 1975 to 2005 utilizing AQUAPAKTM programming (Gordon et al. 2004).

In the compiled dataset, it was approximated that the streamflow was delayed one day from Prince Albert to the project, and two days from Saskatoon to the project. No adjustment of the dataset was made to account for the increased effective drainage area of the two Saskatchewan rivers, as the increase is only 1.2% between the Saskatoon and St. Louis (05HH001) stations, and may be considered insignificant. In addition, the water balance of the two rivers between Saskatoon, Prince Albert, and the project is not known (e.g., there may be a net loss of streamflow volumes due to domestic water source withdrawal, or gains and/or losses due to natural processes).

3.0 **RESULTS**

3.1 Water Quality

Water quality results for the end-of-pipe discharge (station MWS-01) and receiving environment (station WRS-03), collected in January 2007 in support of the toxicity analyses, are provided in Tables 1 and 2 and Appendix A. Water chemistry results from the Saskatchewan River upstream and downstream of the West Ravine in July 2006 (stations NSRS-01 and NSRS-02) provide valuable data for the receiving environment and therefore this information has been included in Table 1.

3.1.1 Major Ions

In comparison to the Saskatchewan River, TDS values at the end-of-pipe discharge and receiving environment stations are elevated. In the January 2007 samples, TDS was 4,360 mg/L at station MWS-01 and 1,870 mg/L at station WRS-03. TDS concentrations on the Saskatchewan River at stations NSRS-01 and NSRS-02 were 253 mg/L and 247 mg/L in July 2006, respectively.

Major ion balances were calculated and examined for each water sample as a qualityassurance check of the chemical analyses, and also to determine the dominant major ions. The ion balance was calculated (in meq/L) as the total dissolved-cation concentration minus the total dissolved-anion concentration divided by the total concentration of ions dissolved in solution. Stations MWS-01 and WRS-03 were dominated by sodiumchloride type water, while NSRS-01 and NSRS-02 were dominated by calcium bicarbonate type water (Table 3). Reynoldson (1983) also noted that the major dissolved salt on the North Saskatchewan River was calcium bicarbonate. Calcium and magnesium concentrations were higher at the WRS-03 station compared to MWS-01, which may be inferred from the higher hardness measured at this station.

There are no Saskatchewan Environment (SE 2006) objectives or CCME (2005) guidelines for major ions and TDS for the protection of aquatic life. The aesthetic objective for TDS of 500 mg/L recommended by Health Canada (1991) is also the maximum water quality objective for certain agricultural purposes, including the irrigation of certain crops (SE 2006). This level was exceeded at stations MWS-01 and WRS-03 in the January 2007 samples.

Chloride concentrations measured at MWS-01 and WRS-03 were 2,120 mg/L and 810 mg/L, respectively, while the chloride measured at NSRS-02 downstream of the West Ravine in July 2006 was only 6 mg/L. Although no guidelines or water quality objectives exist for chloride for the Saskatchewan River in the study area, the Prairie Provinces Water Board objective for this river near the Manitoba border is 68 mg/L chloride.

3.1.2 Total and Dissolved Metals

Total metal concentrations allow for the comparison of station water quality information to guidelines. However, dissolved metals represent the portion of total metal concentrations that are more biologically available. In general, total metal concentrations were highest at station MWS-01, followed by WRS-01, and were lowest at the Saskatchewan River stations NSRS-01 and NSRS-02 (Tables 1 and 2). Notable exceptions were that total concentrations of barium, iron, and manganese were higher at WRS-01 than at MWS-01. Dissolved metals were generally lower at the WRS-01 station as well.

Water sampling results from the stations MWS-01 and WRS-03 (collected in January 2007) and NSRS-01 and NSRS-02 (collected in July 2006) were compared with water quality objectives (SE 2006) for the protection of aquatic life (Table 1). Several parameters slightly exceeded water quality objectives from the MWS-01 station, including aluminium, ammonia-N, cadmium, chromium, and selenium. In the WRS-03 water sample, cadmium, iron and selenium values met or exceeded the objectives. It is noted that the dissolved selenium value was 150% greater than the total selenium value, which is anomalous. Aluminium in samples collected from stations NSRS-01 and NSRS-02 in July 2006 exceeded SE (2006) guidelines in the Saskatchewan River; total iron was equivalent to the water quality objective at NSRS-02.

Based on water quality data provided by Shore Gold from July 2006, there were no measured changes in TDS, major ions, and metal concentrations from upstream of the project on the Saskatchewan River versus downstream of the project. The impact of this project on the water quality of the river was negligible at that time.

3.2 Toxicity Tests

3.2.1 Acute

The end-of-pipe discharge (MWS-01) and the West Ravine station (WRS-03) samples tested were found to be non-acutely toxic to rainbow trout and *D. magna*. Acute toxicity test results are provided in Appendix B. The LC50 refers to the concentration of effluent in water that is estimated to cause death of 50% of the test organisms within a fixed period of time. There was no mortality in both the WRS-03 sample and the MWS-01 sample at 100% effluent concentrations. This is in compliance with Canadian MMER (Canada 2002), as well as Saskatchewan Environment (SE 2006) monitoring requirements for acute toxicity.

3.2.2 Sublethal

The water sample from the West Ravine (WRS-03) did not cause significant sublethal toxic effects (Appendix C). There were no significant adverse effects in terms of fathead minnow growth (IC25 > 100%), *C. dubia* reproduction (IC25 > 100%), lesser duckweed growth (IC25's for weight and frond production > 100%), or *S. capricornutum* growth (IC25 > 100%). In addition, there was no significant mortality of larval fathead minnows ($\leq 6.7\%$ mortality) or *C. dubia* ($\leq 10\%$ mortality) at any concentration tested. No aberrant behaviour or swimming impairment was observed in the test organisms.

The end-of-pipe discharge test sample (MWS-01) did not adversely affect fathead minnow survival (LC50 > 100%) or growth (IC25 > 100%). Similarly, the sample tested had no adverse effect on *S. capricornutum* growth (IC25 > 100%) (Appendix C).

Lesser duckweed growth results in the MWS-01 sample were mixed. Based on weight, there was no significant adverse effect (IC25 > 97%), which is the highest concentration that can be tested due to addition of growth media to the sample. However, based on frond production, there was a noticeable effect (IC25 = 53.7%). Generally, weight is the more reliable estimate of growth impacts, so this would suggest relatively little to no effect (Stantec, Pers. Comm.).

The MWS-01 sample tested clearly exhibited lethal and sublethal toxicity to *C. dubia* in the test results. There was evidence of reduced survival with an LC50 of 16.4%, and reduced reproduction with an IC25 of 4.1%. This means that at a MWS-01 test sample concentration of 4.1%, there was a 25% reduction in *C. dubia* reproduction.

In order to monitor water quality during the toxicity testing, hardness, pH, dissolved oxygen, specific conductance, and water temperature were measured prior to and/or during the various toxicity analyses, depending on the relevance of these results to the analyses (Table 4). It is required by the toxicity test methods that these parameters remain static for the duration of the assays. The similarity of the hardness and pH results to background levels measured in the Saskatchewan River supports the use of laboratory water for dilution water in this study.

3.3 Hypothetical TDS concentrations

The seven-day low flow (7Q10) for the Saskatchewan River was calculated to be 163 m^3/s from the combined daily records of the North and South Saskatchewan rivers. Results are provided in Table 5. The hypothetical effluent discharge of 4.2 m^3/s assumed for the purposes of this study makes up 2.5% of the 7Q10 streamflow criteria for the Saskatchewan River on a volume basis, and approximately 1% of the estimated mean annual daily flow of 417 m^3/s . Assumptions included that there was no additional surface runoff into the Saskatchewan River from the West Ravine, apart from the effluent discharge of 4.2 m^3/s . In addition, it was assumed that there was no change in water quality from the end-of-pipe discharge (i.e., station MWS-01) to the Saskatchewan River.

The hypothetical loading rates of TDS into the Saskatchewan River (and its concentrations) were calculated making the assumption of the direct input of effluent containing concentrations of TDS ranging from 500 mg/L to 10,000 mg/L at a rate of 4.2 m³/s (363,000 m³/day). Based on these calculations, TDS concentrations ranging from marginally over background levels of 250 mg/L up to 495 mg/L were estimated for the Saskatchewan River downstream of the project (Table 6). The loading rate was calculated by multiplying the concentration and the discharge. Utilizing the measured TDS level from station MWS-01 and the 7Q10 low streamflow, the loading rate would be 5.8 x 10⁴ g/m³/day TDS. Daily loading rates based on the range of hypothetical TDS concentrations, including the actual TDS concentration in the end-of-pipe discharge are also included in Table 6.

3.4 Potential Impacts to Fish

There may be potential impacts to the indigenous fish population of the Saskatchewan River from elevated TDS levels. A total of 32 fish species have been recorded in the Saskatchewan River in this province (Table 7). However, the worst-case scenario TDS concentration calculated in the hypothetical scenario discussed above was less than 500 mg/L, and this is not likely to cause acute lethality effects on resident fish species. Besides elevated TDS, there are other constituents in the MWS-01 effluent that may harm fish, however; these were generally below (SE 2006) water quality objectives at station WRS-03 and stations NSRS-01 and NSRS-02 in the river. As this study is focusing on elevated TDS as the primary parameter of concern, the sensitivity of test and indigenous fish species to elevated TDS and chloride (particularly sodium chloride) will be compared in a general manner². Standard laboratory toxicity results were not available for the majority of the resident fish species listed in Table 7.

Several studies have examined the salinity tolerance of resident fish species at different life stages, end points, and salinity types. Walleye (*Stizostedion vitreum*) fry displayed more sensitivity to sodium chloride than lake whitefish fry (*Coregonus clupeaformis*), however; the effects (e.g., immobilization of fry) occurred at extremely high concentrations of 3,000 mg/L and 16,000 mg/L (Evans and Frick 2001). Northern pike (*Esox lucius*) fry displayed an upper tolerance limit between 1,000 and 3,000 mg/L TDS (Peterka and Hendrickson 1990, TAEM 1994). The reproduction of white sucker (*Catostomus commersoni*) were impaired at 3,000 mg/L TDS in sodium carbonate and sodium sulphate type water from a Saskatchewan lake (Schryer 1993).

Fathead minnows, brook stickleback (*Culaea inconstans*), ninespine stickleback (*Pungitius pungitius*), Iowa darter (*Etheostoma exile*), and perch (*Perca spp.*) are among the fish species resident to Saskatchewan that are more tolerant to elevated TDS (TAEM 1994, Goodfellow et al. 2000, Evans and Frick 2001, CanNorth 2004a). Mean 96-hour LC50 for fathead minnow was found to be 6,390 mg/L sodium chloride at temperatures of 25°C in a study by Mount et al. (1997), and 10,800 mg/L in a study by Birge et al. (1985) (USEPA 1988). In comparison to fathead minnow results, the mean 96-hour LC50 value for rainbow trout indicated a lower tolerance to chloride salinity; the LC50 concentration determined in the potassium chloride reference toxicant tests by Stantec was 3,815 mg/L. Other studies estimated the LC50 of rainbow trout to be 2,500 mg/L (Beak 1999, CEPA 2001).

 $^{^{2}}$ It is noted that quantitative comparisons can only be made within individual studies, due to differences in test methods, including water temperature, hardness, exposure time, species, life stage, and salinity type.

Elevated salinity levels may produce chronic effects in fish related to growth and reproduction due to the energy-taxing requirements of osmoregulation (Goodfellow et al. 2000). Through the testing of reference toxicants consisting of potassium chloride, the toxicity laboratory determined that the mean survival IC25 value for fathead minnow was 690 mg/L. In comparison, adverse chronic effects from chloride occurred in nine freshwater species in concentrations ranging from 735 mg/L to 4,681 mg/L in British Columbia (Nagpal et al. 2003). In comparison, the concentration of chloride measured in water from station WRS-03 exceeded 800 mg/L. Fathead minnows experienced chronic effects from a chloride concentration of 433 mg/L (Birge et al. 1985, USEPA 1988); however, the test water hardness was lower than that measured in this study at the sampling stations and also in the river. There was no observed effect during a 33-day early life stage test on fathead minnows at a chloride concentration of 252 mg/L (Evans and Frick, CEPA 2001). It is noted that the tolerance of aquatic organisms to chloride can be increased gradually through acclimation, allowing them to develop mechanisms for dealing with osmotic shock and other physiological stresses (Evans and Frick 2001).

4.0 SUMMARY AND CONCLUSIONS

The Saskatchewan Surface Water Quality Objectives effluent release guidelines state that effluent releases should avoid causing acute lethality or harm to aquatic organisms (SE 2006). Toxicity testing illustrated that the MWS-01 effluent at 100% concentration was not acutely toxic to the test species, including rainbow trout and *D. magna*. However, chronic effects occurred for 25% of the *C. dubia* population tested (IC25) in the MWS-01 concentration of 4.1%. In addition, there was some impediment of lesser duckweed frond production but no significant effect by weight.

The high TDS of 4,360 mg/L in test sample MWS-01 could have accounted for the effects on survival and reproduction observed. The EPA noted that if the TDS is greater than approximately 1,340 mg/L, toxicity due to ion imbalance is likely (Specht 2005). In-house reference toxicant testing using sodium chloride (completed by the toxicity laboratory) has previously shown similar effects on survival and reproduction of *C. dubia* (Stantec, Pers. Comm.). However, it is noteworthy that no acute or chronic effects occurred on any test species in the West Ravine sample, which had a TDS concentration of 1,870 mg/L. The higher hardness at WRS-03 may be one factor contributing to the lack of chronic effects in this test sample. Lasier et al. (2006) speculated that this would be a function of the role of calcium and magnesium in mitigating ionic imbalances. TDS alone may not be the cause of the toxicity effects on test species, as there were other constituents in MWS-01 that were equal to or above CCME (2005) guidelines including aluminium, ammonia-N, cadmium, chromium, and selenium. Further toxicity testing may be required to identify contaminants of concern to aquatic life other than elevated TDS.

The indigenous fish population of the Saskatchewan River is not likely to be affected by effluent currently released to the environment from the Star Diamond Project. This is supported by the lack of adverse acute and sublethal toxicity effects at station WRS-03. No chronic effects occurred to fathead minnow in this study; however, this species may be considered to be relatively tolerant of elevated salinity (TAEM 1994, Goodfellow et al. 2000, Evans and Frick 2001, CanNorth 2004a). Water quality from MWS-01 was characterized by high TDS, and dominated by chloride and sodium ions. The concentrations of TDS and other potentially harmful constituents in the effluent were much lower at station WRS-03, compared to station MWS-01. In addition, there was no increase in these constituents from station NSRS-01, located on the Saskatchewan River

upstream of the project, to station NSRS-02, located on the Saskatchewan River downstream of WRS-03. Finally, the Saskatchewan River has sufficient assimilation capacity, even at the estimated 7Q10 low streamflow criteria.

The elevated TDS in the Star Diamond Project effluent was the focus of this study. The hypothetical loading to the river of a range of effluent TDS concentrations was calculated to assist in evaluating potential effects to aquatic life. It was determined that under the specified worst-case scenario conditions, TDS would not be elevated above 500 mg/L downstream of the project in the Saskatchewan River. At TDS concentrations near 500 mg/L, it is possible that there would be chronic effects to aquatic life, as previous studies have shown (Evans and Frick 2001, CEPA 2001, Nagpal et al. 2003).

It is not recommended that the project release effluent that would significantly increase the TDS concentration in the Saskatchewan River. As sodium and chloride are the primary constituents of TDS at the stations assessed, it is recommended that water quality objectives set for the Saskatchewan River at the mouth of the Carrot River, farther downstream (PPWB 2003) for dissolved sodium (100 mg/L) and dissolved chloride (68 mg/L), also be met downstream of this project.

The Saskatchewan River is a multiple use watershed and the Shore Gold effluent is not the only potential source of contamination. Cumulative effects on river water quality may result from other major effluent releases into the Saskatchewan River upstream of this project. The pulp and paper mill at Prince Albert released effluent into the North Saskatchewan River upstream of the project until its recent closure. However, this plant may be reopened again in the future. Major cities on the rivers in Saskatchewan that release domestic wastewater include Saskatoon, North Battleford, and Prince Albert. In addition, Edmonton releases wastewater on the North Saskatchewan River. Cumulative effects on water quality should be taken into account before any changes are made to the Shore Gold effluent composition or discharge.

5.0 LITERATURE CITED

- Acton, D.F, G.A. Padbury, and C.T. Stushnoff. 1998. The ecoregions of Saskatchewan. Saskatchewan Environment and Resource Management/Canadian Plains Research Centre.
- Atton, F.M. and J.J. Merkowsky. 1983. Atlas of Saskatchewan fish. Sask. Dept. Parks Renew. Resources, Fish. Tech. Rep. 83-2. 281 p.
- Birge, W.J., J.A. Black, A.G. Westerman, T.M. Short, S.B. Taylor, D.M. Bruser and E.D. Wallingford. 1985. Recommendations on numerical values for regulating iron and Chloride concentrations for the purpose of protecting warmwater species of aquatic life in the Commonwealth of Kentucky. Kentucky Natural Resources and Environmental Protection Cabinet, Lexington, Kentucky (Memorandum of Agreement No. 5429).
- Beak. 1999. Ecotoxicity test results. Unpublished data for M.S. Evans. Beak International Inc., Brampton, Ontario.
- Canadian Council of Ministers of the Environment (CCME). 2005. Canadian water quality guidelines. Environment Canada, Ottawa, Ontario.
- Canada North Environmental Services (CanNorth). 2004a. Fish community assessment of Eagle Creek near Highway 1 (Control Section 1-21). Prepared Saskatchewan Highways and Transportation, Regina.
- Canada North Environmental Services (CanNorth). 2004b. Aquatic resource project review information for the proposed south downtown riverfront development near the South Saskatchewan River in Saskatoon. Prepared for Meewasin Valley Authority, The City of Saskatoon, and Crosby Hanna & Associates, Saskatoon, Saskatchewan.
- Canada North Environmental Services (CanNorth). 2007. 2006 Vegetation and rare plant surveys of the Shore Gold project study area near Prince Albert, Saskatchewan. Draft Report submitted March 2007.
- Canadian Environmental Protection Act (CEPA) 2001. Priority substances list assessment report: road salts. Environment Canada and Health Canada.
- Conor Pacific Environmental Technologies Inc. (Conor Pacific) 1999. Aquatic/Riparian habitat assessment and rare plant survey of a proposed bridge crossing of the North Saskatchewan River near North Battleford. Prepared for Saskatchewan Highways and Transportation, Regina, Saskatchewan.

- Conor Pacific Environmental Technologies Inc. and Clifton Associates Ltd. (Conor Pacific and Clifton) 1999. Evaluation of the existing fishway at the South Saskatchewan River weir in Saskatoon. Prepared for Crosby Hanna & Associates, Saskatoon, Saskatchewan.
- Elshorbagy, A., R.S.V. Teegavarapu, and L. Ormsbee. 2005. Total maximum daily load (TMDL) approach to surface water quality management: concepts, issues, and applications. Canadian Journal of Civil Engineering 32(2): 442-448.
- Environment Canada (EC). 1990a. Biological test method: reference method for determining acute lethality of effluents to *Daphnia magna*, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/14, amended in December 2000.
- Environment Canada (EC). 1990b. Biological test method: reference method for determining acute lethality of effluents to rainbow trout, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/13, amended in December 2000.
- Environment Canada (EC). 1992a. Biological test method: test of reproduction and survival using the Cladoceran *Ceriodaphnia dubia*, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/21, February 1992, amended in November 1997.
- Environment Canada (EC). 1992b. Biological test method: test of larval growth and survival using fathead minnows, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/22, February 1992, amended in November 1997.
- Environment Canada (EC). 1992c. Biological test method: test of reproduction and survival using fathead minnows, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/22, February 1992, amended in November 1997.
- Environment Canada (EC). 1999. Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte *Lemna minor*, Environmental Technology Centre, Ottawa, Ontario Report EPS 1/RM/37, March 1999.
- Environment Canada (EC) 2002. Metal Mining Guidance Document for Aquatic Environmental Effects Monitoring.
- Evans, M., C. Frick. 2001. The effects of road salts on aquatic ecosystems. NWRI Contribution Series No. 01-000. National Water Research Institute, Saskatoon, Saskatchewan.
- Fung, K. (Editor). 1999. Atlas of Saskatchewan. University of Saskatchewan. Saskatchewan. 336 pp.

- Goodfellow, W.L., L.W. Ausley, D.T. Burton, D.L. Denton, P.B. Dorn, D.R. Grothe, M.A. Heber, T.J. Norberg-King, J.H. Rodgers. 2000. Major ion toxicity in effluents: a review with permitting recommendations. Environmental Toxicology and Chemistry 19(1): 175-182.
- Gordon, N.D, T.A. McMahon, B.L. Finlayson, C.J. Gippel, and R.J. Nathan. 2004. Stream hydrology: An introduction for ecologists. John Wiley & Sons Ltd., Chichester, England. 429pp.
- Government of Canada (Canada 2002). June 6, 2002. Metal mining effluent regulations. Canada Gazette Part II, Vol. 136 (13): 1411-1462.
- Health Canada. 1991. Drinking water objectives: total dissolved solids. Website: <u>http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/tds-mdt/index_e.html</u>
- Lasier, P.J., P.V. Winger, I.R. Hardin. 2006. Effects of hardness and alkalinity in culture and test waters on reproduction of *Ceriodaphnia dubia*. Environmental Toxicology and Chemistry 25(10): 2781-2786.
- Merkowsky, J.J. 1988. M.Sc. thesis. The fish community of the North Saskatchewan River. University of Saskatchewan.
- Miles, B.L. and W.W. Sawchyn. 1988. Fishery survey of the South Saskatchewan River and its tributaries in Saskatchewan. Sask. Parks Rec. Culture, Fish Tech. Rep. 88-6. 173 p.
- Mount, D.R., D.D. Gulley, J.Russell Hockett, T.D. Garrison, and J.M. Evans. 1997. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas (fathead minnows). Environmental Toxicology and Chemistry 16(10): 2009-2019.
- Nagpal, N.K., D.A. Levy, D.D. MacDonald. 2003. Ambient water quality guidelines for chloride. Water, Air and Climate Change Branch, British Columbia.
- Peterka, J.J. and J.C. Hendrickson. 1990. Salinity and fish reproduction in Devil's Lake, ND. Publ. Dept. Zool., North Dakota State University.
- Prairie Provinces Water Board (PPWB). 2003. Schedule E: Agreement on water quality In: The 1969 master agreement on apportionment and bylaws, rules, and procedures. 73 pp.
- Reed, E.B. 1962. Limnology and fisheries of the Saskatchewan River in Saskatchewan. Sask. Dept. Natur. Resources, Fish Tech. Rep. 6.

- Reynoldson, T.B. 1983. North Saskatchewan River Water Quality 1970 1981. Pollution Control Division, Water Quality Control Branch, Alberta Environment, Edmonton, Alberta.
- Richards, D.R. 1980. Saskatoon hydrology study. Saskatchewan Department of Environment. Report No. HYD-6-38.
- Saskatchewan Conservation Data Centre (SKCDC). 2002. Boreal Transition Ecoregion of the Boreal Plain Ecozone: <u>www.biodiversity.sk.ca/eco.htm</u>.
- Saskatchewan Environment (SE). 2006. Surface water quality objectives, interim edition. Environmental Protection Branch 356, July 2006. Website: <u>http://www.se.gov.sk.ca/environment/protection/water/surface.asp.</u>
- Saskatchewan Parks and Renewable Resources (SPRR). 1991. Fish distribution in Saskatchewan. Saskatchewan Parks and Renewable Resources, Fisheries Branch Technical Report 91-7.
- Schryer, R.P. 1993. The reproductive success of walleye (*Stizostedion vitreum vitreum*) in both saline and non-saline environments. Ph.D. Thesis, University of Saskatchewan.
- Scott, W.B. and E.J. Crossman. 1998. Freshwater fishes of Canada. Galt House Publications Ltd., Oakville, Ontario. 966 pp.
- Simpson, M.A (compiler). 1997. Surficial geology map of Saskatchewan. Saskatchewan Energy and Mines, Saskatchewan Research Council. 1:1,000,000.
- Specht, W.L. 2005. Update on aquatic toxicity/whole effluent toxicity (WET) issues, 2005. Report No. WSRC-TR-2005-00326, Environment Analysis Section, Savannah River National Laboratory, Aiken, South Carolina, 9 pp.
- Terrestrial and Aquatic Environmental Managers (TAEM). 1994. Dominique-Janine extension project: aquatic biological assessment of the Island Lake drainage near Cluff Lake, Saskatchewan. Prepared for COGEMA Resources Inc., Saskatoon, SK.
- Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review, 38.
- United States Environmental Protection Agency (USEPA). 1988. Ambient water quality criteria for chloride: Office of Water, Washington, DC.
- Water Survey of Canada (WSC). 2006. Archived hydrometric data. Website: http://www.wsc.ec.gc.ca/hydat/H2O/index_e.cfm?cname=main_e.cfm

Wolfe, S.A., J. Ollerhead, D.J. Huntley, O.B. Lian, 2006. Holocene dune activity and environmental change in the prairie parkland and boreal forest, central Saskatchewan, Canada. The Holocene 16(1): 17-29.

LIST OF TABLES

- Table 1.Water chemistry results from stations MWS-01 and WRS-03 collected in January
2007 at the Star Diamond Project, Saskatchewan, and stations NSRS-01 and
NSRS-02 on the Saskatchewan River, compared to Saskatchewan Environment
(2006) water quality objectives.
- Table 2.Total and dissolved metal concentrations from stations MWS-01 and WRS-03 at
the Star Diamond Project, Saskatchewan, collected in January 2007.
- Table 3.Major ion balances for water samples from stations WRS-03 and MWS-01
collected in January 2007, and stations NSRS-01 and NSRS-02 collected in July
2006 at the Star Diamond Project, Saskatchewan.
- Table 4.Water chemistry parameters measured in association with toxicity analyses from
stations WRS-03 and MWS-01 at the Star Diamond Project, Saskatchewan.
- Table 5.Frequency of annual 7-day minimum streamflow1 (1975 to 2005) for the
Saskatchewan River near the Star Diamond Project, Saskatchewan.
- Table 6.Hypothetical concentrations of TDS calculated with the 7Q10 streamflow criteria
for the receiving environment the Saskatchewan River near the Star Diamond
Project, Saskatchewan.
- Table 7.
 List of fish species known to occur in the Saskatchewan River in Saskatchewan.

Water chemistry results from stations MWS-01 and WRS-03 collected in January 2007 at the Star Diamond Project, Saskatchewan, and stations NSRS-01 and NSRS-02 on the Saskatchewan River, compared to Saskatchewan Environment (2006) water quality objectives.

