Appendix 7-B

Brucejack Gold Mine Project: 2012 Air Quality Baseline Report

Pretium Resources Inc.

BRUCEJACK GOLD MINE PROJECT 2012 Air Quality Baseline Report

PRETIVM

Rescan™ Environmental Services Ltd. Rescan Building, Sixth Floor - 1111 West Hastings Street Vancouver, BC Canada V6E 2J3 Tel: (604) 689-9460 Fax: (604) 687-4277

BRUCEJACK GOLD MINE PROJECT 2012 AIR QUALITY BASELINE REPORT

April 2013 Project #1042-009-13

Citation:

Rescan. 2013. Brucejack Gold Mine Project: 2012 Air Quality Baseline Report. Prepared for Pretium Resources Inc. by Rescan Environmental Services Ltd.: Vancouver, British Columbia.

Prepared for:

Pretium Resources Inc.

Prepared by:

Rescan[™] Environmental Services Ltd. Vancouver, British Columbia

Executive Summary

Executive Summary

The Brucejack Property is situated within the Sulphurets District in the Iskut River region, approximately 20 kilometres northwest of Bowser Lake or 65 kilometres north-northwest of the town of Stewart, British Columbia. The present report documents baseline air quality studies completed in the area of the proposed Brucejack Gold Mine Project.

The scope of this study was to characterize local ambient air quality through monitoring using dustfall stations and passive air sampling systems (PASS), and compare results to applicable regulations where applicable. A total of six dustfall stations were installed of which three were located near Brucejack Lake where the mine site is proposed and three were located in the Wildfire Creek area towards the eastern of the exploration access road near the site of previously planned infrastructure. The dustfall monitoring stations were installed in accordance with sampling method ASTM D1739-98, and collect particles small enough to pass through a 1 mm stainless steel sieve and large enough to settle by virtue of weight. The dustfall stations are located off the upwind-downwind at the two primary sampling areas. Within each area, two stations were located off the upwind-downwind axis. Dustfall samples were exposed in open air for approximately 30 days before being analyzed for dust, metal and acid deposition levels.

A PASS was also installed at the upwind dustfall station at each of the two sampling areas. PASS is a diffusive method which monitors gas or vapour pollutants from the atmosphere at a rate controlled by a physical process such as diffusion through a static air layer or permeation through a membrane, which does not involve the active movement of air through the sampler. Local meteorological data are required to calculate PASS sampling rates. Required parameters include air temperature, wind speed and relative humidity. Meteorological conditions were provided using data collected from the Wildfire and Brucejack Lake meteorology stations operated as part of the overall environmental baseline studies program for the Brucejack Gold Mine Project.

From July to September 2012 at the six dustfall monitoring locations, the average dustfall deposition rates ranged from 0.2 to 0.7 mg/dm²/day with the exception of DF1 due to higher dustfall results of 2.67 mg/dm²/day in September. The Pollution Control Objectives for the Mining, Smelting, and Related Industries of British Columbia's dustfall objective is between 1.7 to 2.9 mg/dm²/day. The highest value of 2.67 mg/dm²/day is within the range of BC's pollution control objective. Average dustfall deposition rates observed during the 2012 studies where consistent with baseline dustfall deposition rates recorded for other mineral development projects in the region including the KSM (Kerr-Sulphurets-Mitchell) Project (from below detection limit to 3.75 mg/dm²/day), the Schaft Creek Mine Project (from below detection limit to 2.5 mg/dm²/day), and the Kitsault Mine Project (0.46 mg/dm²/day).

Acid deposition rates were calculated from the sulphate and nitrate contents in the dustfall samples. Because sulphate and nitrate have different molecular weight, acid load was converted into charge equivalency. The highest acid deposition load observed was 398 eq/ha/yr at a site in the Wildfire Creek area (DF6) in September 2012, which is much lower than the BC median acid deposition critical load of 750 eq/ha/yr. The average median acid load across six sampling locations in 2012 was 164 eq/ha/yr, lower than the BC annual median critical load. Most of the metal deposition levels analyses were below detection limits. The reported metal deposition rates are the result of natural sources in the area.

The results from PASS showed that NO_2 and SO_2 concentrations in the Wildlife Creek area (at PASS1) and SO_2 concentration in the Brucejack Lake area (at PASS2) were below detection limit during the

ii

entire sampling period. The NO₂ results from the Brucejack Lake area averaged approximately 4 μ g/m³. There is currently no 30-day average criterion for NO₂ in Canada or BC, but the average of 4 μ g/m³ is much lower than the Canadian annual maximum desirable standard of 60 μ g/m³. The average O₃ concentration at PASS1 was 20 μ g/m³ while the O₃ concentration at PASS2 was 57 μ g/m³. Health Canada states the monthly 1-hour O₃ averages between May and September should be in the range of 49 to 78 μ g/m³ (25 to 40 ppb) when the source is away from anthropogenic influence (Health Canada 1999). Ambient O₃ concentrations measured at PASS1 and PASS2 are approximately within this range.

Acknowledgements

This report was produced for Pretium Resources Inc. by Rescan Environmental Services Ltd. It was written by Tina Liu (M.A.Sc.) and reviewed by Derek Shaw (P.Eng., M.A.Sc.). Greg Norton (M.Sc.) was the project manager and Nicole Bishop (B.Sc.) the project coordinator. Graphics production was coordinated by Francine Alford (B.F.A.), GIS production was coordinated by Pieter van Leuzen (M.Sc.) and report production was coordinated by Robert Tarbuck (BTECH). Field work was conducted by Calvin Pin, Chris Doughty, Bradley Harris, Matt MacDonald, and Jordan Hunter.

Table of Contents

BRUCEJACK GOLD MINE PROJECT 2012 AIR QUALITY BASELINE REPORT

Table of Contents

Executi	ive Sumr	mary	i
Acknow	ledgem	ents	
Table c	of Conter List of List of List of List of	nts Figures . Tables Plates Appendie	
Glossar	y and At	obreviati	ionsix
1.	Introdu	ction	1-1
2.	Project	Descrip	tion2-1
3.	Backgro 3.1	2000 Applica 3.1.1 3.1.2 3.1.3 3.1.4	brmation
1	0.2		are Review
4. 5.	Study A	vrea	
6.	Method 6.1 6.2	lology Dustfall 6.1.1 6.1.2 6.1.3 Passive 6.2.1 6.2.2 6.2.3	6-1 Site Selection
7.	Results		

2012 AIR QUALITY BASELINE REPORT

	7.1	Total Dustfall	7-1
	7.2	Acid Deposition	7-1
	7.3	Metal Deposition	7-3
	7.4	Ambient Critiera Air Contaminant Concentration	7-3
8.	Conc	lusions	8-1
Refe	rences		R-1

List of Figures

FIGURE	PAGE
Figure 2-1. Brucejack Gold Mine Project Overview	2-2
Figure 3.2-1. Air Quality Data from Nearby Projects	3-4
Figure 6.1-1. Dustfall and PASS Monitoring Station	6-2
Figure 7.1-1. Dustfall Deposition Rates from July to September 2012	7-2
Figure 7.2-1. Acid Deposition Results from July to September 2012	7-4

List of Tables

TABLE	P	PAGE
Table 3.1-1. Su	ummary of Acid Deposition Critical Load Estimates	3-1
Table 3.1-2. A	ir Quality Objectives and Standards for Canada and British Columbia	3-2
Table 6.1-1. Lo	ocations of Dustfall and PASS Stations	6-1
Table 6.1-2. Ro to Quai	Relationships Among the Units for Atmospheric Deposition Used in the Assessment Intify Critical Loads	6-6
Table 7.1-1. T	otal Dustfall Results at Brucejack Gold Mine Project 2012	7-1
Table 7.2-1. N	litrate and Sulphate Deposition Results from Collected Dustfall Samples	7-1
Table 7.2-2. C	Calculated Acid Deposition Load	7-3
Table 7.3-1. M	Aaximum Metal Deposition from Dustfall	7-5
Table 7.4-1. A	mbient Concentrations of NO ₂ , SO ₂ and O ₃ Collected by PASS	7-6

List of Plates

PLATE	F	'AGE
Plate 6.1-1.	Dustfall Station DF1 (August 8, 2012).	6-3
Plate 6.1-2.	Dustfall Station DF2 (September 2012).	6-3
Plate 6.1-3.	Dustfall Station DF3 (August 8, 2012).	6-4
Plate 6.1-4.	Dustfall Station DF4 (August 7, 2012).	6-4
Plate 6.1-5.	Dustfall Station DF5 (September 2012).	6-5
Plate 6.1-6.	Dustfall Station DF6 (August 7, 2012).	6-5
Plate 6.2-1.	PASS1 Attached on DF2 (August 8, 2012).	6-7
Plate 6.2-2.	PASS2 Attached on DF5 (August 7, 2012).	6-7

List of Appendices

- Appendix A. 2012 Brucejack Dustfall Results
- Appendix B. 2012 Passive Air Contaminant Sampling Results

Glossary and Abbreviations

Glossary and Abbreviations

Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

AENV	Alberta Environment
BDL	Below Detection Limit
ССМЕ	Canadian Council of Ministers of the Environment
Critical Acid Load	Amount of acid deposition a particular region can receive without being adversely affected
EC	Environment Canada
eq/ha/yr	Total acidity equivalency per hectare per year
kg/ha/yr	Kilograms per hectare per year
mg/dm²/day	Milligrams per square decimetre per day
MOE	Ministry of Environment
O ₃	Ozone
NO _x	Oxides of nitrogen
NO ₂	Nitrogen dioxide
PASS	Passive Air Sampling System
Ррb	Parts per billion
SO ₂	Sulphur dioxide
tpd	Tonne per day
VOC	Volatile organic compound
µg/m³	Micrograms per cubic metre

1. Introduction

1. Introduction

Air quality is an important environmental factor in ensuring the conservation and health of local vegetation, wildlife and the human population. Poor air quality has the potential to adversely affect the growth of vegetation and can pose a risk to the general health of both wildlife and humans. High sulphate and nitrate concentrations in dust may indicate the potential for acid deposition or acid rain. Similarly, high metal content in dust can lead to concentrations of metals in plant and wildlife tissues that exceed safe levels.

This report presents the results of the air quality baseline study for the Brucejack Gold Mine Project (the Project). The purpose of the study was to collect information for planning of the project, describing the environmental setting, and assessing potential environmental effects of the Project as it moves through the various design, permitting, and development phases.

Ambient air quality is typically assessed by a group of measureable parameters defined as criteria air contaminants (CACs). The specific CACs included in this study are:

- Nitrogen dioxide (NO₂),
- Sulphur dioxide (SO₂),
- Carbon monoxide (CO),
- Total suspended particulate (TSP),
- \circ Suspended particulate with diameter less than 10 µm (PM₁₀),
- Suspended particulate with diameter less than 2.5 μ m (PM_{2.5}), and
- \circ Ozone (O₃)

In addition to CACs, dustfall sampling is generally conducted as part of an air quality monitoring program.

Data collection can generally be classified as active or passive methods. Active methods require air pumped through collection or analytical devices and require continuous power supplies. If the power to the active sampling device is supplied by a generator, the collected data could potentially be affected by fuel combustion exhaust. The power generator would also require refuelling on a regular basis. For these reasons, active sampling is often not practical in remote areas without electric power supply.

Passive air sampling systems (PASS) are able to measure ambient concentrations of NO_2 , SO_2 and O_3 without active pumping of air. Dustfall deposition is sampled by collection of dust in ambient air over a fixed amount of time. The samples are then analyzed for deposition rates of nitrate and sulphate, and metal. Although there is currently no passive method available for measuring suspended particulate concentrations, literature and data obtained from other remote areas were reviewed and presented in this study.

2. Project Description

2. Project Description

Pretium Resources Inc. (Pretivm) proposes to develop the Brucejack Gold Mine Project (the Project) as a 2,700 tonne per day (tpd) underground gold and silver mine. The Brucejack property is located at 56°28′20″ N latitude by 130°11′31″ W longitude, which is approximately 950 km northwest of Vancouver, 65 km north-northwest of Stewart, and 21 km south-southeast of the closed Eskay Creek Mine (Figure 2-1). The Project is located within the Kitimat-Stikine Regional District. Several First Nation and Treaty Nations have traditional territory within the general region of the Project including the Skii km Lax Ha, the Nisga'a Nation, the Tahltan Nation, the Gitxan First Nation, and the Gitanyow First Nation.

The mine site area will be located near Brucejack Lake. Vehicle access to the mine site will be via an existing exploration access road from Highway 37 that may require upgrades to facilitate traffic during mine operations. A transmission line will connect the mine site to the provincial power grid near Stewart or along Highway 37; two options are currently under consideration.

The Project is located within the boundary range of the Coast Mountain Physiographic Belt, along the western margin of the Intermontane Tectonic Belt. The local terrain ranges from generally steep in the western portion of the Project area in the high alpine with substantial glacier cover to relatively subdued topography in the eastern portion of the Project area towards the Bell-Irving River. The Brucejack mine site will be located above the tree line in a mountainous area at an elevation of approximately 1,400 masl; surrounding peaks measure 2,200 m in elevation. The access and transmission corridors will span a range of elevations and ecosystems reaching a minimum elevation near the Bell Irving River of 500 masl. Sparse fir, spruce, and alder grow along the valley bottoms, with only scrub alpine spruce, juniper, alpine grass, moss, and heather covering the steep valley walls.

The general area of the Brucejack Property has been the target of mineral exploration since the 1960s. In the 1980s Newhawk Gold Mines Ltd. conducted advanced exploration activities at the current site of the proposed Brucejack mine site that included 5 km of underground development, construction of an access road along the Bowser River and Knipple Glacier, and resulted in the deposition of 60,000 m³ of waste rock within Brucejack Lake.

Environmental baseline data was collected from Brucejack Lake and the surround vicinity in the 1980s to support a Stage I Impact Assessment for the Sulphurets Project proposed by Newhawk Gold Mines Ltd. Silver Standard Resources Inc. commenced recent environmental baseline studies specific to the currently proposed Project in 2009 which have been continued by Pretivm, following its acquisition of the Project in 2010. The scope and scale of the recent environmental baseline programs have varied over the period from 2009 to the present as the development plan for the Project has evolved.

3. Background Information

3. Background Information

3.1 APPLICABLE LEGISLATION (FEDERAL AND PROVINCIAL)

3.1.1 Total Dustfall

The Pollution Control Objectives for the Mining, Smelting, and Related Industries of British Columbia (BC MOE 1979) were developed with the objective of protecting the quality of British Columbia's environment. The ambient air control objective for dustfall is defined to be between 1.7 mg/dm²/day to 2.9 mg/dm²/day, averaged over 30 days.

3.1.2 Acid Deposition

Acid deposition is the end product of the reaction between sulphur oxides (SO_X) , nitrogen oxides (NO_X) and water in the atmosphere. These compounds can be converted to sulphuric acid and nitric acid by reacting with oxygen and water in the air. Acid deposition occurs when these acid-forming pollutants are deposited on the earth's surface.

Acid deposition critical load is a quantitative estimate of an exposure to one or more acid generating pollutants below which significant harmful effects on specific sensitive elements of the environment do not occur according to present knowledge. Since nitrate and sulphate have different atomic weights, the critical loads are typically reported on a charge equivalency basis. Critical loads have been determined and mapped for upland forest soils in eastern Canada following guidelines established by the New England Governor-Eastern Canadian Premiers (NEG-ECP) Environmental Task Group on Forest Mapping (NEG-ECP 2001) reported in the 2004 Canadian Acid Deposition Science Assessment (EC 2004). In western Canada, the Acid Rain Task Group (ARTG: mandated by the Air Management Committee of the Canadian Council of Ministers of the Environment (CCME)) have supported the determination of critical loads as shown in Table 3.1-1.

