TMI_877-AE(2)-01

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Reference / Comment / Information Request / Response	
TMI_877-AE(2)- 01	AE(2)-01	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Sections 10.1.3, 11.1	
				Reference to EIS / Appendix	Section 6.6.4; Appendix J	
				Cross- reference to Round 1 IRs	TMI_167-AE(1)-05	
				Context and R	lationale:	
					environn Canadia (https://v	x J-2, Section 4.4, Table 2 identifies the federal and provincial air quality criteria considered for the nental assessment. The Canadian Council of Ministers of the Environment (CCME) established new n Ambient Air Quality Standards (CAAQS) for SO ₂ in 2016 www.ccme.ca/en/resources/air/air/sulphur-dioxide.html) and for NO ₂ in 2017 ww.ccme.ca/en/current_priorities/air/caaqs.ht ml).
			 be incorporated into the environmental ass NO₂, provided in Section 6.6.4, Tables 6.6. CAAQS - the maximum NO₂ 1-hour averag µg/m3 in the operations phase, would both 2025 standard of 80 µg/m3 (42 ppb). The air quality assessment does not consider order to understand potential effects due to 		be incor NO₂, pro CAAQS μg/m3 in	CAAQS for NO ₂ and SO ₂ , are more stringent than the criteria used in the revised EIS, and need to porated into the environmental assessment. In particular, the maximum predicted concentrations of ovided in Section 6.6.4, Tables 6.6.4.1-2 and 6.6.4.2-2 of the revised EIS, would be above the new - the maximum NO ₂ 1-hour average concentration of 148 μ g/m3 in the construction phase and 171 the operations phase, would both exceed the CAAQ 2020 standard of 115 μ g/m3 (60 ppb) and indard of 80 μ g/m3 (42 ppb).
				quality assessment does not consider NO2 annual concentrations. These should be included in understand potential effects due to long-term exposure, with comparisons to the new CAAQS ds, and incorporated into the human health risk assessment (HHRA).		
				Specific Ques	tion / Request for Information:	
					concentrations for NO2 in the air quality assessment, by providing the baseline concentrations in le 1, and the maximum predicted concentrations in Section 6.6.4, Tables 6.6.4.1-2, 6.6.4.2-2 and <i>v</i> ised EIS.	
					onal mitigation measures that can be applied to reduce NO2 and SO2 concentrations to the new keeping with CAAQS principles of Keeping Clean Areas Clean and Continuous Improvement.	

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Re	eference / C	comment / Ir	nformation I	Request / R	esponse	
				C. Update the H							new CAAQS
				thresholds for N			•			n B.	
				D. Characterize			•				
				E. If necessary, monitoring mea new measures	sures that will	be implemente	ed to verify the	predictions of c	oncentrations of	of NO2 and SO	
				Draft Respo	nse:						
				concentrations, concentrations of the values prese maximum point property line sir the site prepara Table 1: Pre	during the Site ented in Table of impingement ace generating tion and const	Preparation a 6.6.4.1-2 of th nt (MPOI) and the modelling ruction phase	nd Construction e revised EIS [sensitive receptors used are provided in	h Phase. These April 2018]. Spo tor concentration in the revised TMI_877-AE(2)	e numbers repr ecifically, the re on, taking into EIS (April 2018)-01_Table_4a	esent updated esults reflect the account change 3). The full set c	predictions to e predicted es in the
						Maximum a	t Gridded Rece	otors (MPOI)	Maximu	m at Sensitive R	eceptors
				Compound	Averaging Period	Modelled Prediction	Backgroun d (1)	Cumulative Prediction	Modelled Prediction	Backgroun d (1)	Cumulative Prediction
					1-hour	50	29	79	36	29	65
				NO ₂	24-hour	7.2	25	32	5.9	25	30
					Annual	1.0	14	15	0.84	14	15
					1-hour	0.77	4.0	4.8	0.65	4.0	4.7
				SO ₂	24-hour	0.11	4.0	4.1	0.082	4.0	4.1
					Annual	0.013	1.0	1.0	0.010	1.0	1.0
				Table 2 present represent updat the results refle	ts the maximur ted predictions	m predicted co to the values	ncentrations du presented in Ta	ring the Opera able 6.6.4.2-2 o	tions Phase of f the revised E	the Project. Th IS [April 2018].	ese numbers Specifically,