			WRS-03	MWS-01	NSRS-01	NSRS-02
Total Metals and Anions	Units	SE (2006)	Jan-07	Jan-07	July 2006	July 2007
Aluminium ¹	mg/L	0.1	0.04	2.91	0.14	0.14
Ammonia - N ²	mg/L	2.33, 0.232	< 0.05	1.6	0.05	0.03
Antimony	mg/L		< 0.005	n/c	< 0.0002	< 0.0002
Arsenic	mg/L	0.005	0.002	0.003	0.0009	0.0009
Barium	mg/L	-	0.34	0.03	0.084	0.083
Beryllium	mg/L	-	< 0.001	< 0.001	< 0.0001	< 0.0001
Bicarbonate	mg/L	-	248	237	188	188
Bismuth	mg/L	-	< 0.001	< 0.001	-	-
Boron	mg/L	-	0.67	2.28	0.02	0.02
Bromide	mg/L	-	0.5	1.4	-	-
Cadmium ³	mg/L	0.0001	0.0001	0.0004	< 0.0001	< 0.0001
Calcium	mg/L	-	114	23.9	47	49
Carbonate	mg/L	-	<10	13	5	5
Chloride	mg/L	-	810	2120	7	6
Chromium	mg/L	0.001	< 0.001	0.012	< 0.0005	< 0.0005
Cobalt	mg/L	-	< 0.0005	0.0006	0.0003	0.0003
Copper ³	mg/L	0.003	0.001	0.002	0.0009	0.0009
Fluoride	mg/L	-	< 0.1	0.6	0.1	0.13
Hydroxide	mg/L	-	<5.0	<5.0	<1	<1
Iron	mg/L	0.3	0.73	< 0.05	0.28	0.3
Lead ³	mg/L	0.004	< 0.001	< 0.001	0.0002	0.0002
Magnesium	mg/L	-	21	77.4	17	17
Manganese	mg/L	-	0.294	0.002	0.021	0.021
Molybdenum	mg/L	-	0.002	0.012	0.0011	0.0011
Nickel ³	mg/L	0.110	0.005	0.029	0.0013	0.0013
Nitrate	mg/L	-	0.1	1.6	0.04	< 0.04
Nitrite	mg/L	-	< 0.5	< 0.5	-	-
Organic carbon, dissolved	mg/L	-	5	2	4.9	4.7
pH	pH units	-	7.93	8.76	8.45	8.45
Phosphate-P (ortho)	mg/L	-	< 0.3	n/c	-	-
Potassium	mg/L	-	3	32	2.6	2.7
Selenium	mg/L	0.001	0.006	0.012	0.0004	0.0004
Silicon	mg/L	-	5.7	22.6	-	-
Silver	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Sodium	mg/L	-	500	1587	18	17
Specific Conductivity	µS/cm	-	3345	7788	443	436
Strontium	mg/L	-	0.249	0.538	0.38	0.38
Sulphate	mg/L	-	168	442	64	65
Thallium	mg/L	-	< 0.0003	< 0.0003	< 0.0002	< 0.0002
Tin	mg/L	-	< 0.001	< 0.001	< 0.0001	< 0.0001
Titanium	mg/L	-	0.005	0.391	0.0032	0.0032
Tungsten	mg/L	-	< 0.01	<0.01	-	-
Total alkalinity	mg/L	-	250	250	162	162

Water chemistry results from stations MWS-01 and WRS-03 collected in January 2007 at the Star Diamond Project, Saskatchewan, and stations NSRS-01 and NSRS-02 on the Saskatchewan River, compared to Saskatchewan Environment (2006) water quality objectives.

Total Metals and Anions	Units	SE (2006)	WRS-03	MWS-01	NSRS-01	NSRS-02
i otai Mietais anu Amons	Units	3E (2000)	Jan-07	Jan-07	July 2006	July 2007
Total dissolved solids	mg/L	-	1870	4360	253	247
Total hardness	mg/L	-	420	160	187	192
Total Kjeldahl nitrogen	mg/L	-	0.3	n/c	0.73	2.1
Turbidity	NTU	-	2.7	2.9	16	18
Uranium	mg/L	0.015	< 0.005	< 0.005	0.0011	0.0010
Vanadium	mg/L	-	< 0.001	0.016	0.0009	0.001
Zinc	mg/L	0.03	< 0.003	< 0.003	0.0009	0.0014
Zirconium	mg/L	-	< 0.004	< 0.004	-	-

n/c = not completed.

Note 1: Only those SE (2006) water quality objectives for the protection of aquatic life are included.

¹ The water quality objective for aluminium was determined from the pH, Calcium concentration, and DOC of each sample as described in SE (2006).

 2 The water quality objective for ammonia-N was determined to be 2.33 mg/L for WRS-03 and 0.232 mg/L for MWS-01 from the pH and field temperature of each sample, using Table 4.1.1 of SE (2006).

 3 The water quality objective for cadmium, copper, lead, and nickel were determined from the hardness of each sample as described in SE (2006). The lower water quality objectives are provided; these were all based on the hardness value of 160 mg/L from the MWS-01 station.

D	TT	Detection	WR	S-03	MW	/S-01
Parameter	Units	Limit	Total	Dissolved	Total	Dissolved
Aluminium	mg/L	0.01	0.04	< 0.01	2.91	0.01
Antimony	mg/L	0.005	< 0.005	< 0.005	n/c	n/c
Arsenic	mg/L	0.001	0.002	0.001	0.003	0.003
Barium	mg/L	0.01	0.34	0.33	0.03	0.03
Beryllium	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Bismuth	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	mg/L	0.05	0.67	0.70	2.28	2.78
Cadmium	mg/L	0.0001	0.0001	< 0.0001	0.0004	0.0004
Calcium	mg/L	0.5	114	116	23.9	12.4
Chromium	mg/L	0.001	< 0.001	< 0.001	0.012	0.012
Cobalt	mg/L	0.0005	< 0.0005	< 0.0005	0.0006	0.0006
Copper	mg/L	0.001	0.001	0.001	0.002	0.002
Iron	mg/L	0.05	0.73	< 0.05	< 0.05	< 0.05
Lead	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Magnesium	mg/L	0.5	21	21.3	77.4	21.6
Manganese	mg/L	0.001	0.294	0.259	0.002	0.002
Molybdenum	mg/L	0.001	0.002	0.002	0.012	0.012
Nickel	mg/L	0.002	0.005	0.005	0.029	0.029
Phosphorus	mg/L	0.05	< 0.05	< 0.05	0.39	< 0.05
Potassium	mg/L	1	3	3	32	33
Selenium	mg/L	0.005	0.006	0.015	0.012	0.012
Silicon	mg/L	0.1	5.7	7.6	22.6	3.8
Silver	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Sodium	mg/L	0.5	500	500	1587	1587
Strontium	mg/L	0.001	0.249	0.243	0.538	0.538
Thallium	mg/L	0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Tin	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Titanium	mg/L	0.002	0.005	< 0.002	0.391	0.007
Tungsten	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Uranium	mg/L	0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium	mg/L	0.001	< 0.001	< 0.001	0.016	0.003
Zinc	mg/L	0.003	< 0.003	< 0.003	< 0.003	< 0.003
Zirconium	mg/L	0.004	< 0.004	< 0.004	< 0.004	< 0.004

Total and dissolved metal concentrations from stations MWS-01 and WRS-03 at the Star Diamond Project, Saskatchewan, collected in January 2007.

n/c = analysis not completed.

Major ion balances for water samples from stations WRS-03 and MWS-01 collected in January 2007, and stations NSRS-01 and NSRS-02 collected in July 2006 at the Star Diamond Project, Saskatchewan.

			Cations					Anions		
Station	Calcium (Ca ²⁺)	Magnesium (Mg ²⁺)	Sodium (Na ⁺)	Potassium (K ⁺)	SUM	Chloride (CI)	Carbonate (CO ₃ ²⁻⁾	Bicarbonate (HCO ₃ ⁻)	Sulphate (SO ₄ ²⁻)	SUM
•••••••••••••••••••••••••••••••••••••••				Concentrat	ion (Mg/L)		-	•••••••••••••••••••••••••••••••••••••••	•	
MWS-01	12.4	21.6	1575	33.0		2120	13	237	442	
WRS-03	116	21.3	500	3.0		810	10	248	168	
NSRS-01	47	17	18	2.6		7	5	188	64	
NSRS-02	49	17	17	2.7		6	5	188	65	
Milliequivalent wt.	20.0	12.2	23.0	39.1	-	35.5	30.0	61.0	48.0	-
			Mi	lliequivalents j	per litre (Mea	η/L)				
MWS-01	0.62	1.8	68.5	0.84	72	59.8	0.4	3.9	9.2	73
WRS-03	5.8	1.8	21.7	0.077	29	22.8	0.3	4.1	3.5	31
NSRS-01	2.3	1.4	0.78	0.066	4.6	0.2	0.2	3.1	1.3	4.8
NSRS-02	2.4	1.4	0.74	0.069	4.7	0.2	0.2	3.1	1.4	4.8
				Percent of ma	ajor ions (%)					
MWS-01	0.9	2.5	95.5	1.2	100	81.5	0.6	5.4	12.8	100
WRS-03	19.7	6.0	74.1	0.3	100	74.3	1.1	13.8	11.9	100
NSRS-01	51.1	30.4	17.0	1.4	100	4.1	3.6	67.1	29.0	100
NSRS-02	52.6	30.1	15.9	1.5	100	3.5	3.6	66.3	29.1	100

Note 1: The sum of cations and anions in Meq/L should be approximately equal (within approximately 5%).

Water chemistry parameters measured in association with toxicity analyses from stations WRS-03 and MWS-01 at the Star Diamond Project, Saskatchewan.

Station	Toxicity Test	Species	Hardness (mg/L as CaC0 ₃)	рН	D.O. (mg/L)	Cond. (µS /cm)	Temp. (°C)	O ₂ Saturation (%)
WRS-03	EPS 1/RM/14	Water flea: D. magna	420	7.8	10.7	3270	19.0	121
	EPS 1/RM/13	Rainbow trout	-	7.9	10.0	3428	14.0	100
	EPS 1/RM/21	Water flea: C. dubia	420	7.7	8.9	3340	25.0	113
	EPS 1/RM/22	Fathead minnow	420	7.7	8.9	3340	25.0	113
	EPS 1/RM/25	Green algae	-	7.8	-	-	24.9	-
	EPS 1/RM/37	Lesser duckweed	-	7.8	-	-	25.0	-
MWS-01	EPS 1/RM/14	Water flea: D. magna	160	9.0	9.8	7580	19.5	113
	EPS 1/RM/13	Rainbow trout	-	8.9	9.7	8010	14.0	100
	EPS 1/RM/21	Water flea: C. dubia	160	8.7	7.9	7780	25.0	100
	EPS 1/RM/22	Fathead minnow	160	8.7	7.9	7780	25.0	100
	EPS 1/RM/25	Green algae	-	8.8	-	-	24.9	-
	EPS 1/RM/37	Lesser duckweed	-	8.8	-	-	25.0	-

Note 1: The specific conductivity measured in the Saskatchewan River in July 2006 was 440 μ S/cm, which is similar to the mean conductivity of the laboratory test dilution water of 560 μ S/cm.

Frequency of annual 7-day minimum streamflow¹ (1975 to 2005) for the Saskatchewan River near the Star Diamond Project,

Saskatchewan.

Average return	Combined flow from 05GG001 and 05HG001 near the study area.				
interval (years)	7-day low flow (m ³ /s)	7-day average low flow (m ³ /s)			
2	1475	211			
5	1262	180			
10	1144	163 ²			
20	1042	149			
30	988	141			
50	925	132			
75	878	125			
100	846	121			

¹ Extreme Value Type III distribution fitted by probability-weighted moments to the 7-day annual minimum streamflows using Aquapak software (Gordon et al. 2004).

² This is the daily average flow representing the 7Q10 streamflow criteria.

Hypothetical concentrations of TDS calculated with the 7Q10 streamflow criteria for the receiving environment - the Saskatchewan River near the Star Diamond Project, Saskatchewan.

Wastewater TDS (mg/L)	Downstream TDS at 7Q10 (mg/L)	Downstream TDS at mean streamflow (mg/L)	Daily TDS load at 7Q10 (g/m ³ /day)
10000	495	347	8.1 x 10 ⁴
7500	432	322	$7.0 \ge 10^4$
5000	369	297	$6.0 \ge 10^4$
4360	353	291	5.8 x 10 ⁴
3000	319	277	5.2×10^4
1000	269	257	$4.4 \ge 10^4$
500	256	252	4.2×10^4

Note 1: The actual TDS measured at station MWS-01 in January 2007, and predicted for the receiving environment is in bold print.

Note 2: Baseline TDS in the Saskatchewan River upstream and downstream of the project was measured in July 2006 to be 250 mg/L at stations NSRS-01 and NSRS-02.

List of fish species known to occur in the Saskatchewan River in Saskatchewan.

Family	Scientific Name	Common Name
Acipenseridae	Acipenser fulvescens	Lake sturgeon
Salmonidae	Oncorhynchus mykiss	Rainbow trout ¹
	Salvelinus fontinalis	Brook trout
	Coregonus artedii	Cisco
	Coregonus clupeaformis	Lake whitefish
Hiodontidae	Hoidon alosoides	Goldeye
	Hiodon tergisus	Mooneye
Esocidae	Esox lucius	Northern pike
Cyprinidae	Couesius plumbeus	Lake chub
	Notropis atherinoides	Emerald shiner
	Notropis blennius	River shiner
	Notropis hudsonius	Spottail shiner
	Pimephales promelas	Fathead minnow ¹
	Hybopsis gracilis	Flathead chub
	Rhinichthys cataractae	Longnose dace
	Chrosomus eos	Northern redbelly dace
	Semotilus margarita	Pearl dace
Catostomidae	Carpiodes cyprinus	Quillback
	Catostomus catostomus	Longnose sucker
	Catostomus commersoni	White sucker
	Catostomus platyrhynchus	Mountain sucker
	Moxostoma anisurum	Silver redhorse
	Moxostoma macrolepidotum	Shorthead redhorse
Gadidae	Lota lota	Burbot
Gasterosteidae	Culaea inconstans	Brook stickleback
Percopsidae	Percopsis omiscomaycus	Trout-perch
Percidae	Perca flavescens	Yellow perch
	Stizostedion canadense	Sauger
	Sander vitreus	Walleye
	Etheostoma exile	Iowa darter
Cottidae	Cottus ricei	Spoonhead sculpin
Umbridae	Umbra limi	Central mudminnow

Sources: (Reed 1962, Atton and Merkowsky 1983, Merkowsky 1988, Miles and Sawchyn 1988, SPRR 1991, Scott and Crossman 1998, Conor Pacific and Clifton 1999, Conor Pacific 1999, and CanNorth 2004b).

¹ Toxicity analyses were completed for these species.

FIGURES

LIST OF FIGURES

- Figure 1. Study location.
- Figure 2. The location of the MWS-01 and WRS-03 water sampling stations at the Star Diamond Project, Saskatchewan.

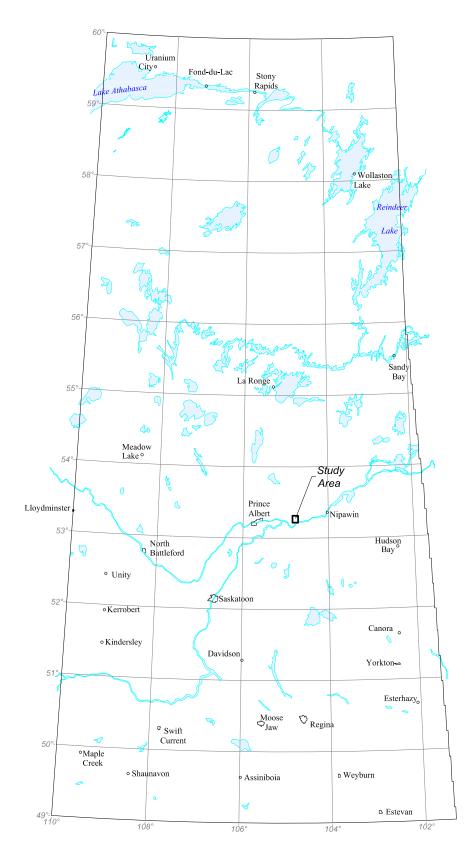
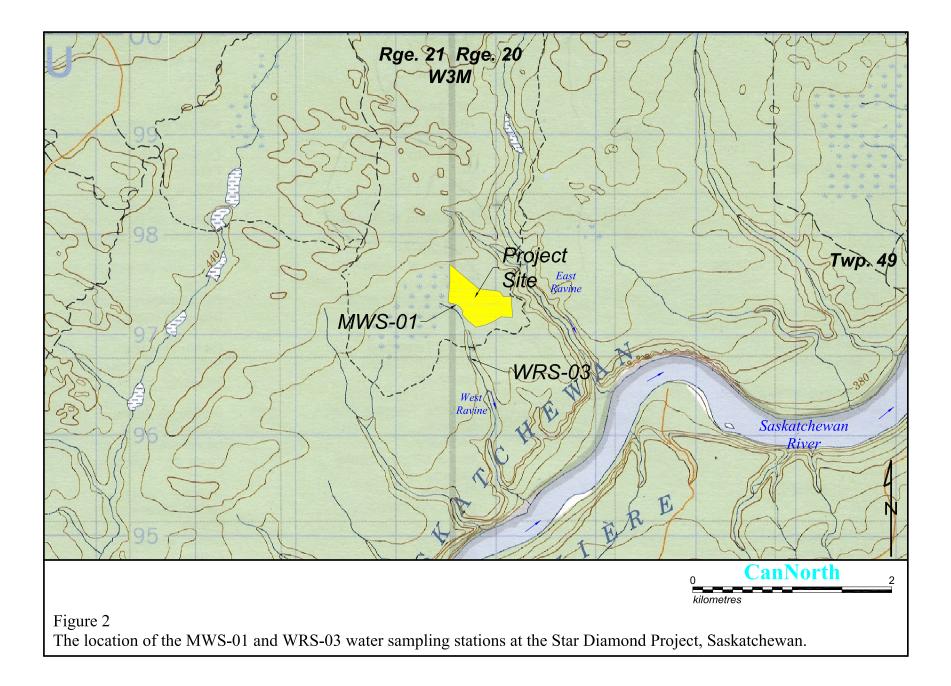



Figure 1 Study location.

APPENDICES

LIST OF APPENDICES

- APPENDIX A. WATER QUALITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03, JANUARY 2007.
- APPENDIX B. ACUTE TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03 USING RAINBOW TROUT AND D. MAGNA, JANUARY 2007.
- APPENDIX C. SUBLETHAL TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03 USING C. DUBIA, FATHEAD MINNOW, L. MINOR, AND S. CAPRICORNUTUM, JANUARY 2007.

APPENDIX A

WATER QUALITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03, JANUARY 2007

APPENDIX A

STATION MWS-01

ALS Laboratory Group

Environmental Division

승규는 사람이 가지 않는 것이 가지 않는

出版

		ANALY	ICAL REPORT		
	TH HOLTZE/MARTINA RE			Reported On:	27-FEB-07 10:36 AM
11B NICHOL	AS BEAVER PARK ROA	C			Revision: 2
GUELPH O	N N1H 6H9				
Lab Work Orc	ler# <u>1-467510</u>	MW5-01		Date Receive	d: 04-JAN-07
Project P.O.	#: 162704383				
Job Referen	ce: 162704383				
Legal Site Da					
CofC Numbe					
Other Inform	ation:				
Comments:	Feb.8/07 : a revised report warmg/L. A recheck (RC11575 v	as issued to show the re-	analysis volue for the start		
	mg/L. A recheck (RC11575 v DHS	vas completed and a Co	rrective Action Report has	87 mg/L. The original v been initiated)	alue reported was: 67.5
		<original signed<="" th=""><th>by></th><th></th><th></th></original>	by>		
	APPROVED BY:				
		ENE HOOGENES-S	TASTNY		
	Proje	ct Manager			
	· · · · · · · · · · · · · · · · · · ·				
This Repo All Sampl	RT SHALL NOT BE REPRODUCE ES WILL BE DISPOSED OF AFTE DDITIONAL SAMPLE STORAGE 1	D EXCEPT IN FULL WITHO	UT THE WRITTEN AUTHOR	RITY OF THE LABORATOR	Y.
REQUIRE A	DDITIONAL SAMPLE STORAGE		NALYSIS, PLEASE CONTAC	T THE LAB IF YOU	

ETL Chemspec Analytical Ltd. Part of the ALS Laboratory Group 309 Exeter Road Unit #29, London, ON: N6L 1C1 Phone: +1 519 652 6044 Fax: +1 519 652 0671 www.alsglobal.com A Compbell Brothers Limited Company

ALS LABORATORY GROUP ANALYTICAL REPORT

	s/Paraméterstra an Article and Article	Resultion R.	-yeanitels), 10	t, Ville	*Extracted	🔬 Analyzed.	(hittiy)	°‰,Batčł
1 67510-1	17673	:						1
impled By:	Stantec on 04-JAN-07 @ 13:00				1	1	1	1
atrix:	WATER		1		Ì.	*	-	
		1			1			
	Ammonia as N	1_60	0.05	: De all	05 1411 07			1
Anion S			0.05	mg/L	05-JAN-07	05-JAN-07	AF	R4813
	Chloride	2120	2	: 	00 100 07	00.1411.05	1	
	Bromide	1.4	0.1	, mg/L , mg/l		08-JAN-07	, KA	R48199
	Fluoride	0.6	0.1	mg/L		05-JAN-07	, KA	ុR4818
	Nitrite-N	<0.5	0.5	mg/L	05-JAN-07	05-JAN-07	, KA	_R48187
	Nitrate-N	1.6	0.1	mg/L	05-JAN-07	05-JAN-07	KA	R48187
	Sulphate	442	- 2	mg/L		05-JAN-07	KA	R48187
	Dissolved Organic Carbon	2		i mg/L		05-JAN-07	KA	R48187
	Hydroxide (OH)	<5	1	mg/L	05-JAN-07		SARA	R48166
	an-Dissolved	<0	5	mg/L	08-JAN-07	08-JAN-07	JIC	R48206
	Aluminum (Al)-Dissolved	0.04			1			ļ
	Arsenic (As)-Dissolved	0.01	0.01	mg/L	Z	11 - JAN-07	JS	R48288
	Barium (Ba)-Dissolved	0.003	0.001	, mg/L		11-JAN-07	JS	R48288
	Beryllium (Be)-Dissolved	0.03	0.01	, mg/L		11-JAN-07	JS	R48288
	Bismuth (Bi)-Dissolved	<0.001	0.001	mg/L	, ¹	11-JAN-07	JS	R48288
	Boron (B)-Dissolved	<0.001	0.001	mg/L		11-JAN-07	JS	R48288
	Cadmium (Cd)-Dissolved	2.78	0.05	mg/L		11-JAN-07	JS	R48288
	Calcium (Ca)-Dissolved	0.0004	0.0001	mg/L		11-JAN-07	JS	R48288
	Chromium (Cr)-Dissolved	12.4	0.5	mg/L		11-JAN-07	JS	R48288
	Cobalt (Co)-Dissolved	0.012	0.001	f mg/L		11-JAN-07	JS	R48288
	Copper (Cu)-Dissolved	0.0006	0.0005	mg/L	[11-JAN-07	JS	R48288
	Iron (Fe)-Dissolved	0.002	0.001	mg/L		11-JAN-07	JS	R48288
	Lead (Pb)-Dissolved	<0.05	0.05	mg/L	:	11-JAN-07	JS	R48288
	Magnesium (Mg)-Dissolved	<0.001	. 0.001	mg/L	2 1	11-JAN-07	JS	R48288
	Magnese (Mn)-Dissolved	21.6	0.5	mg/L	i	11-JAN-07	JS	R48288
		0.002	0.001	mg/L		11-JAN-07	JS	R48288
	Molybdenum (Mo)-Dissolved	0.012	0.001	mg/L	1	11-JAN-07	JS	R482884
	Nickel (Ni)-Dissolved	0.029	0.002	mg/L	1	11-JAN-07	JS	
	Phosphorus (P)-Dissolved	<0.05	0.05	mg/L		11-JAN-07	JS	R482884
	Potassium (K)-Dissolved	33	1	mg/L	[11-JAN-07	JS	R482884
	Selenium (se)-Dissolved	0.012	0.005	mg/L		11-JAN-07	JS JS	R482884
	Silicon (Si)-Dissolved	3.8	0.1	mg/L		11-JAN-07		R482884
	Silver (Ag)-Dissolved	<0.0001	0.0001	mg/L	ĺ	11-JAN-07	JS	R482884
	Sodium (Na)-Dissolved	60.7	0.5	mg/L		11-JAN-07	,	R482884
	Strontium (Sr)-Dissolved	0.538	0.001	mg/L	1	11-JAN-07	:	R482884
	hallium (TI)-Dissolved	<0.0003	0.0003	mg/L	1	11-JAN-07		R482884
	in (Sn)-Dissolved	<0.001	0.001	mg/L		11-JAN-07	1	R482884
	itanium (Ti)-Dissolved	0.007	0.002	mg/L		11-JAN-07	1	R482884
	ungsten (W)-Dissolved	<0.01	0.01	mg/L	í	1	1	R482884
	ranium (U)-Dissolved	<0.005	0.005	mg/L		11-JAN-07	,	R482884
	anadium (V)-Dissolved	0.003	0.003	-		11-JAN-07		R482884
	inc (Zn)-Dissolved	<0.003	: 0.003	mg/L		11-JAN-07		R482884
	irconium (Zr)-Dissolved	<0.004	0.003	mg/L		11-JAN-07	÷	R482884
Metal Scar	n-Total		0.004	mg/L	I	11-JAN-07	JS	R482884
A	luminum (Al)-Total	2.91	0.01	mall			ļ	
	ntimony (Sb)-Total	0.005	2	mg/L		11-JAN-07	JS	R482884
A	rsenic (As)-Total	0.003	0.005	mg/L	:	11-JAN-07	JS	R482884
	arium (Ba)-Total	0.03	0.001	mg/L		11-JAN-07	JS	R482884
Be	eryllium (Be)-Total	<0.001	0.01	mg/L		11-JAN-07	JS	R482884
	ismuth (Bi)-Total	<0.001	0.001	mg/L	1	11-JAN-07	JS	R482884
	pron (B)-Total	,	0.001	mg/L	1	1-JAN-07	;	R482884
		2.28	0.05	mg/L :	1	1-JAN-07		R482884

104/04/05

.