	Mean	Median	Mode	Minimum	Maximum
Province			eq/ha/yr		
Alberta	872	868	264	216	3,421
British Columbia	856	750	532	174	4,026
Manitoba	1,119	870	259	185	3,240
New Brunswick	1,361	1,150	1,267	178	6,131
Newfoundland and Labrador	749	602	263	193	4,635
Nova Scotia	950	805	405	220	5,181
Ontario	775	525	250	213	4,276
Prince Edward Island	1,936	1,950	2,513	201	5,930
Quebec	747	525	377	250	3,219
Saskatchewan	539	354	303	208	2,885

Table 3.1-1.	Summary	of Acid De	position Critica	l Load Estimates
	Julia			C Edua Estimates

Source: (Aherne 2008)

3.1.3 Metal Deposition

There are currently no specific criteria for total metals in environmental dustfall. The atmospheric metal levels are generally low; however, they tend to contribute to the deposition in soils. Heavy metals are persistent in the environment and are subject to bioaccumulation in food-chains. Therefore, metal deposition results are often analyzed further for wildlife, country foods and human health.

3.1.4 Ambient Criteria Air Contaminant Concentration

There are currently provincial and federal objectives and standards for ambient concentrations of NO_2 , $SO_2 O_3$, TSP, PM_{10} and $PM_{2.5}$, summarized in Table 3.1-2. Time averaging periods associated with these objective and standards range from hourly to annually. Since the sampling methods used for PASS and dustfall were collected over 30 days, criteria with 30-day averaging period will allow direct comparison of the baseline condition to regulatory criteria. Currently, there is no federal or BC criterion with 30-day averaging period. Alberta Environment (AENV) has recently published a 30-day average objective of $30 \ \mu\text{g/m}^3$ for SO₂ (effective February 2011). This objective was established for monitoring purposes, specifically for passive monitoring, allowing direct comparison of the results obtained from PASS to the objective. The 30-day average SO₂ objective was not established based on values for human health or ecosystems.

		Air Quality Objectives and Standards (µg/m³)						
			Canada			British Columbia		
Contaminant	Averaging Period	Maximum Desirable	Maximum Acceptable	Maximum Tolerable	Level A	Level B	Level C	
NO ₂	1-hour	-	400	1,000		-		
	24-hour	-	200	300		-		
	Annual	60	100	-		-		
SO ₂	1-hour	450	900	-	450	900	900-1,300	
	3-hour	-	-	-	375	665	-	
	24-hour	150	300	800	160	260	360	
	Annual	30	60	-	25	50	80	
O ₃	1-hour	100	160	300		-		
	8-hour		130 (65 ppb) ^a			-		
	24-hour	30	50	-		-		
	Annual	-	30	-		-		
TSP	24-hour	-	120	400	150	200	260	
	Annual	60	70	-	60	70	75	
PM ₁₀	24-hour	-	-	-		50		
PM _{2.5}	24-hour		30 ^b			25 ^c		
	Annual		-			8 ^d		

Note: dash (-) indicates standards/objective not available.

^a Canada-wide standard established in 2000, based on 4th highest annual value, averaged over three consecutive years

^b Canada-wide standard established in 2000, based on annual 98th percentile value, averaged over 3 consecutive years

^c BC objective established in 2009 based on annual 98th percentile value.

^d BC objective of 8 μ g/m³ and planning goal of 6 μ g/m³, established in 2009.

Ozone is a secondary pollutant that is produced by nitrogen oxides (NO_X) and volatile organic compounds reacting in sunlight and stagnant air. Since it is a secondary pollutant, it is difficult to identify the source of emission and ozone standards across the world are fairly inconsistent. The Canada-wide 8-hour standard for ozone, set by Canadian Council of Ministers of the Environment (CCME) in 2000, is 65 ppb (130 μ g/m³). The standard was initially intended to minimize exposure risk to human health and the environment, but other considerations came into play in the development. Thus the final values had less to do with science and more to do with a negotiated settlement between the various jurisdictions (National Round Table on the Environment and the Economy 2008). The purpose of ozone monitoring is typically not to be compared to the standard, but to obtain background ozone concentrations for estimation of NO₂ ambient concentrations from NO_X if ozone limiting method is required.

3.2 LITERATURE REVIEW

The Project is located in an area that is remote with few anthropogenic sources. Due to this reason, there is little or no background air quality information readily available. The best available estimates of ambient background concentrations are published by the Canadian Air and Precipitation Monitoring Network (CAPMoN). CAPMoN is a non-urban air quality monitoring network, with siting criterion designed to ensure that the measurement locations are regionally representative (i.e., not affected by local sources of air pollution). Scientists examining atmospheric pollution in urban centres would consider most CAPMoN sites remote and pristine. There are currently 28 measurement sites in Canada and one in the United States (US). The closest CAPMoN site to the Project is the Saturna station, off the southern tip of Vancouver Island in the middle of the Strait of Georgia. Although the station is almost 1,000 km southeast of Project, it provides the best estimate of background concentration available for BC. The second closest CAPMoN monitoring station is Snare Rapids in the Northwest Territories, approximately 100 km northwest of Yellowknife, NT. This station is approximately 1,300 km from the Project and only collects particulate matter. Daily measurements of SO₂ concentrations are available from the Saturna monitoring station from 1996 to 2002 (1997 missing). The average annual SO_2 concentrations for that period were reported as 2.3 μ g/m³ with an average standard deviation of 2.0 μ g/m³. However, ambient NO₂ and O₃ concentrations were not measured at the Saturna station. The Diavik Diamond Mine is in the Northwest Territories, located about 300 km northeast of Yellowknife. In the Diavik Diamond Mine Environmental Assessment (Cirrus Consultants 1998), ambient background concentrations were estimated based on surveys and assumptions. These ambient concentrations have been considered to be typical background concentrations for remote areas with little anthropogenic sources. The NO₂ 1-hour and 24-hour concentrations are 21 μ g/m³ while the annual concentration is $2 \mu g/m^3$. A technical document about background concentration of ozone in BC (McKendry 2006) indicated background ozone concentration to be in the range of 40 to 80 μ g/m³ (20 to 40 ppb) in BC.

Baseline air quality data have been collected by other projects in the area. The KSM Project, immediately adjacent to the Brucejack Mine Site (Figure 3.2-1), monitored dust deposition rates from June 2008 to October 2011 at five to ten locations, depending on the year (Rescan 2012). The deposition rates varied from below detection limit to $3.75 \text{ mg/dm}^2/\text{day}$. Sampling took place during the summer and early fall, which are typically the driest time of the year when dustfall is not mitigated by precipitation as much. The background dust deposition level, calculated using 98th percentile values, was determined to be $1.34 \text{ mg/dm}^2/\text{day}$.

Kitsault Mine Project is located on the northwest coast of BC approximately 140 km north of Prince Rupert and 130 km south of the Brucejack Gold Mine Project. The baseline monitoring data showed that the highest dustfall rate was 0.46 mg/dm²/day in July 2009 which indicated low concentrations of acid compounds and metals, typically within the range of analytical instrument detection limits (AMEC 2011). Dust in ambient air was monitored at the site from October 8, 2010 to October 12, 2010 at five locations. The overall average 24-hour concentrations were 3.5 μ g/m³ for TSP, 2.5 μ g/m³ for PM₁₀ and 2.3 μ g/m³ for PM_{2.5}.

Dustfall was monitored at Schaft Creek Mine Project in 2007 (July, August and September) and 2008 (June, July, August and November) at eight locations. Dust deposition rates ranged from below detection limit to 2.5 mg/dm²/day which is between the BC objective of 1.7 to 2.9 mg/dm²/day (Rescan RTEC 2010). The overall average between sites and months ranged between 0.13 and 0.93 mg/dm²/day.

The Galore Creek Copper-Gold-Silver Project, approximately 100 km northwest of the Brucejack Gold Mine Project, collected samples of PM_{10} and $PM_{2.5}$ concentrations in July 2005 (Rescan 2006). A total of 16 24-hour samples for PM_{10} were collected and concentrations ranged from 1.4 to 5.6 µg/m³ with an average of 3.4 µg/m³; a total of 13 24-hour $PM_{2.5}$ samples were collected and concentrations ranged from 0.8 to 2.6 µg/m³ with an average of 1.3 µg/m³.

Although suspended particulate baseline concentrations were not collected in the Project area, data collected at Kitsault Mine Project and Galore Creek Copper-Gold-Silver Project indicated average 24-hour concentrations of 3.5 μ g/m³ for TSP, 2.5 to 3.4 μ g/m³ for PM₁₀ and 1.3 to 2.3 μ g/m³ for PM_{2.5} (Rescan 2006).

4. Objectives

4. Objectives

The objective of the air quality baseline program was to collect information on the existing ambient conditions prior to project commencement. This data will be used for planning of the project, describing the environmental setting, and assessing potential environmental effects of the Project as it moves through the various design phases. This objective was achieved by:

- Obtaining background concentrations of suspended particulates representative for the area of the proposed Project based on literature sources;
- Installing six dustfall stations in the area of proposed Project to collect data on dust deposition;
- $_{\odot}$ Installing two PASS stations in the area of proposed Project to collect data on ambient air quality of NO_2, SO_2 and O_3; and
- $_{\odot}$ Comparing the amount of dustfall deposition and ambient concentrations of NO_2, SO_2 and O_3 to applicable guidelines.

5. Study Area

5. Study Area

The study area of the 2012 air quality baseline monitoring program focused on the location of proposed Project infrastructure anticipated to be locations of main site activity and air emissions during the operations phase of the Project. Monitoring took place in two primary sampling areas: Brucejack Lake and Wildfire Creek. The Brucejack Lake area is at a higher elevation and includes the site of the proposed Project mine site. The Wildfire Creek area is at a lower elevation close to the exploration access road and Highway 37. The Wildfire Creek area was also the site of previously planned infrastructure which is no longer being considered for the Project.

Specific monitoring locations within the primary sampling areas were selected based on the predominant wind direction, which is east and east-southeast. At the Brucejack Lake and Wildfire Creek areas, dustfall stations were installed upwind, downwind, and off the predominant wind axis. The PASS stations were combined with the dustfall stations upwind at each of the two areas to avoid disturbance from exploration activities at these areas. Since the Project Mine Site is located at the Brucejack Lake area, monitoring stations at the Wildfire Creek area can also be used to monitor dustfall and ambient air conditions in an area free of the influence of Project activities.

6. Methodology

6. Methodology

6.1 DUSTFALL

6.1.1 Site Selection

The predominant wind direction in the Project area is from the east and east east-southeast. The dustfall locations were located approximately 2 km upwind and downwind from the proposed Mine Site at the Brucejack Lake area, and one station located off the upwind-downwind axis (Figure 6.1-1; Table 6.1-1). Dustfall stations DF1, DF2 and DF3 were located at the Wildfire Creek area in a similar fashion.

Sta	ation ID		
Dustfall	PASS	UTM Easting (m)	UTM Northing (m)
DF1	-	466,868	6,261,028
DF2 (June - July 2012)	PASS1 (June - July 2012)	470,459	6,258,883
DF2	PASS1	471,071	6,258,637
DF3	-	467,074	6,258,140
DF4	-	425,099	6,258,981
DF5	PASS2	428,824	6,258,823
DF6	-	426,290	6,256,735

Table 6.1-1. Locations of Dustfall and PASS Stations

Note: NAD83 Zone 9V

There are currently no significant sources of air pollutants within the immediate vicinity of these stations. Construction of the exploration access road was on-going through the monitoring period in the vicinity of stations in the Wildfire Creek area, but was expected to be outside the potential areas of influence of the monitoring stations. Plates 6.1-1 to 6.1-6 show each station and their immediate souring environments.

On July 18, 2012 after the first month of monitoring, station DF2-PASS1 was relocated 640 m southwest of the original location to facilitate helicopter access by field crews.

6.1.2 Monitoring Method

The dustfall monitoring program was developed in accordance with the sampling method ASTM D1739-98 (Reapproved 2010). The dustfall monitoring stations collect particles small enough to pass through a 1 mm stainless steel sieve and large enough to settle by virtue of their weight. The containers used were open-topped cylinders not less than 150 mm in diameter placed at the top of stands at a height of 2 m above ground. The containers were partially filled with deionized water and algaecide to prevent resuspension of dust and growth of algae in the containers.

Plate 6.1-1. Dustfall Station DF1 (August 8, 2012).

Plate 6.1-2. Dustfall Station DF2 (September 2012).

Plate 6.1-3. Dustfall Station DF3 (August 8, 2012).

Plate 6.1-4. Dustfall Station DF4 (August 7, 2012).

Plate 6.1-5. Dustfall Station DF5 (September 2012).

Plate 6.1-6. Dustfall Station DF6 (August 7, 2012).

The containers were surrounded by a windscreen and bird spikes (Plate 6.1-1). The wind screen improves the dustfall collection efficiency and bird spikes were used to minimize contaminants from bird faeces. Sample containers were exposed to the atmosphere for approximately 30 days, after which they were sent to the laboratory for analysis. Each dustfall station was comprised of two sample containers with separate mounts. One of the containers was analyzed for particulates (total, soluable and insoluable) and anions (sulphate, nitrate, chloride and ammonia), while the other was analyzed for total metals and various cations. All dustfall samples were analyzed at ALS Environmental Laboratory in Burnaby, BC. Results that are below detection limits were presented as the detection limit in the tables; however, in the calculation of averages, values below detection limits were assumed to be half of the detection limits.

Acid deposition rates were calculated based on sulphate and nitrate content measured in each dustfall sample. Environment Canada (EC) has studied the sources of acid deposition and the adverse effects of acid deposition on the Canadian environment since its emergence in the public conscience in the early 1980s. Critical load estimates have been established for both aquatic and terrestrial ecosystems for forested areas throughout Canada (EC 2004). The unit conversion factors used in this calculation from weight to charge equivalency are presented in Table 6.1-2.

Chemical Species	kg/ha/yr	eq/ha/yr
SO4 ²⁻	1.00	20.8
S	1.00	62.4
NO ₃ ⁻	1.00	16.1
NH_4^+	1.00	55.4
Ν	1.00	71.4

Table 6.1-2.	Relationships Among the Units for Atmospheric Deposition Used in the Assessment to
Quantify Crit	ical Loads

6.1.3 Monitoring Period

As part of the ambient air quality baseline program, monthly dustfall measurements were collected at six locations within the Project area from July to September, 2012. Note that the monitoring focused on the snow-free periods (summer and early fall) as snowcover would greatly reduce the amount of dust produced by natural wind erosion of soils. During snow period, the 1 mm sieve on top of the collection container may freeze and prevent further collection of the sample. Moreover, heavy snow may hinder the access to the dustfall stations.

6.2 PASSIVE AIR SAMPLING SYSTEM (PASS) STATION

6.2.1 Site Selection

As part of the ambient air quality baseline program, monthly average concentrations of three criteria air contaminants were monitored. Two PASS located at the Brucejack Lake area and the Wildfire Creek area were used to monitor NO_2 , SO_2 and O_3 on a monthly basis from June to September 2012 (Figure 6.1-1; Appendix B).

The two PASS were installed upwind at the Brucejack Lake and Wildfire Creek areas on the DF2 and DF5 dustfall stations (Plates 6.2-1 and 6.2-2). These locations are free of anthropogenic emissions such as vehicle and equipment exhaust.

Plate 6.2-1. PASS1 Attached on DF2 (August 8, 2012).

Plate 6.2-2. PASS2 Attached on DF5 (August 7, 2012).

6.2.2 Monitoring Method

PASS is a diffusive method which monitors gas or vapour pollutants from the atmosphere at a rate controlled by a physical process such as diffusion through a static air layer or permeation through a membrane, which does not involve the active movement of air through the sampler (Tang 2001). The sampling rate was calculated using equations developed in laboratory studies based on temperature, relative humidity, and average wind speed (Tang 2001). For the present study, meteorological conditions were provided using data collected from Wildfire meteorological station for PASS1 (DF2) and Brucejack Lake station for PASS2 (DF5). The number of days of contact between the ambient air and the permeation membrane is important as contaminant levels captured by the sampler are proportional to exposure time. Both Wildfire and Brucejack Lake stations are operated as part of the environmental baseline studies for the Project. All PASS samples were analyzed by Maxxam Analytics Inc. in Edmonton, AB.