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Re	eference / C	comment / Ir	nformation F	Request / Ro	esponse	
				Table 2: Pre	dicted NO ₂	and SO ₂ di	uring Opera	tions			
						Maximum a	t Gridded Recep	otors (MPOI)	Maximur	n at Sensitive R	eceptors
				Compound	Averaging Period	Modelled Prediction	Backgroun d (1)	Cumulative Prediction	Modelled Prediction	Backgroun d (1)	Cumulative Prediction
					1-hour	80	29	110	28	29	57
				NO ₂	24-hour	35	25	60	6.6	25	31
					Annual	9.2	14	23	0.99	14	15
					1-hour	4.6	4.0	8.6	0.18	4.0	4.2
1				SO ₂	24-hour	2.2	4.0	6.2	0.022	4.0	4.0
					Annual	0.58	1.0	1.6	0.0024	1.0	1.0
				into account cha 2018). The full s TMI_877-AE(2) Table 3: Pre	set of results fo -01_Table_4c.	and SO ₂ du	aration and cor	nstruction phase re	e are provided		
					Averaging		Backgroun			Backgroun	•
				Compound	Period	Modelled Prediction	d (1)	Cumulative Prediction	Modelled Prediction	d (1)	Cumulative Prediction
					1-hour	30	29	59	12	29	41
				NO ₂	24-hour	4.0	25	29	3.3	25	28
					Annual	0.70	14	14	0.48	14	14
					1-hour	0.78	4.0	4.8	0.60	4.0	4.6
				SO ₂	24-hour	0.14	4.0	4.1	0.11	4.0	4.1
					Annual	0.015	1.0	1.0	0.0092	1.0	1.0
				Notes: ⁽¹⁾ The 1-h based c				th percentile of the 5 years of available			

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference	/ Comment / Information Req	uest / Response
				PART B: The new Canadian Ambient Ai These ambient air quality criteria are ap the sensitive receptor modelling results	plicable at community-oriented receptor	rs (CCME 2000), which correspond to
				Table 5: 2025 Canadian Ambient Air Qu		
				Averaging Period	SO ₂	NO2
				Annual CAAQS (2025)	8 μg/m ³	23 µg/m³
				1-hour CAAQS (2025)	169 µg/m³	79 μg/m³
				As shown in Tables 1 through 3, the ma background) are below the relevant 202 air quality are not required as the model receptor locations. In addition, it is antici emissions will assist in reducing the anti Furthermore, the sulphur content in fuel concentrations.	5 CAAQS values. Therefore, additional ing shows the maximum concentration pated that on-going manufacturers' imp cipated effects of the Project as well as is expected lower in years to come and	I improvements/mitigation measures for is meet the new CAAQS at all sensitive provements to mobile equipment is the background levels in the future. I will aid in further reducing SO ₂
				PART C. The HHERA (August 2018) inc the new CAAQS thresholds for NO ₂ and Human Health Risk Assessment be revi traditional land use is practiced, air qual support the HHERA (August 2018). Acti Contaminants (CACs) including CO, NC Workers may be exposed to CACs withi communities may visit areas that fall out Gold Project, to practice traditional uses the CCME definition of a community-bas Ambient Air Criteria is not appropriate for the air modelling was redone using the s (April 2018), but focusing on possible m- includes 308 modelling receptor located locations within the LSA (Study Area No receptor locations within the Village of W of the HHERA is shown relative to the P HHERA Report (August 2018). The local community-based receptors, and are ap shown on Figure 3.1.1-1 of the 2018 HH	SO ₂ . To satisfy a number of Round 2 I sed to include an assessment of potent ty modelling was re-performed using a vities associated with each Project pha- x, SO ₂ , TSP, PM ₁₀ , and PM _{2.5} . Treasury in the Operations Area (Study Area No. side of the Operations Area, but within of the lands and resources. Project wo and receptor and thus determination of r these receptors. To capture the possi- tame emissions and methods as prese- bodelling receptors covering the HHERA within the Operations Area (Study Area . 2) 1,445 of which fall inside the Proper Vabigoon (Study Area No. 3). The revision roperty Boundary and the three Study Area tions of the sensitive receptors which no propriate for determining compliance w	Information Requests, asking that the tial health impacts in areas where receptor grid specifically designed to se are expected to emit Criteria Air y Metals recognizes that Project 1), and members of Indigenous the Property Boundary of the Goliath ork and traditional land use do not meet compliance with the application of ible risk to peoples using these areas, nted in Section 6.6 of the revised EIS A Study Areas. The refined modelling a No. 1), 3,474 modelling receptor erty Boundary, and at 46 modelling ed air quality modelling grid in support Areas, on Figure 3.1.1-1 of the 2018 neet the CCME definition of