ALS LABORATORY GROUP ANALYTICAL REPORT

angele Détails	Rarameters to the state of the state	Result a	Qualifiek D.L.	Units	Extracted	Analyzed	BV	Baton
467510-1	17673						SALE OF THE	
ampled By:	Stantec on 04-JAN-07 @ 13:00	*					1	
latrix:	WATER	•		4				
				;		ł	ļ	
Metal Sc	an-Total			1	-	* 5	1	
	Cadmium (Cd)-Total	0.0004	0.0001	i 	ŧ			
ł	Calcium (Ca)-Total	23.9	0.5		•	11-JAN-07	1	R48288
	Chromium (Cr)-Total	0.012	0.001	mg/L mg/L		11-JAN-07		, R48288
	Cobalt (Co)-Total	0.0006	0.0005	mg/L		11-JAN-07	1	R48288
	Copper (Cu)-Total	0.002	0.001	mg/L	-	11-JAN-07		R48288
	Iron (Fe)-Total	<0.05	0.05	mg/L		11-JAN-07 11-JAN-07	; •••	R48288
	Lead (Pb)-Total	<0.001	0.001	mg/L		11-JAN-07	1	R48288
	Magnesium (Mg)-Total	77.4	0.5	mg/L	ł	11-JAN-07	JS	R48288
	Manganese (Mn)-Total	0.002	0.001	mg/L	÷	11-JAN-07	JS	R48288
	Molybdenum (Mo)-Total	0.012	0.001	, mg/L	1	11-JAN-07	JS	R48288
	Nickel (Ni)-Total	0.029	0.002	i mg/L	:	11-JAN-07	JS	R48288
	Phosphorus (P)-Total	0.39	0.05	mg/L	ŧ	11-JAN-07	;	R48288
	Potassium (K)-Total	32	1	mg/L	•	11-JAN-07	JS JS	R48288
	Selenium (Se)-Total	0.012	0.005	mg/L		11-JAN-07	JS	R48288
	Silicon (Si)-Total	22.6	0.1	mg/L	1	11-JAN-07	JS	R48288
	Silver (Ag)-Total	<0.0001	0.0001	mg/L	:	11-JAN-07	JS	R48288 R48288
	Sodium (Na)-Total	1600	0.5	mg/L		11-JAN-07	JS	;
	Strontium (Sr)-Total	0.538	0.001	mg/L	:	11-JAN-07	JS	R48288
	Thallium (TI)-Total	<0.0003	0.0003		:	11-JAN-07	JS	R48288
	in (Sn)-Total	<0.001	0.001	mg/L		11-JAN-07	JS	R48288
	Îtanium (Ti)-Total	0.391	0.002	mg/L	1	11-JAN-07	JS	R48288
	ungsten (W)-Total	<0.01	0.01	mg/L	1	11-JAN-07	JS	R482884
	Jranium (U)-Total	<0.005	0.005	mg/L	1	11-JAN-07	JS	R482884
	/anadium (V)-Total	0.016	0.001	mg/L	1	11-JAN-07	JS	R482884
	(inc (Zn)-Total	<0.003	0.003	mg/L	1	11-JAN-07	JS	R482884
	lirconium (Zr)-Total	<0.004	0.004	mg/L		11-JAN-07	JS	R482884
	l Alkalinity Ikalinity, Total (as CaCO3)							
	Ikalinity, Bicarbonate (as CaCO3)	250	10	mg/L		10-JAN-07	ÁF	R482382
Δ	Ikalinity, Carbonate (as CaCO3)	237	10	mg/L	10-JAN-07	10-JAN-07	AF	R482382
	otal Dissolved Solids	13	10	mg/L	10-JAN-07	10-JAN-07	AF	R482382
		4360	20	mg/L	08-JAN-07	09-JAN-07	SARA	R482098
	urbidity	2.9	0.1	NTU	06-JAN-07			R481527
p	H	8.76	0.01	pH units	09-JAN-07			R482207
· .	* Refer to Referenced Information for	Qualifiers (if any) and Me	ithodology.					
·								
				•	air aibh -		- 14 Almont	

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference/Recerd On
ALK-SPEC-WT	Water	Speciated Alkalinity		
ANIONS-WT	Water	Anion Scan (IC)		APHA 2320B
				EPA 300.0 (IC)
C-DIS-ORG-WT	Water	Dissolved Organic Carbon		
MET-DIS-WT	Water	Metal Scan-Dissolved		APHA 5310 B-Instrumental
MET-TOT-WT	Water			EPA 200.8
	VV-A(C)	Metal Scan-Total		EPA 200.8
NH3-WT	Water	Ammonia as N		APHA 4500-NH3
OH-TB	Water	Hydroxide		APHA 2320 B-Potentiometric Titration
PH-WT	Water	рН		APHA 4500 H-Electrode
SOLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
TKN-WT	Water	Total Kjeldahl Nitrogen		
TURBIDITY-WT	Water	Turbidity		APHA 4500-N
				APHA 2130 B

** Laboratory Methods employed follow in-house procedures, which are

generally based on nationally or internationally accepted methodologies.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ΤB	ALS LABORATORY GROUP - THUNDER BAY, ONTARIO, CANADA	WT	ALS LABORATORY GROUP - WATERLOO (SENTINEL), ONTARIO,
			CAN

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million.

mg/L (units) - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS. Although test results are generated under strict O AFOC south of the strict of

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Environmental Division

ALS Laboratory Group Quality Control Report

Workorder: L467510

Report Date: 27-FEB-07

Page 1 of 11

STANTEC CONSULTING LTD 11B NICHOLAS BEAVER PARK ROAD GUELPH ON N1H 6H9

Contact: KEITH HOLTZE/MARTINA RENDAS

Client:

Jest	Matrix	Reference	Result	Qualifier	Units		Limit	Analyzed
ALK-SPEC-WT	Water					·······		
Batch R4823	82							
	vs							
Alkalinity, Total (as	-		97		%		80-120	10-JAN-07
WG545388-3 DI Alkalinity, Bicarbon	UP ate (as CaCO3)	L467441-1 185	170					
Alkalinity, Carbonat	-	<10	176		mg/L	5.4	25	10-JAN-07
Alkalinity, Total (as		190	<10	RPD-NA	mg/L	N/A	25	10-JAN-07
WG545388-1 M	-	190	180		mg/L	5.4	25	10-JAN-07
Alkalinity, Bicarbon			<10		mall			
Alkalinity, Carbonat	e (as CaCO3)		<10		mg/L mg/l		10	10-JAN-07
Alkalinity, Total (as	CaCO3)		<10		mg/L		10	10-JAN-07
ANIONS-WT					mg/L		10	10-JAN-07
Batch R4818	<u>Water</u> 72							
WG544507-9 DL		WG544507-4						
Bromide		1.0	1.0		mg/L	2.0	25	05 1
Chloride		20	20	J	mg/L	0	25 8	05-JAN-07
Fluoride		1.0	1.0	J	mg/L	0.0		05-JAN-07
Nitrate-N		0.9	0.9	J	mg/L	0.0	0.4 0.4	05-JAN-07
Nitrite-N		0.9	0.9	J	mg/L	0.0		05-JAN-07
Phosphate-P (ortho))	0.9	0.9	J	mg/L	0.0	0.4	05-JAN-07
Sulphate		20	20	J	mg/L	0.0	1.2	05-JAN-07
WG544507-3 LC	S			_		U	8	05-JAN-07
Bromide			102		%		80-120	05-JAN-07
Chloride			96		%		80-120	05-JAN-07
Fluoride			97		%		75-125	05-JAN-07
Nitrate-N			100		%		80-120	05-JAN-07
Nitrite-N			99		%		80-120	05-JAN-07
Phosphate-P (ortho)			91		%		63-138	05-JAN-07
Sulphate			97		%		80-120	05-JAN-07
WG544507-1 MB	Ì						50 120	00-07(11-07
Bromide			<0.1		mg/L		0.1	05-JAN-07
Chloride			<2		mg/L		2	05-JAN-07
Fluoride			<0.1		mg/L		0.1	05-JAN-07
Nitrate-N			<0.1		mg/L		0.1	05-JAN-07
Nitrite-N			<0.1		mg/L		0.1	05-JAN-07
Phosphate-P (ortho)			<0.3		mg/L		0,3	20 0/01 0/

		Workorder:	L467510	1	Report Date: 2	27-FEB-07		Page 2 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-WT	Water					<u> </u>		
Batch R481872								
WG544507-1 MB						,		
Sulphate			<2		mg/L		2	05-JAN-07
Batch R481990								
WG545110-6 DUP		WG545110-4						
Bromide		1.0	1.0	J	mg/L	0.0	0.4	08-JAN-07
Chloride		19	19	J	mg/L	0	8	08-JAN-07
Fluoride		1.0	1.0		mg/L	0.0	20	08-JAN-07
Nitrate-N		0.9	0.9	J	mg/L	0.0	0.4	08-JAN-07
Nitrite-N		0.9	0.9	J	mg/L	0.0	0.4	08-JAN-07
Sulphate		20	20	J	mg/L	0	8	08-JAN-07
WG545110-3 LCS						Ũ	0	08-37(11-07
Bromide			100		%		80-120	08-JAN-07
Chloride			95		%		80-120	08-JAN-07
Fluoride			97		%		75-125	08-JAN-07
Nitrate-N			98		%		80-120	08-JAN-07
Nitrite-N			100		%		80-120	08-JAN-07
Sulphate			95		%		80-120	08-JAN-07
WG545110-1 MB Bromide								
			<0.1		mg/L		0.1	08-JAN-07
Chloride			<2		mg/L		2	08-JAN-07
Fluoride			<0.1		mg/L		0.1	08-JAN-07
Nitrate-N			<0.1		mg/l.		0.1	08-JAN-07
Nitrite-N			<0.1		mg/L		0.1	08-JAN-07
Sulphate			<2 .		mg/L		2	08-JAN-07
C-DIS-ORG-WT	Water							
Batch R481663								
WG544294-2 DUP		L467086-1						
Dissolved Organic Carbor	1	2	3	J	mg/L	0	4	05-JAN-07
WG544294-3 LCS Dissolved Organic Carbor	n		00					
	1		98		%		77-120	05-JAN-07
WG544294-1 MB Dissolved Organic Carbor	ì		<1		mg/L		4	A- ···· · -
WG544294-4 MS		L467086-2					1	05-JAN-07
Dissolved Organic Carbor	1 .	A IST COUL	103		%		60-140	05-JAN-07
WG544294-5 MSD		WG544294-4					00 100	

ALS Laboratory Group Quality Control Report

. •

		Workorder:	L467510)	Report Date: 2	27-FEB-07		Page 3 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-WT	Water							
Batch R4816								
WG544294-5 M Dissolved Organic	ISD _. Carbon	WG544294-4 103	0.0					
Ensection organio	oubon	105	98		%	4.4	26	05-JAN-07
AET-DIS-WT	Water							
Batch R4828	384							
	vs							
Aluminum (Al)-Dise			102		%		78-129	11-JAN-07
Antimony (Sb)-Diss			107		%		72-130	11-JAN-07
Arsenic (As)-Dissol			105		%		89-123	11-JAN-07
Barium (Ba)-Dissol			104		%		82-124 ·	11-JAN-07
Beryllium (Be)-Diss			97		%		84-125	11-JAN-07
Bismuth (Bi)-Dissol			109		%		77-115	11-JAN-07
Boron (B)-Dissolver			104		%		69-129	11-JAN-07
Cadmium (Cd)-Dise			106		%		83-124	11-JAN-07
Calcium (Ca)-Disso			97		%		84-121	11-JAN-07
Chromium (Cr)-Dise			109		%		88-121	11-JAN-07
Cobalt (Co)-Dissolv			112		%		87-118	11-JAN-07
Copper (Cu)-Dissol			109		%		82-124	11-JAN-07
Iron (Fe)-Dissolved			112		%		88-134	11-JAN-07
Lead (Pb)-Dissolved			111		%		80-128	11-JAN-07
Magnesium (Mg)-Di			94		%		80-125	11-JAN-07
Manganese (Mn)-Di			106		%		84-122	11-JAN-07
Molybdenum (Mo)-E			111		%		79-122	11-JAN-07
Nickel (Ni)-Dissolve			110		%		88-120	11-JAN-07
Phosphorus (P)-Dis			105		%		76-127	11-JAN-07
Potassium (K)-Disso			100		%		74-143	11-JAN-07
Selenium (se)-Disso			99		%		83-129	11-JAN-07
Silver (Ag)-Dissolve			109		%		81-121	11-JAN-07
Sodium (Na)-Dissol			97		%		86-123	11-JAN-07
Strontium (Sr)-Disso			98		%		89-1 1 7	11-JAN-07
Thallium (TI)-Dissolv			108		%		78-128	11-JAN-07
Uranium (U)-Dissolv			106		%		82-123	11-JAN-07
Vanadium (V)-Disso	lved		103		%		77-123	11-JAN-07
Zinc (Zn)-Dissolved			91		%		86-126	11-JAN-07
								· · · · · · · · · ·

		Workorder:	L467510	Re	eport Date: 2	27-FEB-07		Page 4 of 11
Test N	Natrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT	Nater			· · ·			·	
Batch R482884								
WG546250-2 CVS Silicon (Si)-Dissolved								
			120		%		61-151	11-JAN-07
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved			104		%		91-139	11-JAN-07
			110		%		87-120	11-JAN-07
Tungsten (W)-Dissolved Zirconium (Zr)-Dissolved			110		%		74-132	11-JAN-07
			105		%		77-128	11-JAN-07
WG546250-5 DUP Aluminum (Al)-Dissolved		WG546250-4 <0.01	<0.01	RPD-NA	mg/L			
Antimony (Sb)-Dissolved		<0.005	<0.005	RPD-NA		N/A	20	11 - JAN-07
Arsenic (As)-Dissolved		0.001	<0.003	RPD-NA RPD-NA	mg/L	N/A	20	11-JAN-07
Barium (Ba)-Dissolved		0.06	0.06		mg/L	N/A	20	11-JAN-07
Beryllium (Be)-Dissolved		<0.001	<0.001	J	mg/L	0.00	0.04	11-JAN-07
Bismuth (Bi)-Dissolved		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Boron (B)-Dissolved		0.07	0.07	RPD-NA	mg/L	N/A	26	11-JAN-07
Cadmium (Cd)-Dissolved		0.0006	0.0005	J	mg/L	0.00	0.2	11-JAN-07
Calcium (Ca)-Dissolved		84.5	84.1	J	mg/L	0.0000	0.0004	11-JAN-07
Chromium (Cr)-Dissolved		0.002	0.002		mg/L	0.41	20	11-JAN-07
Cobalt (Co)-Dissolved		0.002		J	mg/L	0.000	0.004	11-JAN-07
Copper (Cu)-Dissolved		0.0010	0.0010 0.001	J	mg/L	0.0000	0.002	11-JAN-07
Iron (Fe)-Dissolved		<0.05		J	mg/L	0.000	0.004	11-JAN-07
Lead (Pb)-Dissolved		<0.05	< 0.05	RPD-NA	mg/L	N/A	20	11-JAN-07
Magnesium (Mg)-Dissolved	ł	30.0	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Manganese (Mn)-Dissolved			29.9		mg/L	0.30	20	11-JAN-07
Maliganose (Mil)-Dissolve		0.128 0.012	0.128		mg/L.	0.089	20	11-JAN-07
Nickel (Ni)-Dissolved	50		0.013		mg/L	5.8	20	11-JAN-07
Phosphorus (P)-Dissolved		0.004 <0.05	0.004	J	mg/L	0.000	0.008	11-JAN-07
Potassium (K)-Dissolved			<0.05	RPD-NA	mg/L	N/A	20	11-JAN-07
		3	3	J	mg/L	0	4	11-JAN-07
Selenium (se)-Dissolved		0.017	0.017	J	mg/L	0.000	0.02	11-JAN-07
Silicon (Si)-Dissolved		7.6	7.5		mg/L	0.99	20	11-JAN-07
Silver (Ag)-Dissolved		<0.0001	<0.0001	RPD-NA	mg/L	N/A	33	11-JAN-07
Sodium (Na)-Dissolved		<0.5	<0.5	RPD-NA	mg/L	N/A	20	11-JAN-07
Strontium (Sr)-Dissolved		0.225	0.229		mg/L	1.9	20	11-JAN-07
Thallium (TI)-Dissolved		<0.0003	<0.0003	RPD-NA	mg/L	N/A	20	11-JAN-07
Tin (Sn)-Dissolved		<0.001	<0.001	RPD-NA	mg/L	N/A	26	11-JAN-07

	Workorder:	L467510	Re	eport Date: 2	7-FEB-07		Page 5 of 11
Test Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT Water							
Batch R482884							
WG546250-5 DUP Titanium (Ti)-Dissolved	WG546250-4						
Tungsten (W)-Dissolved	<0.002	<0.002	RPD-NA	mg/L	N/A	20	11-JAN-07
Uranium (U)-Dissolved	<0.01	<0.01	RPD-NA	mg/L	N/A	20	11-JAN-07
Vanadium (V)-Dissolved	< 0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07
Zinc (Zn)-Dissolved	0.003	0.003	J	mg/L	0.000	0.004	11-JAN-07
Zirconium (Zr)-Dissolved	0.016	0.016	Ł	mg/L	0.000	0.012	11-JAN-07
	<0.004	<0.004	RPD-NA	mg/L	N/A	20	11-JAN-07
WG546250-3 MB Aluminum (Al)-Dissolved		<0.01					
Antimony (Sb)-Dissolved				mg/L		0.01	11-JAN-07
Arsenic (As)-Dissolved		<0.005 <0.001		mg/L		0.005	11-JAN-07
Barium (Ba)-Dissolved				mg/L		0.001	11-JAN-07
Beryllium (Be)-Dissolved		<0.01		mg/L		0.01	11-JAN-07
Bismuth (Bi)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Boron (B)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Calcium (Ca)-Dissolved		<0.05		mg/L.		0.05	11-JAN-07
Chromium (Cr)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Cobalt (Co)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Copper (Cu)-Dissolved		<0.0005		mg/L		0.0005	11-JAN-07
fron (Fe)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Lead (Pb)-Dissolved		<0.05		mg/L		0.05	11-JAN-07
Magnesium (Mg)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Manganese (Mn)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Molybdenum (Mo)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
		<0.001		mg/L		0.001	11-JAN-07
Nickel (Ni)-Dissolved		<0.002		mg/L		0.002	11-JAN-07
Phosphorus (P)-Dissolved		<0.05		mg/L		0.05	11-JAN-07
Potassium (K)-Dissolved		<1		mg/L		1	11-JAN-07
Selenium (se)-Dissolved		<0.005		mg/L		0.005	11-JAN-07
Silicon (Si)-Dissolved		<0.1		mg/L		0.1	11-JAN-07
Silver (Ag)-Dissolved		<0.0001		mg/L		0.0001	11-JAN-07
Sodium (Na)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Strontium (Sr)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Thallium (TI)-Dissolved		<0.0003		mg/L		0.0003	11-JAN-07
Tin (Sn)-Dissolved		<0.001		mg/L		0.001	11-JAN-07

		Workorder	L467510		Report Date: 2	7-FEB-07		Page 6 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT	Water			<u>.</u> .	,,,,,			
Batch R482884								
WG546250-3 MB								
Titanium (Ti)-Dissolved	L		<0.002		mg/L		0.002	11-JAN-07
Tungsten (W)-Dissolved			<0.01		mg/L		0.01	11-JAN-07
Uranium (U)-Dissolved	, ,		<0.005		mg/L		0.005	11-JAN-07
Vanadium (V)-Dissolved			<0.001		mg/L		0.001	11-JAN-07
Zinc (Zn)-Dissolved			<0.003		mg/L		0.003	11-JAN-07
Zirconium (Zr)-Dissolver			<0.004		mg/L		0.004	11-JAN-07
Cadmium (Cd)-Dissolve	a		<0.0001		mg/L		0.0001	11-JAN-07
MET-TOT-WT	Water							
Batch R482884								
WG546250-1 CVS Aluminum (Al)-Total			102					
Antimony (Sb)-Total			102		%		77-128	11-JAN-07
Arsenic (As)-Total			107		%		73-134	11-JAN-07
Barium (Ba)-Total			105		%		93-122	11-JAN-07
Beryllium (Be)-Total			97		%		86-120	11-JAN-07
Bismuth (Bi)-Total					%		85-124	11-JAN-07
Boron (B)-Total			109		%		76-114	11-JAN-07
Cadmium (Cd)-Total			104		%		67-131	11-JAN-07
Calcium (Ca)-Total			106		%		83-122	11-JAN-07
Chromium (Cr)-Total			97		%		86-121	11-JAN-07
Cobalt (Co)-Total			109		%		89-121	11-JAN-07
Copper (Cu)-Total			112		%		86-122	11-JAN-07
Iron (Fe)-Total			109		%		83-124	11-JAN-07
- ,			112		%		88-134	11-JAN-07
Lead (Pb)-Total			111		%		80-128	11-JAN-07
Magnesium (Mg)-Total			94		%		78-124	11-JAN-07
Manganese (Mn)-Total			106		%		76-124	11-JAN-07
Molybdenum (Mo)-Total			111		%		80-122	11-JAN-07
Nickel (Ni)-Total			110		%		90-121	11-JAN-07
Phosphorus (P)-Total			105		%		71-132	11-JAN-07
Potassium (K)-Total			100		%		70-146	11-JAN-07
Selenium (Se)-Total			99		%		79-132	11-JAN-07
Silver (Ag)-Total			109		%		80-120	11-JAN-07
Sodium (Na)-Total			97		%		79-123	11-JAN-07

		Workorder:	L 467510	Re	eport Date: 2	27-FEB-07		Page 7 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	<u>Water</u>							
Batch R482884								
WG546250-1 CVS Strontium (Sr)-Total			00					
Thallium (Ti)-Total			98		%		82 - 1 18	11-JAN-07
Uranium (U)-Total			108		%		73-133	11-JAN-07
Vanadium (V)-Total			106		%		79-123	11-JAN-07
Zinc (Zn)-Total			103		%		75-123	11-JAN-07
			91		%		76-130	11-JAN-07
WG546250-2 CVS Silicon (Si)-Total			120		%			
Tin (Sn)-Total			104		%		71-151	11-JAN-07
Titanium (Ti)-Total			110		%		91-139	11-JAN-07
Tungsten (W)-Total			110		%		81-125	11-JAN-07
Zirconium (Zr)-Total			105		%		71-131	11-JAN-07
WG546250-5 DUP		WG546250-4			70		74-130	11-JAN-07
Aluminum (Al)-Total		<0.01	<0.01	RPD-NA	mg/L	N/A	20	11-JAN-07
Antimony (Sb)-Total		<0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07
Arsenic (As)-Total		0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Barium (Ba)-Total		0.06	0.06	J	mg/L	0.00	0.04	11-JAN-07
Beryllium (Be)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Bismuth (Bi)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Boron (B)-Total		0.07	0.07	J	mg/L	0.00	0,2	11-JAN-07
Cadmium (Cd)-Total		0.0006	0.0005	J	mg/L	0.0000	0.0004	11-JAN-07
Calcium (Ca)-Total		84.5	84.1	_	mg/L	0.41	20	11-JAN-07
Chromium (Cr)-Total		0.002	0.002	t	mg/L	0.000	0.004	11-JAN-07
Cobait (Co)-Total		0.0010	0.0010	J	mg/L	0.0000	0.002	
Copper (Cu)-Total		0.001	0.001	J	mg/L	0.000	0.002	11-JAN-07 11-JAN-07
Iron (Fe)-Total		<0.05	<0.05	- RPD-NA	mg/L	0.000 N/A	20	
Lead (Pb)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Magnesium (Mg)-Total		30.0	29.9		mg/L	0.30		11-JAN-07
Manganese (Mn)-Total		0.128	0.128		mg/L	0.089	20 20	11-JAN-07
Molybdenum (Mo)-Total	I	0.012	0.013		mg/L	5,8	20 20	11-JAN-07
Nickel (Ni)-Total		0.004	0.004	J	mg/L	0.000		11-JAN-07
Phosphorus (P)-Total		<0.05	<0.05	y RPD-NA	mg/L		0.008	11-JAN-07
Potassium (K)-Total		3	3	J	mg/L	N/A 0	20	11-JAN-07
Selenium (Se)-Total		0.017	0.017	J	mg/L		4	11-JAN-07
(0.0.7	0.011	J	ng/c	0.000	0.02	11- JAN- 07

		Workorder:	L467510	Re	port Date: 2	27-FEB-07		Page 8 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	<u>Water</u>							
Batch R482884					•			
WG546250-5 DUP		WG546250-4						
Silicon (Si)-Total		7.6	7.5		mg/L	0.99	20	11-JAN-07
Silver (Ag)-Total		<0.0001	<0.0001	RPD-NA	mg/L	N/A	20	11-JAN-07
Sodium (Na)-Total		<0.5	<0.5	RPD-NA	mg/L	N/A	20	11-JAN-07
Strontium (Sr)-Total		0.225	0.229		mg/L	1.9	20	11-JAN-07
Thallium (TI)-Total		<0.0003	<0.0003	RPD-NA	mg/L	N/A	20	11-JAN-07
Tin (Sn)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Titanium (Ti)-Total		<0.002	<0.002	RPD-NA	mg/L	N/A	20	11-JAN-07
Tungsten (W)-Total		<0.01	<0.01	RPD-NA	mg/L	N/A	20	11-JAN-07
Uranium (U)-Total		<0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07
Vanadium (V)-Total		0.003	0.003	J	mg/L	0.000	0.004	11-JAN-07
Zinc (Zn)-Total		0.016	0.016	ſ	mg/L	0.000	0.012	11-JAN-07
Zirconium (Zr)-Total		<0.004	<0.004	RPD-NA	mg/L	N/A	20	11-JAN-07
WG546250-3 MB Aluminum (Al)-Total			-0.04		· "			
Antimony (Sb)-Total			<0.01		mg/L		0.01	11-JAN-07
Arsenic (As)-Total			<0.005		mg/L		0.005	11-JAN-07
			<0.001		mg/L		0.001	11-JAN-07
Barium (Ba)-Total			<0.01		mg/L		0.01	11-JAN-07
Beryllium (Be)-Total			<0.001		mg/L		0.001	11-JAN-07
Bismuth (Bi)-Total			<0.001		mg/L		0.001	11-JAN-07
Boron (B)-Total			<0.05		mg/L		0.05	11-JAN-07
Calcium (Ca)-Total			<0.5		mg/L		0.5	11-JAN-07
Chromium (Cr)-Total			<0.001		mg/L		0.001	11-JAN-07
Cobalt (Co)-Total			<0.0005		mg/L		0.0005	11-JAN-07
Copper (Cu)-Total			<0.001		mg/L		0.001	11-JAN-07
Iron (Fe)-Total			<0.05		mg/L		0.05	11-JAN-07
Lead (Pb)-Total			<0.001		mg/L		0.001	11-JAN-07
Magnesium (Mg)-Total			<0.5		mg/L		0.5	11-JAN-07
Manganese (Mn)-Total			<0.001		mg/L		0.001	11-JAN-07
Molybdenum (Mo)-Tota	I		<0.001		mg/L		0.001	11-JAN-07
Nickel (Ni)-Total			<0.002		mg/L		0.002	11-JAN-07
Phosphorus (P)-Total			<0.05		mg/L		0.05	11-JAN-07
Potassium (K)-Total			<1		mg/L		1	11-JAN-07
Selenium (Se)-Total			<0.005		mg/L		0.005	11-JAN-07

		Workorder:	L467510	Re	eport Date: 2	7-FEB-07		Page 9 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water				······································			
Batch R482884 WG546250-3 MB Silicon (Si)-Total			-0.4					
Silver (Ag)-Total			<0.1		mg/L		0.1	11-JAN-07
Sodium (Na)-Total			<0.0001		mg/L		0.0001	11-JAN-07
Strontium (Sr)-Total			<0.5		mg/L		0.5	11-JAN-07
			< 0.001		mg/L		0.001	11-JAN-07
Thallium (TI)-Total			<0.0003		mg/L		0.0003	11-JAN-07
Tin (Sn)-Total			<0.001		mg/L		0.001	11-JAN-07
Titanium (Ti)-Total			<0.002		mg/L		0.002	11-JAN-07
Tungsten (W)-Total			<0.01		mg/L		0.01	11-JAN-07
Uranium (U)-Total			<0.005		mg/L		0.005	11-JAN-07
Vanadium (V)-Total		•	<0.001		mg/L_		0.001	11-JAN-07
Zinc (Zn)-Total			<0.003		mg/L		0.003	11-JAN-07
Zirconium (Zr)-Total			<0.004		mg/L		0.004	11-JAN-07
Cadmium (Cd)-Total			<0.0001		mg/L		0.0001	11-JAN-07
NH3-WT	Water							
Batch R481313 WG544489-2 CVS Ammonia as N			101		%			
WG544489-3 DUP Ammonia as N		L467401-4 <0.05	<0.05	RPD-NA	mg/L	N/A	85-115 20	05-JAN-07 05-JAN-07
WG544489-4 DUP Ammonia as N		L467526-2 0.05	0.06	L	mg/L	0.01	0.2	05-JAN-07
WG544489-1 MB Ammonia as N			<0.05		mg/L		0.05	05-JAN-07
<u>PH-WT</u>	Water							
Batch R482207 WG545650-1 CVS								
рH			100		%		90-110	09-JAN-07
WG545650-3 DUP pH		L 468000-1 7,88	7,88		pH units	0.0	20	09-JAN-07
⁻ WG545650-4 DUP pH		L.468263-1 7.27	7.28		ρH units	0.14	20	09-JAN-07
<u>Solids-TDS-WT</u>	Water							

		Workorder:	L467510		Report Date: 27	-FEB - 07		Page 10 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Anaiyzed
SOLIDS-TDS-WT	<u>Water</u>	·						
Batch R482098								
WG545008-2 DUP		L467510-1						
Total Dissolved Solids		4360	4380		mg/L	0.55	30	09-JAN-07
WG545008-3 LCS								
Total Dissolved Solids			94		%		70-130	09-JAN-07
WG545008-1 MB								
Total Dissolved Solids			<20		mg/L		20	09-JAN-07
TURBIDITY-WT	Water							
Batch R481527								
WG544772-1 CVS								
Turbidity			95		%		78-116	06-JAN-07
WG544772-3 DUP		L467510-1						
Turbidity		2,9	3.0		NTU	3.4	20	06-JAN-07
WG544772-2 MB								
Turbidity			<0.1		NTU		0.1	06-JAN-07

Workorder: L467510

Report Date: 27-FEB-07

Page 11 of 11

Legend:

Limit	99% Confidence Interval (Laboratory Control Limits)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
	• • • • • • • • • • •

IRM Internal Reference Material

CRM Certified Reference Material

CCV Continuing Calibration Verification

CVS Calibration Verification Standard

LCSD Laboratory Control Sample Duplicate

Qualifier:

RPD-NA Relative Percent Difference Not Available due to result(s) being less than detection limit.