6.2.3 Monitoring Period

As part of the ambient air quality baseline program, monthly PASS measurements were collected at two locations, Brucejack Lake and Wildfire Creek areas from July to September in 2012.

7. Results

7. Results

7.1 TOTAL DUSTFALL

Dustfall results from July to September 2012 are summarized in Table 7.1-1 and Figure 7.1-1. The average dustfall results in the study were in the range of 0.2 to 0.7 mg/dm²/day, with the exception of DF1 where the average dusfall deposition rate was 1.53 mg/dm²/day. There were some construction activities related to construction of an exploration access road approximately 3 km north of DF1 that could have been the cause of the higher dust deposition results. The highest dustfall level recorded was 2.67 mg/dm²/day in September 2012 at DF1.

Total Dustfall (mg/dm²/day)							
Period	DF1	DF2	DF3	DF4	DF5	DF6	Average
Jul-12	1.27	1.22	0.78	0.33	0.22	0.29	0.69
Aug-12	0.66	0.55	0.54	0.25	0.19	0.23	0.40
Sep-12	2.67	0.43	0.37	0.24	0.14	0.52	0.73
Average	1.53	0.73	0.56	0.27	0.18	0.35	-

 Table 7.1-1. Total Dustfall Results at Brucejack Gold Mine Project 2012

The Pollution Control Objectives for the Mining, Smelting, and Related Industries of British Columbia are between 1.7 and 2.9 mg/dm²/day (BC MOE 1979). Compared to the objectives, the current dustfall levels are generally about half of the more stringent objective. The highest dustfall level of 2.67 mg/dm²/day approaches the less stringent objective of 2.9 mg/dm²/day.

Dustfall results for the Brucejack study area are generally consistent to measured background dustfall rates for other projects in the region. Dustfall deposition rates ranged from below detection limit to $3.75 \text{ mg/dm}^2/\text{day}$ at the KSM Project, from below detection limit to $2.5 \text{ mg/dm}^2/\text{day}$ at the Schaft Creek Mine Project, and from below detection limits to $0.46 \text{ mg/dm}^2/\text{day}$ Kitsault Mine Project.

7.2 ACID DEPOSITION

Deposition of sulphate and nitrate in dust was analyzed as part of the dustfall laboratory analysis. The sulphate and nitrate contents of the dustfall samples are shown in Table 7.2-1.

	DF1	DF2	DF3	DF4	DF5	DF6	
Period			Nitrate (m	g/dm²/day)			Average
Jul-12	0.0011	0.0009	0.0011	0.0020	0.0022	0.0024	0.0016
Aug-12	0.0019	0.0011	0.0013	0.0010	0.0013	0.0008	0.0012
Sep-12	0.0007	0.0009	0.0008	0.0012	0.0012	0.0026	0.0012
Average	0.0013	0.0010	0.0010	0.0014	0.0015	0.0019	-
			Sulphate (n	ng/dm²/day)			
Jul-12	0.0098	<0.010	<0.0063	<0.0076	<0.0080	<0.013	0.0054
Aug-12	<0.0074	<0.0079	<0.0039	<0.015	<0.014	<0.015	0.0053
Sep-12	<0.015	<0.014	<0.0083	<0.014	<0.012	<0.029	0.0077
Average	0.0070	0.0053	0.0031	0.0061	0.0057	0.0095	-

 Table 7.2-1. Nitrate and Sulphate Deposition Results from Collected Dustfall Samples

Note: Values below detection limits were assumed to be half of the detection limit in the calculation of averages.

PRETIVM

PROJECT # 1042-008-13

ILLUSTRATION # a39062j

November 27, 2012

Since nitrate and sulphate have different molecular weight, acid load is calculated using conversions shown in Table 6.1-2. Based on the measured nitrate and sulphate rates, the acid load as expressed in units of charge equivalency are presented in Table 7.2-2.

			Acid Depo	osition Load	(eq/ha/yr)		
Period	DF1	DF2	DF3	DF4	DF5	DF6	Median
Jul-12	103	60	52	80	87	113	83
Aug-12	79	59	47	84	86	77	78
Sep-12	76	77	52	84	77	178	77
Median	79	60	52	84	86	113	-

Table 7.2-2. Calculated Acid Deposition Load

Note: value below detection limit is assumed to be half of detection limit in the calculation from rate to equivalency.

Generally, the acid deposition rate in the study area was between 47 to 178 eq/ha/yr (Figure 7.2-1), with median range from 52 to 113 eq/ha/yr. The average median load across the six dustfall sampling locations was 79 eq/ha/yr.

As discussed previously, acid deposition critical load is a quantitative estimate of an exposure to one or more acid generating pollutants below which significant harmful effects on specific sensitive elements of the environment do not occur according to present knowledge (EC 2004). The calculation presented in the assessment does not consider any neutralizing compounds found in the dustfall of soil. Therefore, actual loading is likely to be well below the calculated value.

For BC, The median acid deposition critical load has been determined to be 750 eq/ha/yr by NEG-ECP. The estimated median acid deposition in the study area is approximately 10% of the median critical load for BC.

7.3 METAL DEPOSITION

Full metal results can be found in Appendix A. Since there are currently no significant anthropogenic sources in the study area, metal deposition levels result from natural emissions and the majority of the results were below detection limits. The maximum metal deposition rates at each dustfall station during the three-month monitoring period are presented in Table 7.3-1. Note that the results presented here are total metal content. Out of the 33 metals analyzed, 16 of them are always below their detection limits. There are 17 metals which had at least one reading during a one month period that was above the detection limit, but generally with very low metal deposition rates.

7.4 AMBIENT CRITIERA AIR CONTAMINANT CONCENTRATION

Two PASS samplers were installed at the DF2 and DF5 dustfall sites and PASS results are expressed as 30-day averages (Appendix B). The ambient concentrations of NO_2 , SO_2 and O_3 are summarized in Table 7.4-1.

During the first month of monitoring, results were voided due to improper sample preparation. For the remaining two months of the monitoring period, NO_2 and SO_2 concentrations at PASS1 and SO_2 concentration at PASS2 were below detection limit. In September 2012 at PASS2, the O_3 canister was found missing from the environmental enclosure, likely due improper mounting of the canister.

There are currently no air quality objectives or standards for NO_2 or SO_2 for Canada or British Columbia with 30-day averaging periods; therefore, results are conservatively compared to annual criterion.

PRETIVM

Engineers & Scientists

		Metal Deposition (mg/dm²/day)					
Metal	DF1	DF2	DF3	DF4	DF5	DF6	2012 Maximum
Aluminum (Al)	3.25E-03	3.48E-04	3.89E-04	4.23E-04	2.80E-04	4.24E-04	3.25E-03
Antimony (Sb)	1.30E-07	BDL	BDL	1.90E-04	BDL	BDL	1.90E-04
Arsenic (As)	1.90E-06	2.50E-06	1.30E-06	5.50E-06	3.90E-06	BDL	5.50E-06
Barium (Ba)	3.52E-05	2.50E-05	1.14E-05	1.24E-05	1.18E-05	1.15E-05	3.52E-05
Beryllium (Be)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Bismuth (Bi)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Boron (B)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cadmium (Cd)	1.50E-06	BDL	BDL	BDL	BDL	BDL	1.50E-06
Calcium (Ca)	5.62E-03	1.73E-02	1.54E-02	1.22E-03	BDL	BDL	1.73E-02
Chromium (Cr)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cobalt (Co)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Copper (Cu)	BDL	3.03E-04	4.76E-04	8.88E-04	BDL	BDL	8.88E-04
Iron (Fe)	8.72E-03	7.10E-04	5.80E-04	6.30E-04	1.23E-03	BDL	8.72E-03
Lead (Pb)	1.07E-05	9.25E-06	7.61E-06	1.89E-05	1.04E-05	BDL	1.07E-05
Lithium (Li)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Magnesium (Mg)	3.20E-03	6.10E-03	2.60E-04	BDL	BDL	BDL	3.20E-03
Manganese (Mn)	2.56E-04	7.94E-04	6.58E-05	6.63E-05	6.85E-05	1.00E-04	2.56E-04
Mercury (Hg)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Molybdenum (Mo)	6.10E-08	BDL	BDL	BDL	3.00E-06	BDL	BDL
Nickel (Ni)	1.40E-05	1.90E-05	8.09E-05	BDL	4.60E-05	BDL	1.40E-05
Phosphorus (P)	1.05E-02	1.16E-02	1.19E-03	BDL	BDL	BDL	1.05E-02
Potassium (K)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Selenium (Se)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silicon (Si)	5.04E-03	BDL	1.90E-04	BDL	BDL	BDL	5.04E-03
Silver (Ag)	3.90E-07	3.80E-07	3.70E-08	5.50E-07	BDL	BDL	3.90E-07
Sodium (Na)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Strontium (Sr)	2.00E-05	1.40E-04	2.97E-05	5.30E-06	3.30E-06	4.00E-06	2.00E-05
Thallium (Tl)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Tin (Sn)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Titanium (Ti)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Uranium (U)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Vanadium (V)	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Zinc (Zn)	1.08E-04	1.50E-04	9.30E-05	7.50E-05	7.60E-05	BDL	1.08E-04

Table 7.3-1. Maximum Metal Deposition from Dustfall

Note: BDL = Below detection limit

The highest 30-day average NO₂ of 7.9 μ g/m³ was recorded occurred in September 2012 and is much lower than the Canadian maximum desirable standard of 60 μ g/m³. During the monitoring period, there were no PASS SO₂ results higher than the detection limit of 0.26 μ g/m³, which is much lower than the AENV 30-day objective and the BC annual objective.

	Concentration (µg/m ³)							
		PASS1			PASS2			
Period	NO ₂	SO ₂	O ₃	NO ₂	SO ₂	O ₃		
Jul-12		Void ^a			Void ^a			
Aug-12	<0.19	<0.26	21.60	0.38	<0.26	57.33		
Sep-12	<0.19	<0.26	18.65	7.90	<0.26	Missing ^b		
Average	0.09	0.13	20.12	4.14	0.13	57.33		

Table 7.4-1. Ambient Concentrations of NO₂, SO₂ and O₃ Collected by PASS

Note: Values below detection limits were assumed to be half of the detection limit.

^a data were voided due to improper sample preparation

^b O₃ canister was found to be missing from the PASS

There is no 30-day average criterion for O_3 in the Canadian standards or BC objectives. The purpose of O_3 monitoring is typically to obtain knowledge in ambient O_3 concentration for estimation of NO_2 emissions from NO_x using ozone limiting method. The average O_3 concentration at PASS1 was 20 µg/m³ while the O_3 concentration at PASS2 was 57 µg/m³. Health Canada states the monthly 1-hour O_3 averages between May and September should be in the range of 49 to 78 µg/m³ (25 to 40 ppb) when the source is away from anthropogenic influence (Health Canada 1999). Ambient O_3 concentrations measured at PASS1 and PASS2 are approximately within this range. Comparing to background O_3 concentrations indicated in McKendry's study, O_3 concentration results collected in the Brucejack study area are comparable to the lower end of the range of 40 to 80 µg/m³.

8. Conclusions

8. Conclusions

The baseline air quality program completed for the Brucejack Gold Mine Project included the measurement of dustfall levels at six locations, of which three were near Brucejack Lake and three were in the Wildfire Creek area. Two PASS samplers (PASS1 and PASS2) located at each of the two areas measured NO₂, SO₂ and O₃. Dustfall analyses included particulates (total, soluble and insoluble), anions (sulphate, nitrate, chloride and ammonia), total metals and various cations. The maximum dustfall deposition of 2.67 mg/dm²/day was observed in September 2012 at DF1, and was between the BC dustfall objectives of 1.7 to 2.9 mg/dm²/day. The average dustfall deposition rates ranged from 0.27 to 1.53 mg/dm²/day, which is generally in agreement with results for background dustfall levels collected at other mineral development projects in the region.

The average median acid load across the six sampling locations in 2012 was 164 eq/ha/yr and is lower than the BC annual median critical load. The maximum single acid deposition load of 398 eq/ha/yr was observed at DF6 in September 2012, which was also lower than the BC annual median critical acid load of 750 eq/ha/yr. Metal deposition rates observed were either low or below detection limit, which is expected in area with limited anthropogenic emission sources.

NO₂ and SO₂ concentrations measured at PASS samplers were generally below detection limit. Concentrations, where measureable, were well below relevant objectives. The NO₂ concentration at PASS2, while measurable, was only 4 μ g/m³ which is much lower than the annual Canadian standard of 60 μ g/m³. The O₃ concentrations observed at PASS1 and PASS2 were 20 and 57 μ g/m³, respectively. These values correspond well with Health Canada's expected O₃ concentration of 49 to 78 μ g/m³ between May and September.

Although ambient concentrations of dust (TSP, PM_{10} and $PM_{2.5}$) were not monitored for this study, data from the Kitsault Mine Project 130 km south of the Brucejack Gold Mine Project, and the Galore Creek Copper-Gold-Silver Project, 100 km northwest of the Brucejack Gold Mine Project, were reviewed. Dust in ambient air was monitored at the site from October 8, 2010 to October 12, 2010 at five locations at the Kitsault Mine Project. The overall 24-hour average concentrations were 3.5 µg/m³ for TSP, 2.5 µg/m³ for PM_{10} and 2.3 µg/m³ for $PM_{2.5}$.(AMEC 2011). In July 2005, a total of 29 samples were collected for PM_{10} and $PM_{2.5}$ at Galore Creek Copper-Gold-Silver Project. Results for 24-hour PM_{10} concentration ranged from 1.4 to 5.6 µg/m³ with an average of 3.4 µg/m³ (Rescan 2006).

References

References

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- Aherne, J. 2008. Calculating Critical Loads of Acid Deposition for Forest Soils in Alberta: Critical Load, Exceedance and Limitations. Final Report. Canadian Council of Ministers of the Environment.
- AMEC. 2011. Kitsault Mine Project Environmental Assessment. Appendix 6.2-A Atmospheric Environmental Baseline Report.
- ASTM Standard D1739-98. Reapproved 2010. Standard Test Method for Collection and Measurement of Dustfall (Settleable Particulate Matter). D1739-98. ASTM International: West Conshohocken, PA.
- BC MOE. 1979. Pollution Control Objectives for The Mining, Smelting, and Related Industries of British Columbia. BC Ministry of Environment: Victoria, BC.
- Cirrus Consultants. 1998. Environmental Effects Report, Climate and Air Quality. Prepared for Diavik Diamond Mines Inc. by Cirrus Consultants: Yellowknife, NT.
- EC. 2004. 2004 Canadian acid deposition science assessment. Meteorological Service of Canada: Downsview, Ontario.
- Health Canada. 1999. National Ambient Air Quality Objectives for Ground-Level Ozone.
- McKendry, I. G. 2006. Background Concentrations of PM_{2.5} and Ozone in British Columbia, Canada. Prepared for British Columbia Ministry of Environment: n.p.
- National Round Table on the Environment and the Economy. 2008. Developing Ambient Air Quality Objectives for Canada, Advice to the Minister of the Environment.
- NEG-ECP. 2001. Critical Load of Sulphur and Nitrogen Assessment and Mapping Protocol for Upland Forests, New England Governors and Eastern Canadian Premiers Environment Task Group, Acid Rain Action Plan. Halifax, Canada.
- Rescan 2006. Galore Creek Project: Application for Environmental Assessment Certificate. Prepared for NovalGold Inc. by Rescan Environmental Services Ltd.: Vancouver, BC.
- Rescan. 2012. KSM Project 2008 to 2011 Air Quality Baseline Report.
- Rescan RTEC. 2010. Schaft Creek Project: 2008 and 2009 Meteorology and Air Quality Baseline.
- Tang, H. 2001. Introduction to Maxxam All-Season Passive Sampling System and Principles of Proper Use of Passive Samplers in the Field Study. *The Scientific World*, 1: 463-74.

