Appendix O Remedial Action Plan Presentation

Agenda

- 1. Goals and Remedial Option Development
- 2. Remedial Components

The Goal of the Project is develop a remedial solution to return Boat Harbour to tidal conditions and reconnect the community to A'se'k

7

Project Goals

The remedial solution must be:

- Founded on proven technologies
- Protective of human health and the environment
- Meet established timelines and milestones
- Provide the best value to the Province

Remedial Options Decision Process

Approach:

- Design Requirements (√)
- Evaluation Criteria & Weighting Matrix (√)
- Develop and Evaluate Remedial Options (√) ←
- Bench Scale Testing (√) ——
- Identify Qualified Remedial Options (\(\frac{1}{2}\))
- Pilot Scale Testing (80% $\sqrt{}$) —
- Remedial Action Plan (80% √)

Collaborative

Workshops, BHEAC, BHCC,

Consultation with Regulators

Open, Transparent, Traceable |

Detailed and Accepted

Documentation

Remedial Action Plan

Key Components:

- Bridge (to replace causeway)
- Infrastructure Decommissioning
- Wetland Restoration
- Remediation Methodology and Approach (Sediment Management)
- Waste Management
- Other key considerations:
 - Return to tidal
 - End Use
 - Provision of Benefits

Bridge | Concrete Girder Bridge

Bridge Plan | FC1 & FC2

Bridge Cross Section

Infrastructure Decommissioning

- Pipeline (on land/in water)
- Treatment Buildings
- Dam

Pipeline

Abandon

Clean, inspect and abandon

Cut and cap at manholes (+/-every 300 m)

Clean, inspect, fill and abandon

Fill | Beneath Hwy 348 | Remove | Indian Cross Point?

Clean and remove

With archeological monitoring

Treatment Buildings

Decommission and Demolish; Remove footings 0.9m below ground

- Press Building (Potential to repurpose, ongoing discussions with PLFN)
- Mobile Building Adjacent to Press Building
- Storage Shed
- Air Monitoring Shelter
- Electrical Building
- Mobile Building belonging to CTS Electrical
- Silo
- Electrical Building for Silo
- Point A Building
- Point C Buildings

Dam

Decommission and demolish; Remove abutments back to natural shoreline to minimizing water velocity under tidal conditions

Wetland Management

Survey Period:

Aug. - Oct. 2017

Methodology:

- Wetland Identification –
 CWCS
- Wetland Delineation –
 US Army Corps of Engineers
 Wetland Delineation Manual
- Wetland Functional
 Assessment WESP-AC

Preliminary Findings:

- Wetlands (37; 86 ha; 16%)
 - Marsh/Swamp (22)
 - Marsh (4)
 - Swamps (11)
 - Marsh/Tidal Salt Marsh (1)
- Watercourses (19)
 - Large Permanent (1)
 - Small Permanent (3)
 - Intermittent (13)
 - Ephemeral (3)

Wetland Management

Natural Attenuation | Freshwater Wetlands (Former Ponds 1, 2, 3 and Estuary

- Natural Attenuation Processes
- Ecological Risk Assessment
- Human Health Risk Assessment
- Wetland Area Functions and Values
- Risk Management/Active Remediation – Cap and or remove in portions of freshwater wetlands

Wetland Management | Active Remediation for Former Ponds 1, 2, and 3

 Dewater, excavate impacted sediment, and restore includeing planting or seeding of native aquatic and terrestrial through use of vegetation

Sediment Management

Sediment Management | Background

	Dewatering		Stabilization
Area	In-Place Volume (m3)	Final Disposal Volume	Final Disposal Volume
		(m3)	(m3)
Raw Effluent Discharge Ditches	1,000	500	1,100
Twin Settling Basins	25,000	12,500	26,800
Aeration Stabilization Basin	129,000	58,100	138,100
Boat Harbour Stabilization Lagoon	577,000	173,100	617,400
Existing Disposal Cell	180,000	116,000	116,000
Estuary	49,000	25,500	52,500
Wetland Areas	263,000	132,000	281,500
Total	1,244,000	517,700	1,233,400

Sediment Management | Removal

Removal in the Wet

Removal in the Dry

Sediment Management | Geotube Dewatering

Waste Management | Background

Remediation will generate the following waste streams:

- Sludge waste
- Construction and Demolition (C&D)
- Industrial waste

Waste Type	In Place Volume (m³)	Final Disposal Volume (m³)
Sludge/Sediment	1,224,000	517,700
C&D Debris	N/A	1,100

Quantities to be verified through pilot scale testing and sludge thickness and sludge/sediment interface mapping

Waste Management

On-site Disposal in Existing Containment Cell

Waste Management

Existing Containment Cell – Vertical Expansion, Base Modification, Waste Placement, Closure

- Increase height of perimeter berms
- Modify base liner and leachate collection systems
 - New HDPE liner over existing clay liner
 - New HDPE leachate collection piping and drainage stone
 - Sequence modification to accommodate existing waste in place
- Geotubes placed in containment cell prior to filling
- Placement of final cover with passive landfill gas vents

www.ghd.com