A Method blank exceeds acceptance limit. Blank correction not applied, unless the qualifier "RAMB" (result adjusted for method blank) appears in the Analytical Report.

B Method blank result exceeds acceptance limit, however, it is less than 5% of sample concentration. Blank correction not applied.

E Matrix spike recovery may fall outside the acceptance limits due to high sample background.

F Silver recovery low, likely due to elevated chloride levels in sample.

G Outlier - No assignable cause for nonconformity has been determined.

J Duplicate results and limit(s) are expressed in terms of absolute difference.

K The sample referenced above is of a non-standard matrix type; standard QC acceptance criteria may not be achievable.

L Low matrix spike recovery due to instability of spiked analyte in the sample matrix.

	•	Ę	519-	652	2-604	14					Ľ	Servi	ce Rea	uested	:			Regult	ar (defauli)	
									<i>.</i> .		à		Require		<u>.</u>			Priority	y (50% suzchange)	
COMPANY NAM		NAD	<u>A TO</u>	LL F	REE:	1-800-665-9878					B	<u> </u>	R.			L.		Emerg	IENCY (100% Surcharge)	
Clust	-					CRITERIA Criteria on	report (ntr)			17	Ì		VSIST		<u>=</u> \$1		\geq		D PRESERVED FIP)	
PROJECT MAN	GER			21		Reg 153/04		ł	\vdash	K	R		Ś		-		5		SUBMISSION #	
PENT	48		H	1/2	0	Toble	PWQO	{		R.	B.	5	Z	8		-	N		_ 4678	510
PROJECTS	200	20	2						\mathbb{Z}	12	12	2.0	E.	Ø.			N.		ENTERED BY	
PHONE 100	The	<u>من</u> ج	14	17			AL RESULTS WILL BE MAILER		N.	18	2	E E	1 ac	J.		. '	N	5	L DH >	
FAX 1519	76	3-3	4	19		EMAIL FAX		VTAINERS	70.	Dissel	R	25	13	Y	ΓŽ.	\geq	1	J.L.	DATENTIME ENTERED	
851142	12	POW	- 4. A	1		ETALILI MONDA.	S@ Stenteca				1 and	3.	Å,	1	La.	J.	X	X	Jan5/	シナ
	PLING IN		_			ETAAAL2_KMOTT2L	Stenta Cl	M B		reads		22	M.	2	Ì	R	Z	101	BIN# B 55	2
Sample Date	:/Time					SELECT: poi digitar	bom	NUMBER OF	a la	2	2	25	C	de la	Z	B)	2	14		
Casie (yy/mm/dd)	Trme (24 hr)	COMP	GRAD	WATER	SOIL	SAMPLE DESCRIPTION	TO APPEAR ON REPORT	MUM	N	~	R	N N	Ø	$\mathcal{Q}($		17.	12	Y	COMMENTS	LAB ID
minny	13:00			1/		17673	······································	6	IX		10	X	W	V	0	VI	\succ	X		-1
<u>, , , , , , , , , , , , , , , , , , , </u>	1.00			-										-						
																-	1			
			1																	
													_			_				
							_													
															_					
					1		<i>i</i>		1.			0	\sim							
						X	Do not Ce	mel	ine		C	7L	12							
									1			v			1					
				-																
		\square							1					1						
		ــلــــــــــــــــــــــــــــــــــ	<u>.</u>		· <u>L</u>	SPECIA	LINSTRUCTIONS/COMM	ENTS		·									SAMPLE COND	ITION
							· .												FROZEN 	
																		;	AMBIENT	$\frac{170}{170}$
SAN POD BY:						2007-01-04	RECEIVED ST:			g			ATE& INI						CONDITION ACCEPTABLE	IN/T
RELINQUISHED BY:					-0-	DATE & TRE	RECEIVED AT LAB BY:	\sim	07 			0	ATEL TIN	1-0	16	Ā	<u>.</u>	57		N/-

.

APPENDIX A

STATION WRS-03

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

(RE

Environmental Division

• · · -

		ANALYTICAL REP	ORT	
11B NICHOLAS BEA	IZE/MARTINA RENDAS		Reported On:	16-JAN-07 03:44 PM
GUELPH ON N1H				
Lab Work Order #:	L467515 WR9	5-0 3	Date Receiv	ed: 04-JAN-07
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers: Other Information:	162704383 162704383			
Comments:				
	<(original signed by>		
AP		IOOGENES-STASTNY (~	
	Project Mar	-	0	
ALL SAMPLES YY	ALL NOT BE REPRODUCED EXCEN LL BE DISPOSED OF AFTER 30 DA DNAL SAMPLE STORAGE TIME.	PT IN FULL WITHOUT THE WRIT YS FOLLOWING ANALYSIS, PLE	TEN AUTHORITY OF THE LABORA ASE CONTACT THE LAB IF YOU	rory.
		ETL Chemspec An Part of the ALS Labora 309 Exeter Road Unit #29, Lor 519 652 6044 Fax: +1 519 6 A Campbell Brohers Limi	tory Group ndon, ON-N6L 1C1 52 0671 www.alsglobal.com	

---- ·

ALS LABORATORY GROUP ANALYTICAL REPORT

mple Details/Pi	arameters	Result	Qualifier - C)L. 🧏	Units	Extracted	Analyzed	⊂ By	Batch
67515-1 1	7672			i					I
	P on 04-JAN-07 @ 15:00			ľ					
	VATER	-		Ļ					
ania. ¥									•
An	nmonia as N	<0.05	0	.05	mg/L	05-JAN-07	05-JAN-07	AF	R48131
Anion Scan	(IC)		1		•				:
Ch	loride	810		2	mg/L	08-JAN-07	08-JAN-07	KA	R48199
Bro	omide	0.5	' ().1	mg/L	05-JAN-07	05-JAN-07	КА	ⁱ R48187
Flu	loride	<0.1	įC	1.1	mg/L	05-JAN-07	05-JAN-07	KA	R48187
Nit	rite-N	<0.5	C).5 ¦	mg/L	05-JAN-07	05-JAN-07	KA	R48187
Nit	rate-N	0.1	1).1	mg/L	05-JAN-07	05-JAN-07	KA	R48187
Ph	osphate-P (ortho)	<0.3	i ().3	mg/L	05-JAN-07	05-JAN-07	KA	R48187
Su	iphate .	168		2 1	mg/L	05-JAN-07	05-JAN-07	KA	R48187
Dis	ssolved Organic Carbon	5		1	mg/L	05-JAN-07			R48166
Hy	droxide (OH)	<5		5	mg/L	08-JAN-07	08-JAN-07	JIC	R48206
Metal Scan	• •	-		i					
	ıminum (Al)-Dissolved	<0.01	0	.01	mg/L		11-JAN-07	JS	i R48288
	timony (Sb)-Dissolved	<0.005		005	mg/L		11-JAN-07		R4828
Ars	senic (As)-Dissolved	0.001	1	001	mg/L		11-JAN-07		R4828
	rium (Ba)-Dissolved	0.33		.01	mg/L		11-JAN-07	•	R4828
Be	ryllium (Be)-Dissolved	<0.001	1	001	mg/L	!	11-JAN-07		R4828
Bis	muth (Bi)-Dissolved	< 0.001		001 i	mg/L	Ì	11-JAN-07		, R4828
Bo	ron (B)-Dissolved	0.70	1	.05	mg/L		11-JAN-07		R4828
Ca	dmium (Cd)-Dissolved	<0.0001	1	0001	mg/L		11-JAN-07	JS	R4828
Ca	lcium (Ca)-Dissolved	116).5	mg/L		11-JAN-07		R4828
Ch	romium (Cr)-Dissolved	<0.001	i	001	mg/L	!	11-JAN-07	JS	R4828
	balt (Co)-Dissolved	< 0.0005	1	0005	mg/L	- :	11-JAN-07		: R4828
Co	pper (Cu)-Dissolved	0.001		001	mg/L		11-JAN-07	JS	R4828
Iro	n (Fe)-Dissolved	<0.05		.05	mg/L		11-JAN-07		R48288
Le	ad (Pb)-Dissolved	<0.001		001	mg/L		11-JAN-07	i -	R4828
Ma	ignesium (Mg)-Dissolved	21.3		0.5	mg/L	1	11-JAN-07	JS	R4828
Ma	anganese (Mn)-Dissolved	0.259		001	mg/L	i	11-JAN-07		; R4828
	hybdenum (Mo)-Dissolved	0.002	i	001	mg/L		11-JAN-07	i .	R4828
Nic	ckel (Ni)-Dissolved	0.005	I	002	mg/L		11-JAN-07	JS	R4828
Ph	osphorus (P)-Dissolved	<0.05	1	.05	mg/L	1	11-JAN-07	JS	R4828
Po	tassium (K)-Dissolved	3	•	1	mg/L		11-JAN-07	1	R4828
	lenium (se)-Dissolved	0.015	0	005	mg/L	;	11-JAN-07	JS	R4828
Sil	icon (Si)-Dissolved	7.6	1	0.1	mg/L	Ì	11-JAN-07	JS	R4828
Sil	ver (Ag)-Dissolved	<0.0001		0001	mg/L	1	11-JAN-07	JS	R4828
So	dium (Na)-Dissolved	500	I	25	mg/L		11-JAN-07	JS	R4828
St	rontium (Sr)-Dissolved	0.243		.001 I	mg/L	1	11-JAN-07		R4828
Th	allium (TI)-Dissolved	<0.0003		0003;	mg/L		11-JAN-07		,R4828
Tir	(Sn)-Dissolved	<0.001		001	mg/L	ļ	11-JAN-07	i i i i i i i i i i i i i i i i i i i	R4828
Tit	anium (Ti)-Dissolved	<0.002		002	mg/L	1	11-JAN-07	jJS	R4828
Τu	ngsten (W)-Dissolved	<0.01		.01	mg/L		11-JAN-07		R4828
Uri	anium (U)-Dissolved	<0.005		005	mg/L		11-JAN-07	: JS	R4828
Va	nadium (V)-Dissolved	<0.001	i	001	mg/L	1	11-JAN-07		R4828
Zir	ac (Zn)-Dissolved	< 0.003	1	003	mg/L	Ì	11-JAN-07	JS	R4828
Zir	conium (Zr)-Dissolved	<0.004		004	mg/L	i	11-JAN-07	JS	R4828
Metal Scan	-Total	i	".						1
	minum (Al)-Total	0.04	0	.01	mg/L		11-JAN-07	JS	. R4828
An	timony (Sb)-Total	< 0.005	,	005	mg/L	İ	11-JAN-07	1	R4828
	senic (As)-Total	0.002	i	001	mg/L		11-JAN-07		
	rium (Ba)-Total	0.34		.01	mg/L	1	11-JAN-07	; JS JS	R4828
	ryllium (Be)-Total	<0.001	!	.001	mg/L		11-JAN-07	JS	R4828

•

·· ·

ALS LABORATORY GROUP ANALYTICAL REPORT

	/Parameters	Result	ualifier* D.L.	Units	Extracted.	Analyzed	By	Batch
67515-1	17672		1					
ampled By:	JP on 04-JAN-07 @ 15:00							
atrix:	WATER							: I
Metal Sc		1	<u>.</u> .					1
	Bismuth (Bi)-Total	<0.001	0.001	mg/L	:	11-JAN-07	JS	R48288
	Boron (B)-Total	0.67	0.05	mg/L	i i	11-JAN-07	JS	R48288
	Cadmium (Cd)-Total	0.0001	0.0001	mg/L		11-JAN-07	JS	R48288
	Calcium (Ca)-Total	114	0.5	mg/L		11-JAN-07	JS	R48288
	Chromium (Cr)-Total	<0.001	0.001		ļ	11-JAN-07	JS	R4828
	Cobalt (Co)-Total	<0.0005	0.0005		1	11-JAN-07	JS	R4828
	Copper (Cu)-Total	0.001	0.001	mg/L		11-JAN-07	JS	R48288
	Iron (Fe)-Totai	0.73	0.05	mg/L		11-JAN-07	JS	R48288
	Lead (Pb)-Total	<0.001	0.001	mg/L		11-JAN-07	JS	R48288
	Magnesium (Mg)-Total	21.0	0.5	mg/L		11-JAN-07	JS	R48288
	Manganese (Mn)-Total	0.294	0.001	mg/L		11-JAN-07	JS	R48288
	Molybdenum (Mo)-Total Nickel (Ni) Total	0.002	0.001	mg/L		11-JAN-07	JS	R4828
	Nickel (Ni)-Total Rheapharus (R) Tatal	0.005	0.002	mg/L		11-JAN-07	JS	R48288
	Phosphorus (P)-Total	<0.05	0.05	mg/L		11-JAN-07	JS	R4828
	Potassium (K)-Total Selenium (Se)-Total	3	1	mg/L		11-JAN-07	JS	R4828
		. 0.006	0.005	mg/L		11-JAN-07	JS	R4828
	Silicon (Si)-Total Silver (Ag)-Total	5.7	0.1	mg/L	1	11-JAN-07	JS	R4828
		<0.0001	.0.0001	mg/L		11-JAN-07	JS	R48280
	Sodium (Na)-Total	500	25	mg/L		11-JAN-07	JS	R48288
	Strontium (Sr)-Total Thellium (TI) Total	0.249	0.001	mg/L	1	11-JAN-07	JS	R48288
	Thallium (TI)-Total Tin (Sn)-Total	<0.0003	0.0003	mg/L	ŧ	11-JAN-07		R4828
		<0.001	0.001	mg/L		11-JAN-07	, JS	R4828
	Titanium (Ti)-Total Tungsten (W)-Total	0.005	0.002	mg/L		11-JAN-07	JS	R48288
	Uranium (U)-Total	<0.01	0.01	mg/L		11-JAN-07	JS	R4828
	Vanadium (V)-Total	<0.005	0.005	mg/L		11-JAN-07	JS	R4828
	Zinc (Zn)-Total	<0.001	0.001	0		11-JAN-07		R4828
	Zirconium (Zr)-Total	<0.003	0.003	mg/L		11-JAN-07	JS	R4828
	d Alkalinity	<0.004	0.004	mg/L		11-JAN-07	JS	R4828
	Alkalinity, Total (as CaCO3)	250			40. 14 1. 07	40 1411 07		
	Alkalinity, Bicarbonate (as CaCO3)	230	10 10	mg/L	10-JAN-07	10-JAN-07	AF	R4823
	Alkalinity, Carbonate (as CaCO3)	<10		mg/L	1	10-JAN-07	AF	R4823
	Total Dissolved Solids	1	10	mg/L mg/l	10-JAN-07	5	AF	R4823
	Total Kjeldahl Nitrogen	1870	20	mg/L	08-JAN-07	i	i	R4820
		0.3	0.15	mg/L	09-JAN-07	1	BJM	R48228
	Turbidity pH	2.7	0.1	NTU	06-JAN-07	[BZ	R48152
		7.93	0.01	pH units	09-JAN-07	09-JAN-07	BZ	R48220
	* Refer to Referenced Information for	Qualifiers (if any) and Me	thodology.					
						•		l
								ļ
					Ì		i	i
								İ
					1	: I	i	ļ
		4 •				į.	1	
			τ		1			

		Workorder:	L467515	Re	port Date: 1	6-JAN-07		Page 4 of 1
	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT	Water				· · · · · · · · · · · · ·			
Batch R482884	ŧ							
WG546250-2 CVS Silicon (Si)-Dissolved	-		450		0/			
Tin (Sn)-Dissolved			120 104		% %		61-151	11-JAN-07
Titanium (Ti)-Dissolved	be		104		%		91-139	11-JAN-07
Tungsten (W)-Dissolv			110		%		87-120	11-JAN-07
Zirconium (Zr)-Dissol			105		%		74-132	11-JAN-07
					70		77-128	11-JAN-07
WG546250-5 DUF Aluminum (Al)-Dissol		WG546250- 4 <0.01	، <0.01	RPD-NA	mg/L	N/A	20	11-JAN-07
Antimony (Sb)-Dissol	lved	<0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07
Arsenic (As)-Dissolve	ed	0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Barium (Ba)-Dissolve	d	0.06	0.06	j	mg/L	0.00	0.04	11-JAN-07
Beryllium (Be)-Dissol	ved	<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Bismuth (Bi)-Dissolve	ed	<0.001	<0.001	RPD-NA	mg/L	N/A	26	11-JAN-07
Boron (B)-Dissolved		0.07	0.07	J	mg/L	0.00	0,2	11-JAN-07
Cadmium (Cd)-Disso	lved	0.0006	0.0005	J	mg/L	0.0000	0.0004	11-JAN-07
Calcium (Ca)-Dissolv	red	84.5	84.1		mg/L	0.41	20	11-JAN-07
Chromium (Cr)-Disso	lved	0.002	0.002	J	mg/L	0.000	0.004	11-JAN-07
Cobait (Co)-Dissolve	d	0.0010	0.0010	J	mg/L	0.0000	0.002	11-JAN-07
Copper (Cu)-Dissolve	ed	0.001	0.001	J	mg/L	0.000	0.004	11-JAN-07
Iron (Fe)-Dissolved		<0.05	<0.05	RPD-NA	mg/L	N/A	20	11-JAN-07
Lead (Pb)-Dissolved		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07
Magnesìum (Mg)-Dìs	solved	30.0	29.9		mg/L	0.30	20	11-JAN-07
Manganese (Mn)-Dis	solved	0.128	0.128		mg/L	0.089	20	11-JAN-07
Molybdenum (Mo)-Di	ssolved	0.012	0.013		mg/L	5.8	20	11-JAN-07
Nickel (Ni)-Dissolved		0.004	0.004	J	mg/L	0.000	0.008	11-JAN-07
Phosphorus (P)-Diss	olved	<0.05	<0.05	RPD-NA	mg/L	N/A	20	11-JAN-07
Potassium (K)-Dissol	lved	3	3	J	mg/L	0	4	11-JAN-07
Selenium (se)-Dissol	ved	0.017	0.017	J	mg/L	0.000	0.02	11-JAN-07
Silicon (Si)-Dissolved	i	7.6	7.5		mg/L	0.99	20	11-JAN-07
Silver (Ag)-Dissolved		<0.0001	<0.0001	RPD-NA	mg/L	N/A	33	11-JAN-07
Sodium (Na)-Dissolv	ed	<0.5	<0.5	RPD-NA	mg/L	N/A	20	11-JAN-07
Strontium (Sr)-Dissol	ved	0.225	0.229		mg/L	1.9	20	11-JAN-07
Thallium (TI)-Dissolv	ed	<0.0003	<0.0003	RPD-NA	mg/L	N/A	20	11-JAN-07
Tin (Sn)-Dissolved		<0.001	<0.001	RPD-NA	mg/L	N/A	26	11-JAN-07

.

L467515 CONTD.... PAGE 4 of 4

Reference Information

Methods Listed (if a	pplicable);			
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On
ALK-SPEC-WT	Water	Speciated Alkalinity		APHA 2320B
ANIONS-WT	Water	Anion Scan (IC)		EPA 300.0 (IC)
C-DIS-ORG-WT	Water	Dissolved Organic Carbon		APHA 5310 B-Instrumental
VET-DIS-WT	Water	Metal Scan-Dissolved		EPA 200.8
MET-TOT-WT	Water	Metal Scan-Total		EPA 200.8
NH3-WT	Waler	Ammonia as N		APHA 4500-NH3
ОН-ТВ	Water	Hydroxide		APHA 2320 B-Potentiometric Titration
PH-WT	Water	рH		APHA 4500 H-Electrode
SOLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
TKN-WT	Water	Total Kjeldahl Nitrogen		APHA 4500-N
TURBIDITY-WT	Water	Turbidity		APHA 2130 B

Chain of Custody numbers:			
The last two letters of the ab	ove test code(s) indicate the laboratory thi	at performed analytical analysis	s for that test. Refer to the list below:
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ТВ	ALS LABORATORY GROUP - THUNDER BAY, ONTARIO, CANADA	WT	ALS LABORATORY GROUP - WATERLOO (SENTINEL), ONTARIO, CAN

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory control limits are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million.

mg/L (units) - unit of concentration based on volume, parts per million.

- < Less than.
- D.L. The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results. Environmental Division

•

ALS

		Workorder:	L467515	Re	port Date:	16-JAN-07		Page 1 of 11
1	TANTEC CONSULTIN 1B NICHOLAS BEAVE UELPH ON N1H 6H9	ER PARK ROAD						-
Contact: K	EITH HOLTZE/MARTI	NA RENDAS						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							-
	32382							
WG545388-2 Alkalinity, Total	CVS (as CaCO3)		97		%		80-120	10-JAN-07
WG545388-3 Alkalinity, Bicart	DUP ponate (as CaCO3)	L467441-1 185	176		mg/L	5.4	25	10-JAN-07
Alkalinity, Carbo	nate (as CaCO3)	<10	<10	RPD-NA	- mg/L	N/A	25	10-JAN-07
Alkalinity, Total	(as CaCO3)	190	180		mg/L	5.4	25	10-JAN-07
WG545388-1	MB				g	0.4	20	10-0/14-01
	oonate (as CaCO3)		<10		mg/L		10	10-JAN-07
Alkalinity, Carbo	nate (as CaCO3)		<10		mg/L		10	10-JAN-07
Alkalinity, Total	(as CaCO3)		<10		mg/L		10	10-JAN-07
ANIONS-WT	Water							
Batch R4	81872							
WG544507-9	DUP	WG544507-4						
Bromide		1.0	1.0		mg/L	2.0	25	05-JAN-07
Chloride		20	20	J	mg/L	0	8	05-JAN-07
Fluoride		1.0	1.0	J	mg/L	0.0	0.4	05-JAN-07
Nitrate-N		0.9	0.9	J	mg/L	0.0	0.4	05-JAN-07
Nitrite-N		0.9	0.9	J	mg/L	0.0	0.4	05-JAN-07 ·
Phosphate-P (or	nho)	0.9	0.9	J	mg/L	0.0	1.2	05-JAN-07
Sulphate		20	20	J	mg/L	0	8	05-JAN-07
WG544507-3 Bromide	LCS		102		%		80-120	05-JAN-07
Chloride			96		%		80-120	05-JAN-07
Fluoride			97		%		75-125	05-JAN-07
Nitrate-N			100		%		80-120	05-JAN-07
Nitrite-N			99		%		80-120	05-JAN-07
Phosphate-P (o	rtho)		91		%		63-138	05-JAN-07
Sulphate			97		%		80-120	05-JAN-07
WG544507-1	MB						00-120	vo-v/nn-V/
Bromide			<0.1		mg/L		0.1	05-JAN-07
Chloride			<2		mg/L		2	05-JAN-07
Fluoride			<0.1		mg/L		0.1	05-JAN-07
Nitrate-N			<0.1		mg/L		0.1	05-JAN-07
Nitrite-N			<0.1		mg/L		0.1	05-JAN-07
Phosphate-P (o	rtho)		<0.3		mg/L		0.3	05-JAN-07

		Workorder: L467515			Report Date: 16-JAN-07			Page 2 of 11	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
ANIONS-WT	Water						- , · · · · · · · · · · · · · · · · · ·		
Batch R481872	2								
WG544507-1 MB Sulphate			<2		mg/L		2	05-JAN-07	
Batch R481990)								
WG545110-6 DUF Bromide	5	WG545110-4 1.0	1.0	ſ	mg/L	0.0	0.4	08-JAN-07	
Chloride		19	19	J	mg/L	0	8	08-JAN-07	
Fluoride		1.0	1.0		mg/L	0.0	20	08-JAN-07	
Nitrate-N		0.9	0.9	J	mg/L	0.0	0.4	08-JAN-07	
Nitrite-N		0.9	0.9	J	mg/L	0.0	0.4	08-JAN-07	
Sulphate		20	20	J	mg/L	0	8	08-JAN-07	
WG545110-3 LCS Bromide	3		100		%		80-120	08-JAN-07	
Chloride			95		%		80-120	08-JAN-07	
Fluoride			97		%		75-125	08-JAN-07	
Nitrate-N			98		%		80-120	08-JAN-07	
Nitrite-N			100		%		80-120	08-JAN-07	
Sulphate			95		%		80-120	08-JAN-07	
WG545110-1 MB Bromide			<0.1		mg/L		0.1	08-JAN-07	
Chloride			<2		mg/L		2	08-JAN-07	
Fluoride			<0.1		mg/L		0.1	08-JAN-07	
Nitrate-N			<0.1		mg/L		0.1	08-JAN-07	
Nitrite-N			<0.1		mg/L		0.1	08-JAN-07	
Sulphate			<2		mg/Ł		2	08-JAN-07	
C-DIS-ORG-WT	Water				-		_		
Batch R48166									
WG544294-2 DUI Dissolved Organic Ca	Þ	L467086-1 2	3	J	mg/L	0	4	05-JAN-07	
WG544294-3 LCS Dissolved Organic Ca	6		98		%	·	77-120	05-JAN-07	
WG544294-1 MB Dissolved Organic Ca			<1		mg/L		1		
WG544294-4 MS Dissolved Organic Ca		L467086-2	103		%			05-JAN-07	
WG544294-5 MSi		WG544294-4			70		60-140	05-JAN-07	

.