Appendix A 2012 Brucejack Dustfall Results

RESCAN ENVIRONMENTAL SERVICES

ATTN: Derek Shaw Sixth Floor 1111 West Hastings Street Vancouver BC V6E 2J3 Date Received:19-JUL-12Report Date:30-JUL-12 13:35 (MT)Version:FINAL

Client Phone: 604-689-9460

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1181247 NOT SUBMITTED 1042-008-12-98 10-247233

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1181247 CONTD.... PAGE 2 of 7 30-JUL-12 13:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1181247-1 DUSTFALL 12-JUL-12 14:40 DF-1	L1181247-2 DUSTFALL 12-JUL-12 12:25 DF-2	L1181247-3 DUSTFALL 11-JUL-12 18:15 DF-3	L1181247-4 DUSTFALL 12-JUL-12 09:00 DF-4	L1181247-5 DUSTFALL 12-JUL-12 10:00 DF-5
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	1.27	1.22	0.78	0.33	0.22
	Total Insoluble Dustfall (mg/dm2.day)	0.92	0.82	0.42	<0.10	<0.10
	Total Soluble Dustfall (mg/dm2.day)	0.36	0.40	0.36	0.29	0.19
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	0.00108	0.00474	0.00232	<0.00038	<0.00040
	Chloride (Cl) (mg/dm2.day)	0.0475	0.035	0.0452	0.0492	0.0402
	Nitrate (as N) (mg/dm2.day)	0.00110	0.00086	0.00108	0.00195	0.00216
	Sulfate (SO4) (mg/dm2.day)	0.0098	<0.010	<0.0063	<0.0076	<0.0080
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000125	0.000348	0.0000908	0.000423	0.000280
	Antimony (Sb)-Total (mg/dm2.day)	0.00000013	<0.0000019	<0.0000023	<0.0000016	<0.000018
	Arsenic (As)-Total (mg/dm2.day)	0.00000021	0.0000025	0.00000024	0.0000033	0.0000039
	Barium (Ba)-Total (mg/dm2.day)	0.00000202	0.0000250	0.00000499	0.0000124	0.0000118
	Beryllium (Be)-Total (mg/dm2.day)	<0.0000060	<0.000095	<0.0000011	<0.000081	<0.000091
	Bismuth (Bi)-Total (mg/dm2.day)	<0.0000060	<0.000095	<0.0000011	<0.000081	<0.000091
	Boron (B)-Total (mg/dm2.day)	<0.000012	<0.00019	<0.000023	<0.00016	<0.00018
	Cadmium (Cd)-Total (mg/dm2.day)	<0.00000060	<0.0000095	<0.0000011	<0.0000081	<0.0000091
	Calcium (Ca)-Total (mg/dm2.day)	0.000150	0.0173	0.0154	0.00122	<0.00091
	Chromium (Cr)-Total (mg/dm2.day)	<0.0000060	<0.000095	<0.0000011	<0.000081	<0.000091
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000012	<0.000019	<0.0000023	<0.0000016	<0.000018
	Copper (Cu)-Total (mg/dm2.day)	<0.000019	<0.00023	<0.000027	0.000888	<0.00016
	Iron (Fe)-Total (mg/dm2.day)	0.000235	0.00071	0.000135	0.00063	<0.00054
	Lead (Pb)-Total (mg/dm2.day)	0.00000865	<0.0000047	<0.00000046	0.0000184	<0.0000072
	Lithium (Li)-Total (mg/dm2.day)	<0.000060	<0.000095	<0.000011	<0.000081	<0.000091
	Magnesium (Mg)-Total (mg/dm2.day)	0.00014	0.0061	0.00026	<0.0016	<0.0018
	Manganese (Mn)-Total (mg/dm2.day)	0.0000151	0.000794	0.0000177	0.0000663	0.0000452
	Mercury (Hg)-Total (mg/dm2.day)	<0.00000060	<0.0000095	<0.0000011	<0.0000081	<0.0000091
	Molybdenum (Mo)-Total (mg/dm2.day)	0.00000061	<0.0000095	<0.00000011	<0.0000081	<0.0000091
	Nickel (Ni)-Total (mg/dm2.day)	<0.0000012	<0.000019	<0.0000011	<0.000081	<0.0000091
	Phosphorus (P)-Total (mg/dm2.day)	0.00054	0.0116	0.00119	<0.0049	<0.0054
	Potassium (K)-Total (mg/dm2.day)	<0.0024	<0.038	<0.0046	<0.032	<0.036
	Selenium (Se)-Total (mg/dm2.day)	<0.0000012	<0.000019	<0.000023	<0.000016	<0.000018
	Silicon (Si)-Total (mg/dm2.day)	0.000118	<0.00095	0.00019	<0.00081	<0.00091
	Silver (Ag)-Total (mg/dm2.day)	0.00000034	0.0000038	0.00000037	0.00000021	<0.0000018
	Sodium (Na)-Total (mg/dm2.day)	<0.0024	<0.038	<0.0046	<0.032	<0.036
	Strontium (Sr)-Total (mg/dm2.day)	0.00000076	0.000140	0.0000297	0.0000053	0.0000033
	Thallium (TI)-Total (mg/dm2.day)	<0.0000012	<0.0000019	<0.0000023	<0.0000016	<0.000018
	Tin (Sn)-Total (mg/dm2.day)	<0.0000012	<0.0000019	<0.0000023	<0.0000016	<0.000018
	Titanium (Ti)-Total (mg/dm2.day)	<0.000012	<0.00019	<0.000023	<0.00016	<0.00018

L1181247 CONTD.... PAGE 3 of 7 30-JUL-12 13:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1181247-6 DUSTFALL 12-JUL-12 08:50 DF-6		
Grouping	Analyte			
DUSTFALL				
Particulates	Total Dustfall (mg/dm2.day)	0.29		
	Total Insoluble Dustfall (mg/dm2.day)	<0.10		
	Total Soluble Dustfall (mg/dm2.day)	0.28		
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	<0.00063		
	Chloride (Cl) (mg/dm2.day)	0.040		
	Nitrate (as N) (mg/dm2.day)	0.00243		
	Sulfate (SO4) (mg/dm2.day)	<0.013		
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000424		
	Antimony (Sb)-Total (mg/dm2.day)	<0.000031		
	Arsenic (As)-Total (mg/dm2.day)	<0.0000031		
	Barium (Ba)-Total (mg/dm2.day)	0.0000115		
	Beryllium (Be)-Total (mg/dm2.day)	<0.000015		
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000015		
	Boron (B)-Total (mg/dm2.day)	<0.00031		
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000015		
	Calcium (Ca)-Total (mg/dm2.day)	<0.0015		
	Chromium (Cr)-Total (mg/dm2.day)	<0.000015		
	Cobalt (Co)-Total (mg/dm2.day)	<0.0000031 _{DLB}		
	Copper (Cu)-Total (mg/dm2.day)	<0.000062		
	Iron (Fe)-Iotal (mg/dm2.day)	<0.00093 _{DLB}		
	Lead (PD)-Total (mg/dm2.day)	<0.000062		
	Lithium (Li)-i otal (mg/dm2.day)	<0.00015		
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0031		
	Moreury (Ha) Total (mg/dm2.day)	0.0000641		
	Molybdenum (Mo)-Total (mg/dm2 day)	<0.0000015		
	Nickel (Ni)-Total (mg/dm2 day)	<0.0000015		
	Phosphorus (P)-Total (mg/dm2 day)	<0.000015		
	Potassium (K)-Total (mg/dm2 day)	<0.0093		
	Selenium (Se)-Total (mg/dm2.dav)	<0.062		
	Silicon (Si)-Total (mg/dm2.dav)	<0.000031		
	Silver (Ag)-Total (mg/dm2.dav)			
	Sodium (Na)-Total (mg/dm2.dav)			
	Strontium (Sr)-Total (mg/dm2.day)			
	Thallium (TI)-Total (mg/dm2.day)			
	Tin (Sn)-Total (mg/dm2.day)			
	Titanium (Ti)-Total (mg/dm2.day)	<0.00031		

L1181247 CONTD.... PAGE 4 of 7 30-JUL-12 13:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1181247-1 DUSTFALL 12-JUL-12 14:40 DF-1	L1181247-2 DUSTFALL 12-JUL-12 12:25 DF-2	L1181247-3 DUSTFALL 11-JUL-12 18:15 DF-3	L1181247-4 DUSTFALL 12-JUL-12 09:00 DF-4	L1181247-5 DUSTFALL 12-JUL-12 10:00 DF-5
Grouping	Analyte					
DUSTFALL						
Metals	Uranium (U)-Total (mg/dm2.day)	<0.00000012	<0.0000019	<0.00000023	<0.0000016	<0.0000018
	Vanadium (V)-Total (mg/dm2.day)	<0.000012	<0.000019	<0.000023	<0.000016	<0.000018
	Zinc (Zn)-Total (mg/dm2.day)	0.0000078	0.000150	0.0000094	0.000075	<0.000054

L1181247 CONTD.... PAGE 5 of 7 30-JUL-12 13:35 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1181247-6 DUSTFALL 12-JUL-12 08:50 DF-6		
Grouping	Analyte			
DUSTFALL				
Metals	Uranium (U)-Total (mg/dm2.day)	<0.0000031		
	Vanadium (V)-Total (mg/dm2.day)	<0.000031		
	Zinc (Zn)-Total (mg/dm2.day)	<0.000093		

Reference Information

Qualifiers for Individual Parameters Listed:

L1181247 CONTD
PAGE 6 of 7
30-JUL-12 13:35 (MT)
Version: FINAL

Qualifier	Description	I			
DLB	Detection li	mit was raise	ed due to detection of analyte at	comparable level in Me	thod Blank.
Test Method Re	ferences:				
ALS Test Code		Matrix	Test Description		Method Reference**
CL-IC-VA		Dustfall	Dustfall Chloride by Ion Chroma	atography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall ana Cations by Ion C of Anions by Ion	lysis is carr hromatogra Chromatog	ed out in acc phy'. The ch raphy" and E	ordance with the B.C. Laborator loride analysis is specifcially can PA Method 300.0 "Determinatio	y Manual method 'Parti ried out using procedu n of Inorganic Anions b	culate - Total' and 'Particulate - Soluble - Anions and res adapted from APHA Method 4110 "Determination y lon Chromatography".
DUSTFALLS-CO	M-DM2-VA	Dustfall	Combined Dustfalls-Total, solut	ole, insol	BCMOE PARTICULATE
This analysis is of Particulates or D Particulates or D and drying the fit Total Dustfall is t	carried out u uustfall are c lter at 104 c the sum of I	using procedu letermined gu legrees celsi nsoluble Dus	ures modified from British Colum ravimetrically. Total Insoluble Du us. Total Soluble Dustfall is dete tfall and the Soluble Dustfall.	bia Environmental Mar stfall is determined by rmined by evaporating	nual "Particulate." filtering a sample through a 0.45 um membrane filter the filtrate to dryness at 104 degrees celsius. The
HG-DUST(DM2-C	VAFS-VA	Dustfall	Total Mercury in Dustfalls by C	/AFS	EPA 245.7
This analysis is o American Public States Environm	carried out u Health Ass ental Protee	using procedu ociation, and ction Agency	ures adapted from "Standard Me with procedures adapted from " (EPA). Instrumental analysis is	thods for the Examinat Test Methods for Evalu by cold vapour atomic	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United fluorescence spectrophotometry (EPA Method 245.7).
MET-DUST(DM2)	-ICP-VA	Dustfall	Total Metals in Dustfalls by ICP	OES	EPA 6010B
This analysis is of American Public States Environm Method 6010B).	carried out u Health Ass ental Protee	using procedu ociation, and ction Agency	ures adapted from "Standard Me with procedures adapted from " (EPA). Instrumental analysis is	thods for the Examinati Test Methods for Evalu by inductively coupled	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United plasma - optical emission spectrophotometry (EPA
MET-DUST(DM2)	-MS-VA	Dustfall	Total Metals in Dustfalls by ICP	MS	EPA 6020A
This analysis is o American Public States Environm	carried out u Health Ass ental Protee	using procedu ociation, and ction Agency	ures adapted from "Standard Me with procedures adapted from " (EPA). Instrumental analysis is	thods for the Examinat Test Methods for Evalu by inductively coupled	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United plasma - mass spectrometry (EPA Method 6020A).
NH3-F-VA		Dustfall	Dustfall Ammonia by Fluoresce	nce	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall ana Cations by Ion C The Royal Socie Roslyn J. Wasto	lysis is carri hromatogra ty of Chemi n et al.	ed out in acc phy'. The ar stry, "Flow-in	ordance with the B.C. Laborator nmonia analysis is specifcially co jection analysis with fluorescence	y Manual method 'Parti arried out using proced e detection for the dete	culate - Total' and 'Particulate - Soluble - Anions and ures modified from J. Environ. Monit., 2005, 7, 37 - 42, ermination of trace levels of ammonium in seawater",
NO3-IC-VA		Dustfall	Dustfall Nitrate by Ion Chromate	ography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall ana Cations by Ion C Anions by Ion Cl	lysis is carri hromatogra hromatograj	ied out in acc phy'. The nit phy" and EPA	cordance with the B.C. Laborator trate analysis is specifcially carri A Method 300.0 "Determination of	y Manual method 'Parti ed out using procedure of Inorganic Anions by I	culate - Total' and 'Particulate - Soluble - Anions and s adapted from APHA Method 4110 "Determination of on Chromatography".
SO4-IC-VA		Dustfall	Dustfall Sulphate by Ion Chrom	atography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall ana Cations by Ion C of Anions by Ion	lysis is carr hromatogra Chromatog	ed out in acc phy'. The su raphy" and E	ordance with the B.C. Laborator Iphate analysis is specifcially ca PA Method 300.0 "Determinatio	y Manual method 'Parti rried out using procedu n of Inorganic Anions b	culate - Total' and 'Particulate - Soluble - Anions and ires adapted from APHA Method 4110 "Determination y Ion Chromatography".
** ALS test method	s may incor	porate modif	ications from specified reference	e methods to improve p	erformance.
The last two letter	s of the abo	ove test code	(s) indicate the laboratory that p	erformed analytical ana	lysis for that test. Refer to the list below:
Laboratory Defin	ition Code	Laborat	ory Location		
VA		ALS EN	VIRONMENTAL - VANCOUVER	, BC, CANADA	
Chain of Custody	Numbers:				
10-247233					