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				The assessment of the effects of CACs on human health was performed using a two-step qualitative and quantitative approach. At the request of Health Canada, predicted exposure point concentrations (defined as the the highest UCLM of the maximum modelled over the five-year period modelled, at each receptor) of CACs were compared to the Canadian Ambient Air Quality Standards (CAAQS) or the Ontario Ambient Air Quality Criteria (AAQC) for all available averaging periods. As stated in the EIS (April 2018), there were no CAC exceedances identified at the sensitive receptor locations which are appropriate for determining regulatory compliance. The results indicated that the predicted EPC of CACs in the LSA and Village of Wabigoon were below the qualitative screening criteria. As such there are no potential health risks anticipated to human receptors who may access the areas within the Property Boundary but outside of the Operations Area via inhalation of CACs. There are no residual adverse effects identified to human receptors in the LSA or the Village of Wabigoon who may live, visit, or practice traditional use of land and resources via the inhalation of CACs in air as a result of the Project. Within the Operations Area, the predicted EPCs of NO2, PM25, and PM ₁₀ were larger than the CAAQS/AQC (appropriate for use at sensitive receptors) for select averaging periods. Although a quantitative approach was considered for PM25, PM10, Treasury Metals was informed by Health Canada that they do not currently support a quantitative assessment of these forms of particulate matter, and the qualitative assessment would suffice at this time. The potential Health implications of NO2 to a Project Worker within the Operations Area was quantitatively assessed. There is no access to the Operations Area by members of the public or Indigenous community-based receptors whore are identified as a result of NO ₂ and all other CACs concentrations within Operations Area. Predicted EPCs of metals sorbed to particulate matter satisfied their
				 Problem Formulation; Exposure Assessment; Toxicity Assessment; and

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				4. Risk Characterization.
				The 2018 HHERA Report included all four of these components including a problem formulation where receptors, chemicals of concern, and exposure pathways were identified, an exposure assessment where exposure predictions were quantified, a toxicity assessment where the details of the potential health outcome i.e. childhood asthma, cancer, changes to blood pressure were presented, and risk characterization where the effects to human health were qualitatively or quantitatively assessed. These 4 steps were completed for all chemicals identified as being a contaminant of concern based on qualitative screening against regulatory criteria for air, water, soil, waste rock, tailings supernatant water, and pit lake water.
				<u>PART E</u> : Section 7 of the 2018 HHERA Report provides new details regarding the Follow-Up Program for human health, however mostly with respect to the country foods assessment. With respect to air and human health, the expectation for the Follow-Up Program is that it will rely on the Follow-Up Program described for verifying the Air Quality Modeling predictions, including the predictions of concentrations of NO ₂ and SO ₂ . A number of Round 2 Information Requests asked that the Follow-Up Program submitted as Section 13 of the EIS (April 2018) be revised. The Goliath Gold Follow-Up Addendum has been provided in support of the Round 2 Information Requests related to the Follow-Up Programs including those related to human health.
				Agency Comment 1 of 2 on Draft Response:
				The following Agency feedback on the draft responses identified the following comment as applying to each of TMI_877-AE(2)-01, TMI_879-AE(2)-03, and TMI_880-AE(2)-04.
				The responses to these IRs indicate that Treasury Metals has acquired additional properties since the air modelling receptors used in the April 2018 Revised EIS were identified. The response to TMI_877-AE(2)-01C indicates that "the revised air quality modelling grid in support of the HHERA is shown relative to the Property Boundary and the three Study Areas, on Figure 3.1.1-1 of the 2018 HHERA Report (August 2018)". The property boundary shown in Figure 3.1.1-1 of the 2018 HHERA Report appears similar to the property boundary used in the April 2018 Revised EIS in the inset of Figure 6.6.2.2-1 as well as figure 1.2.3-1. It is unclear where the newly acquired properties are located, and how the property boundary has changed. It is also unclear if the Property Boundary demarcated in the various documents of the EIS is an indication of all property owned by Treasury Metals Inc. or if this is a delineation of the lands for which the proponent holds surface/mineral rights and mining claims but which they may not own.
				[i] In the response to AE(2)-01, provide a map with the updated property boundary, and describe how the property boundary has changed since the April 2018 Revised EIS. Clarify whether the updated property boundary meets the understanding of the property boundary as it is applied in Ontario Regulation 419/05. Clarify the property ownership and claim status of the lands within the updated property boundary.