	Workorder:	Workorder: L467515			6-JAN-07		Page 3 of 11		
Test Mati	rix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
C-DIS-ORG-WT Wat	ter	<u></u>							
Batch R481663									
WG544294-5 MSD	WG544294-4								
Dissolved Organic Carbon	103	98		%	4.4	26	05-JAN-07		
MET-DIS-WT Wat	ter								
Batch R482884									
WG546250-1 CVS Aluminum (Al)-Dissolved		102		0/					
Antimony (Sb)-Dissolved		102		%		78-129	11-JAN-07		
				%		72-130	11-JAN-07		
Arsenic (As)-Dissolved Barium (Ba)-Dissolved		105		%		89-123	11-JAN-07		
Beryllium (Be)-Dissolved		104		%		82-124	11-JAN-07		
Bismuth (Bi)-Dissolved		97		%		84-125	11-JAN-07		
Boron (B)-Dissolved		109		%		77-115	11-JAN-07		
Cadmium (Cd)-Dissolved		104		%		69-129	11-JAN-07		
		106		%		83-124	11-JAN-07		
Calcium (Ca)-Dissolved		97		%		84-121	11-JAN-07		
Chromium (Cr)-Dissolved		109		%		88-121	11-JAN-07		
Cobalt (Co)-Dissolved		112		%		87-118	11-JAN-07		
Copper (Cu)-Dissolved		109		%		82-124	11-JAN-07		
Iron (Fe)-Dissolved		112		%		88-134	11-JAN-07		
Lead (Pb)-Dissolved		111		%		80-128	11-JAN-07		
Magnesium (Mg)-Dissolved		94		%		80-125	11 - JAN-07		
Manganese (Mn)-Dissolved		106		%		84-122	11-JAN-07		
Molybdenum (Mo)-Dissolved	-	111		%		79-122	11-JAN-07		
Nickel (Ni)-Dissolved		110		%		88-120	11-JAN-07		
Phosphorus (P)-Dissolved		105		%		76-127	11-JAN-07		
Potassium (K)-Dissolved		100		%		74-143	11-JAN-07		
Selenium (se)-Dissolved		99		%		83-129	11-JAN-07		
Silver (Ag)-Dissolved		109		%		81-121	11- JAN- 07		
Sodium (Na)-Dissolved		97		%		86-123	11-JAN-07		
Strontium (Sr)-Dissolved		98		%		89-117	11-JAN-07		
Thallium (TI)-Dissolved		108		%		78-128	11-JAN-07		
Uranium (U)-Dissolved		106		%		82-123	11-JAN-07		
Vanadium (V)-Dissolved		103		%		77-123	11-JAN-07		
Zinc (Zn)-Dissolved		91		%		86-126	11-JAN-07		

	Workorder:	L467515	Re	port Date: 1	6-JAN-07		Page 5 of 1
est Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT Water							
Batch R482884							
WG546250-5 DUP Titanium (Ti)-Dissolved	WG546250-4			ff			
Tungsten (W)-Dissolved	<0.002 <0.01	<0.002 <0.01	RPD-NA	mg/L	N/A	20	11-JAN-07
Uranium (U)-Dissolved	<0.005		RPD-NA	mg/L	N/A	20	11-JAN-07
Vanadium (V)-Dissolved	0.003	<0.005 0.003	RPD-NA	mg/L	N/A	20	11-JAN-07
Zinc (Zn)-Dissolved	0.003	0.003	J	mg/L	0.000	0.004	11-JAN-07
Zirconium (Zr)-Dissolved	<0.004		J	mg/L	0.000	0.012	11-JAN-07
WG546250-3 MB	<0.004	<0.004	RPD-NA	mg/L	N/A	20	11-JAN-07
Aluminum (Al)-Dissolved		<0.01		mg/L		0.01	11-JAN-07
Antimony (Sb)-Dissolved	,	<0.005		mg/L		0.005	11-JAN-07
Arsenic (As)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Barium (Ba)-Dissolved		<0.01		mg/L		0.01	11-JAN-07
Beryllium (Be)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Bismuth (Bi)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Boron (B)-Dissolved		<0.05		mg/L		0.05	11-JAN-07
Calcium (Ca)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Chromium (Cr)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Cobalt (Co)-Dissolved		<0.0005		mg/L		0.0005	11-JAN-07
Copper (Cu)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Iron (Fe)-Dissolved		<0.05		mg/L		0.05	11-JAN-07
Lead (Pb)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Magnesium (Mg)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Manganese (Mn)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Molybdenum (Mo)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Nickel (Ni)-Dissolved		<0.002		mg/L		0.002	11-JAN-07
Phosphorus (P)-Dissolved		<0.05		mg/L		0.05	11-JAN-07
Potassium (K)-Dissolved		<1		mg/L		1	11-JAN-07
Selenium (se)-Dissolved		<0.005		mg/L		0.005	11-JAN-07
Silicon (Si)-Dissolved		<0.1		mg/L		0.1	11-JAN-07
Silver (Ag)-Dissolved		<0.0001		mg/L		0.0001	11-JAN-07
Sodium (Na)-Dissolved		<0.5		mg/L		0.5	11-JAN-07
Strontium (Sr)-Dissolved		<0.001		mg/L		0.001	11-JAN-07
Thallium (TI)-Dissolved		<0.0003		mg/L		0.0003	11-JAN-07
Tin (Sn)-Dissolved		<0.001		mg/L		0.001	11-JAN-07

		Workorder:	L467515		Report Date:	16-JAN-07		Page 6 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-DIS-WT	Water				······································	<u> </u>		
Batch R482884								
WG546250-3 MB								
Titanium (Ti)-Dissolved			<0.002		mg/L		0.002	11-JAN-07
Tungsten (W)-Dissolved			<0.01		. mg/L		0.01	11-JAN-07
Uranium (U)-Dissolved			<0.005		mg/L		0.005	11-JAN-07
Vanadium (V)-Dissolved			<0.001		mg/L		0.001	11-JAN-07
Zinc (Zn)-Dissolved			<0.003		mg/L		0.003	11-JAN-07
Zirconium (Zr)-Dissolved			<0.004		mg/L		0.004	11-JAN-07
Cadmium (Cd)-Dissolve	d		<0.0001		mg/L		0.0001	11-JAN-07
MET-TOT-WT	<u>Water</u>							
Batch R482884								
WG546250-1 CVS								
Aluminum (Al)-Total			102		%		77-128	11-JAN-07
Antimony (Sb)-Total			107		%		73-134	11-JAN-07
Arsenic (As)-Total			105		%		93-122	11-JAN-07
Barium (Ba)-Total			104		%		86-120	11-JAN-07
Beryllium (Be)-Total			97		%		85-124	11-JAN-07
Bismuth (Bi)-Total			109		%		76-114	11-JAN-07
Boron (B)-Total			104		%		67-131	11-JAN-07
Cadmium (Cd)-Total			106		%		83-122	11-JAN-07
Calcium (Ca)-Total			97		%		86-121	11-JAN-07
Chromium (Cr)-Total			109		%		89-121	11-JAN-07
Cobalt (Co)-Total			112		%		86-122	11-JAN-07
Copper (Cu)-Total			109		%		83-124	11- JAN- 07
Iron (Fe)-Total			112		%		88-134	11-JAN-07
Lead (Pb)-Total			111		%		80-128	11-JAN-07
Magnesium (Mg)-Total			94		%		78-124	11-JAN-07
Manganese (Mn)-Total			106		%		76-124	11-JAN-07
Molybdenum (Mo)-Tetal			111		%		80-122	11-JAN-07
Nickel (Ni)-Total			110		%		90-121	11-JAN-07
Phosphorus (P)-Total			105		%		71-132	11-JAN-07
Potassium (K)-Total			100		%		70-146	11-JAN-07
Selenium (Se)-Total			99		%		79-132	11-JAN-07
Silver (Ag)-Total			109		%		80-120	11-JAN-07
Sodium (Na)-Total			97		%		79-120	11-JAN-07 11-JAN-07

.

· - - -

		Workorder: L467515		Report Date: 16-JAN-07				Page 7 of 11	
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TOT-WT	Water								
Batch R482884									
WG546250-1 CVS									
Strontium (Sr)-Total			98		%		82-118	11-JAN-07	
Thallium (TI)-Total			108		%		73-133	11-JAN-07	
Uranium (U)-Totai			106		%		79-123	11-JAN-07	
Vanadium (V)-Total			103		%		75-123	11-JAN-07	
Zinc (Zn)-Total			91		%		76-130	11-JAN-07	
WG546250-2 CVS Silicon (Si)-Total			120		%		-	44 1411 07	
Tin (Sn)-Total			104		%		71-151	11-JAN-07	
Titanium (Ti)-Total			110		%		91-139	11-JAN-07	
Tungsten (W)-Total			110		%		81-125	11-JAN-07	
Zirconium (Zr)-Total			105		%		71-131	11-JAN-07	
WG546250-5 DUP		WORACOPO A	100		70		74-130	11-JAN-07	
Aluminum (Al)-Total		WG546250-4 <0.01	<0.01	RPD-NA	mg/L	N/A	20	11-JAN-07	
Antimony (Sb)-Total		<0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07	
Arsenic (As)-Total		0.001	<0.001	. RPD-NA	mg/L	N/A	20	11-JAN-07	
Barium (Ba)-Total		0.06	0.06	J	mg/L	0.00	0.04	11 -JAN- 07	
Beryllium (Be)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07	
Bismuth (Bi)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07	
Boron (B)-Total		0.07	0.07	J	mg/L	0.00	0.2	11-JAN-07	
Cadmium (Cd)-Total		0.0006	0.0005	J	mg/L	0.0000	0.0004	11-JAN-07	
Calcium (Ca)-Total		84.5	84.1	Ū	mg/L	0.41	20	11-JAN-07	
Chromium (Cr)-Total		0.002	0.002	J	mg/L	0.000	0.004	11-JAN-07	
Cobalt (Co)-Total		0.0010	0.0010	- J	mg/L	0.0000	0.002	11-JAN-07	
Copper (Cu)-Total		0.001	0.001	J	mg/L	0.000	0.004	11-JAN-07	
Iron (Fe)-Total		<0.05	<0.05	- RPD-NA	mg/L	N/A	20	11-JAN-07	
Lead (Pb)-Total		<0.001	<0.001	RPD-NA	mg/L	N/A	20	11-JAN-07	
Magnesium (Mg)-Total		30.0	29.9		mg/L	0.30	20	11-JAN-07	
Manganese (Mn)-Total		0.128	0.128		mg/L	0.089	20	11-JAN-07	
Molybdenum (Mo)-Total		0.012	0.013		mg/L	5.8	20	11-JAN-07	
Nickel (Ni)-Total		0.004	0.004	J	mg/L	0.000	0.008	11-JAN-07	
Phosphorus (P)-Total		<0.05	<0.05	RPD-NA	mg/L	N/A	20	11-JAN-07	
Potassium (K)-Total		3	3	J	mg/L	0	4	11-JAN-07	
Selenium (Se)-Total		0.017	0.017	J	mg/L	0.000	4 0.02	11-JAN-07 11-JAN-07	

.

.

. .

		Workorder:	L467515	Re	port Date: 1	16-JAN-07		Page 8 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	<u>Water</u>						· · · · · · · · · · · · · · · · · · ·	
Batch R482884								
WG546250-5 DUF Silicon (Si)-Total)	WG546250-4 7.6	7.5		Il a an			
Silver (Ag)-Total		<0.0001	<0.0001		mg/L	0.99	20	11-JAN-07
Sodium (Na)-Total		<0.5	<0.5	RPD-NA	mg/L	N/A	20	11-JAN-07
Strontium (Sr)-Total		0.225	0.229	RPD-NA	mg/L mg/L	N/A	20	11-JAN-07
Thallium (TI)-Total		<0.0003	<0.0003	RPD-NA	mg/L	1.9	20	11-JAN-07
Tin (Sn)-Total		<0.001	<0.000	RPD-NA	mg/L	N/A	20	11-JAN-07
Titanium (Ti)-Total		<0.002	<0.001		-	N/A	20	11-JAN-07
Tungsten (W)-Total		<0.01	<0.002	RPD-NA	mg/L	N/A	20	11-JAN-07
Uranium (U)-Total		<0.005	<0.005	RPD-NA	mg/L	N/A	20	11-JAN-07
Vanadium (V)-Total		0.003	0.003	RPD-NA	mg/L	N/A	20	11-JAN-07
Zinc (Zn)-Total		0.016	0.005	J	mg/L	0.000	0.004	11-JAN-07
Zirconium (Zr)-Total		<0.004	<0.004	J	mg/L	0.000	0.012	11-JAN-07
WG546250-3 MB		-0.004	NU,004	RPD-NA	mg/L	N/A	20	11-JAN-07
Aluminum (Al)-Total			<0.01		mg/L		0.01	11-JAN-07
Antimony (Sb)-Total			<0.005		mg/L		0.005	11-JAN-07
Arsenic (As)-Total			<0.001		mg/L		0.001	11-JAN-07
Barium (Ba)-Total			<0.01		mg/L		0.01	11-JAN-07
Beryllium (Be)-Total			<0.001		- mg/L		0.001	11-JAN-07
Bismuth (Bi)-Total			<0.001		mg/L		0.001	11-JAN-07
Boron (B)-Total			<0.05		mg/L		0.05	11-JAN-07
Calcium (Ca)-Total			<0.5		mg/L		0.5	11-JAN-07
Chromium (Cr)-Total			<0.001		mg/L		0.001	11-JAN-07
Cobalt (Co)-Total			<0.0005		mg/L		0.0005	11-JAN-07
Copper (Cu)-Total			<0.001		mg/L		0.001	11-JAN-07
Iron (Fe)-Total			<0.05		mg/L		0.05	11-JAN-07
Lead (Pb)-Total			<0.001		mg/L		0.001	11-JAN-07
Magnesium (Mg)-Tot	al		<0.5		mg/L		0.5	11-JAN-07
Manganese (Mn)-Tot	al		<0.001		mg/L		0.001	11-JAN-07
Molybdenum (Mo)-To	tal		<0.001		mg/L		0.001	11-JAN-07
Nickel (Ni)-Total			<0.002		mg/L		0.002	11-JAN-07
Phosphorus (P)-Tota	1		<0.05		mg/L		0.05	11-JAN-07
Potassium (K)-Total			<1		mg/L		1	11-JAN-07
Selenium (Se)-Total			<0.005		mg/L		0.005	11-JAN-07
					-		0.000	11-0/14-07

+

13 ·

		Workorder:	L467515	Re	port Date: 16	6-JAN-07		Page 9 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water			···=·				
Batch R482884 WG546250-3 MB Silicon (Si)-Total			<0.1		mg/L		0.1	11-JAN-07
Silver (Ag)-Total			<0.0001		mg/L		0.0001	11-JAN-07
Sodium (Na)-Total			<0.5	-	mg/L		0.5	11-JAN-07
Strontium (Sr)-Total			<0.001		mg/L		0.001	11-JAN-07
Thallium (TI)-Total			<0.0003		mg/L		0.0003	11-JAN-07
Tin (Sn)-Total			<0.001		тg/L		0.001	11-JAN-07
Titanium (Ti)-Total			<0.002		mg/L		0.002	11-JAN-07
Tungsten (W)-Total			<0.01		mg/L		0.01	11-JAN-07
Uranium (U)-Total			<0.005		mg/L		0.005	11-JAN-07
Vanadium (V)-Total			<0.001		mg/L		0.001	11-JAN-07
Zinc (Zn)-Total			<0.003		mg/L	(0.003	11-JAN-07
Zirconium (Zr)-Total			<0.004		mg/L		0,004	11-JAN-07
Cadmium (Cd)-Total			<0.0001		mg/L		0.0001	11-JAN-07
NH3-WT	Water							
Batch R481313 WG544489-2 CVS Ammonia as N			101		%		85-115	05-JAN-07
WG544489-3 DUP Ammonia as N		L467401-4 <0.05	<0.05	RPD-NA	mg/L	N/A	20	05-JAN-07
WG544489-4 DUP Ammonia as N		L467526-2 0.05	0.06	J	mg/L	0.01	0.2	05-JAN-07
WG544489-1 MB Ammonia as N			<0.05		mg/L		0.05	05-JAN-07
<u>PH-WT</u>	Water							
Batch R482207 WG545650-1 CVS pH			100		%		00 (10	
₩G545650-3 DUP pH		L468000-1 7.88	7.88		pH units	0.0	90-110 20	09-JAN-07 09-JAN-07
WG545650-4 DUP pH		L468263-1 7.27	7.28		pH units	0.14	20	09-JAN-07
SOLIDS-TDS-WT	<u>Water</u>							

· ···

		Workorder:	L467515		Report Date:	16-JAN-07		Page 10 of 11
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-WT	Water		····	······································				
Batch R482098 WG545008-2 DUP Total Dissolved Solids		L 467510-1 4360	4380		mg/L	0.55	30	09-JAN-07
WG545008-3 LCS Total Dissolved Solids			94		%		70-130	70-MAL-60
WG545008-1 MB Total Dissolved Solids			<20		mg/L		20	09-JAN-07
TKN-WT Batch R482282 WG545404-2 CVS Total Kjeldahl Nitrogen	<u>Water</u>		96		%		82-124	09-JAN-07
WG545404-3 DUP Total Kjeldahl Nitrogen		L467702-1 1.0	1.0	L	mg/L	0.0	0.6	09-JAN-07
WG545404-1 MB Total Kjeldahl Nitrogen			<0.2		mg/L		0.15	09-JAN-07
<u>TURBIDITY-WT</u> Batch R481527 WG544772-1 CVS	<u>Water</u>							
Turbidity WG544772-3 DUP		L467510-1	95		%		78-116	06-JAN-07
Turbidity WG544772-2 MB		2.9	3.0		NTU	3.4	20	06-JAN-07
Turbidity			<0.1		NTU		0.1	06-JAN-07

Workorder: L467515

Report Date: 16-JAN-07

Page 11 of 11

Legend:

r + - - - - -

- Limit 99% Confidence Interval (Laboratory Control Limits)
- DUP Duplicate
- RPD Relative Percent Difference
- N/A Not Available
- Laboratory Control Sample Standard Reference Material LCS
- SRM MS Matrix Spike
- Matrix Spike Duplicate MSD
- ADE Average Desorption Efficiency
- Method Blank MB
- IRM Internal Reference Material
- CRM **Certified Reference Material**
- CCV **Continuing Calibration Verification**
- CVS Calibration Verification Standard
- LCSD Laboratory Control Sample Duplicate

Qualifier:

RPD-NA Relative Percent Difference Not Available due to result(s) being less than detection limit.

- Α Method blank exceeds acceptance limit. Blank correction not applied, unless the gualifier "RAMB" (result adjusted for method blank) appears in the Analytical Report.
- В Method blank result exceeds acceptance limit, however, it is less than 5% of sample concentration. Blank correction not applied.
- Ε Matrix spike recovery may fall outside the acceptance limits due to high sample background.
- F Silver recovery low, likely due to elevated chloride levels in sample.
- Outlier No assignable cause for nonconformity has been determined. G
- Duplicate results and limit(s) are expressed in terms of absolute difference. J
- The sample referenced above is of a non-standard matrix type; standard QC acceptance criteria may κ not be achievable.
- L Low matrix spike recovery due to instability of spiked analyte in the sample matrix.

ETL		9-309 Indoi		I N	6L		HAR	NOF	CUSTO	DY / AN/	4LY1	TICAL	SEP	Š.	<u> </u>	EQUE			9			<u> </u>	PAGE_	0957 Leof L
		51.	J~00,	2-0L										D.		ce Re		ed:				lar (default)	••••••	
	CA	NADA	1011	ERI		1-800-668-	878							E.	Cate	Requi	rea:			<u> </u>		ly (50% surch gency (100%		
OMPANY NAM		MUM				CRITERI	· · · · · ·		nd heles		÷	1		A.		LYSUS	REOL	IEST		<u>.</u>			TILES FELD PL	TEREDI
Stan	tec							(a) tehr			-{	>		Ì	<u>م</u> دا		$\overline{\mathbf{X}}$	$\overline{}$					RVED (F/P)	
ROJECT MANA	•					Reg 153/04					· ·	Ķ	KÌ	1	 	<u> </u>			·	15	<u> </u>	SUBMISS	ON #	
PEND	45	14	oH.	26	2	Table					4		6.	Ø	20							114	トチョ	515
DECTI 110	7.61	20.	~				MISA		PW00_				13	$ $ \approx	22	17	2			1	1	ENTERED	BY:	
IDA	TUY	<u>00:</u>	$\frac{D}{2}$	<u>.</u>		OTHER REPORT		Eluar o	RESULTS WILL	BS M4KED	-	176	S	0		1.	5			1		104	5	
<u>- 217</u>	163	-4	<u>n 2</u>	5		DISTRIBUT					ERS	11	$\frac{1}{2}$	2	1	1Z	2	5	~	2	14	BATE/TIME	E ENTERED:	;
<u>017</u>	<u>_163</u>	- 7	<u>t/</u> 7	7		ENSAIL_L	FAX		Tolar	L	IAIN		13	I.L.	R	ß	6	X	く	1.2	ΓÝ	ar	~1	07
Q1421	2	-				EMAILI_M	renga	s fle	STAV	ec.con	ηž	120	2	~	14	N.	L.	L.		$\langle \boldsymbol{\prec} \rangle$	Tr.		, 51	<u> </u>
	IPLING IN					EMARL2_K	noltze	2.	<u>mr</u> e	C.Can	4%	1	1	-7		Ő	22	2	J.	12	19	~~~ D=	550	
Sample Date	u time	TYPE		MATE 1	<u> </u>	SELECT: por					NUMBER OF CONTAINERS	E.	2	N N		्रेष	Q	1	アプ	La	17	42	<u>~~~</u>	<u> </u>
Dat≘ (yyinerida)	Time (24 hr)	COMP	WATER	2 2	OTHER	SAMPL	BESCRIPTIC	י סד אי	APPEAR ON	REPORT	IUM	1 Z	1		H	ž	B	ÆĽ	P	4	t	СОМ	MENTS	LAB ID
n7.11/1	+ 13:0			广		15	672_			_	5			5			73	7	~		/			
07-01-07	15-4	K-+		1-			OIL-				¥	-												
<u> </u>			+	┝──		<u> </u>				<u> </u>	+													
	!	<u> </u> _									+	ļ		_										
				<u> </u>	 						1									(_
				-	}													1	}					
_			1	1		1	·· <u>·······</u> ·····				1		-			~ 1							<u> </u>	
				+		<u> </u>	¥,	20	N	77	2a	26 D	HX a	- (at	71	S				Ì			
				+	Í –	<u> </u>		202	,			ales 1	<u></u>			<u> </u>	-+							+
				┼─							<u> </u>				{	╾╼┽	{		{					
				┣							 											· ·		<u> </u>
		-				L					\square													
						[
							SPE	CIAL IN	STRUCTIO	NS/COMMEN	TS .				_								MPLE COND	ATION
																					1	FROZEN		
1							-															COLD AMBIENT		- 7.0
PAND		<u> </u>			ব		-nt-		AECEIVED BY	r:					Ţ	DATE 4 TH	IVE .					CONDITION A	CEPTABLE	TINI
WQUISHED BY:					~	DAJE 8 THAE	7-		RECEIVED AT	LAB BY:	57	<u>/</u>			h		ie ,	<u>/~~</u>	······	25		JPON RECEIP	• {ana]	1K9
NOTES AND C	ONDITION	15:			l	L	·····	- 			- f							01			-4			10 2

•

÷

:

:

:

• ī i Į

. . :

.

.

· . · .

i : . .

APPENDIX B

ACUTE TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03, JANUARY 2007

APPENDIX B

STATION MWS-01

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Work Order : 210742 Sample Number : 17673

Stantec

MWS-01

	SAMPLE IDENTIFICATION		
Company :	Canada North Environmental Services	Time Collected :	11:30
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	MWS01	Date Received :	2007-01-04
Sampling Method :	Composite	Date Tested :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Temp. on arrival :	12.0° C
Sample Description:	Cloudy, grey, odourless.		
Test Method :	Reference Method for Determining Acute Lethality of Education Eps 1/RM/14 (Second Edition, December 2000)		agna. Environment

TEST RESULTS

		11ASI MEGUDIG		
Effect	Value	95% Confidence Limits	Slope	Calculation Method
48-h LC50	>100%	-	_	-

The results reported relate only to the sample tested.

SODIUM CHLORIDE REFERENCE TOXICANT DATA

Organism Batch :
Date Tested (y/m/d) :
LC50 (95% Confidence Limits) :
Statistical Method :

Dm06-26 2007-01-03 7.0 g/L (5.8 - 8.0) Non-Linear Interpolation

Historical Mean LC50 :6.5Warning Limits (± 2SD) :5.6Analyst(s) :JP

6.5 g/L 5.6 - 7.5 g/L JP

Daphnia magna CULTURE HEALTH DATA

Time to First Brood : Culture Mortality : 9.2 days 1.8 % (previous 7 days) Mean Young Per Brood :

Number of Replicates :

38.2

TEST CONDITIONS

Sample Treatment : pH Adjustment : Test Aeration : Organism Batch : None None Nonc Dm06-26

Test Organisms / Replicate :3Total Organisms / Test Level :12Organism Loading Rate :16.7 mL/organism

4

Date: 2007-01-11

<original signed by>

Project Manage

Certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL)

TOXICITY TEST REPORT Daphnia magna Page 1 of 2

Stantec

---- -

-- ..

- -

•

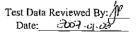
- - - - - -

Daphnia magna TOXICITY TEST REPORT

Page 2 of 2

Work Order:	210742
Sample Number:	17673

	Hardness (mg/L as CaCO3)	Hardness Adjustment	рН	D.O. (n1g/L)	Cond. (# s)	Temp. (°C)	02 Sat. (%) [*]	Total Pre-Aeration Time (h) @ 30 mL/min/
Initial Water Chemistry:	160	None	9.0	9.8	7580	19.5	113	0:30
Date & Time	2007-01-04	14:55	0 hours					<u></u>
Technician:	JP/SM	14:55						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	O2 Sat. (%)	Hardness
100	0	0	8.9	9.7	7620	20.0	112	160
50	0	0	8.8	9.2	4230	19.5		
25	0	0	8.7	9.2	2373	19.5		
13	0	0	8.6	9.1	1420	19.5		
б	0	0	8.5	9.0	880	19.5		
Control	0	0	8.5	9.0	396	19.5	102	200
Notes:								
			24 hours		<u>-</u> <u>-</u>			
Date & Time Technician:	2007-01-05 JP	14:55						
Test Conc. (%)	Mortality	Immobility	рН	D.O.	Cond.	Temp.		
100	0	0		-	—	20.0		
50	0	0	· -	_		20.0		
25	0	0	-	-	-	20.0		
13	0	0	_	-		20.0		
6	0	0	-	-	_	20.0		
Control	0	0	-	-		20.0		
Notes:	Test organisms	floating in the 10	0% effluent.	(JP)				
·····			48 hours					<u> </u>
Date & Time Technician:	2007-01-06 JGG	14:55						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.		
100	0	0	8.8	7.2	7640	20.0		
50	0	0	8.6	8.6	4030	20.0		
25	0	0	8.5	8.8	2070	20.0		
13	0	0	8.5	8.8	1301	20.0		
6	0	0	8.5	9.1	859	20.0		
Control	0	0	8.5	9.0	398	20.0		


Notes:

of control organisms showing stress:0 Daphnia Batch #: Dm06-26

Number immobile does not include number of mortalities.

- = not measured

'adjusted for actual temp. & barometric pressure

Stantec Consulting Ltd. 11B Nicholas Beaver Road, RR3 Guelph ON N1H 6H9 TOXICITY TEST REPORT Tel: (519) 763-4412 Fax: (519) 763-4419 **Rainbow** Trout stantec.com Page 1 of 2 Work Order : 210742 Sample Number : 17673 Stantec SAMPLE IDENTIFICATION Company : Canada North Environmental Services Time Collected : 11:30 Location : Saskatoon, SK Date Collected : 2007-01-03 Substance : MWS01 Date Received : 2007-01-04 Sampling Method : Composite 2007-01-04 Date Tested : Sampled By ; J. Hogan/K. Wells/J. Moostoos Temp. on arrival : 12.0 °C Sample Description : Cloudy, grey, odourless. Test Method : Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout. Environment Canada, EPS 1/RM/13 (Second Edition, December 2000). TEST RESULTS Effect Value 95% Confidence Limits Slope Calculation Method 96-h LC50 >100% The results reported relate only to the sample tested. POTASSIUM CHLORIDE REFERENCE TOXICANT DATA Organism Batch : T06-20 Date Tested (y/m/d): 2007-01-02 Historical Mean LC50 : 3849 mg/L LC50 (95% Confidence Limits) : 3815 mg/L (3370 - 4274) Warning Limits (± 2SD) : 3152 - 4706 mg/L Statistical Method : Probit Analyst(s): CT/FS/JGG TEST FISH Control Fish Sample Size : 10 Cumulative stock tank mortality : 0 % (prev. 7 days) Mean Fish Weight (± 2 SD) : 0.35 ± 0.23 g Mean Fish Fork Length (± 2 SD) : $35.3 \pm 4.6 \text{ mm}$ Range of Weights : 0.20 - 0.53 g Range of Fork Lengths : 32 - 39 mm Fish Loading Rate : 0.17 g/L TEST CONDITIONS Sample Treatment ; None Volume Tested (L): 20 pH Adjustment : None Number of Replicates : 1 Test Aeration : Yes Organisms Per Replicate : 10 Pre-aeration/Aeration Rate : $6.5 \pm 1 \text{ mL/min/L}$ Total Organisms Per Test Level : 10 Organism Batch : T06-20 <original signed by> Date: 2007-01-11 Approved by

Certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL)

Project Manage

Page 2 of 2

. ...