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

10- 24	7233
---------------	------

	1								1					10	- 24	477	23:	3	
ALS E	nuironmer				ain of Custod	<u>y / Analytical_R</u> II Free: 1 800 66 w.alsglobal.com	equest Form 8 9878				.p					Page	<u> </u>	of	
Report To	is				órmat / Distribu	tion		Servic	in riequ	lest:(Ru	sh subjec	ct to ava	ailability	- Contac	ALS to	confirm	TAT}		
Company: Re	ESCAN			Stan	dard: Other	(specify):			Re ^{gula}	r (Stand	ard Turna	iround T	īmes - B	usiness 0	ays)				
Contact: DE	REK SHAW			Sele	ct: PDF Excel	Digital	Fax		Priarity	(2-4 Bus	iness Day	ys)-50%	surchar	ge - Conti	act ALS to	o confirm	1 TAT		
Address: 6 14	FLOOR, III W.	HASTINGS	ST.	Ema	111: dshawl	Prescan.c	om		Emerg	ency (1-2	2 Busines	s Days)	-100% S	urcharge	- Contaci	ALS to r	confirm T	TAT	
VANO	LOUVER BC	10 V6E	233	Ema	il 2:				Same	Day or W	/eekend E	Emerger	ncy - Cor	tact ALS	to confirm	n TAT			
Phone: (604	689-9468	Fax:					·····					A	nalys	is Requ	lest				
Invoice To	Same as Report ? (circle	e) 🙆 or No (if N	lo, provide detai	ls) Clier	nt / Project Informati	on		<u> </u>		(Indicate	e Filte	ered or	Preser	ved, F	7P)	·		
	Copy of Invoice with Rep	ort? (circle) Yes	or 🚯	Job	<u># 1042-0</u>	08-12-0	18	\vdash					$ \leq $	\leq	4	42	12		
Company:				PO /	AFE:		· · · · · · · · · · · · · · · · · · ·	4	أيد إ	5		- 1							
Contact:				LSD				12	4	10					3				
Address:								13	30.	jų į		4	۲.		5				ner
Phone:		Fax:						15	12	$\langle \rangle$	161	1. 4	E		2				ontai
Lab Work Ord	ier # (lab use only)	118121	47-	ALS	AMBER tact: SPRINGER	Sampler: (SOUGHTY	3	10-30	LURGE	AA	SE!	2 2	Į	4 C	544	1+		er of Cc
Sample #	, (This	Sample Ident description will ap	tification pear on the rep	ort)	Date (dd-mmm-yy	(hh:mm)	Sample Type	Andt	Solution	1~50	Su	5	え	ā lā	2	<u>(</u>]3	Z)	Numb
	DF-1 -TP				12 34611	L 14:40	DUSTFALL	X	X	$ \times $	X	\times	\times						
	DF-1 -TM				IZJULY 17	14:40	6	T							$\langle \cdot \rangle$	<u> </u>	\mathbf{x}		
F	DE-7 -TP				V. JULY 1	2 17:25	1.	X	X	X	X	X	x	X			<u>, i –</u>		
	NC-2 TM	1 CAMPLE	FELL OUE	e)	12 JULY 1	2 17:25		, <u> </u>	4	ŕ		<u> </u>					d x	_	
al.	DE TP	Chine				7 18.15	11	x	ťź	x	X	\mathbf{x}^{\dagger}	x	v ť		+-	+		
	NC-3-TM	·	• • • • • • • • • • • • • • • • • • •		II TRACT I	2 18:15	1.	$\uparrow \frown$						<u> </u>	朩	٦x	· x	╋	<u> </u>
	AC-V-TP	·			12 744 17	09:00	1.	X	X	\mathbf{x}	X	x		\mathbf{x}^{\uparrow}	+	+	+-		
	DF-4 -TM	<u> </u>			12 5467 12	09:00	1 1 -		1.				· - /	5	$\frac{1}{x}$		TX		
	DE-5-TP				17. JULY	2 10:00		X	X	X	XL	x	8	<u> </u>		1	1	+	
	DF-5-TM				12 344 1	2 10:00	i s				<u> </u>				Tx	TX		++	
	DF-6-TP				12 JULY 1	2 08:50	٤	X	K,	X	\times	X	×,	\overline{x}					
	OF-6-TM				1234141	2 08:50	. *		5							ĩΧ			
	Special	Instructions / Re	gulation with w	rater or land us	e (CCME- Freshwate	r Aquatic Life/BC	CSR-Commercial//	B Tier	1 Na	tural/E	TC)/I	lazar	dous	Details					
									(
			Failure to c	omplete all por	tions of this form ma	y delay analysis.	Please fill in this f	orm Ll	GIBL	Y.							<u>الناريس مكريس</u>		
	By t	he use of this for	m the user ack	nowledges and	agrees with the Terr	ns and Condition	s as specified on th	e baci	(page	of the	e white	e - rep	ort co	ру.					
	SHIPMENT RELEA	SE (client use)			SHIPMENT RECE	PTION (lab use on	ly)		1	\$	HIPME	ENT V	ERIFI	CATIO	lab u	ise on	y)		
Released by:	DOUGHTY	Date: 17 JUL 12	Time:	Received by:	Date:	Time:	71,4 °C	Verif	ied,by	:		Date:			me:		Yes /	≯rvation / No ? s add S	งระ มร
REF	ER TO BACK PAGE FOR	ALS LOCATIONS AN	ND SAMPLING IN	IFORMATION	1 July 19	WHITE - LA	BORATORY COPY	YELL	۱- WO.		COPY					GEN	F 18.01	Front	
				·	, ,				- ¥										

RESCAN ENVIRONMENTAL SERVICES

ATTN: Daniel Casanova Sixth Floor 1111 West Hastings Street Vancouver BC V6E 2J3 Date Received:13-AUG-12Report Date:22-AUG-12 16:25 (MT)Version:FINAL

Client Phone: 604-689-9460

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1192734 NOT SUBMITTED 1042-008-12

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1192734 CONTD.... PAGE 2 of 7 22-AUG-12 16:25 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1192734-1 DUSTFALL 08-AUG-12 12:35 DF1	L1192734-2 DUSTFALL 08-AUG-12 12:30 DF2	L1192734-3 DUSTFALL 08-AUG-12 12:00 DF3	L1192734-4 DUSTFALL 07-AUG-12 17:20 DF4	L1192734-5 DUSTFALL 07-AUG-12 17:10 DF5
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	0.66	0.55	0.54	0.25	0.19
	Total Insoluble Dustfall (mg/dm2.day)	0.33	0.13	0.11	<0.11	<0.11
	Total Soluble Dustfall (mg/dm2.day)	0.33	0.42	0.42	0.22	0.17
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	0.00039	0.00143	0.00113	<0.00015	<0.00014
	Chloride (Cl) (mg/dm2.day)	0.0586	0.0567	0.0529	0.057	0.056
	Nitrate (as N) (mg/dm2.day)	0.00194	0.00112	0.00125	0.00102	0.00126
	Sulfate (SO4) (mg/dm2.day)	<0.0074	<0.0079	<0.0039	<0.015	<0.014
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.000947	0.000328	0.000389	<0.00032	<0.00054
	Antimony (Sb)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.0000012	<0.000027	<0.000030
	Arsenic (As)-Total (mg/dm2.day)	0.0000019	0.0000017	0.0000013	0.0000034	<0.000030
	Barium (Ba)-Total (mg/dm2.day)	0.0000301	0.0000159	0.0000114	<0.000011	<0.0000091
	Beryllium (Be)-Total (mg/dm2.day)	<0.000064	<0.000064	<0.000062	<0.000013	<0.000015
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000064	<0.000064	<0.000062	<0.000013	<0.000015
	Boron (B)-Total (mg/dm2.day)	<0.00013	<0.00013	<0.00012	<0.00027	<0.00030
	Cadmium (Cd)-Total (mg/dm2.day)	<0.0000064	<0.0000064	<0.0000062	<0.0000013	<0.0000015
	Calcium (Ca)-Total (mg/dm2.day)	0.00134	0.00102	0.00092	<0.0013	<0.0015
	Chromium (Cr)-Total (mg/dm2.day)	<0.000064	<0.000064	<0.0000062	<0.000013	<0.000015
	Cobalt (Co)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.0000012	<0.000027	<0.000030
	Copper (Cu)-Total (mg/dm2.day)	<0.00019	0.000303	0.000476	<0.000054	<0.00011
	Iron (Fe)-Total (mg/dm2.day)	0.00115	0.00060	0.00058	<0.00081	<0.00091
	Lead (Pb)-Total (mg/dm2.day)	0.0000107	0.00000925	<0.0000068	<0.0000081	<0.0000091
	Lithium (Li)-Total (mg/dm2.day)	<0.000064	<0.000064	<0.000062	<0.00013	<0.00015
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0013	<0.0013	<0.0012	<0.0027	<0.0030
	Manganese (Mn)-Total (mg/dm2.day)	0.000256	0.000125	0.0000574	0.0000402	0.0000322
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000064	<0.0000064	<0.0000062	<0.0000013	<0.0000015
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000064	<0.0000064	<0.0000062	<0.0000013	0.0000030
	Nickel (Ni)-Total (mg/dm2.day)	<0.000064	<0.000064	0.0000131	<0.000013	0.000046
	Phosphorus (P)-Total (mg/dm2.day)	<0.0038	<0.0038	<0.0037	<0.0081	<0.0091
	Potassium (K)-Total (mg/dm2.day)	<0.026	<0.026	<0.025	<0.054	<0.060
	Selenium (Se)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.000012	<0.000027	<0.000030
	Silicon (Si)-Total (mg/dm2.day)	0.00085	<0.00064	<0.00062	<0.0013	<0.0015
	Silver (Ag)-Total (mg/dm2.day)	<0.0000013	<0.0000013	<0.0000012	<0.0000027	<0.0000030
	Sodium (Na)-Total (mg/dm2.day)	<0.026	<0.026	<0.025	<0.054	<0.060
	Strontium (Sr)-Total (mg/dm2.day)	0.0000059	0.0000059	0.000038	<0.000027	<0.000030
	Thallium (TI)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.0000012	<0.000027	<0.000030
	Tin (Sn)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.0000012	<0.000027	<0.000030
	Titanium (Ti)-Total (mg/dm2.day)	<0.00013	<0.00013	<0.00012	<0.00027	<0.00030

L1192734 CONTD.... PAGE 3 of 7 22-AUG-12 16:25 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1192734-6 DUSTFALL 07-AUG-12 17:30 DF6	
Grouping	Analyte		
DUSTFALL			
Particulates	Total Dustfall (mg/dm2.day)	0.23	
	Total Insoluble Dustfall (mg/dm2.day)	<0.11	
	Total Soluble Dustfall (mg/dm2.day)	0.18	
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	0.00025	
	Chloride (Cl) (mg/dm2.day)	0.059	
	Nitrate (as N) (mg/dm2.day)	0.00078	
	Sulfate (SO4) (mg/dm2.day)	<0.015	
Metals	Aluminum (Al)-Total (mg/dm2.day)	<0.00028	
	Antimony (Sb)-Total (mg/dm2.day)	<0.000031	
	Arsenic (As)-Total (mg/dm2.day)	<0.000031	
	Barium (Ba)-Total (mg/dm2.day)	<0.000014	
	Beryllium (Be)-Total (mg/dm2.day)	<0.000015	
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000015	
	Boron (B)-Total (mg/dm2.day)	<0.00031	
	Cadmium (Cd)-Total (mg/dm2.day)	<0.000015	
	Calcium (Ca)-Total (mg/dm2.day)	<0.0015	
	Chromium (Cr)-Total (mg/dm2.day)	<0.000015	
	Cobalt (Co)-Total (mg/dm2.day)	<0.000031	
	Copper (Cu)-Total (mg/dm2.day)	<0.00017	
	Iron (Fe)-Total (mg/dm2.day)	<0.00093	
	Lead (Pb)-Total (mg/dm2.day)	<0.0000093	
	Lithium (Li)-Total (mg/dm2.day)	<0.00015	
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0031	
	Manganese (Mn)-Total (mg/dm2.day)	0.000100	
	Mercury (Hg)-Total (mg/dm2.day)	<0.000015	
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.000015	
	Nickel (Ni)-Total (mg/dm2.day)	<0.000015	
	Phosphorus (P)-Total (mg/dm2.day)	<0.0093	
	Potassium (K)-Total (mg/dm2.day)	<0.062	
	Selenium (Se)-Total (mg/dm2.day)	<0.000031	
	Silicon (Si)-Total (mg/dm2.day)	<0.0015	
	Silver (Ag)-Total (mg/dm2.day)	<0.0000031	
	Sodium (Na)-Total (mg/dm2.day)	<0.062	
	Strontium (Sr)-Total (mg/dm2.day)	<0.000031	
	Thallium (TI)-Total (mg/dm2.day)	<0.000031	
	Tin (Sn)-Total (mg/dm2.day)	<0.000031	
	Titanium (Ti)-Total (mg/dm2.day)	<0.00031	

L1192734 CONTD.... PAGE 4 of 7 22-AUG-12 16:25 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1192734-1 DUSTFALL 08-AUG-12 12:35 DF1	L1192734-2 DUSTFALL 08-AUG-12 12:30 DF2	L1192734-3 DUSTFALL 08-AUG-12 12:00 DF3	L1192734-4 DUSTFALL 07-AUG-12 17:20 DF4	L1192734-5 DUSTFALL 07-AUG-12 17:10 DF5
Grouping	Analyte					
DUSTFALL						
Metals	Uranium (U)-Total (mg/dm2.day)	<0.0000013	<0.0000013	<0.00000012	<0.00000027	<0.00000030
	Vanadium (V)-Total (mg/dm2.day)	<0.000013	<0.000013	<0.000012	<0.000027	<0.000030
	Zinc (Zn)-Total (mg/dm2.day)	0.000091	0.000060	0.000093	<0.000081	<0.000091

	Sample ID Description Sampled Date Sampled Time Client ID	L1192734-6 DUSTFALL 07-AUG-12 17:30 DF6			
Grouping	Analyte				
DUSTFALL					
Metals	Uranium (U)-Total (mg/dm2.day)	<0.0000031			
	Vanadium (V)-Total (mg/dm2.day)	<0.000031			
	Zinc (Zn)-Total (mg/dm2.day)	<0.000093			

Reference Information

Qualifiers for Individual Parameters Listed:

Qualifier	Description				
DLB	Detection limi	it was rais	ed due to detection of analyte at co	omparable level in Me	ethod Blank.
est Method Re	eferences:				
ALS Test Code	N	latrix	Test Description		Method Reference**
CL-IC-VA	D	ustfall	Dustfall Chloride by Ion Chromato	ography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion C of Anions by Ior	alysis is carried Chromatograph Chromatograp	l out in ac ny'. The c phy" and I	cordance with the B.C. Laboratory hloride analysis is specifcially carrie EPA Method 300.0 "Determination	Manual method 'Part ed out using procedu of Inorganic Anions b	iculate - Total' and 'Particulate - Soluble - Anions and res adapted from APHA Method 4110 "Determination by Ion Chromatography".
DUSTFALLS-CO	M-DM2-VA D	ustfall	Combined Dustfalls-Total, soluble	e, insol	BCMOE PARTICULATE
This analysis is Particulates or I and drying the f Total Dustfall is	carried out usi Dustfall are det iilter at 104 deg the sum of Ins	ng proced ermined g grees cels oluble Du	lures modified from British Columbi gravimetrically. Total Insoluble Dust ius. Total Soluble Dustfall is detern stfall and the Soluble Dustfall.	ia Environmental Mar tfall is determined by nined by evaporating	nual "Particulate." filtering a sample through a 0.45 um membrane filter the filtrate to dryness at 104 degrees celsius. The
HG-DUST(DM2-0	CVAFS-VA D	ustfall	Total Mercury in Dustfalls by CVA	AFS	EPA 245.7
This analysis is American Public States Environm	carried out usi Health Assoc nental Protectio	ng proced iation, and on Agency	lures adapted from "Standard Meth d with procedures adapted from "Te / (EPA). Instrumental analysis is b	ods for the Examinat est Methods for Evalu by cold vapour atomic	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United fluorescence spectrophotometry (EPA Method 245.7)
MET-DUST(DM2))-ICP-VA D	ustfall	Total Metals in Dustfalls by ICPO	ES	EPA 6010B
This analysis is American Public States Environm Method 6010B).	carried out usi Health Assoc nental Protectio	ng proced iation, and on Agency	lures adapted from "Standard Meth d with procedures adapted from "Te r (EPA). Instrumental analysis is b	ods for the Examinat est Methods for Evalu y inductively coupled	ion of Water and Wastewater" published by the lating Solid Waste" SW-846 published by the United plasma - optical emission spectrophotometry (EPA
MET-DUST(DM2))-MS-VA D	ustfall	Total Metals in Dustfalls by ICPM	S	EPA 6020A
This analysis is American Public States Environm	carried out usi Health Assoc nental Protectio	ng proced iation, and on Agency	lures adapted from "Standard Meth d with procedures adapted from "Te / (EPA). Instrumental analysis is b	ods for the Examinat est Methods for Evalu y inductively coupled	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United plasma - mass spectrometry (EPA Method 6020A).
NH3-F-VA	D	ustfall	Dustfall Ammonia by Fluorescend	ce	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion O The Royal Socie Roslyn J. Wasto	alysis is carried Chromatograph ety of Chemistr on et al.	l out in ac ny'. The a ŋ, "Flow-in	cordance with the B.C. Laboratory mmonia analysis is specifcially car njection analysis with fluorescence	Manual method 'Part ried out using proced detection for the dete	iculate - Total' and 'Particulate - Soluble - Anions and ures modified from J. Environ. Monit., 2005, 7, 37 - 42 ermination of trace levels of ammonium in seawater",
NO3-IC-VA	D	ustfall	Dustfall Nitrate by Ion Chromatog	Iraphy	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion C Anions by Ion C	alysis is carried Chromatograph hromatography	l out in ac ny'. The n y" and EP	cordance with the B.C. Laboratory itrate analysis is specifcially carried A Method 300.0 "Determination of	Manual method 'Part d out using procedure Inorganic Anions by I	iculate - Total' and 'Particulate - Soluble - Anions and a adapted from APHA Method 4110 "Determination of on Chromatography".
SO4-IC-VA	D	ustfall	Dustfall Sulphate by Ion Chromate	ography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion O of Anions by Ion	alysis is carried Chromatograph Chromatograp	l out in ac ny'. The s phy" and I	cordance with the B.C. Laboratory ulphate analysis is specifcially carri EPA Method 300.0 "Determination	Manual method 'Part ied out using procedu of Inorganic Anions b	iculate - Total' and 'Particulate - Soluble - Anions and ires adapted from APHA Method 4110 "Determination by Ion Chromatography".
ALS test method	ds may incorpo	orate modi	fications from specified reference r	methods to improve p	erformance.
The last two lette	rs of the above	e test code	e(s) indicate the laboratory that per	formed analytical ana	lysis for that test. Refer to the list below:
_aboratory Defir	nition Code	Labora	tory Location		
VA		ALS EN	IVIRONMENTAL - VANCOUVER, I	BC, CANADA	
hain of Custody	Numbers:				