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				[ii] Identify where along the updated property boundary would be the maximum point of impingement, and where the sensitive receptor with maximum concentrations would be located.
				[iii] Clarify whether the differences between the predictions in TMI_877-AE(2)-01_Table_4a, 4b and 4c and the predictions in the April 2018 Revised EIS, Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 are only due to the change in location of the property boundary, or whether there have been changes in the model itself. If necessary, describe any changes to the model since the April 2018 Revised EIS.
				The response to TMI_879-AE(2)-03C indicates that some sensitive receptors were "eliminated" through purchase by Treasury Metals.
				[iv] Identify the sensitive receptors that were no longer considered in the updated air quality assessment, and whether they will be physically removed or will no longer meet the definition of a sensitive receptor due to its location within the updated property boundary.
				The response to TMI_877-AE(2)-01B states that, for NO ₂ and SO ₂ , "additional improvements/mitigation measures for air quality are not required as the modelling shows the maximum concentrations meet the new CAAQS [Canadian Ambient Air Quality Standards] at all sensitive receptor locations." While the Agency understands that this conclusion is based on sensitive receptors outside of the updated property boundary, it notes that exceedances of the new CAAQS for 1-hour NO ₂ are predicted at maximum point of impingement along the updated property boundary, and therefore there would be exceedances within the property boundary. The response to TMI_879-AE(2)-03E indicates that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources". It remains that Indigenous users may be exposed to air with NO2 concentrations above the new CAAQS.
				[v] The Agency reiterates question TMI_877-AE(2)-01B, in consideration of locations where Indigenous use may occur and where exceedances of CAAQS for NO₂ may occur.
				Specific Response to Agency Comment 1 of 2:
				[i] The following three figures describe the evolutions of the property boundary with time.
				 TMI_877-AE(2)-01_Figure_1: This figure shows the property boundary used in the air modelling results presented in the original EIS, as well as air modelling results presented in the revised EIS (April 2018). This property boundary represented the conditions when the air modelling was originally commissioned, which was also shown on Figure 6.1.4.5-1 of the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Figure_2: This figure shows the property boundary used for all disciplines except air quality in the revised EIS (April 2018). This property boundary, which was shown on Figure 1.2.3-1 of the revised EIS (April 2018), includes property obtained by Treasury Metals since the air modelling was originally commissioned, and includes the following differences from TMI_877-AE(2)-01_Figure_1:
				 Treasury Metals acquired the parcel of land to the west of Tree Nursery Road, and to the south of Norman's Road, and