.

·· - ·

Work Order: Sample Number:	210742 17673						
Total Pre-Acration			рН	D.O. (mg/L)	Cond. (umhos)	Temp. (°C)	O ₂ Sat. (%
	Initial Wa	ater Chemistry:	8.9	9.7	8010	14.0	_
Time (h)							-
0:30	Chemistry	after 30min air:	8.9	9.7	8040	15.0	100
Date & Time Technician;	2007-01-04 JGG	14:30	0 hours				
Test Conc. (%)	-	Immobility	pН	D.O.	Cond.	Temp.	O2 Sat. (%
100	0	0	8.9	9.7	8040	15.0	100
50	0	0	8.7	9.8	4454	15.0	
25	0	0	8.5	9.6	2547	15.0	
13	0	0	8.3	9.8	1657	15.0	
6	0	0	8.3	9.9	1084	15.0	
Control	0	0	8.2	9.7	614	15.0	100
Notes:							
			24 hours				
Date & Time Technician:	2007-01-05 JGG	14:30					
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	
100	0	0	-	_	-	16.0	
50	0	0		-	-	16.0	
25	0	0	-	-	-	16.0	
13	0	0	-	-	-	16.0	
6	0	0	-	-	-	16.0	
Control	0	0	-	-		16.0	
Notes:							
	_ <u>·</u>		48 hours				
Date & Time Technician:	2007-01-06 CD(JGG)						
Test Conc. (%)		Immobility	pН	D.O.	Cond.	Temp.	
100	0	0	-	-	-	15.0	
50	0	0	-	-	-	15.0	
25	0	0		-	-	15.0	
13	0.	0	-	-	-	15.0	
6	0	0	-	~-	-	15.0	
Control	0	0	-		-	15.0	
Notes:							
Date & Time Technician:	2007-01-07 JGG	14:30	72 hours	-			
Test Conc. (%)		Immobility	pН	D.O.	Cond.	Term	
100	0	0		.U.U.	Cond.	Temp. 15.0	
50	0	0	_	_	_	15.0	
25	0	0	-	_		15.0	
13	õ	0	_	_		15.0	
6	Ő	Ő	_	-	-	15.0	
Control	0	Ő	_	-	_	15.0	
Notes:	-	-					
	,		96 hours		<u> </u>		
Date & Time Technician:	2007-01-08 JGG	14:30	20 HUUES				
Test Conc. (%)		Immobility	pН	D.O.	Cond.	Temp.	
100	0	0	8.5	8.7	8110	15.0	
50	0	0	8.5	8.7	4481	15.0	
25	0	0	8.3	8.7	2547	15.0	
13	0	0	8.4	8.9	1600	15.0	
6	0	0	8.4	8.9	1026	15.0	
Control	0	0	8.3	8.3	561	15.0	
Notes:							

Number immobile does not include number of mortalities.

adjusted for actual temp. & barometric pressure

"--" = not measured

Test Data Reviewed By:

Ś	CHAIN OF CUSTODY RECORD
Stantec	Stantec Work Order No:
P.O. Number:	
Field Sampler Name (print):	Jaime Hogan, Kelly Wells, John Moostoos
Signature:	time Hoten
Affiliation:	Canada North Environmental Services
Sample Storage (prior to shi	pping): Transported to Prince Albert from site (2h)
Custody Relinquished by:	Jaime Hogan
Date/Time Shipped:	January 3, 2007 / 1500

Shipping /	Address:		las B	ting Ltd. eaver Road, RR #3 o Canada N1H 6H9	
Voice: (5	19) 763-4412	I	Fax:	(519) 763 -44 19	
Client:	Canada N 4-130 Rol Saskatooi	oin Cresce	∋nt	nental Services (CanNorth) 7	
Phone:	(306) 652	-4432	<u></u>		<u> </u>
Fax:	(306) 652-	-4431			
Contact	Jaime Ho	gan or Kel	lly W	ells	

Sample Identification				Analyses Requested Sample Method and Volum						olume											
Date Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)		Sample Name		Stantec Sample Number	Temp, on arrival	Rainbow Trout Single Concoentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnia màgna LC50	Fathead Minnow Survival & Growth	Cerfodaphnia dubia Survival & Raproduction	Lemna minor Growth	Selenestrum capricomutum Growth	RISS Data Entry	Other (please specify below)	Grab	Composita	# of C (eg. 2 x	ontaine Volume 1L, 3 x 1	
2007-01-03	1230	WRS03			 17672		[1		1	\checkmark	1	1	<		1		\overline{V}	46L +	2L	+30L
2007-01-03		MWS01			7673			1		1	1	1	1	1		✓		V	46L +	2L -	+30L
					 			[1												
		23L på	ls	······································	 	120°C													_		
		bi ba			 ······	2.00															
			J																		
_																					
							_														<u>_</u>
																				\square	AL
																				J	$\backslash \mathcal{V}_{\alpha}$
					 															<u> </u>	ፓብዮ

For Lab Use	Only
Received By:	P(Stantec)
Date:	2007-01-04
Time:	11:00
Storage Location:	
Storage Temp.(*C)	

Contact Jaime on Thursday morning for details regarding changes to the standard dilution percentages for the above toxicity tests. Water quality parameters to be analysed as previously discussed with Keith; finalize these on Thursday as well.

Shipped three conters and four bupkets

*One coder missing from shipment. Stanted personnel picked up missing nece at wort. 2000-01-04 AP.

APPENDIX B

STATION WRS-03

Stantec Consulting Ltd. 11B Nicholas Beaver Road, RR3 Guelph ON N1H 6H9 TOXICITY TEST REPORT Tel: (519) 763-4412 Fax: (519) 763-4419 Daphnia magna stantec.com Page 1 of 2 Work Order : 210742 Sample Number: 17672 WRS-03 Stantec SAMPLE IDENTIFICATION Company : Canada North Environmental Services Time Collected : 12:30 Location : Saskatoon, SK Date Collected : 2007-01-03 Substance : WRS03 Date Received : 2007-01-04 Sampling Method : Composite 2007-01-04 Date Tested : Sampled By : J. Hogan/K. Wells/J. Moostoos Temp. on arrival: 12.0° C Sample Description: Clear, yellow, odourless. Test Method : Reference Method for Determining Acute Lethality of Effluents to Daphnia magna. Environment Canada EPS 1/RM/14 (Second Edition, December 2000). TEST RESULTS Slope Calculation Method Effect Value 95% Confidence Limits >100% 48-h LC50 The results reported relate only to the sample tested. SODIUM CHLORIDE REFERENCE TOXICANT DATA Organism Batch : Dm06-26 Date Tested (y/m/d) : 2007-01-03 Historical Mean LC50 : 6.5 g/L LC50 (95% Confidence Limits) : 7.0 g/L (5.8 - 8.0) Warning Limits (± 2SD) : 5.6 - 7.5 g/L Statistical Method : Non-Linear Interpolation Analyst(s): JP Daphnia magna CULTURE HEALTH DATA Time to First Brood : 9.2 days Mean Young Per Brood : 38.2 Culture Mortality : 1.8 % (previous 7 days) TEST CONDITIONS Sample Treatment : None Number of Replicates : 4 pH Adjustment : None Test Organisms / Replicate : 3 Test Aeration : None Total Organisms / Test Level ; 12 Organism Batch : Dm06-26 Organism Loading Rate : 16.7 mL/organism <original signed by> Date: 2007-01-11 Approved by: Project Manager Certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL)

Stantec

Daphnia magna TOXICITY TEST REPORT

Page 2 of 2

.

Work Order:	210742
Sample Number:	17672

	Hardness (mg/L as CaCO3)	Hardness Adjustment	рН	D.O. (mg/L)	Cond. (# s)	Тетр. (°С)	O₂ Sat. (%) *	Total Pre-Aeration Time (h) @ 30 mL/min/
Initial Water Chemistry:	420	None	7.8	10.7	3270	19.0	121	0:30
Date & Time	2007-01-04	14:40	0 hours		·			
Technician:	JP/SM	17.70						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.	O2 Sat. (%)*	Hardness
100	0	0	8.0	10.2	3280	20.0	116	420
50	0	0	8.2	9.3	1880	19.5		
25	0	0	8.3	9.4	1155	19.5		
13	0	0	8.4	9.3	799	19.5		
6	0	0	8.4	9.4	588	19.5		
Control	0	0	8.5	9.0	396	19.5	102	200
Notes:								
			24 hours	,				
Date & Time Technician:	2007-01-05 JP	14:40						
Test Conc. (%)	Mortality	Immobility	рН	D.O.	Cond.	Temp.		
100	0	0	-	-	-	20.0		
50	0	0	-	_	_	20.0		
25	0	0		-	-	20.0		
13	0	0	-	-	-	20.0		
6	0	0	-	-	-	20.0		
Control	0	0	_	-	-	20.0		
Notes:								
			48 hours			·····		
Date & Time Technician:	2007-01-06 JGG	14:40						
Test Conc. (%)	Mortality	Immobility	pН	D.O.	Cond.	Temp.		
100	0	0	8.3	9.3	3250	20.0		
50	0	0	8.5	7.9	1847	20.0		
25	0	0	8.5	8.3	1092	20.0		
13	0	0	8.5	9.1	760	20.0		
6	0	0	8.5	9.0	577	20.0		
Control	0	0	8.5	9.0	397	20.0		
Notes:								

Notes:

of control organisms showing stress: 0 Daphnia Batch #: Dm06-26

Number immobile does not include number of mortalities.

.

- = not measured

* adjusted for actual temp. & barometric pressure

Stantec Consulting Ltd. 11B Nicholas Beaver Road, RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

Work Order :

210742

stantec.com

Stantec

Sample Number : 17672 SAMPLE IDENTIFICATION Company : Canada North Environmental Services Time Collected : 12:30 Location : Saskatoon, SK Date Collected : 2007-01-03 Substance : WRS03 Date Received : 2007-01-04 Sampling Method : Composite Date Tested : 2007-01-04 Sampled By : J. Hogan/K. Wells/J. Moostoos Temp. on arrival : 12.0 °C Sample Description : Clear, yellow, odourless. Test Method : Reference Method for Determining Acute Lethality of Liquid Effluents to Rainbow Trout. Environment Canada, EPS 1/RM/13 (Second Edition, December 2000). TEST RESULTS Effect Value 95% Confidence Limits Slope Calculation Method 96-h LC50 >100% The results reported relate only to the sample tested. POTASSIUM CHLORIDE REFERENCE TOXICANT DATA Organism Batch : T06-20 Datc Tested (y/m/d) : 2007-01-02 Historical Mean LC50 : 3849 mg/L LC50 (95% Confidence Limits) : 3815 mg/L (3370 - 4274) Warning Limits (± 2SD) : 3152 - 4706 mg/L Statistical Method : Probit Analyst(s) : CT/FS/JGG TEST FISH Control Fish Sample Size : 10 Cumulative stock tank mortality : 0 % (prev. 7 days) Mean Fish Weight (± 2 SD) : 0.48 ± 0.27 g Mean Fish Fork Length (± 2 SD) : 37.5 ± 7.3 mm Range of Weights : 0.29 - 0.71 g Range of Fork Lengths : 32 - 44 mm Fish Loading Rate : 0.24 g/L TEST CONDITIONS Sample Treatment : None Volume Tested (L): 20pH Adjustment : None Number of Replicates : 1 Test Aeration : Yes Organisms Per Replicate : 10 Pre-aeration/Aeration Rate : 6.5 ± 1 mL/min/L Total Organisms Per Test Level : 10 Organism Batch : T06-20 <original signed by>

TOXICITY TEST REPORT

Rainbow Trout

Page 1 of 2

Date: 2007-01-11

Certified by the Canadian Association of Environmental Analytical Laboratories (CAEAL)

Approved by

Project Manager

Stantec

.

RAINBOW TROUT TOXICITY TEST REPORT

Page 2 of 2

08

Work Order:210742Sample Number:17672

Total Pre-Aeration			рН	D.O. (mg/L)	Cond. (umhos)	Temp. (°C)	O2 Sat. (%)
Time (h)		iter Chemistry:	7.9	10.0	3428	14.0	-
0:30	Chemistry	after 30min air:	7.9	9.7	3445	14.0	100
			0 hours				
oate & Time echnician:	2007-01-04 JGG						
est Conc. (%)	•	Immobility	pН	D.O.	Cond.	Temp.	O2 Sat. (%)
00	0	0	7.9	9.7	3445	14.0	100
)	0	0	8.1	9.8	2039	15.0	
5	0	0	8.2	9.9	1354	15.0	
3	Õ	0	8.2	9.7	996	15.0	
	0	0	8.2	9.6	793	15.0	
Control	0	0	8.2	9.7	614	15.0	100
otes:					<u> </u>		<u> </u>
ate & Time	2007-01-05	14:30	24 hours				
echnician:	JGG						
est Conc. (%)		Immobility	pН	D.O.	Cond.	Temp.	
00	0	0	- -	_	_	16.0	
)	Ő	0	_	_	_	16.0	
5	0 0	0	_	_	_	16.0	
3	0	0	_	_	-	16.0	
,	0	0	_	_	-	16.0	
ontrol	0	0	_	_	-		
	v	U	-	-	-	16.0	
otes:			48 hours	<u>. </u>			
ate & Time	2007-01-06	14:30	40 110012				
echnician:	CD(JGG)				~ ·	_	
est Conc. (%)		Immobility	pН	D.O.	Cond.	Temp.	
0	0	0	-	-	-	15.0	
	0	0	-	-	-	15.0	
	0	0	~-	-	—	15.0	
	0	0	-	-	_	15.0	
	0	0	-	-	-	15.0	
ontrol	0	0	-	—	-	15.0	
otes;			72 hours	.			
ate & Time	2007-01-07	14:30	10015				
echnician:	JGG						
est Conc. (%)		Immobility	pH	D.O.	Cond.	Temp.	
)0	0	0	-	_	_	15.0	
, v	Õ	0	_	_	_	15.0	
	0	0		_	_	15.0	
	0	0		_		15.0	
	0	0	_		_	15.0	
ontrol	0	0	_	_	_		
otes:	U	v	_	_	-	15.0	
		<u>_</u>	96 hours	······			
ate & Time echnician:	2007-01-08 JGG	14:30					
est Conc. (%)		Immobility	рH	D.O.	Cond.	Temp.	
00	0	0	8.4	8.8	3459	15.0	
)	Õ	ő	8.4	8.2	2051	15.0	
5	õ	Ő	8.5	8.7	1361	15.0	
5	Ö	ő	8.6	8.3	1014	15.0	
	Ő	0	8.5	0.5 7.8	794	15.0	
ontrol	0	0	8.3	7.9	597	15.0	
otes:	U		0.2	1.7	371	13.0	
	ne showing et-	ess: (1				
of control or annia	na anowing str	(255. (,				
of control organism rout Batch #:	T06-20						
-		nber of mortaliti	es.				
out Batch #:	s not include nut		es.				Test Data

APPENDIX C

SUBLETHAL TOXICITY TEST RESULTS FROM STATIONS MWS-01 AND WRS-03, JANUARY 2007

APPENDIX C

STATION MWS-01

Ceriodaphnia dubia 'Test Report Survival and Reproduction l of 4

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON NTH 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419 stantec.com

.

Work Order : 210742 Sample Number: 17673

MWS-01

SAMPLE IDENTIFICATION

Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	MWS01	Time Collected :	11:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received :	11:00
Temp. on arrival :	2.0°C	Date Tested :	2007-01-06
Sample Description:	Cloudy, grey, odourless.		
Test Method :	Test of Reproduction and Survival using the Cladocera		
	Canada, Conservation and Protection. Ottawa, Ontario	b. Report EPS 1/RM	1/21 (as amended
	November 1997).		

		TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
LC50 (Survival)	16.4%	10.0-27.0	Probit (Stephan) a
IC25 (Reproduction)	4.1%	3.5-4.7	Linear Interpolation (Toxstat 3.5) b

The results reported relate only to the sample tested.

SODIUM CHLORIDE REFERENCE TOXICANT DATA

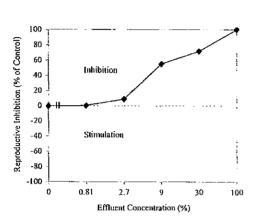
Date Tested : Organism Batch : Test Duration : IC25 Reproduction : 25% Confidence Limits	2007-01-12 Cd07-01 7 days 1.17 g/L : 0.81-1 37	Statistical Method : Historical Mean IC25 : Warning Limits (± 2SD) : Analyst(s) :	Linear Interpolation (Toxstat 3.5) ^b 1.28 g/L 0.88 - 1.89 SM/NK
95% Confidence Limits	: 0.81-1.37		

TEST CONDITIONS

Test Organism :	Ceriodaphnia dubia	Sample Filtration :	None				
Organism Batch :	Cd07-01	Test Acration :	None				
Source :	Stantec In-house Culture	Control/Dilution Water :	Well water with 29.6 mg/L NaCl				
Age (on Test Day 0) :	≤24 h (within 12 h of same age)	Test Volume per Replicate :	÷				
Culture Mortality :	0 % (during previous 7 days)	Test Vessel :	22 mL polystyrene vial				
Mean Young Produced :	\geq 15.0 (during previous 7 days)	Depth of Test Solution :	4.0 cm				
Young Produced :	\geq 6.0 (previous brood)	Organisms per Replicate :	1				
Ephippia in Culture :	None	Number of Replicates :	10				
pH Adjustment :	None	Daily Renewal Method :	Transferred to fresh solutions				
Hardness Adjustment :	None	Test Method Deviation(s) :	None				

COMMENTS

All test validity criteria as specified in the test method cited above were satisfied.


No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

Stantec

Work Order : 210742 Sample Number : 17673

Ceriodaphnia dubia Test Report Survival and Reproduction 2 of 4

SUMMARY OF TEST DATA

Ceriodaphnia dubia Reproductive Inhibition

	Efflu	ent Co	ncentrati	on (%)		
Replicate	Control	0.81	2.7	9	30	100
1	29	28	32	0	8	0
2	37	6*	25	19	11	0
3	29	34	27	15	7	0
4	36	31	32	19	12	0
5	36	35	32	10	8	0
6	31	37	30	16	9	0
7	37	35	30	15	13	0
8	35	32	31	16	6	0
9	32	34	33	20	11	0
10	31	32	31	20	9	0
Mean	33.3	33.1	30.3	15.0	9.4	0.0

Total Neonates per Test Organism at Test Completion

* this value was not included in the total # of young, due to accidental mortality.

Cumulative Daily Test Organism Mortality (%)

	-		Efflu	ent Concer	itration (%	6)	
Date	Test Day	Control	0.81	2.7	9	30	100
2007-01-07	-1	0	0	0	0	0	100
2007-01-08	2	0	0	0	0	0	100
2007-01-09	3	0	0	0	10	0	100
2007-01-10	4	0	0	0	10	0	100
2007-01-11	5	0	0	0	20	70	100
2007-01-12	6	0	0	0	20	80	100

Total Mortality (%) 0 0 0 20 80 100

REFERENCES

^a Stephan, C. E. 1977. Methods for calculating an LC50. pp 65-84 in : P. L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

<original signed by>

Date :

2007-01-25

Approved By

VV VA Project Manager

Ceriodaphnia dubia Test Report Survival and Reproduction 3 of 4

Stantec

...

...

....

.

Work Order : 210742 Sample Number: 17673

Ceriodaphnia dubia Survival and Reproduction

.

Test Initiation Date :	2007-01-06
Initiation Time :	11:45
Initiatied By :	RD
Test Completion Date :	2007-01-12

Concentratio	n (%)					Rep	olicate					Mean	Analyst(s) Concentration	ı (%)					Rep	licate					Mean
Control	Day	1	2	3	4	5	6	7_	8	9_	10	Young_		9	Day	1	2	3	4	_ 5 _	6	_7	8	9	10	Young
2007-01-07	1	0	0	0	0	0	0	0	0	0	0	0	RD	2007-01-07	1	0	0	0	0	0	0	0	0	0	0	0
2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0	RD	2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0
2007-01-09	3	6	7	5	7	7	6	7	6	6	6	6.3	AS	2007-01-09	3	0,	: 7	5	6	5	6	6	4	5	5	4.9
2007-01-10	4	0	0	0	13	0	0	0	0	0	0	1.3	KJ	2007-01-10	4	0	0	0	0	0	0	0	0	0	0	0
2007-01-11	5	11	12	9	0	13	10	14	10	11	10	10	KJ	2007-01-13	5	0	12	10	6	5 x	: 10	9	12	10	10	8.4
2007-01-12	6	12	18	15	16	16	15	16	19	15	15	15.7	AS	2007-01-12	6	0	0	0	7	0	0	0	0	5	5	1.7

Concentratio	m (%)					Rej	plicate					Mean	Concentration	n (%)					Rep	licate					Меал
0.81	Day		2	3	4	5	6	7	8	9	10	Young		Day	_1	2	3	4	5	6	7	8	9	10	Young
2007-01-07	I	0	0	0	0	0	0	0	0	0	0	0	2007-01-07	1	0	0	0	0	0	0	0	0	0	0	0
2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0	2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0
2007-01-09	3	3	6	6	6	7	5	6	6	7	6	5.8	2007-01-09	3	3	4	3	6	5	3	4	5	5	4	4.2
2007-01-10	4	0	0	0	п	0	0	0	0	2	0	1.3	2007-01-10	4	0	0	0	0	0	0	0	0	0	0	0
2007-01-11	5	12	0	* 11	0	13	14	12	10	10	12	i 0.444	2007-01-11	5	5 x	(7)	κ 4	6 ;	(3)	6	9	1,	6	x 5 x	5.2
2007-01-12	6	13	0	17]4	15	18	17	16	15	14	15.444	2007-01-12	6	0	0	0 :	x 0	0	0	0	0	0	0	0

Concentratio	• •					Rep	olicate					Mean	Concentration	ı (%)					Re	dicate					Mean
2.7	Day	1	2	3	4	5	6	7	8	9	10	Young	100	Day	1	2	3	4	5	6	7	8	9	10	Young
2007-01-07	1	0	0	0	0	0	0	0	0	0	0	0	2007-01-07	1	0 x	0 x	: 0 :	x 0 x	0 :	(0 x	0 x	0 x	: 0	x 0 x	× 0
2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0	2007-01-08	2	0	0	0	0	0	0	0	0	0	0	0
2007-01-09	3	7	5	6	4	7	6	6	6	7	5	5.9	2007-01-09	3	0	0	0	0	0	0	0	0	0	0	0
2007-01-10	4	11	0	0	15	0	0	0	0	0	0	2.6	2007-01-10	4	0	0	0	0	0	0	0	0	0	0	0
2007-01-11	5	0	7	9	0	11	11	9	10	11	14	8.2	2007-01-11	5	0	0	0	0	0	0	0	0	0	0	0
2007-01-12	6	14	13	12	13	14	13	15	15	15	12	13.6	2007-01-12	6	0	0	0	0	0	0	0	0	0	0	0

NOTES: 2006-01-11: Accidental mortality in vial 0.81-2. KJ

2007-01-23: The adult that suffered accidental mortality in vial 0.81-2 was excluded from statistical analysis. Percent mortality and mean # of young were calculated using only 9 replicates for the 0.81% concentration. JJ

Ceriodaphnia dubia Test Report Survival and Reproduction 4 of 4

Stantec

- - - - -

Work Order :210742Sample Number:17673

.....

Ceriodaphnia dubia Water Chemistry Data

		Initial Chemistry:	Temp. (°C)	DO (mg/L)	рН	Conductivity (µmhos/cm)	Hardness (mg/L as CaCO _J)
		,	25.0	7.9	8.7	7780	160
		~ .		_			
Effluent S	ab an maria Tiana	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
	ib-sample Used		1	1	2	2	3
	mperature (°C)		24.5	25.0	24.0	24.0	24.5
	Oxygen (mg/L		8.8	8.5	8.4	8.9	9.5
	Oxygen % Sat.	•	108	106	105	107	114
Pre-aerat	ion Time (min)	² 0	20	20	20	20	20
Analyst(s)	Initial	CD(RD)	EW	CT(RD)	EJ	HR	CT(HR)
	Final	EW	CT(RD)	AS	HR	JGG	NK
Control (0%)							
Temp. (°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0
	Final	25.0	24.5	24.0	24.0	25.0	24.5
DO % Sat. ¹	Initial	97	98	100	100	99	101
DO (mg/L)	Initial	7.9	7.9	7.8	8.0	7.9	8.3
	Final	7.0	6.6	7.2	7.3	7.9	8.0
pН	Initial	8.3	8.4	8.4	8.3	8.4	8.2
	Final	8.4	8.3	8.2	8.3	8.1	8.5
Cond. (µmhos/cm)	Initial	562	545	555	575	535	591
0.81 %							
Temp. (°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0
	Final	25.0	24.5	24.0	24.0	25.0	24.5
DO (mg/L)	Initial	7.8	8.1	7.9	8.0	8.2	8.4
	Final	6.6	7.1	7.3	7.2	7,3	8.1
pH	Initial	8.4	8.4	8.3	8.3	8.4	8.2
Cand (makes (and	Final	8.3	8.3	8.3	8.4	8.1	8.4
Cond. (µmhos/cm)	Initial	643	619	623	638	602	647
9%							
Temp. (°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0
	Final	25.0	24.5	24.0	24.0	25.0	24.5
DO (mg/L)	Initial	7.9	7.9	8.0	7.9	8,2	8.4
	Final	6.7	7.2	7.7	7.4	7.5	8.1
pН	Initial	8.4	8.5	8.4	8.3	8.4	8.2
~ • • • • • •	Final	8.2	8.3	8.4	8.3	8.2	8.4
Cond. (µmhos/cm)	Initial	1309	1250	1256	1271	1253	1292
100 %							
Temp. (°C)	Initial	24.0	25.0	—	_	-	_
D0 (5)	Final	25.0	-	-		_	_
DO (mg/L)	Initial	8.0	8.4	-	-	_	_
	Final	6.6	-		-	-	-
pН	Initial	8.6	8.7	—	-	-	-
Cand (material)	Final	8.4	-		—	-	_
Cond. (µmhos/cm)	(n)tta)	7800	7810		-		

"-" = not measured

 $^{\rm l}$ % saturation (adjusted for actual temperature and barometric pressure)

 $^{2} \leq 100$ bubbles/minute

Larval Fathead Minnow Test Report Survival and Growth 1 of 4

Stantec Consulting Ltd. 1 IB Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Work Order : 210742 Sample Number : 17673

Company : Location : Substance : Sampling Method : Sampled By :	Canada North Environmental Services Saskatoon, SK MWS01 Composite J. Hogan/K. Wells/J. Moostoos	Date Collected : Time Collected : Date Received : Time Received :	2007-01-03 11:30 2007-01-04 11:00
Temp. on arrival : Sample Description:	2.0°C Cloudy, grey, odourless.	Date Tested :	2007-01-06
Test Method :	Test of Growth and Survival using fathead minnows. E and Protection. Ottawa, Ontario. Report EPS 1/RM/22		

SAMPLE IDENTIFICATION

Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Growth)	>100%	-	-
LC50 (Survival)	>100%	-	-
	The results re	ported relate only to the sample tested.	