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Website: ww E-mail: resc	ww.rescan.com	Van Res 6 th F Van Tel:	couver Of can Envir loor, 111 couver, B (604) 689	fice: onmental 1 West Ha .C. V6E 3 -9460 Fa	YellowiServices Ltd.Rescanastings StreetSuite 92J3Yellowix: (604) 687-4277Tel: (86	cnife Off Northe 08-5201 cnife, NT 57) 920-2	fice: rn O; 50 th 7 X1/ 2090	peration Avenue A 3S9 Fax: (86	s 37) 920	-2015		Seattle Office: Rescan Consultants Inc. Suite 3200,1001 Fourth Avenue Plaza Seattle, WA 98154, USA Tel: (206) 726-2145 Fax: (206) 382-964	8
PROJECT			\mathbf{N}		PROJECT #:		0 	D	Y		R	ECORD Laboratory Contact:	
		guin	[Pre+i	vm)	1042-00-8-13-98-	_ டல்			/ .		/ ,	Laboratory Address:	
	ENTISTS AND/C	DR ENGIN	EERS: (P	rint Nam	e and Sign) 1042-008-12	NER O						Laboratory Hudrood.	
Calvin	Pin	L1192	.734			NUMBE			/ /	.			
STATION NUMBER	DATE	TIME	COMP. SAMPLE	GRAB SAMPLE	SAMPLE IDENTIFICATION (DEPTH, REPLICATE)				\square	\square	\square	Rescan Contact: Daniel Casanovo	۱
1 DFIA	81A-112	12:35PM	<u>_</u>	·	DF-IA	1						In cooler 1 of 2	
² DF1	SILASSIL	(J: 35PM			DF-1B	1						To cooler lof Z	
3 DF 24	3/ AUG/12	12:30 PM			DF-2A	1						In cooler luf Z	
1 DF2	SIAUXIII	12:36PM			DF-2B							In woler lof 2	
5 DF3A	5(Aux/12	12:00 PM			<u>DF-3A</u>	1						In cupler lot 2	
6 DF3A	SI AJ VIL	12;00PM			DF-3B	1						In cooler loft	
1 stoh	<u> </u>						_	_					
* DF4 *	STIAUA (12	5: JOPM			DE-AA	1						In cooler LotL	
9 DF4 🗣	71Au 112	5:20 pm			DF-4B	1		_				In cooler lote	
10 DES A	7/AV112	5:10PM			DF-SA	(-					In coolyr 2086	
11 DF5	71Aug112	5:10fm			DF-SB	1						In cooler 20th	
12 DFG M	71AUX112	S430PM			DF-GA	1		_				In wold Zot L	
13 DFG 🚯	71 AUX 112	5:30PM			DF-EB	<u> </u>							
14	J											······	
15													
16												0 0 # 0 0 0 # 0 # 0 # 0 0 0	
17													
18			·				-	╺╾┼╌╾╸╵╵ ║║║ ╼╍╍┿	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 9 2	73		
19									 		ł	100	
20													
21													
Received by Company:	y:		Date/ D / M / Y	Time	Relinquished by: Company:	D/M.)ate/Ti /Y	ime 	Routine	Analys	is: 🗆	Rush Analysis:	
Name:	(Print and Sign)		11		Name: Br (H: (Print and Sign) 11.3°C	13 08	112	10	Remark	s :		KESCAN (,UPY
Received by Company:	y:		Date/ D/M/Y	Time	Received for Laboratory by: Company:	D/M)ātē/Ti / Y	lme				·····	
Name:	(Print and Sign)		11		Name: (Print and Sign)	71	1					Page c	of

Report Distri	bution: pany Name:	RESCAN ENVIRON SERVICES	IMENTAL		Invoice D Acct Name:	SERVICES	DN: IVIRONMENTAL
	Contact:	NEW CONTACT			Contact:	Accounts Pa	yable
	Address:	Sixth Floor, 1111 W	est Hastings Street		Address:	Sixth Floor, 1	111 West Hastings Street
		Vancouver, BC, V6	E 2J3			Vancouver F	3C V6E 2.13
	Phone:	604-689-9460			Phone:		0
	Fax:	604-687-4277			Farm	004-009-940	0
	Email:	achateauvert@resc	an.com		Fax:		
		mbenry@rescan.com	m	In	voice Email:	payables@re	escan.com
R	enort Name	CROSSTAB ALS			Project #:	N/A	
[Digital Type:				Account #:	RES100	
п	igital Email						
J	Distribution:	Hard Copy: Y	Email: Y Eav	x [.] N			
Client Inform	ation:			-		07 4110 40	
Job F	Reference #:	1042-008-12		L	Date Sampled:	07-AUG-12	
Pi Logal Site	roject PO #:	Ν/Λ		U	Sampled By:	13-AUG-12	
Legal Sile I	Quote #	N/A N/A		Chai	n Of Custody:		
Manlan C		-		•			
workorder S	ummary				Client Job #:	1042-008-12	2
Lab W	ork Order #:	L1192734		Acco	ount Manager:	Amber Sprin	ger
Estimated com	pletion date:	22-AUG-12		Estimated sample of	disposal date:	21-SEP-12	
6 Samples receive	ed at ALS in	VANCOUVER					
Lab C	lient		Date	Date	Sample P	riority S	Sample
Sample ID Sa	mple ID		Sampled	Received	Due Date	Flag	Туре
L1192734-1 DF1			08-AUG-12 12:05	13-AUG-12 10:30	22-AUG-12	DU	STFALL
L1192734-2 DF2	2		08-AUG-12 12:30	13-AUG-12 10:30	22-AUG-12	DU	STFALL
L1192734-3 DF3	3		08-AUG-12 12:00	13-AUG-12 10:30	22-AUG-12	DU	STFALL
L1192734-4 DF4	ŀ		07-AUG-12 17:20	13-AUG-12 10:30	22-AUG-12	DU	STFALL
L1192734-5 DF5	5		07-AUG-12 17:10	13-AUG-12 10:30	22-AUG-12	DU	STFALL
L1192734-6 DF6	6		07-AUG-12 17:30	13-AUG-12 10:30	22-AUG-12	DU	STFALL

ADDRESS 8081 Lougheed Highway, Burnaby, BC, Canada V5A 1W9 PHONE +1 604 253 4188 FAX +1 604 253 6700 ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

Analysis Requested :	Sample Handling and Disposal Fee	Dustfall Chloride by Ion Chromatography	Combined Dustfalls-Total, soluble, insol	Dustfall Ammonia by Fluorescence	Dustfall Nitrate by Ion Chromatography	Total Mercury in Dustfalls by CVAFS	Total Metals in Dustfalls by ICPOES	Total Metals in Dustfalls by ICPMS	Dustfall Sample Preparation	Dustfall Sulphate by Ion Chromatography
DF1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Sample Integrity Observations: No observations were identified for this work order submission.

ALS Group strives to deliver on-time results to our clients at all times. However, there are times when due to capacity issues or other unforeseen circumstances we are unable to meet our expected turnaround times. The information above is related to a recent workorder you have submitted to our laboratory. In the event that you have an inquiry, please refer to the Lab Work Order # when calling your Account Manager.

Website: ww E-mail: resc	ww.rescan.com	Van Res 6 th F Van Tel:	couver Of can Envir loor, 111 couver, B (604) 689	fice: onmental 1 West Ha .C. V6E 3 -9460 Fa	YellowiServices Ltd.Rescanastings StreetSuite 92J3Yellowix: (604) 687-4277Tel: (86	cnife Off Northe 08-5201 cnife, NT 57) 920-2	fice: rn O; 50 th 7 X1/ 2090	peration Avenue A 3S9 Fax: (86	s 37) 920	-2015		Seattle Office: Rescan Consultants Inc. Suite 3200,1001 Fourth Avenue Plaza Seattle, WA 98154, USA Tel: (206) 726-2145 Fax: (206) 382-964	8
PROJECT			\mathbf{N}		PROJECT #:		0 	D	Y		R	ECORD Laboratory Contact:	
		guin	[Pre+i	vm)	1042-00-8-13-98-	_ டல்			/ .		/ ,	Laboratory Address:	
	ENTISTS AND/C	OR ENGIN	EERS: (P	rint Nam	e and Sign) 1042-008-12	NER O						Laboratory Hudrood.	
Calvin	Pin	L1192	.734			NUMBE			/ /	.			
STATION NUMBER	DATE	TIME	COMP. SAMPLE	GRAB SAMPLE	SAMPLE IDENTIFICATION (DEPTH, REPLICATE)				\square	\square	\square	Rescan Contact: Daniel Casanovo	۱
1 DFIA	81A-112	12:35PM	<u>_</u>	·	DF-IA	1						In cooler 1 of 2	
² DF1	SILASSIL	(J: 35PM			DF-1B	1						To cooler lof Z	
3 DF 24	3/ AUG/12	12:30 PM			DF-2A	1						In cooler luf Z	
1 DF2	SIAUXIII	12:36PM			DF-2B							In woler lof 2	
5 DF3A	5(Aux/12	12:00 PM			<u>DF-3A</u>	1						In cupler lot 2	
6 DF3A	SI AJ VIL	12;00PM			DF-3B	1						In cooler loft	
1 stoh	<u> </u>						_	_					
* DF4	STIAUA (12	5: JOPM			DE-AA	1						In cooler LotL	
9 DF4 🗣	71Au 112	5:20 pm			DF-4B	1		_				In cooler lote	
10 DES A	7/AV112	5:10PM			DF-SA	(-					In coolyr 2086	
11 DF5	71Aug112	5:10fm			DF-SB	1						In cooler 20th	
12 DFG M	71AUX112	S430PM			DF-GA	1		_				In wold Zot L	
13 DFG 🔞	71 AUX 112	5:30PM			DF-EB	<u> </u>							
14	J											······	
15													
16												0 0 # 0 0 0 # 0 # 0 # 0 0 0	
17													
18			·				-	╺╾┼╌╾╸╵╵ ║║║ ╼╍╍┿	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 9 2	73		
19									 		ł	100	
20													
21													
Received by Company:	y:		Date/ D / M / Y	Time	Relinquished by: Company:	D/M.)ate/Ti /Y	ime 	Routine	Analys	is: 🗆	Rush Analysis:	
Name:	(Print and Sign)		11		Name: Br (H: (Print and Sign) 11.3°C	13 08	112	10	Remark	s :		KESCAN (,UPY
Received by Company:	y:		Date/ D/M/Y	Time	Received for Laboratory by: Company:	D/M)ātē/Ti / Y	lme				·····	
Name:	(Print and Sign)		11		Name: (Print and Sign)	71	1					Page c	of

RESCAN ENVIRONMENTAL SERVICES

ATTN: MAtt Macdonald Sixth Floor 1111 West Hastings Street Vancouver BC V6E 2J3 Date Received:19-SEP-12Report Date:27-SEP-12 10:57 (MT)Version:FINAL

Client Phone: 604-689-9460

Certificate of Analysis

Lab Work Order #: L1211707

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 1042-008-13-98 10-252132

amber Springer

Amber Springer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1211707 CONTD.... PAGE 2 of 7 27-SEP-12 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1211707-1 water 11-SEP-12 09:40 DF1(8/8/12-9/11/1 2)	L1211707-2 water 11-SEP-12 09:27 DF2(8/8/12-9/11/1 2)	L1211707-3 water 11-SEP-12 08:50 DF3(8/8/12-9/11/1 2)	L1211707-4 water 11-SEP-12 13:45 DF4(8/8/12-9/11/1 2)	L1211707-5 water 11-SEP-12 00:30 DF5(8/8/12-9/11/1 2)
Grouping	Analyte					
DUSTFALL						
Particulates	Total Dustfall (mg/dm2.day)	2.67	0.43	0.37	0.24	0.14
	Total Insoluble Dustfall (mg/dm2.day)	2.46	0.11	0.15	<0.10	<0.10
	Total Soluble Dustfall (mg/dm2.day)	0.21	0.32	0.21	0.24	0.13
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	0.00131	0.00081	<0.00042	<0.00069	<0.00058
	Chloride (Cl) (mg/dm2.day)	0.045	0.047	0.0455	0.045	0.049
	Nitrate (as N) (mg/dm2.day)	0.00072	0.00093	0.000797	0.00117	0.00121
	Sulfate (SO4) (mg/dm2.day)	<0.015	<0.014	<0.0083	<0.014	<0.012
Metals	Aluminum (Al)-Total (mg/dm2.day)	0.00325	0.000092	0.000078	0.000170	0.000225
	Antimony (Sb)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.0000012	0.000190	<0.000023
	Arsenic (As)-Total (mg/dm2.day)	0.0000019	<0.000025	<0.0000012	0.0000055	0.0000024
	Barium (Ba)-Total (mg/dm2.day)	0.0000352	0.0000070	0.00000823	0.0000088	0.0000111
	Beryllium (Be)-Total (mg/dm2.day)	<0.000077	<0.000012	<0.000058	<0.000014	<0.000012
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000077	<0.000012	<0.000058	<0.000014	<0.000012
	Boron (B)-Total (mg/dm2.day)	<0.00015	<0.00025	<0.00012	<0.00027	<0.00023
	Cadmium (Cd)-Total (mg/dm2.day)	0.00000150	<0.000012	<0.0000058	<0.0000014	<0.0000012
	Calcium (Ca)-Total (mg/dm2.day)	0.00562	<0.0012	0.00131	<0.0014	<0.0012
	Chromium (Cr)-Total (mg/dm2.day)	<0.000077	<0.000012	<0.000058	<0.000014	<0.000012
	Cobalt (Co)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.0000012	<0.000027	<0.0000023
	Copper (Cu)-Total (mg/dm2.day)	<0.00014	<0.00030	0.000246	0.000485	<0.00028
	Iron (Fe)-Total (mg/dm2.day)	0.00872	<0.00075	0.00049	<0.00082	0.00123
	Lead (Pb)-Total (mg/dm2.day)	<0.0000046	<0.000087	0.00000761	0.0000189	0.0000104
	Lithium (Li)-Total (mg/dm2.day)	<0.000077	<0.00012	<0.000058	<0.00014	<0.00012
	Magnesium (Mg)-Total (mg/dm2.day)	0.0032	<0.0025	<0.0012	<0.0027	<0.0023
	Manganese (Mn)-Total (mg/dm2.day)	0.000212	0.0000673	0.0000658	0.0000405	0.0000685
	Mercury (Hg)-Total (mg/dm2.day)	<0.0000077	<0.0000012	<0.0000058	<0.0000014	<0.0000012
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.0000077	<0.0000012	<0.0000058	<0.0000014	0.0000027
	Nickel (Ni)-Total (mg/dm2.day)	0.0000140	0.000019	0.0000809	<0.000014	0.000013
	Phosphorus (P)-Total (mg/dm2.day)	0.0105	<0.0075	<0.0035	<0.0082	<0.0069
	Potassium (K)-Total (mg/dm2.day)	<0.031	<0.050	<0.023	<0.055	<0.046
	Selenium (Se)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.000012	<0.000027	<0.000023
	Silicon (Si)-Total (mg/dm2.day)	0.00504	<0.0012	<0.00058	<0.0014	<0.0012
	Silver (Ag)-Total (mg/dm2.day)	0.0000039	<0.0000025	<0.0000012	0.00000055	<0.0000023
	Sodium (Na)-Total (mg/dm2.day)	<0.031	<0.050	<0.023	<0.055	<0.046
	Strontium (Sr)-Total (mg/dm2.day)	0.0000200	0.0000042	0.0000040	0.0000034	0.0000026
	Thallium (TI)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.0000012	<0.000027	<0.000023
	Tin (Sn)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.0000012	<0.000027	<0.000023
	Titanium (Ti)-Total (mg/dm2.day)	<0.00015	<0.00025	<0.00012	<0.00027	<0.00023