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 Treasury Metals acquired the parcels of land between East Thunder Lake Road and the property boundary shown on TMI_877-AE(2)-01_Figure_1.
				• TMI_877-AE(2)-01_Figure_3: This figure shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses, including the results presented in Tables 1, 2 and 3 of this response, as well as TMI_877-AE(2)-01_Table_4a, TMI_877-AE(2)-01_Table_4b and TMI_877-AE(2)-01_Table_4c. This property boundary, includes the property obtained by Treasury Metals since of completion of the revised EIS (April 2018), specifically the following:
				 Treasury Metals acquired the parcel of land to the east of Tree Nursery Road, and to the south of Norman's Road.
				Since the filing of the revised EIS (April 2018), the property ownership and claim status of the lands within the property boundary have been updated from those presented in Figure 1.2.3-1 of the revised EIS (April 2018). The updated property status is provided on TMI_877-AE(2)-01_Figure_4. As shown on the figure, the lands in the western portion of the property boundary represent private or patent lands, lands for which Treasury Metals hold surface and mineral rights, lands to which Treasury Metals hold mineral rights and surface rights are pending, and lands where conversion from claim to lease is pending. Such lands would be consistent with the definition of a property line used in Ontario Regulation 419/05 (O.Reg. 419/05). As shown on TMI_877-AE(2)-01_Figure_4, Treasury Metals are not currently in the process of bringing the lands within the eastern portion of the property boundary to lease. As such, the limit of private, patent and leased lands (shown with a thick red line on TMI_877-AE(2)-01_Figure_4) would represent the property boundary for modelling in accordance with O.Reg. 419/05. To reflect this, the air modelling has been updated using the O.Reg. 419/05 definition of the property boundary. It should be noted that updating the modelling to reflect the current plans for disposition of the lands (see TMI_877-AE(2)-01_Figure_4) had no effect on the predicted concentrations at sensitive receptors as there are no sensitive receptors in the larger property boundary (including claims lands). There were also no changes to the maximum off-site gridded concentration predictions (i.e., MPOI predictions). There were also no changes to the maximum off-site gridded concentration predictions (i.e., MPOI predictions). There were also no changes to the maximum off-site gridded concentration predictions (i.e., MPOI predictions). There were also no changes to the maximum off-site gridded concentration predictions (i.e., MPOI predictions). There were also no changes to the maximum off-site gridded concentration predict
				[ii] Updated isopleth figures have been included as TMI_877-AE(2)-01_Attachment_1 (site preparation and construction), TMI_877-AE(2)-01_Attachment_2 (operations), and TMI_877-AE(2)-01_Attachment_3 (closure). Each of the attachments includes 15 isopleth figures, 14 which correspond to the compounds and averaging periods presented in Figures to replace the Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018), plus a

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				fifteenth figure that provides the annual NO ₂ predictions. Each of the isopleth figures shows where along the limit of private, patent and leased lands (in accordance with the O.Reg. 419/05 definition of boundaries for modelling) the maximum point of impingement (MPOI) was predicted to occur, as well as showing at which sensitive receptors the maximum was predicted.
				[iii] The only differences between the predictions presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) and TMI_877-AE(2)-01_Table_4a, TMI_877-AE(2)-01_Table_4b and TMI_877-AE(2)-01_Table_4c were the changes to the gridded modelling locations as a result of the changes to the property line described in the response to [i], as well as the changes to the sensitive receptors described in the response to part [iv]. As part of the revisions to the response to TMI_877-AE(2)-01, the following changes were made:
				 TMI_877-AE(2)-01_Table_1 supersedes TMI_877-AE(2)-01_Table_4a;
				 TMI_877-AE(2)-02_Table_4a supersedes TMI_877-AE(2)-01_Table_4b; and
				 TMI_877-AE(2)-03_Table_4a supersedes TMI_877-AE(2)-01_Table_4c.
				[iv] TMI_877 AE(2) 01_Figure_3 shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses, including the results presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3. This property boundary, includes the property obtained by Treasury Metals since of completion of the revised EIS (April 2018). On the figure, the sensitive receptors that have been excludes as a result of the changes to the property lines are marked as red on the figure. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and outbuildings would be made through consultation with Ontario Ministry of Natural Resources and Forestry (MNRF), as well as Environment and Climate Change Canada.
				[v] The CCME (2006) identified that compliance with ambient air quality criteria should be done at "community- oriented receptors". The only "community-oriented" receptors in the vicinity of the Goliath Gold Project are the sensitive receptor locations, shown as "yellow circles" on TMI_877 AE(2) 01_Figure_3. There are no community- oriented receptors within the property boundary. In recognition that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources", the updated Human Health and Ecological Risk Assessment (2018 HHERA), has specifically included evaluation of the potential effects of exposure to air quality within the property boundary on human health. The 2018 HHERA includes consideration of air quality effects on both Project Workers and those who may transiently pass through areas within the Property Boundary to practice traditional land and resource use. In the case of Project Workers, their exposures were calculated using the area maximum concentrations within the operations area. In the case of areas where Indigenous communities may wish to