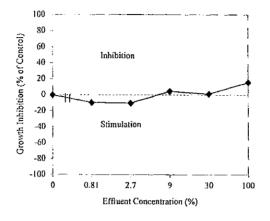
Date Tested : 2007-01-02 Statistical Method : Linear Interpolation (Toxstat 3.5)b Organism Batch : Fm07-01 Historical Mean IC25 : 0.86 g/L Test Duration : 7 days Warning Limits (± 2SD) : 0.65 - 1.16 IC25 Survival : 0.69 g/L Analyst(s) : SM/CT/EW/RD/KJ 95% Confidence Limits: 0.65 - 0.73

TEST CONDITIONS

	12001	00110110110	
Test Organism :	Pimephales promelas	Test Type :	Static Renewal
Organism Batch :	Fm07-01	Control/Dilution Water :	Well water with 29.6 mg/L NaCl
Source :	Stantec In-house Culture	Test Volume / Replicate :	300 mL
Life Stage :	Larval (<24 h old)	Test Vessel :	420 mL polystyrene beaker
Culture Mortality :	0.3 % (previous 7 days)	Depth of Test Solution :	8 cm
pH Adjustment :	None	Organisms per Replicate :	10
Sample Filtration :	None	Number of Replicates :	3
Hardness Adjustment :	None	Daily Renewal Method :	80-85% syphoned and replaced
Test Aeration :	None	Test Method Deviation(s):	None

COMMENTS

All test validity criteria as specified in the test method cited above were satisfied.


No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

Larval Fathead Minnow Test Report Survival and Growth 2 of 4

Stantec

Work Order :210742Sample Number :17673

Fathead Minnow Growth Inhibition

REFERENCES

^a Stephan, C. E. 1977. Methods for calculating an LC50. pp 65-84 in : P. L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

<original signed by>

Date :

2007-01-25

Approvéd By : ____

Project Manager

Larval Fathead Minnow Test Report Survival and Growth 3 of 4

Stantec

Work Order :210742Sample Number :17673

Larval Fathead Minnow Mortality Data

Initiation Tir	ne (h) 🛛 Day () (Initiation)	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7 (Com	pletion)	
12:15		2007-01-06	2007-01-07	2007-01-08	2007-01-09	2007-01-10	2007-01-11	2007-01-12	2007-01-13		
	Analyst(s):	RD	RD	KJ	CT(RD)	SM(RD)	El	El	11		
Concentration	n Replicate				Mortality					Mean Mortality	Standard
(%)							_	_		(%)	Deviation
	A	0	0	0	0	0	0	0	0		
Control	В	0	0	0	0	0	0	0	0	0.0	0.00
	С	0	00	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0		
0.81	В	0	0	0	0	0	0	0	0	0.0	0.00
	<u>C</u>	0	0	0	0	00	0	0	0		
	А	0	0	0	0	0	0	0	0		
2.7	В	0	0	0	0	0	1	1	1	3.3	0.58
	C	0	0	0	0	0	0	0	0		
	А	0	0	0	Û	0	0	0	0		
9	B	0	0	0	0	0	0	0	0	0.0	0.00
	С	0	0	00	0	0	0	0	0		_
	Α	0	0	0	0	0	0	0	0		
30	В	0	0	0	0	0	0	0	0	0.0	0.00
	С	0	0	0	0	00	0	0	00		
	Α	0	0	0	0	0	0	0	0		
100	В	0	0	0	0	0	0	0	0	0.0	0.00
	С	0	0	0	0	0	0	0	0		

Aberrant behaviour or swimming impairment : None

Concentration	Replicate	Number of	Mean Dry Weight	Treatment Mean	Standard
(%)		Larvae Weighed	of Larvae (mg)	Dry Weight (mg)	Deviation
	А	10	0.615		
Control	в	10	0.553	0.563	0.048
	<u> </u>	10	0.521		
	Λ	10	0.514		
0.81	В	10	0.650	0.618	0.092
	C	10	0.689		
	A	10	0.551		
2.7	В	9	0.640	0.621	0.063
	С	10	0.673		
	A	10	0.607		
9	В	10	0.531	0.538	0.066
	С	10	0.476		
	A	10	0.557		
30	В	10	0.571	0.557	0.015
	с	10	0.542		
	A	10	0.457		
100	в	10	0.495	0.474	0.019
	С	10	0.469		

Larval Fathead Minnow Weight Data

Data Reviewed By: <u>J</u> Date : <u>2007 - 01 - 23</u>

.

Stantec

Work Order :210742Sample Number:17673

Fathead Minnow Water Chemistry Data

	Initial	Chemistry:		DO (mg/L)	pН	Conductivity (µmhos/cm)		lness (CaCO ₃)
			25.0	7.9	8.7	7780	10	50
		Day I	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Effluent Su	b-sample Used	1	1	1	2	2	3	3
	mperature (°C)	25.0	24.5	25.0	24.0	24.0	24.5	24.5
	Oxygen (mg/L)	7.9	8.8	8.5	8.4	8.9	9.5	8.9
Dissolved	Oxygeu % Sat. ¹	100	108	106	105	107	114	111
Pre-aerati	ion Time (min)²	0	20	20	20	20	20	20
Analyst(s) :		CD(RD)	EW	CT(RD)	EJ	HR	CT(HR)	NK
	Final	EW	CT(RD)	СТ	HR	JGG	NK	CD(HR)
Control (0%)								
Temp.(°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	25.0
DO % Sat.	Initial	97	98	100	100	99	101	98
DO (mg/L)	Initial	7.9	7.9	7.8	8.0	7.9	8.3	7.8
	Final	6.5	6.5	7.0	7.6	7.4	7.3	7.6
рН	Initial	8.3	8.4	8.4	8.3	8.4	8.2	8.3
	Final	8.4	8.2	8.2	8.3	8.2	8.3	8.3
Cond. (µmhos/cm)	Initial	562	545	555	575	535	591	511
0.81 %								
Temp.(°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	25.0
DO (mg/L)	Initial	7.8	8.1	7.9	8.0	8.2	8.4	8.0
	Final	6.5	6.3	6.6	7.6	7.4	7.3	7.2
pН	Initial	8.4	8.4	8.3	8.3	8.4	8.2	8.3
•	Final	8.3	8.1	8.2	8.3	8.2	8.2	8.2
Cond. (µmhos/cm)	Initial	643	619	623	638	602	647	591
9%								
Temp.(°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	25.0
DO (mg/L)	Initial	7.9	7.9	8.0	7.9	8.2	8.4	8.0
	Final	6.8	6.7	7.0	7.8	7.2	7.3	7.3
pН	Initial	8.4	8.5	8.4	8.3	8.4	8.2	8.4
•	Final	8.3	8.2	8.2	8.3	8.1	8.2	8.2
Cond. (µmhos/cm)	Initial	1309	1250	1256	1271	1253	1292	1222
100 %								
Temp.(°C)	Initial	24.0	25.0	25.0	24.0	25.0	24.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	25.0
DO (mg/L)	Initial	8.0	8,4	8.0	8.0	8.2	8.4	8.2
(Final	7.0	6.8	7.3	7.6	7.2	8.4 7.1	5.7
pH	Initial	8.6	8.7	8.7	8.7	8.7	8.7	8.7
r	Final	8.5	8.5	8.5	8.5	8.4	8.4	8.7 8.5
Cond. (µmhos/cm)		7800	7810	7790	8.5 7760	7830	7840	7830
		, 500			, 100	1020	1070	1020

"-" = not measured

.

¹ % saturation (adjusted for actual temperature and barometric pressure)

² ≤100 bubbles/minute

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Work Order : 210742 Sample Number : 17673

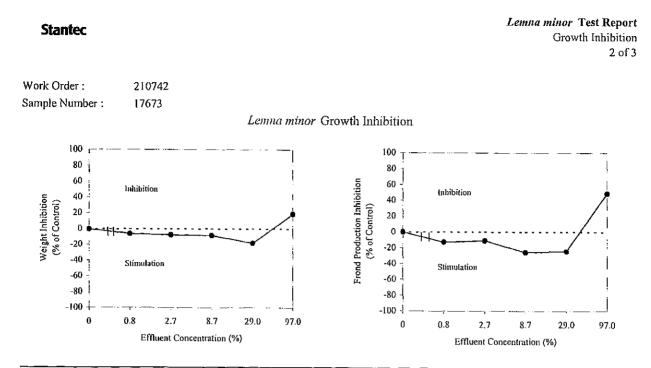
. . .

- -

Lemna minor Test Report Growth Inhibition 1 of 3

SAMPLE IDENTIFICATION

Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	MWS01	Time Collected :	11:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received :	11:00
Temp. on arrival :	2.0°C	Date Tested :	2007-01-05
Sample Description:	Cloudy, grey, odourless.		
Test Method :	Test for Measuring the Inhibition of Growth using the	Freshwater Macroph	iyte, Lemna minor.
	Method Development and Application Section, Enviro	nmental Technology	Centre, Environment


Canada. Ottawa, Ontario. Report EPS 1/RM/37.

		TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Weight)	>97.0%	-	-
IC25 (Frond Production)	53.7%	30.2-57.6 La	inear Interpolation (Toxstat 3.5) a
	The results reported	I relate only to the sample tested.	
	POTASSIUM CHLO	ORIDE REFERENCE TOXI	CANT DATA
Date Tested :	2006-12-22	Statistical Method :	Linear Interpolation (Toxstat 3.5) [*]
Organism Batch :	Lm06-12	Historical Mean IC25 :	2.32 mg/L
Test Duration :	7 days	Warning Limits (± 2SD)	: 1.35 - 4.09
IC25 (Frond Production) :	1.95 g/L	Analyst(s) :	HR/NK
95% Confidence Limits :	1.18 - 2.40		
		TEST CONDITIONS	
Test Organism :	Lemna minor L., Strain 773(Test Type :	Static (no sub-samples required)
Organism Batch :	Lm06-12	Control/Dilution Medium	1: Modified APHA
Culture Origin :	UTCC 492	Medium Preparation Wa	ter : Millipore Milli-Q
Test Organism Source :	Axenic in-house culture	Source of Water :	University of Guelph, Guelph ON
Age (on Test Day 0) :	10 days	Medium Preparation Che	
Health Criteria (in APHA) :	8.2-fold frond increase in 7 d	ays Nutrient Spiking of Sam	
Organism Acclimation :	21:05 h in APHA medium	Replicates per Concentra	tion: 3
Inoculum (Test Day 0) :	2 plants (3 fronds per plant)	Test Volume per Replica	te: 100 mL
Sample Filtration :	l μm (Whatman GF/C)	Test Vessel :	250 mL glass Erlenmeyer flask
Sample Pre-aeration :	20 min. at ≤100 bubbles/min	Depth of Test Solution :	4.0 cm
pH Adjustment :	None	Photoperiod/Light Intens	ity : Continuous, 4231 - 4641 lux
Hardness Adjustment :	None	Test Method Deviation(s): None

COMMENTS

•All test validity criteria as specified in the test method cited above were satisfied.

•Concentrations where frond production/weights was greater than the control were replaced with control values for statistical analysis as recommended by Environment Canada (2005).

TEST MONITORING

Termination Date :

Termination Time :

Terminated By :

Initiation Date :	2007-01-05
Intitiation Time :	14:15
Initiated By :	HR

Tempera	ture Monitori	ng	pH Mon	itoring	
Test Day	Date	Temperature	Concentration (%)	Day 0	Day 7
		(°C)		-	-
0 (unmodified sample)	2007-01-05	25.0	100 (unmodified sample)	8.8	_
0	2007-01-05	24.5	Control	8.2	8.2
ł	2007-01-06	24.5	0.8	8.3	8.3
2	2007-01-07	24.5	2.7	_	-
3	2007-01-08	24.5	8.7	8.4	8.4
4	2007-01-09	24.5	29.0	_	_
5	2007-01-10	24.5	97.0	8.6	8.8
6	2007-01-11	25.0			
7	2007-01-12	24.5			
"—" = not required					

REFERENCES

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

Environment Canada. 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests.

Environment Canada, Method Development and Application Section, Environmental Technology Centre,

Environmental Protection Scrvice. Ottawa, Ontario. EPS 1/RM/46, March 2005.

<original signed by>

Date :

2007-01-25

Approved By:

Project Manager

2007-01-12

14:15

KJ(HR)

Lemna minor Test Report Growth Inhibition 3 of 3

Stantec

Work Order : Sample Numbe	er:	210742 176 7 3	L	emna m	<i>inor</i> Frond	Increase		3 of 3
Concentration (%)	Replicate	Frond Count Day 0*	Frond Count Day 7	Frond Increase		Standard Deviation	CV (%)	Frond/Root Appearance (Day 7)
Control	A B C	6 6 6	53 58 64	47 52 58	52.3	5.5	10.5	Fronds healthy, appearance normal in all replicates.
0.8	A B C	6 6 6	70 61 64	64 55 58	59.0	4.6	7.8	Fronds healthy, appearance normal in all replicates.
2.7	A B C	6 6 6	72 65 55	66 59 49	58.0	8.5	14.7	Fronds healthy, appearance normal in all replicates.
8.7	A B C	6 6 6	69 72 74	63 66 68	65.7	2.5	3.8	Fronds healthy, appearance normal in all replicates.
29.0	A B C	6 6 6	84 65 64	78 59 58	65.0	11.3	17.3	Fronds healthy, appearance normal in all replicates.
97.0	A B C	6 6 6	34 30 34	28 24 28	26.7	2.3	8.7	Fronds clumping and darker green in all replicates.

NOTES: * No unusual appearance or treatment of culture prior to testing. Test inoculated with healthy plants.

• A 9.7-fold increase in frond number was observed in the control over the testing period.

· Light brown debris was observed at the bottom of the flasks in all concentrations. KJ

Lemna minor Frond Weight Data

Concentration (%)	Replicate	Dry Weight of Fronds (mg)	Mean Treatment Dry Weight (mg)	Standard Deviation	
	A	5.44			
Control	В	5.94	5.86	0.38	
	С	6.19	,		
	A	6.07		·	
0.8	в	5.95	6.21	0.35	
	С	6.61			
	Â	7.02			
2.7	В	6.24	6.31	0.68	
	С	5.66			
	Α	6.20			
8.7	В	6.81	6.36	0.40	
	С	6.06			
	A	7.49			
29.0	в	6.58	6.91	0.50	
	С	6.67			
		5.03			
97.0	в	4.57	4.76	0.24	
	С	4.69			

.

Selenastrum capricornutum Growth Inhibition 1 of 2

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

. .

Work Order : 210742 Sample Number : 17673

SAMPLE IDENTIFICATION

Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	MWS01	Time Collected :	11:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received :	11:00
Temp. on arrival ;	2.0°C	Date Tested :	2007-01-05
Sample Description:	Cloudy, grey, odourless.		
Test Method :	Growth Inhibition Test Using the Freshwater Alga Sele	nastrum capricornu	tum. Environment
	Canada, Conservation and Protection. Ottawa, Ontario	. Report EPS 1/RM	/25 (as amended
	November 1997).	-	-

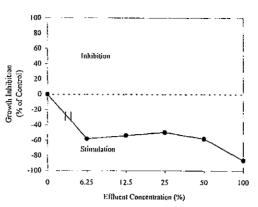
		TEST RESULTS*	
Effect	Value 9	5% Confidence Limits	Statistical Method
IC25 (Growth)	>100%	-	-
	The results reported	relate only to the sample tested.	
	SODIUM CHLORI	DE REFERENCE TOXICAN	T DATA
Date Tested :	2007-01-16	Statistical Method :	Linear Interpolation (Toxstat 3.5) ^a
Organism Batch :	Sel07-01	Historical Mean IC25 :	576.7 mg/L
Test Duration :	72 hours	Warning Limits (± 2SD) :	275.5 - 1233.0
IC25 Growth :	389.9 mg/L	Analyst(s):	HR
95% Confidence Limits	: 340.3 - 490.6		
		TEST CONDITIONS	
Test Organism :	Selenastrum capricornutum	Control/Dilution Water :	Millipore Milli-Q (no chemicals added)
Organism Batch :	ScI07-01	Test Vessel :	U-shaped polystyrene microplate
Strain Number :	UTCC37	Volume per Replicate :	220 μL
Source :	Stantec In-house Culture	Number of Control Replicates:	10
Age (on Test Day 0) :	4 days (in logarithmic growth)	Number of Test Replicates :	3
pH Adjustment :	None	Concentrations Tested :	10 + Control
Hardness Adjustment :	None	Photoperiod / Light Intensity :	Continuous light, 3995 - 4022 lux
Sample Prc-aeration :	None	Mean Test Temperature (± SD):	24.9°C (± 0.3)
Sample Filtration :	0.45 µm preconditioned filter	Test Duration :	72 hours
Volume Filtered:	>10 mL	Test Method Deviation(s) :	None

COMMENTS

*Results do not incorporate the 0.9091 dilution factor incurred by the addition of enrichment medium and algal inoculum.

•All test validity criteria as specified in the test method cited above were satisfied.

•No unusual appearance or treatment of culture prior to testing.


Selenastrum capricornutum

Growth Inhibition 2 of 2

Stantec

Work Order : 210742 Sample Number : 17673

Selenastrum capricornutum Growth Inhibition

Cell Enumeration at 72-hours

Initiation Date :	2007-01-05	Sample pH (at 0 hours):	8.8
Initiated By :	AS/HR	Control pH (at 0 hours) :	6.5
Completion Date :	2007-01-08	Control pH (at 72 hours) :	6.5
Enumerated By :	KJ(HR)	Initial Algal Inoculum :	1.0591 cells/mL (x 10 000)
Enumeration Technique :	Manual (hemocytometer)	Inoculum Prepared :	00:30 h prior to test initiation

Cell Concentration (x10 000)								Cell	Yield (x 10	000)			
Concentratio	1)	Replicate										Standard	CV
(%)	1	2	3	4	5	6	7	8	9	10		Deviation	(%)
Control	51.50	38.00	59.50	45.00	-	-	51.50	53.00	46.00	34.50	46.32	8.23	17.76
0.195	-		-								-	-	_
0.39		-	-								_		_
0.78			-				÷.				-	-	_
1.56	-	-	-								-	_	_
3.13	-		-									_	_
6.25	88.50	64.00	70.00								73.11	12.77	17.47
12.5	86.00	70.50	60.00								71.11	13.08	18.39
25	76.00	59.00	75.50								69.11	9.67	14.00
50	60.50	74.50	87.50								73.11	13.50	18.47
100	99.50	82.00	80.50								86.27	10.56	12.24

"-" = not enumerated

NOTES : •Control replicates 5 and 6 used for pH measurement.

Test Data Reviewed By : # Date: 2007-01-09

REFERENCES

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, USA.

<original signed by>

Project Manager

2007-01-25 Date :

Approved By

CHAIN OF CUSTODY RECORD	Shipping Address: Stantec Consulting Ltd. 11B Nicholas Beaver Road, RR #3 Guelph, Ontario Canada N1H 6H9
Stantec	Voice: (519) 763-4412 Fax: (519) 763-4419
P.O. Number: Field Sampler Name (print): Jaime Hogan, Kelly Wells, John Moostoos Signature: Hode	Client Canada North Environmental Services (CanNorth) 4-130 Robin Crescent Saskatoon, SK, S7L 6M7
Sample Storage (prior to shipping): Transported to Prince Albert from site (2h)	Phone: (306) 652-4432
Custody Relinquished by: Jaime Hogan	Fax: (306) 652-4431
Date/Time Shipped: January 3, 2007 / 1500	Contact: Jaime Hogan or Kelly Wells

······	Sample Identification					Analyses Requested Sample Method and					Method and Volume						
Data Collected (yyyy-mm-dd)	Time Collected (e.g. 14:30, 24 hr clock)	Sample Name	Number	Temp. on antval	Rainbow Trout Single Concoentration	Rainbow Trout LC50	Daphnia magna Single Concentration	Daphnie magna I.C50	Fathead Mirzhow Survivel & Growth	Ceriodephnla dubla Survival & Reproduction	Lenina minor Growth	Selenestrum cepricornuturn Growth	RISS Data Entry	Other (please specify below)	Grab	Composite	# of Containers and Volume (eg. 2 x 1L, 3 x 10L, stc.)
2007-01-03	1230	WRS03	17672			\checkmark		1	\checkmark	\checkmark	✓			1	_ \'		46L + 2L +30L
2007-01-03		MWS01	17673			\checkmark		1	1	1	\checkmark	1		 Image: A start of the start of		\mathbf{V}	46L + 2L +30L
		23L pails		120°C													
		be bags		2.00													
		J		· · · · · · · · · · · · · · · · · · ·													
																	D
											_	_					
																	J.C.

For Lab Use	Only
Received By:	P(Stantec)
Date:	2007-01-04
Time:	11.00
Storage Location.	
Storage Temp.(*C)	

Please list any special requests or instructions:

Contact Jaime on Thursday morning for details regarding changes to the standard dilution percentages for the above toxicity tests. Water quality parameters to be analysed as previously discussed with Keith; finalize these on Thursday as well.

Shipped three conters and four burkets

* One color missing from shipment. Stantic personnel picked up missing nice at deast - 2017-01-04 AP.

APPENDIX C

STATION WRS-03

Ceriodaphnia dubia Test Report Survival and Reproduction 1 of 4

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON NIH 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

stantec s

 Work Order :
 210742

 Sample Number :
 17672
 WRS-9

SAMPLE IDENTIFICATION

Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	WRS03	Time Collected :	12:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received :	11:00
Temp. on arrival :	2.0°C	Date Tested :	2007-01-05
Sample Description:	Clear, yellow, odourless.		
Test Method :	Test of Reproduction and Survival using the Cladocera	an Ceriodaphnia dul	bia. Environment
	Canada, Conservation and Protection. Ottawa, Ontario	. Report EPS 1/RM	1/21 (as amended
	November 1997).	-	

TEST RESULTS						
Effect	Value	95% Confidence Limits	Statistical Method			
LC50 (Survival)	>100%	-	-			
IC25 (Reproduction)	>100%	-	-			

The results reported relate only to the sample tested.

SODIUM CHLORIDE REFERENCE TOXICANT DATA

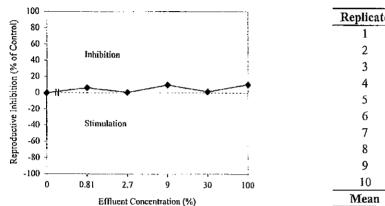
Date Tested : Organism Batch : Test Duration : IC25 Reproduction : 25% Confidence Limits	2007-01-12 Cd07-01 7 days 1.17 g/L	Statistical Method : Historical Mean IC25 : Warning Limits (± 2SD) : Analyst(s) :	Linear Interpolation (Toxstat 3.5) ^b 1.28 g/L 0.88 - 1.89 SM/NK
95% Confidence Limits	: 0.81-1.37		

TEST CONDITIONS

Test Organism :	Ceriodaphnia dubia	Sample Filtration :	None
Organism Batch :	Cd07-01	Test Aeration :	None
Source :	Stantec In-house Culture	Control/Dilution Water :	Well water with 29.6 mg/L NaCl
Age (on Test Day 0) :	≤24 h (within 12 h of same age)	Test Volume per Replicate :	: 15 mL
Culture Mortality :	10 % (during previous 7 days)	Test Vessel :	22 mL polystyrene vial
Mean Young Produced :	≥ 15.0 (during previous 7 days)	Depth of Test Solution :	4.0 cm
Young Produced :	\geq 6.0 (previous brood)	Organisms per Replicate :	1
Ephippia in Culture :	None	Number of Replicates :	10
pH Adjustment :	None	Daily Renewal Method :	Transferred to fresh solutions
Hardness Adjustment :	None	Test Method Deviation(s) :	None

COMMENTS

All test validity criteria as specified in the test method cited above were satisfied. No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.


Stantec

Work Order : 210742 Sample Number : 17672

SUMMARY OF TEST DATA

Ceriodaphnia dubia Reproductive Inhibition

Total Neonates per Test Organism at Test Completion

Effluent Concentration (%)							
Replicate	Control	0.81	2.7	9	30	100	
1	33	28	33	34	34	32	
2	37	35	31	29	33	32	
3	31	26	30	31	34	32	
4	36	29	35	31	37	21	
5	33	35	36	34	34	34	
6	32	34	34	16	35	32	
7	30	32	29	32	37	25	
8	36	29	34	32	32	32	
9	34	36	36	28	28	25	
10	35	32	37	37	28	37	
Mean	33.7	31.6	33.5	30.4	33.2	30.2	

Cumulative Daily Test Organism Mortality (%)

			Effluent Concentration (%)					
Date	Test Day	Control	0.81	2.7	9	30	100	
2007-01-06	I	0	0	0	0	0	0	
2007-01-07	2	0	0	0	0	0	0	
2007-01-08	3	0	0	0	0	0	0	
2007-01-09	4	0	0	0	0	0	0	
2007-01-10	5	0	0	0	0	0	0	
2007-01-11	6	0	0	0	0	0	0	
2007-01-12	7	0	0	0	0	0	10	
Total Mortal	ity (%)	0	0	0	0	0	10	

REFERENCES

^a Stephan, C. E. 1977. Methods for calculating an LC50. pp 65-84 in : P. L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

<original signed by>

Date: 2007-01-25

Approved By :

Project Manager

Ceriodaphnia dubia Test Report Survival and Reproduction 3 of 4

Stantec

Work Order :210742Sample Number :17672

Ceriodaphnia dubia Survival and Reproduction

Test Initiation Date :	2007-01-05
Initiation Time :	15:40
Initiatied By :	SM(RD)
Test Completion Date :	2007-01-12

Concentratio	n (%)					Rep	licate					Mean	Analysi(s) Concentration	n (%)					Rep	licate					Mean
Control	Day	1	2	3	4	5	6	7	8	9	10	Young		9	Day	1	2	3	4	_5	б	7	8	9	10	Young
2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0	RD	2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0
2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0	RD	2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0
2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0	RD	2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0
2007-01-09	4	4	4	6	6	6	5	3	5	4	5	4.8	КĴ	2007-01-09	4	8	4	5	5	5	4	4	6	3	6	5
2007-01-10	5	11	14	14	13	12	12	13	11	14	11	12.5	EJ	2007-01-10	5	12	10	12	11	12	8	11	10	11	11	10.8
2007-01-11	6	0	0	0	0	0	0	0	0	0	0	0	KJ	2007-01-11	6	0	0	0	0	0	0	0	0	0	0	0
2007-01-12	7	18	19	11	17	15	15	14	20	16	19	16.4	AS	2007-01-12	7	14	15	14	15	17	4	17	16	14	20	14.6

Concentratio	n (%)					Rej	olicate					Mean	Concentration	ı (%)			Replicate								Mean		
0.81	Day	1	2	3	4	5	6	7	8	9	10	Young		Day	1	2	3	4	5	6	7	8	_9	10	Young		
2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0	2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0		
2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0	2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0		
2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0	2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0		
2007-01-09	4	4	6	4	5	6	5	6	2	5	6	4.9	2007-01-09	4	7	3	6	7	5	6	8	5	5	6	5.8		
2007-01-10	5	10	11	10	9	13	13	12	10	15	n	11.4	2007-01-10	5	11	13	13	12	12	13	13	11	9	8	11.5		
2007-01-11	6	0	0	0	0	0	0	0	0	0	0	0	2007-01-11	6	0	0	0	0	0	0	0	0	0	0	0		
2007-01-12	7	14	18	12	15	6	16	14	17	16	15	15,3	2007-01-12	7	16	17	15	18	17	16	16	16	14	14	15.9		