L1211707 CONTD.... PAGE 3 of 7 27-SEP-12 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1211707-6 water 11-SEP-12 09:42 DF6(8/8/12-9/11/1 2)		
Grouping	Analyte			
DUSTFALL				
Particulates	Total Dustfall (mg/dm2.dav)	0.52		
	Total Insoluble Dustfall (mg/dm2.day)	0.52		
	Total Soluble Dustfall (mg/dm2.day)	<0.10		
Anions and Nutrients	Ammonia, Total (as N) (mg/dm2.day)	0.00044		
	Chloride (Cl) (mg/dm2.day)	0.049		
	Nitrate (as N) (mg/dm2.day)	0.00261		
	Sulfate (SO4) (mg/dm2.day)	<0.029		
Metals	Aluminum (Al)-Total (mg/dm2.day)	<0.00013		
	Antimony (Sb)-Total (mg/dm2.day)	<0.0000044		
	Arsenic (As)-Total (mg/dm2.day)	<0.0000044		
	Barium (Ba)-Total (mg/dm2.day)	0.0000057		
	Beryllium (Be)-Total (mg/dm2.day)	<0.000022		
	Bismuth (Bi)-Total (mg/dm2.day)	<0.000022		
	Boron (B)-Total (mg/dm2.day)	<0.00044		
	Cadmium (Cd)-Total (mg/dm2.day)	<0.000022		
	Calcium (Ca)-Total (mg/dm2.day)	<0.0022		
	Chromium (Cr)-Total (mg/dm2.day)	<0.000022		
	Cobalt (Co)-Total (mg/dm2.day)	<0.000044		
	Copper (Cu)-Total (mg/dm2.day)	<0.00022		
	Iron (Fe)-Total (mg/dm2.day)	<0.0013		
	Lead (Pb)-Total (mg/dm2.day)	<0.0000088		
	Lithium (Li)-Total (mg/dm2.day)	<0.00022		
	Magnesium (Mg)-Total (mg/dm2.day)	<0.0044		
	Manganese (Mn)-Total (mg/dm2.day)	0.0000435		
	Mercury (Hg)-Total (mg/dm2.day)	<0.000022		
	Molybdenum (Mo)-Total (mg/dm2.day)	<0.000022		
	Nickel (Ni)-Total (mg/dm2.day)	<0.000022		
	Phosphorus (P)-Total (mg/dm2.day)	<0.013		
	Potassium (K)-Total (mg/dm2.day)	<0.088		
	Selenium (Se)-Total (mg/dm2.day)	<0.000044		
	Silicon (Si)-Total (mg/dm2.day)	<0.0022		
	Silver (Ag)-Total (mg/dm2.day)	<0.0000044		
	Sodium (Na)-Total (mg/dm2.day)	<0.088		
	Strontium (Sr)-Total (mg/dm2.day)	<0.000044		
	Thallium (TI)-Total (mg/dm2.day)	<0.0000044		
	Tin (Sn)-Total (mg/dm2.day)	<0.0000044		
	Titanium (Ti)-Total (mg/dm2.day)	<0.00044		

L1211707 CONTD.... PAGE 4 of 7 27-SEP-12 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1211707-1 water 11-SEP-12 09:40 DF1(8/8/12-9/11/1 2)	L1211707-2 water 11-SEP-12 09:27 DF2(8/8/12-9/11/1 2)	L1211707-3 water 11-SEP-12 08:50 DF3(8/8/12-9/11/1 2)	L1211707-4 water 11-SEP-12 13:45 DF4(8/8/12-9/11/1 2)	L1211707-5 water 11-SEP-12 00:30 DF5(8/8/12-9/11/1 2)
Grouping	Analyte					
DUSTFALL						
Metals	Uranium (U)-Total (mg/dm2.day)	<0.00000015	<0.0000025	<0.0000012	<0.0000027	<0.0000023
	Vanadium (V)-Total (mg/dm2.day)	<0.000015	<0.000025	<0.000012	<0.000027	<0.000023
	Zinc (Zn)-Total (mg/dm2.day)	0.000108	<0.000075	0.000052	<0.00082	0.000076
ALS ENVIRONMENTAL ANALYTICAL REPORT

L1211707 CONTD.... PAGE 5 of 7 27-SEP-12 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1211707-6 water 11-SEP-12 09:42 DF6(8/8/12-9/11/1 2)		
Grouping	Analyte			
DUSTFALL				
Metals	Uranium (U)-Total (mg/dm2.day)	<0.00000044		
	Vanadium (V)-Total (mg/dm2.day)	<0.000044		
	Zinc (Zn)-Total (mg/dm2.day)	<0.00013		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

Qualifier	Description				
DLB	Detection li	mit was rais	ed due to detection of analyte	at comparable level in Me	thod Blank.
Test Method Re	ferences:				
ALS Test Code		Matrix	Test Description		Method Reference**
CL-IC-VA		Dustfall	Dustfall Chloride by Ion Chro	matography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion (of Anions by Ior	alysis is carri Chromatogra I Chromatogi	ed out in acc phy'. The cl raphy" and E	cordance with the B.C. Labora hloride analysis is specifcially EPA Method 300.0 "Determina	tory Manual method 'Parti carried out using procedu tion of Inorganic Anions b	culate - Total' and 'Particulate - Soluble - Anions and res adapted from APHA Method 4110 "Determination y lon Chromatography".
DUSTFALLS-CO	M-DM2-VA	Dustfall	Combined Dustfalls-Total, so	luble, insol	BCMOE PARTICULATE
This analysis is Particulates or I and drying the Total Dustfall is	carried out u Dustfall are d ilter at 104 c the sum of li	ising proced etermined g legrees cels nsoluble Du	ures modified from British Col ravimetrically. Total Insoluble ius. Total Soluble Dustfall is do stfall and the Soluble Dustfall.	umbia Environmental Mar Dustfall is determined by etermined by evaporating	nual "Particulate." filtering a sample through a 0.45 um membrane filter the filtrate to dryness at 104 degrees celsius. The
HG-DUST(DM2-0	VAFS-VA	Dustfall	Total Mercury in Dustfalls by	CVAFS	EPA 245.7
This analysis is American Public States Environn	carried out u Health Asso nental Protec	using proced ociation, and otion Agency	ures adapted from "Standard I d with procedures adapted from r (EPA). Instrumental analysis	Methods for the Examinati n "Test Methods for Evalu s is by cold vapour atomic	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United fluorescence spectrophotometry (EPA Method 245.7).
MET-DUST(DM2	-ICP-VA	Dustfall	Total Metals in Dustfalls by IC	CPOES	EPA 6010B
This analysis is American Public States Environn Method 6010B).	carried out u Health Asso nental Protec	ising proced ociation, and tion Agency	ures adapted from "Standard I d with procedures adapted from r (EPA). Instrumental analysis	Methods for the Examinat n "Test Methods for Evalu is by inductively coupled	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United plasma - optical emission spectrophotometry (EPA
MET-DUST(DM2)-MS-VA	Dustfall	Total Metals in Dustfalls by IC	CPMS	EPA 6020A
This analysis is American Public States Environn	carried out u Health Asso nental Protec	using proced ociation, and otion Agency	ures adapted from "Standard I d with procedures adapted from r (EPA). Instrumental analysis	Methods for the Examinati n "Test Methods for Evalu is by inductively coupled	ion of Water and Wastewater" published by the ating Solid Waste" SW-846 published by the United plasma - mass spectrometry (EPA Method 6020A).
NH3-F-VA		Dustfall	Dustfall Ammonia by Fluores	cence	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion (The Royal Socie Roslyn J. Wasto	alysis is carri Chromatogra ety of Chemis on et al.	ed out in acc phy'. The a stry, "Flow-ir	cordance with the B.C. Labora mmonia analysis is specifcially njection analysis with fluoresce	tory Manual method 'Parti carried out using proced ence detection for the dete	culate - Total' and 'Particulate - Soluble - Anions and ures modified from J. Environ. Monit., 2005, 7, 37 - 42, ermination of trace levels of ammonium in seawater",
NO3-IC-VA		Dustfall	Dustfall Nitrate by Ion Chrom	atography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion (Anions by Ion C	alysis is carri Chromatogra hromatograp	ed out in acc phy'. The ni phy" and EP.	cordance with the B.C. Labora itrate analysis is specifcially ca A Method 300.0 "Determinatio	tory Manual method 'Parti arried out using procedure n of Inorganic Anions by I	culate - Total' and 'Particulate - Soluble - Anions and s adapted from APHA Method 4110 "Determination of on Chromatography".
SO4-IC-VA		Dustfall	Dustfall Sulphate by Ion Chro	omatography	BC LAB MAN PART SOLUBLE - ANIONS
The Dustfall and Cations by Ion (of Anions by Ior	alysis is carri Chromatogra Chromatogi	ed out in acc phy'. The si raphy" and E	cordance with the B.C. Labora ulphate analysis is specifcially EPA Method 300.0 "Determina	tory Manual method 'Parti carried out using procedu tion of Inorganic Anions b	culate - Total' and 'Particulate - Soluble - Anions and ires adapted from APHA Method 4110 "Determination y Ion Chromatography".
** ALS test method	ls may incor	porate modi	fications from specified referer	nce methods to improve p	erformance.
The last two lette	rs of the abo	ve test code	e(s) indicate the laboratory that	t performed analytical ana	lysis for that test. Refer to the list below:
Laboratory Defir	nition Code	Laborat	tory Location		
VA		ALS EN	VIRONMENTAL - VANCOUVI	ER, BRITISH COLUMBIA	, CANADA
Chain of Custody	Numbers:				
10-252132					

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Chain of Custody / Analytical Canada Toll Free: 1 800 6

L1211707-COFC

of Page

www.alsglobal.con Environmental Report Format / Distribution Service Request: (Rush subject to availability - Contact ALS to confirm TAT) Report To Regular (Standard Turneround Times - Business Days) Company: Rescan Env. Services Standard: \sim Other (specify): Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT Select: PDF Excel V Digital Contact: Matt MacDonald Fax mmac donald @ rescan, com Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT Address: West Hastings (6th floor) Email 1: d casa nova@rescan.com Same Day or Weekend Emergency - Contact ALS to confirm TAT Vancouver. BC Email 2: V6E 233 Fax: 604 687 - 4277 Phone: 404 699- 9460 **Analysis Request** Same as Report ? (circle) Yes or (No) (if No, provide details) **Client / Project Information** (Indicate Filtered or Preserved, F/P) Invoice To 1042-008-113-98 Copy of Invoice with Report? (circle) Yes or No Job #: PO/AFE: Rescan Env. Services Company: Particulte Particulte LSD: Contact: Accounts Pavable Particulate 3 1111 West Hastings 16th Floor Address: $\overline{\mathbf{r}}$ Number of Containers stal Metals 2 604 687-4277 Phone: 604 689 - 9460 Fax: Quote #: Bulphate Sulle. Insolute ALS Nitrate L1211707 Sampler: + Lab Work Order # (lab use only) + Contact: + *0 Stal Stal S HZ. ົບ Sample Identification Date Time T \mathbf{Y} Sample Type Sample # (This description will appear on the report) (dd-mmm-yy) (hh:mm) Water J 11-09-12 9:40 J DFI -TP 1 J J 11-09-12 9:42 \checkmark DFI -TM 9:27 V \checkmark 1 DF2 -TP 11-09-12 J J 9:28 11-09-12 \mathcal{J} \checkmark DFZ - TM J J \checkmark J DF3 -TP 11-09-12 8:50 V 8:51 J \checkmark 11-09-12 DF3 -TM 11-09-12 13:45 DF4-TP 11-09-12 13:46 $\sqrt{}$ \checkmark DF4 -TM DF5 TP 11-09-12 12:30 \checkmark **V** \checkmark 11-09-12 12:3Z DF5 -TM 17-09-12 9:42 J \checkmark DEG -TP 13-09-12 9142 DF6 -TM $\sqrt{}$ Special Instructions / Regulation with water or land use (CCME- Freshwater Aquatic Life/BC CSR-Commercial/AB Tier 1-Natural/ETC) / Hazardous Details Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. SHIPMENT VERIFICATION (lab use only) SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: Time: Temperature: Verified by: Date: Time: Observations: Date: Yes / No ? Matt MacDonold 9 12 9:00 AM 13:00 20.2 % Britt Sect.19 If Yes add SIF WHITE - LABORATORY COPY YELLOW - CLIENT COPY GENF 18.01 Front REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Sample Receipt Confirmation

Report Di	stribution:										
		SERVICES			Abot Nume.	SERVICES					
	Contact:	MAtt Macdonald			Contact: Accounts Payable						
	Address:	Sixth Floor, 1111 W	est Hastings Street		1111 West Hastings Street						
		Vancouver, BC, V6	6E 2J3			Vancouver,	BC, V6E 2J3				
	Phone:	604-689-9460			Phone:	604-689-946	60				
	Fax. Email:	out-oor-4277	can com		Fax:						
	Email.	trobb@rescan.com			voice Emaile	navablac@r					
		mhenry@rescan.co	om				escan.com				
		mmacdonald@res	can.com		Project #:						
	Device of Marrie	dcasanova@resca	n.com		Account #:	RES100					
	Report Name:	CROSSTAB_ALS									
	Digital Email:	 Hard Convr. V									
	Distribution:	нага Сору. т	Email: Y Fa	X: N							
Client Info	ormation:										
•	Job Reference #:	1042-008-13-98			Date Sampled:	11-SEP-12					
	Project PO #:	N1/A	Date Received: 19-SEP-12								
Legal	Site Description:	N/A N/A		Cha	Sampled By:						
		N/A		Ona		10-232132					
Workorde	er Summary				Client Job #:	1042-008-1	3-98				
L	ab Work Order #:	L1211707		Acc	ount Manager:	Amber Sprii	nger				
Estimated	completion date:	28-SEP-12		Estimated sample	disposal date:	28-OCT-12					
6 Samples re	ceived at ALS in	VANCOUVER									
Lab	Client		Date	Date	Sample P	riority	Sample				
Sample ID	Sample ID		Sampled	Received	Due Date	Flag	Туре				
L1211707-1	DF1(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				
L1211707-2	DF2(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				
L1211707-3	DF3(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				
L1211707-4	DF4(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				
L1211707-5	DF5(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				
L1211707-6	DF6(8/8/12~9/11/	12)	11-SEP-12 09:40	19-SEP-12 13:00	28-SEP-12		water				

ADDRESS 8081 Lougheed Highway, Burnaby, BC, Canada V5A 1W9 PHONE +1 604 253 4188 FAX +1 604 253 6700 ALS CANADA LTD. Part of the ALS Group A Campbell Brothers Limited Company

Analysis Requested :	Sample Handling and Disposal Fee	Dustfall Chloride by Ion Chromatography	Combined Dustfalls-Total, soluble, insol	Dustfall Ammonia by Fluorescence	Dustfall Nitrate by Ion Chromatography	Dustfall Sample Preparation	Total Mercury in Dustfalls by CVAFS	Total Metals in Dustfalls by ICPOES	Total Metals in Dustfalls by ICPMS	Dustfall Sample Preparation	Dustfall Sulphate by Ion Chromatography
DF1(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DF2(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DF3(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DF4(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DF5(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
DF6(8/8/12~9/11/12)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Sample Integrity Observations: No observations were identified for this work order submission.

ALS Group strives to deliver on-time results to our clients at all times. However, there are times when due to capacity issues or other unforeseen circumstances we are unable to meet our expected turnaround times. The information above is related to a recent workorder you have submitted to our laboratory. In the event that you have an inquiry, please refer to the Lab Work Order # when calling your Account Manager.

Chain of Custody / Analytical Canada Toll Free: 1 800 6

L1211707-COFC

of Page

www.alsglobal.con Environmental Report Format / Distribution Service Request: (Rush subject to availability - Contact ALS to confirm TAT) Report To Regular (Standard Turneround Times - Business Days) Company: Rescan Env. Services Standard: \sim Other (specify): Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT Select: PDF Excel V Digital Contact: Matt MacDonald Fax mmac donald @ rescan, com Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT Address: West Hastings (6th floor) Email 1: d casa nova@rescan.com Same Day or Weekend Emergency - Contact ALS to confirm TAT Vancouver. BC Email 2: V6E 233 Fax: 604 687 - 4277 Phone: 404 699- 9460 **Analysis Request** Same as Report ? (circle) Yes or (No) (if No, provide details) **Client / Project Information** (Indicate Filtered or Preserved, F/P) Invoice To 1042-008-113-98 Copy of Invoice with Report? (circle) Yes or No Job #: PO/AFE: Rescan Env. Services Company: Particulte Particulte LSD: Contact: Accounts Pavable Particulate 3 1111 West Hastings 16th Floor Address: $\overline{\mathbf{r}}$ Number of Containers stal Metals 2 604 687-4277 Phone: 604 689 - 9460 Fax: Quote #: Bulphate Sulle. Insolute ALS Nitrate L1211707 Sampler: + Lab Work Order # (lab use only) + Contact: + *0 Stal Stal S HZ. ົບ Sample Identification Date Time T \mathbf{Y} Sample Type Sample # (This description will appear on the report) (dd-mmm-yy) (hh:mm) Water J 11-09-12 9:40 J DFI -TP 1 J J 11-09-12 9:42 \checkmark DFI -TM 9:27 V \checkmark 1 DF2 -TP 11-09-12 J J 9:28 11-09-12 \mathcal{J} \checkmark DFZ - TM J J \checkmark J DF3 -TP 11-09-12 8:50 V 8:51 J \checkmark 11-09-12 DF3 -TM 11-09-12 13:45 DF4-TP 11-09-12 13:46 $\sqrt{}$ \checkmark DF4 -TM DF5 TP 11-09-12 12:30 \checkmark **V** \checkmark 11-09-12 12:3Z DF5 -TM 17-09-12 9:42 J \checkmark DEG -TP 13-09-12 9142 DF6 -TM $\sqrt{}$ Special Instructions / Regulation with water or land use (CCME- Freshwater Aquatic Life/BC CSR-Commercial/AB Tier 1-Natural/ETC) / Hazardous Details Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. SHIPMENT VERIFICATION (lab use only) SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: Time: Temperature: Verified by: Date: Time: Observations: Date: Yes / No ? Matt MacDonold 9 12 9:00 AM 13:00 20.2 % Britt Sect.19 If Yes add SIF WHITE - LABORATORY COPY YELLOW - CLIENT COPY GENF 18.01 Front REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Appendix B

2012 Passive Air Contaminant Sampling Results

Your Project #: 1042-008-12 Site Location: BRUCEJACK

Attention: JEM MORRISON RESCAN ENVIRONMENTAL SERVICES LTD. SIXTH FLOOR 1111 WEST HASTINGS STREET VANCOUVER, BC CANADA V6E 2J3

Report Date: 2012/09/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B273748 Received: 2012/08/20, 13:08

Sample Matrix: Air # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2012/08/24	2012/09/11	EINDSOP-00148	Tang Passive NO2 in
O3 Passive Analysis (1)	2	2012/08/23	2012/09/11	EINDSOP-00197	EPA 300 R2.1
SO2 Passive Analysis (1)	2	2012/08/24	2012/09/11	EINDSOP-00149	Tang Passive SO2 in

* Results relate only to the items tested.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Edmonton: 6744 - 50th Street T6B 3M9 Telephone(780) 378-8500 FAX(780) 378-8699

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		EG0508	EG0556		
Sampling Date		2012/07/11 16:30	2012/07/12 15:30		
	UNITS	BJ PASS 1	BJ PASS 2	RDL	QC Batch
Passive Monitoring					
Calculated NO2	ppb	<0.1	0.2	0.1	6112588
Calculated O3	ppb	11.0	29.2	0.1	6108617
Calculated SO2	ppb	<0.1	<0.1	0.1	6112647

QUALITY ASSURANCE REPORT

			Spiked	Blank	Method	Blank	Calibration Check		
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	% Recovery	QC Limits	
6108617	Calculated O3	2012/08/23	101	N/A	<0.1	ppb	101	91 - 107	
6112588	Calculated NO2	2012/08/24	96	N/A	<0.1	ppb	98	76 - 118	
6112647	Calculated SO2	2012/08/24	103	N/A	<0.1	ppb	100	95 - 105	

N/A = Not Applicable Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy.

RESCAN ENVIRONMENTAL SERVICES LTD. Client Project #: 1042-008-12 Site Location: BRUCEJACK

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B273748

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Carmen Toker, CT, Manager Air Laboratory Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxlam

7

6744 - 50 St. Edmonton AB tel: 780-378-8500 fax: 780-378-8699

SAMPLE ANALYSIS REQUEST FORM

IVOICE TO: ttn: Accounts Pavable	REPORT TO: Jeremy Morrison - imorrison@res	can.com	ADDITIONAL REPORT(S) TO:								ADDITIONAL REPORT(S) TO:							
can Environmental Services Ltd.		and the second	- 12			-												
1 W. Hastings St.			- Mes			R	esca	an -	Bruc	cejac	:k							
couver BC V6E 2J3			and the second se	0		0					Sec.							
mpany Name:	Rescan	Phone:	(604) 689-9460	Site/Area Name & L	SD:	Brucejack 1042-008-12												
questor:	Jeremy Morrison	Additional Contact:		Project Name/Num	ber:													
ase check applicable boxes for routine analysis; specialty work, provide a detailed description of arameters required or phone Project Manager: vi Manchak @ (780) 468-3536 to discuss testing procedures.	Please indicate analysi	s completion requirement	date (surcharge may apply for priority analysis)			42S 402	8	M 2.5	PM10 TSP	Metal Scan Dustfall	/oc							
Sample identification or location (LSD)	ampling Start Date (DD/MM/YYY)	Time (HH:MM)	Sampling End Date (DD/MM/YYYY)	Time (HH:MM)					1			17						
a second s		and the second second	15 We Car		E.	10												
	and the second	1	and the second	1 in V				1	11	++		800 B						
7		1	and the second second	2 Adverse														
BJPASS 1	11/7/2000	4:30 PM	818/12	12:30 PM	X	X	X	TT				S						
GT DATE 7	12/2/2012	3:300M	1817	It'oo Dite	V	10	1	++	++		+1	S/						
DUTIDUL	and d	SOUTH	11010,	4.0000	A	-X	X	++	++	++		3						
NUMBER OF STREET, STREE			DER DER ST			-						č						
					11						1	A						
1 9												1						
	energe and you are the second of the second of	and the second sec	The second s	and the spont land	++			++	++	++								
		11			+	-			++		+							
al series of the second second second			and the second	and the second second second						1								
			the state of the second state of the second					11										
		and the second states and the						++		11								
					++	-	\vdash	++	++	++	+							
						1						1						
tra Notes/Instructions:		Terme la constante de la constante									·	-						
			25 C	1		10.00	7.1											
						1000												
					- 2					-								
ditional Information (Project #, PO#, etc.)		1																
												_						
		<u>}</u>																
laxxam to complete	Date received:	Contraction of the second	Received By:		CONTRACT OF	14 160		and and	MARTE: MA		(8088722)	191						
		[hinnersternersterners	C. Networks	1984						
				1. 104 1915														
		di s																
		1 Star																
		1 8	7															
		1 1 - 1																
		4																

15

Res Website: w E-mail: rese	ww.rescan.com	Van Res 6 th I Van m Tel:	icouver C can Envi Floor, 111 icouver, I (604) 689	office: ronmenta 11 West H 3.C. V6E 9-9460 Fa	al Services Ltd. lastings Street 2J3 ax: (604) 687-4277	<u>Yellowknii</u> Rescan No Suite 908- Yellowknii Tel: (867) 9	fe Off orthe 5201 fe, N1 920-2	<u>fice:</u> rn Ope 50 th A 7 X1A 090 F	eratio venue 3S9 ax: (8	ns 9 67) 92	0-2015		<u>Seattle Office:</u> Rescan Consultants Inc Suite 3200,1001 Fourth Seattle, WA 98154, USA Tel: (206) 726-2145 Fax	Avenue Plaza (206) 382-9648
	СН	AI	Ν	C)F CI	J S 1	Γ	0	D	Y		R	ECOR	D
PROJECT	NAME: Bru	<i>cejock</i>	(Pre-	hum)	PROJECT #:	alig (8. W	/	/	/	Laborat	ory Contact:
Calvi	n Pin	OR ENGIN	IEERS: (<i>F</i>	Print Nam	e and Sign) 1042-008	3-12	NUMBER OF						Laboratory A	Address:
STATION NUMBER	DATE	TIME	COMP. SAMPLE	GRAB SAMPLE	SAMPLE IDENTIFICA (DEPTH, REPLICA	TION TE)	-0	/ .	8	F.	3/	/	Rescan Contact:	INGUL
2 PASS	8/8/12	(2:30AM			B3PASS 1		3	×	×	×		/	/	
BPASSZ.	7/8/12	4:00 PM			BS PASSZ		2		~	1				
					05 11/00 -		>	~	×					
3							1.201							
0														
2			0.5											
1						in the second second								
ı														
5							-							
\$														
'											10			
l							-							
)														
						D.								
Received by	:		Date/ D/M/Y	lime	Relinquished by: Company:	D	Dat /M/Y	e/Time	R	outine	Analysi	s: 🗆	Rush Analysis:	
eceived by	(Print and Sign)		/ / Date/1	ime	Name: (Print and Sign) Received for Laboratory by:		/ / Dat	e/Time	R	emarks	5:			LAB COP
ompany: lame:	(Print and Sign)		D/M/Y		Company: Name: (Print and Slan)	D	/M/Y							Page of

Your Project #: 1042-008-12 Site Location: BRUCEJACK

Attention: JEM MORRISON RESCAN ENVIRONMENTAL SERVICES LTD. SIXTH FLOOR 1111 WEST HASTINGS STREET VANCOUVER, BC CANADA V6E 2J3

Report Date: 2012/09/27

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B283954 Received: 2012/09/19, 12:12

Sample Matrix: Air # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
NO2 Passive Analysis (1)	2	2012/09/27	2012/09/27	EINDSOP-00148	Tang Passive NO2 in
O3 Passive Analysis (1)	2	2012/09/25	2012/09/27	EINDSOP-00197	EPA 300 R2.1
SO2 Passive Analysis (1)	2	2012/09/26	2012/09/27	EINDSOP-00149	Tang Passive SO2 in

* Results relate only to the items tested.

(1) The detection limit is based on a 30 day sampling period.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Levi Manchak, Customer Service Email: LManchak@maxxam.ca Phone# (780) 378-8500

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Edmonton: 6744 - 50th Street T6B 3M9 Telephone(780) 378-8500 FAX(780) 378-8699

RESULTS OF CHEMICAL ANALYSES OF AIR

Maxxam ID		EM7781	EM7782		
Sampling Date		2012/08/08 12:30	2012/08/08 05:10		
	UNITS	BJ PASS 1	BJ PASS 2	RDL	QC Batch
Passive Monitoring					
Calculated NO2	ppb	<0.1	4.2	0.1	6203879
Calculated O3	ppb	9.5	MISSING	0.1	6197237
Calculated SO2	ppb	<0.1	<0.1	0.1	6200665

QUALITY ASSURANCE REPORT

			Spiked Blank		Method	Blank	Calibration Check		
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	UNITS	% Recovery	QC Limits	
6197237	Calculated O3	2012/09/25	98	N/A	<0.1	ppb	103	91 - 107	
6200665	Calculated SO2	2012/09/26	102	N/A	<0.1	ppb	100	95 - 105	
6203879	Calculated NO2	2012/09/27	98	N/A	<0.1	ppb	100	76 - 118	

N/A = Not Applicable

Calibration Check: A calibration standard analyzed at different times to evaluate on-going calibration accuracy. Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery. Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B283954

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

==

Linea Lin. Supervisor, Centre for Passive Sampling Technology

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxam	6744 - 50 St. Edmonton AB tel: 780-378-8500 fax: 780-378-8699			S/	AMP	PLE AI	NAL	YSIS	REQ	UES	t fori
INVOICE TO: Attn: Accounts Payable	REPORT TO: Jeremy Morrison - jmorrison@resc	an.com	ADDITIONAL REPORT(S) TO:	10						385	
Rescan Environmental Services Ltd.		a fille	- Fiall MacDonald	^		D					
1111 W. Hastings St.			- mmacdonald@	Vescan cow	0	Res	car	1 - E	Sruc	eja	CK
Vancouver BC V6E 2J3	AT REACTION OF THE PARTY OF	and a summer	in the cubit user of	1030411-001							1949) 1
Company Name:	Rescan	Phone:	(604) 689-9460	Site/Area Name & LSD:		Brucejack					
Requestor:	Jeremy Morrison	Additional Contact:		Project Name/Number	:			1042	-008-12	2	illin .
Please check applicable boxes for routine analysis for specialty work, provide a detailed description o parameters required or phone Project Manager: Levi Manchak @ (780) 468-3536 to discuss testing procedures.	; f	completion requirement	date (surcharge may apply for privile	ority analysis)	502 H2S	N02 03	NOX	PM 2.5	TSP	Metal Scan Dustfall	VOC
Sample identification or location (LSD)	Sampling Start Date (DD/MM/YYYY	Time (HH:MM)	Sampling End Date (DD/MM/YYY)	() Time (HH:MM)	an a mila		T and				
502 #1	8/8/2012	12:30 PM	9/11/2012	9:30 AM)	<			-		120	
502 #2	718/2012	5:10 PM	9/11/2012	12:30 PM D						10	
NO2 #1	8/8/ 2012	12:30 PM	9/11/2012	9:30 AM		X		0			^ ^
NO2 #2	7/8/2012	5:10 PM	9/11/2012	12:30 PM	12.00	X		1			-
03 #)	8/8/2012	12:30 PM	9/11/2012	9:30AM			1	1			
								1			- And
		in a second s	the manufacture of the	and the second	1					1. 18	<
		orthe store	And a second	a na sana ana ana ana ana ana ana ana an		and the second	12	1	- Ander	100	
							П		T		1
*		and the second second	At Lat.				1				1
1. 1. 1. 1. M.		C			(cali	and the		1	T		

NO 03 canister recuperated from site # 2. Broken pin on PASS module.

Receiv

Analysis

.

Extra Notes/Instructions:

Maxxam to complete

Additional Information (Project #, PO#, etc.)

Date received

1042-008-12 Project #