Concentration	n (%)					Rej	olicate					Mean	Concentration	n (%)					Rep	licate					Меан
2.7	Day	1	2	3	4	5	б	7	8	9	10	Young	100	Day	1	2	3	4	5	6	7	8	9	10	Young
2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0	2007-01-06	1	0	0	0	0	0	0	0	0	0	0	0
2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0	2007-01-07	2	0	0	0	0	0	0	0	0	0	0	0
2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0	2007-01-08	3	0	0	0	0	0	0	0	0	0	0	0
2007-01-09	4	6	5	б	7	6	5	6	5	7	6	5.9	2007-01-09	4	4	5	4	6	4	6	4	5	5	5	4.8
2007-01-10	5	Ш	11	10	12	12	13	9	11	12	13	11.4	2007-01-10	5	13	12	12	15	14	10	14	13	12	13	12.8
2007-01-i i	6	0	0	0	0	0	0	0	0	0	0	0	2007-01-11	6	0	0	0	0	0	0	0	Û	0	0	0
2007-01-12	7	16	15	14	16	18	16	14	18	17	18	16.2	2007-01-12	7	15	15	16	0 :	(16	16	7	14	8	19	12.6

Stantec

• - · · · · · · · - · ·

Ceriodaphnia dubia Test Report Survival and Reproduction 4 of 4

Work Order : 210742 Sample Number: 17672

Ceriodaphnia dubia Water Chemistry Data

		Initial Chemistry:	Temp. (°C)	DO (mg/L)	рН	Conductivity (µmhos/cm)	Hardness (mg/L as CaCO3)	
			25.0	8.9	7.7	3340	420	
747		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
	ub-sample Used		1	1	2	2	3	3
	mperature (°C)		24.0	24.5	25.0	24.0	24.0	24.5
	l Oxygen (mg/L	<i>,</i>	9.3	9.1	9.5	9.7	9.9	10.3
	Oxygen % Sat.	•	[17	112	120	120	121	124
Pre-aera	tion Time (min)	20	20	20	20	20	20	20
Analyst(s)	luitial Final	CT(RD) CD(RD)	CD(RD) EW	EW CT(RD)	CT(RD) EJ	EJ HR	HR JGG	JGG NK
Control (0%)								
Temp. (°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
DOWAL	Final	25.0	25.0	24.5	25.0	24.0	24.5	24.5
DO % Sat. ¹	Initial Initial	100	97 7 0	98 7.0	100	100	99	101
DO (mg/L)	Initial Final	8.1 7.0	7.9 7.1	7.9 6.8	7.8 6.8	8.0 7.2	7.9 7.1	8.3
pН	Initial	8.3	8.3	8.4	8.4	8.3	8.4	6.8 8.2
1	Final	8.3	8.3	8.3	8.2	8.2	8.1	8.1
Cond. (µmhos/cm)	Initial	582	562	545	555	575	535	591
0.81 %								
Temp. (°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
	Final	25.0	25.0	24.5	25.0	24.0	24.5	24.5
DO (mg/L)	Initial Final	7.7 7.0	8.0	8.1	7.9	7.8	8.2	8.3
pН	Initial	8.2	7.2 8.3	6.6 8.5	6.7 8.4	7.0 8.2	6.9 6.7	6.9 8.2
P	Final	8.3	8,4	8.2	8,2	8.3	8.1	8.1
Cond. (µmhos/cm)	Initial	_	595	610	579	596	560	613
9%								
Temp. (°C)	Initial	24.0	24.0	25.0	25.0	24.0	25,0	25.0
	Final	25.0	25.0	24.5	25.0	24.0	24.5	24.5
DO (mg/L)	Initia)	7.8	8.0	8.2	8.0	8.0	8.3	8.3
рН	Final Initial	7.2 8.2	7.3 8.3	6.5 8.4	7.0	6.9	6.4	6.5
P.1	Final	8.2	8.3	8.1	8.3 8.2	8.2 8.3	8.3 8.0	8.2 8.1
Cond. (µmhos/cm)	Initial	799	850	828	826	837	806	855
100 %								
Temp. (°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
	Final	25.0	25.0	24.5	25.0	24.0	24.5	24.5
DO (mg/L)	Initial	8.4	8.6	8.3	8.3	8.6	8.8	8.8
"Ц	Final Initial	7.1	6.8	6.7	_	7.2	6.7	6.0
рН	fnitial Final	7.9 8.2	8.0 8.3	8.1 8.3	8.0	7.9	8.1	7.9
Cond. (µmhos/cm)		3350	3370	3350	3360	8.4 3350	8,2 3360	8.0 3350

"--" = not measured

¹ % saturation (adjusted for actual temperature and barometric pressure)

 $^{2} \leq 100$ bubbles/minute

Larval Fathead Minnow Test Report Survival and Growth 1 of 4

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

.

Work Order : 210742 Sample Number : 17672

Company : Canada North Environmental Services Location : Saskatoon, SK Date Collected : 2007-01-03 Substance : WRS03 Time Collected : 12:30 Sampling Method : Composite Date Received : 2007-01-04 Sampled By : J. Hogan/K. Wells/J. Moostoos Time Received : 11:00 Temp. on arrival : 2.0°C Date Tested : 2007-01-05 Sample Description: Clear, yellow, odourless. Test Method : Test of Growth and Survival using fathead minnows. Environment Canada, Conservation and Protection. Ottawa, Ontario. Report EPS 1/RM/22 (as amended November 1997).

SAMPLE IDENTIFICATION

		TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Growth)	>100%	-	
LC50 (Survival)	>100%	-	-
	The results re	ported relate only to the sample tested.	

 Date Tested :
 2007-01-02

 Organism Batch :
 Fm07-01

 Test Duration :
 7 days

 IC25 Survival :
 0.69 g/L

 95% Confidence Limits :
 0.65 - 0.73

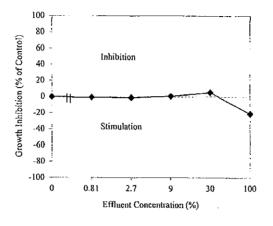
Statistical Method :Linear InteHistorical Mean IC25 :0.86 g/LWarning Limits (± 2SD) :0.65 - 1.16Analyst(s) :SM/CT/EW

Linear Interpolation (Toxstat 3.5)^b : 0.86 g/L D): 0.65 - 1.16 SM/CT/EW/RD/KJ

TEST CONDITIONS

Test Organism :	Pimephales promelas	Test Type :	Static Renewal
Organism Batch :	Fm07-01	Control/Dilution Water :	Well water with 29.6 mg/L NaCl
Source :	Stantec In-house Culture	Test Volume / Replicate :	300 mL
Life Stage :	Larval (<24 h old)	Test Vessel :	420 mL polystyrene beaker
Culture Mortality :	0.1 % (previous 7 days)	Depth of Test Solution :	8 cm
pH Adjustment :	None	Organisms per Replicate :	10
Sample Filtration :	Nonc	Number of Replicates :	3 .
Hardness Adjustment :	None	Daily Renewal Method :	80-85% syphoned and replaced
Test Aeration :	None	Test Method Deviation(s)	•••
Life Stage : Culture Mortality : pH Adjustment : Sample Filtration : Hardness Adjustment :	Larval (<24 h old) 0.1 % (previous 7 days) None Nonc None	Test Vessel : Depth of Test Solution : Organisms per Replicate : Number of Replicates : Daily Renewal Method :	420 mL polystyrene beaker 8 cm 10 3 80-85% syphoned and replaced

COMMENTS


All test validity criteria as specified in the test method cited above were satisfied.

No organisms exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

Larval Fathead Minnow Test Report Survival and Growth 2 of 4

Work Order : 210742 Sample Number : 17672

Fathead Minnow Growth Inhibition

REFERENCES

^a Stephan, C. E. 1977. Methods for calculating an LC50. pp 65-84 in : P. L. Mayer and J. L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. Amer. Soc. Testing and Materials, Philadelphia PA. ASTM STP 634.

^b West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

<original signed by>

Date: 2007-01-25

Approved By : Project Manager

Stantec

Larval Fathead Minnow Test Report Survival and Growth 3 of 4

Stantec

Work Order :210742Sample Number :17672

..

Larval Fathead Minnow Mortality Data

...

Initiation Tim	e (h) Day () (Initiation)	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7 (Con	pletion)	
15:40		2007-01-05	2007-01-06	2007-01-07	2007-01-08	2007-01-09	2007-01-10	2007-01-11	2007-01-12		
	Analyst(s):	КJ	RD	RD	KJ	CT(RD)	NK	EJ	CT(RD)		
Concentration	Replicate				Mortality					Mean Mortality	Standard
(%)										(%)	Deviation
	Α	0	0	0	0	0	0	0	1		
Control	В	0	0	0	0	0	0	0	0	6.7	0.58
	C	0	0	00	0	0	0	0	1		
	А	0	0	0	0	0	0	0	0		
0.81	в	0	0	0	0	0	0	0	0	0.0	0.00
	<u> </u>	0	0	00	0	0	0	0	_ 0		
	A	0	0	0	0	0	0	1	1		
2.7	В	0	0	0	0	0	0	0	0	3.3	0.58
	С	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0	·	
9	В	0	0	0	0	0	0	1	1	6.7	0.58
<u>.</u>	C	0	0	0	0	0	0	0	l		
	А	0	0	0	0	0	0	0	0		
30	В	0	0	0	0	0	0	0	0	0.0	0.00
	C	0	0	0	0	0	0	0	0		
	А	0	0	0	0	0	0	0	0		
100	В	0	0	0	0	0	0	l	1	6.7	0.58
	С	0	0	0	0	0	0	l	1		

Aberrant behaviour or swimming impairment : None

Concentration	Replicate	Number of	Mean Dry Weight	Treatment Mean	Standard
(%)		Larvae Weighed	of Larvae (mg)	Dry Weight (mg)	Deviation
	А	9	0.720		
Control	В	10	0.629	0.692	0.055
	С	9	0.728		
	Α	10	0.637		
0.81	В	10	0.782	0.697	0.076
	С	10	0.671		
	Α	9	0.752		
2.7	В	10	0.664	0.701	0.046
	<u>C</u>	10	0.687		
	Α	10	0.702		
9	В	9	0.742	0.687	0.065
	С		0.616		
	A	10	0.564		
30	В	L O	0.733	0.656	0.086
	<u> </u>	10	0.672		
	A	10	0.796		
100	В	9	0.916	0.838	0.067
	С	9	0.803		

Larval Fathead Minnow Weight Data

Data Reviewed By: 15 Date : 2007 - 01 - 23

Stantec

_

. .

Work Order :210742Sample Number:17672

.

Fathead Minnow Water Chemistry Data

	Initial (Chemistry:	Temp. (°C)	DO (mg/L)	рН	Conductivity (µmhos/cm)	Hards (mg/L as	
			25.0	8.9	7.7	3340	42	0
		Day I	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Effluent Su	b-sample Used	I	1	1	2	2	3	3
Те	mperature (°C)	25.0	24.0	24.5	25.0	24.0	24.0	24.5
Dissolved	Oxygen (mg/L)	8.9	9.3	9.1	9.5	9.7	9.9	10.3
Dissolved	Oxygen % Sat. ¹	113	117	112	120	120	121	124
Pre-aerati	ion Time (min)2	20	20	20	20	20	20	20
Analyst(s) :	Initial	CT(RD)	CD(RD)	EW	CT(RD)	EJ	HR	JGG
	Final	CD(RD)	EW	CT(RD)	EJ	HR	CT(RD)	NK
Control (0%)	1.1.1.1			97 0	07.0			
Temp.(°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	24.5
DO % Sat.	Initial	100	97	98 5 0	100	100	99	101
DO (mg/L)	Initial	8.1	7.9	7.9	7.8	8.0	7.9	8.3
	Final	7.4	6.4	6.7	6.9	7.5	6.6	6.9
pH	Initial	8.3	8.3	8.4	8.4	8.3	8.4	8.2
Court (makes tow)	Final	8.4	8.2	8.3	8.2	8.3	8.1	8.2
Cond. (µmhos/cm)	Initial	582	562	545	555	575	535	591
0.81 %								
Temp.(°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	24.5
DO (mg/L)	Initial	7.7	8.0	8.1	7.9	7.8	8.2	8.3
	Final	7.3	6.2	6.3	7.3	7.4	6.9	6.6
рН	Initial	8.2	8.3	8.5	8.4	8.2	6.7	8.2
I	Fînal	8.3	8.2	8.1	8.2	8.3	8.0	8.1
Cond. (µmhos/cm)		_	595	610	579	596	560	613
(1)							000	0.10
9%								
Temp.(°C)	Initial	24.0	24.0	25.0	25.0	24.0	25.0	25.0
	Final	25.0	25.0	25.0	25.0	25.0	24.5	24.5
DO (mg/L)	Initial	7.8	8.0	8.2	8.0	8.0	8.3	8.3
	Final	7.4	6.6	6.6	7.2	7.6	7.0	6.8
pН	Initial	8.2	8.3	8.4	8.3	8.2	8.3	8.2
	Final	8.3	8.3	8.2	8.3	8.3	8.1	8.2
Cond. (µmhos/cm)	Initial	799	850	828	826	837	806	855
100.07								
100 %	• •.• •							
Temp.(°C)	Initial Elect	24.0	24.0	25.0	25.0	24.0	25.0	25.0
$DO(m \pi^{2})$	Final	25.0	25.0	25.0	25.0	25.0	24.5	24.5
DO (mg/L)	Initial Giuel	8.4	8.6	8.3	8.3	8.6	8.8	8.8
Ite	Final	7.5	7.4	6.7	7.0	7.4	7.0	6.8
pН	Initial Rinol	7.9	8.0	8.1	8.0	7.9	8.1	7.9
Cond (umbonion)	Final Initial	8.3	8.3	8.2	8.3	8.3	8.l	8.1
Cond. (µmhos/cm)	111[[8]	3350	3370	3350	3360	3350	3360	3350

"--" = not measured

¹% saturation (adjusted for actual temperature and barometric pressure)

² ≤100 bubbles/minute

Lemna minor Test Report Growth Inhibition 1 of 3

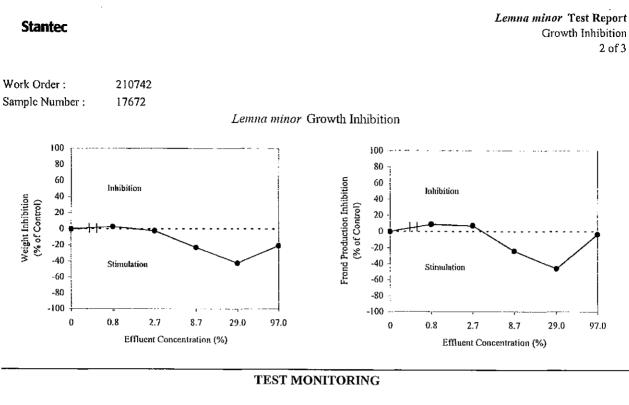
Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

.

stantec.com

Work Order : 210742 Sample Number : 17672

SAMPLE IDENTIFICATION


Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	WRS03	Time Collected :	12:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received :	11:00
Temp. on arrival :	2.0°C	Date Tested :	2007-01-05
Sample Description:	Clear, yellow, odourless.		
Test Method :	Test for Measuring the Inhibition of Growth using the	Freshwater Macroph	iyte, Lemna minor.
	Method Development and Application Section, Enviro	onmental Technology	v Centre, Environment

Canada. Ottawa, Ontario. Report EPS 1/RM/37.

		TEST RESULTS	
Effect	Value	95% Confidence Limits	Statistical Method
IC25 (Weight)	>97.0%	-	-
IC25 (Frond Production)	>97.0%	<u> </u>	· _ · · ·
	The results reported	d relate only to the sample tested.	
	POTASSIUM CHLO	ORIDE REFERENCE TOXICANT	T DATA
Date Tested :	2006-12-22	Statistical Method :	Linear Interpolation (Toxstat 3.5) ^a
Organism Batch :	Lm06-12	Historical Mean IC25 :	2.32 mg/L
Test Duration :	7 days	Warning Limits (± 2SD) :	1.35 - 4.09
IC25 (Frond Production) :	1.95 g/L	Analyst(s) :	HR/NK
95% Confidence Limits :	1.18 - 2.40		
		TEST CONDITIONS	
Test Organism :	Lemna minor L., Strain 7730	Test Type :	Static (no sub-samples required)
Organism Batch :	Lm06-12	Control/Dilution Medium :	Modified APHA
Culture Origin :	UTCC 492	Medium Preparation Water :	Millipore Milli-Q
Test Organism Source :	Axenic in-house culture	Source of Water :	University of Guelph, Guelph ON
Age (on Test Day 0) :	10 days	Medium Preparation Chemicals	
Health Criteria (in APHA):	8.2-fold frond increase in 7 da	sys Nutrient Spiking of Sample :	Modified APHA stocks A, B,C (10 mL/L)
Organism Acclimation :	20:55 h in APHA medium	Replicates per Concentration :	3
Inoculum (Test Day 0) :	2 plants (3 fronds per plant)	Test Volume per Replicate :	100 mL
Sample Filtration :	1 μm (Whatman GF/C)	Test Vessel	250 mL glass Erlenmeyer flask
Sample Pre-aeration :	20 min. at ≤100 bubbles/min.	Depth of Test Solution :	4.0 cm
pH Adjustment :	None	Photoperiod/Light Intensity :	Continuous, 4204 - 4568 lux
Hardness Adjustment :	None	Test Method Deviation(s) :	None

COMMENTS

•All test validity criteria as specified in the test method cited above were satisfied.

Initiation Date :	2007-01-05
Intitiation Time :	13:45

HR

Intitiation Time : Initiated By :

Temperature Monitoring					
Test Day	Date	Temperature			
		(°C)			
0 (unmodified sample)	2007-01-05	25.0			
0	2007-01-05	24.5			
1	2007-01-06	24.5			
2	2007-01-07	24.5			
3	2007-01-08	24.5			
4	2007-01-09	24.5			
5	2007-01-10	24.5			
6	2007-01-11	25.0			
7	2007-01-12	24.5			

Termination Date :	2007-01-12
Termination Time :	13:45
Terminated By :	KJ(HR)

pH Monitoring				
Concentration (%)	Day 0	Day 7		
100 (unmodified sample)	7.8	_		
Control	8.2	8.2		
0.8	8.2	8.3		
2.7	-	_		
8.7	8.2	8.4		
29.0	_	_		
97.0	8.1	8.8		

"-" = not required

REFERENCES

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, U.S.A.

<original signed by>

Date :

2007-01-25

Approved By:

Lemna minor Test Report Growth Inhibition 3 of 3

Stantec

210742

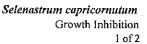
.. .

Work Order :

Sample Numbe	r:	17672	L	emna m	<i>inor</i> Frond	Increase		
Concentration (%)	Replicate	Frond Count Day 0*	Frond Count Day 7	Frond Increase		Standard Deviation	CV (%)	Frond/Root Appearance (Day 7)
	A	6	51	45				
Control	В	6	55	49	45.7	3.1	6.7	Fronds healthy, appearance normal in all replicates.
	С	6	49	43				
	A	6	50	44				
0.8	в	6	45	39	41.7	2.5	6.0	Fronds healthy, appearance normal in all replicates.
	C	6	48	42				
	A	6	38	32				
2.7	В	6	46	40	42.3	11.7	27.6	Fronds healthy, appearance normal in all replicates.
	С	6	61	55				
	Α	6	64	58				
8.7	В	6	66	60	56.7	4.2	7.3	Fronds healthy, appearance normal in all replicates.
	С	6	58	52				
	A	6	79	73				
29.0	В	6	76	70	66.7	8.5	12.8	Fronds healthy, appearance normal in all replicates.
	с	6	63	57				
	A	6	47	41				- <u>·</u> ···································
97.0	В	6	59	53	47.3	6.0	12.7	Fronds healthy, appearance normal in all replicates.
	С	6	54	48				2. II

NOTES: * No unusual appearance or treatment of culture prior to testing. Test inoculated with healthy plants.

• A 8.6-fold increase in frond number was observed in the control over the testing period.


· Light brown debris was observed at the bottom of the flasks in all concentrations. KJ

Lemna minor Frond Weight Data

Concentration (%)	Replicate	Dry Weight of Fronds (mg)	Mean Treatment Dry Weight (mg)	Standard Deviation
	A	4.99		
Control	В	6.06	5.28	0.68
	С	4.79		
	A	5.26		······
0.8	В	5.03	5.15	0.12
	С	5.15		
	A	4.94	·	
2.7	в	5.50	5.42	0.44
	С	5.81		
	Α	7.49	· · · · · · · · · · · · · · · · · · ·	
8.7	В	6.45	6.49	0.98
	С	5.53		
	A	7.80		<u> </u>
29.0	в	7 .77	7.53	0.45
	С	7.01		
	A	6.01		· · · · ·
97.0	В	6.94	6.38	0.50
	С	6.18		

Stantec Consulting Ltd. 11B Nicholas Beaver Road RR3 Guelph ON N1H 6H9 Tel: (519) 763-4412 Fax: (519) 763-4419

stantec.com

Work Order : 210742 Sample Number : 17672

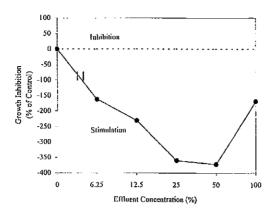
SAMPLE IDENTIFICATION

Company :	Canada North Environmental Services		
Location :	Saskatoon, SK	Date Collected :	2007-01-03
Substance :	WRS03	Time Collected :	12:30
Sampling Method :	Composite	Date Received :	2007-01-04
Sampled By :	J. Hogan/K. Wells/J. Moostoos	Time Received ;	11:00
Temp. on arrival :	2.0°C	Date Tested :	2007-01-05
Sample Description:	Clear, yellow, odourless.		
Test Method :	Growth Inhibition Test Using the Freshwater Alga Sele	enastrum capricorni	utum. Environment
	Canada, Conservation and Protection. Ottawa, Ontario		
	November 1997).	-	•

		TEST RESULTS*	
Effect	Value 95	5% Confidence Limits	Statistical Method
IC25 (Growth)	>100%	-	-
	The results reported	relate only to the sample tested.	
	SODIUM CHLORI	DE REFERENCE TOXICAN	T DATA
Date Tested :	2007-01-16	Statistical Method :	Linear Interpolation (Toxstat 3.5) ^a
Organism Batch :	SeI07-01	Historical Mean IC25 :	576.7 mg/L
Test Duration :	72 hours	Warning Limits (± 2SD) :	275.5 - 1233.0
IC25 Growth :	389.9 mg/L	Analyst(s) :	HR
95% Confidence Limits	: 340.3 - 490.6		
	T	EST CONDITIONS	
Test Organism :	Selenastrum capricornutum	Control/Dilution Water :	Millipore Milli-Q (no chemicals added)
Organism Batch :	Sel07-01	Test Vessel :	U-shaped polystyrene microplate
Strain Number :	UTCC37	Volume per Replicate :	220 μL
Source :	Stantec In-house Culture	Number of Control Replicates:	10
Age (on Test Day 0) :	4 days (in logarithmic growth)	Number of Test Replicates :	3
pH Adjustment :	None	Concentrations Tested :	10 + Control
Hardness Adjustment :	None	Photoperiod / Light Intensity :	Continuous light, 3995 - 4022 lux
Sample Pre-aeration :	None	Mean Test Temperature (± SD):	24.9°C (± 0.3)
Sample Filtration :	0.45 µm preconditioned filter	Test Duration :	72 hours
Volume Filtered:	≥10 mL	Test Method Deviation(s) :	None

COMMENTS

*Results do not incorporate the 0.9091 dilution factor incurred by the addition of enrichment medium and algal inoculum.


•All test validity criteria as specified in the test method cited above were satisfied.

•No unusual appearance or treatment of culture prior to testing.

Stantec

Work Order : 210742 Sample Number : 17672

Selenastrum capricornutum Growth Inhibition

Cell Enumeration at 72-hours

Initiation Date : 2	2007-01-05	Sample pH (at 0 hours) :	7.8
Initiated By : /	AS/HR	Control pH (at 0 hours) :	6.5
Completion Date : 2	2007-01-08	Control pH (at 72 hours) :	6.5
Enumerated By : F	KJ(HR)	Initial Algal Inoculum :	1.0591 cells/mL (x 10 000)
Enumeration Technique : M	Manual (hemocytometer)	Inoculum Prepared :	00:30 h prior to test initiation

				Cell Co	ncentra	ation (x	10 000)				Cell	Yield (x 10	000)
Concentratio	n]	Replicat	e				Mean	Standard	CV
(%)	1	2	3	4	5	6	7	·8	9	10		Deviation	(%)
Control	48.00	45.50	39.00	42.50	_	-	49.00	39.00	51.00	45.50	43.88	4.47	10.18
0.195		-	-								_	_	_
0.39	_	_									_	_	-
0.78	-	-	_								-	-	_
1.56	-	-	-								_	-	_
3.13	_	-	-								_	-	_
6.25	102.00	111.50	134.50								114.94	16.71	14.54
12.5	155.50	158.00	125.00								145.11	18.37	12.66
25	232.00	194.50	182.50								201.94	25.82	12.79
50	245.50	198.50	181.00								207.27	33.36	16.09
100	145.00	104.00	108.00								117.94	22.61	19.17

"-" = not enumerated

NOTES : •Control replicates 5 and 6 used for pH measurement.

Test Data Reviewed By :	
Date: 2007-01-09	

REFERENCES

^a West, Inc. and D. Gulley. 1996. Toxstat Release 3.5. Western Ecosystems Technology. Cheyenne, WY, USA.

<original signed by>

Date :

2007-01-25

Approved By :

	Stantec Work Order No;
Stantec	
P.O. Number:	
Field Sampler Name (print):	Jaime Hogan, Kelly Wells, John Moostoos
Signature:	time that
Affiliation:	Canada North Environmental Services
Sample Storage (prior to shipp	ing): Transported to Prince Albert from site (2h
Custody Relinquished by:	Jaime Hogan

Stantec Consulting Ltd. Shipping Address: 11B Nicholas Beaver Road, RR #3 Guelph, Ontario Canada N1H 6H9

Voice: (519) 763-4412

Fax: (519) 763-4419

Client Canada North Environmental Services (CanNorth) 4-130 Robin Crescent Saskatoon, SK, S7L 6M7 Phone: (306) 652-4432

(306) 652-4431 Fax:

Contact: Jaime Hogan or Kelly Wells

	Sample Identification								Analyses Requested										Sample Method and Volume				
Date Collected (Time Collected (e.g. 14:30, 24 hr clock)		Sempl	і Нагре			Stantec Sample Number	Temp. on arrival	Rainbow Trout Single Conccentration	Reinbow Trout LC50	Daptrria magna Singla Concentration	Daphnia magna LC50	Fathead Minnow Survivel & Growth	Ceriodaphnia dubia Survival & Reproduction	Lemna minor Growth	Selenastrum Cepricomutum Growth	RISS Data Entry	Other (please specify below)	Grab	Composite		Volum	ers and e 10L, etc.)
2007-01-03	1230	WRS03					17672			\checkmark		1	\checkmark	\checkmark	1	✓		1		$\mathbf{>}$	46L -	⊦ 2L	+30L
2007-01-03		MWS01	· · · · · · · · · · · · · · · · · · ·				17673			1		1	1	1	✓	1		✓		\checkmark	46L -	+ 2L	+30L
														[
		23L	pails					120°C															
			bages		·			2.00															
			<u> </u>																				
		· · · · · · · · · · · · · · · · · · ·																					
																					-		•
		· · ·												-								ſ	AL.
				·																			
						I		L	·		L		<u>, </u> ,					<u></u>	L			<u> </u>	プピ

For Lab Use	Only
Received By:	P(Stantec)
Date:	2007-01-04
Time:	11.00
Stonage Location:	
Storage Temp.("C)	

Contact Jaime on Thursday morning for details regarding changes to the standard dilution percentages for the above toxicity tests. Water quality parameters to be analysed as previously discussed with Keith; finalize these on Thursday as well.

Shipped three conters and four bunkets

*One coder missing from shyment. Stanter personnel picked up missing nece at deast. 2007-01-04 AP.