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				practice traditional uses of the lands and resources, their exposures were calculated as the area maximum concentration outside of the operations area. The area maximum concentrations for each parameter and averaging period were calculated as the 95 th percentile UCLM of maximum predictions at the gridded modelling points within the property boundary. This approach is most appropriate for a detailed quantitative human health risk assessment as concentrations of chemicals vary spatially and temporally in the air to which humans are exposed. During long-term exposures, humans may move over areas, or in and out of impacted areas. As a result, individuals tend to integrate spatial and temporal variation in the chemical concentrations to which they are exposed. Therefore, estimates of the central tendency (e.g., arithmetic means, upper confidence limits) are generally used in human health exposure models as an expression of the spatial and temporal averaging of chemical concentrations in different media (U.S. EPA, 1992, 2001). The 2018 HHERA shows that there would be no potential risk to human receptors outside of the operations area via the inhalation of air exposure pathway. As such, no additional mitigation measures are required to protect the health of members of Indigenous communities who may wish to practice traditional uses of the lands and resource in areas outside of the operations area, but within the property boundary of the Goliath Gold Project. With respect to NO ₂ , none of the predicted air concentrations at the identified community-oriented receptors exceeded the relevant ambient air quality criteria, including the new 1-hour CAAQS for NO ₂ that will come into force in 2025. As noted by the reviewers, there were areas along the property boundary and beyond where the maximum predicted 1-hour NO ₂ concentrations were numerically higher than 79 µg/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025). However, because these locations do not meet the requirements for "community-oriented receptors" de
				Agency Comment 2 of 2 on Draft Response:
				The proposed air monitoring programs include monitoring for NO ₂ and either PM ₁₀ or PM _{2.5} . Health Canada identifies that the fine particles pose a greater risk to human health than coarse ones, as the fine particles can be inhaled deeply into the lungs, are chemically reactive and have complex characteristics (Health Canada. 2016). In the absence of monitoring for both particulate matter sizes, PM2.5 should be monitored to adequately assess the health

ique Itifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				risks of air-borne articulate matters. (Health Canada. 2016. Guidance for Evaluating Human Health Impacts in Environmental Assessment: AIR QUALITY)
				Update the monitoring plan and follow-up program to include PM2.5 and NO2 at the MPOI. Consider implementation of a notification system for Indigenous land users about PM2.5 and NO2 levels.
				Specific Response to Agency Comment 2 of 2:
				The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to include specifically identify PM _{2.5} as the fine particulate to be monitored at the continuous monitoring station, which also includes monitoring of NO ₂ . Treasury Metals plan to commission a single continuous monitoring station at a suitable location. For obvious reasons, the air continuous monitoring station should be located in a secure but accessible location, with ready access to power, and in a location relatively close to the areas where the maximum concentrations were predicted. The maximum point of impingement (MPOI) is an air modeling term that represents location along, or beyond, the property boundary where the maximum predicted concentrations occur. For security reasons, it would be preferred to place the monitoring station within the property boundary. It should also be noted that the MPOI will likely be different for each of the compounds and averaging periods modelled. Therefore, it is unlikely that the MPOI for the 1-hour NO ₂ would be the same as the MPOI for the 24-hour PM _{2.5} . The final location for the monitoring station would be selected in consultation with Ontario Ministry of Environment, Conservation and Parks (MECP), Environment and Climate Change Canada, and the Agency.
				Revised Response: PART A:
				As requested, the dispersion modelling results presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) have been updated to include predictions of the annual NO ₂ . The background annual NO ₂ concentrations of 14 μ g/m ³ represents the highest measured annual NO ₂ value from the five years of Thunder Bay data used. The updated results are provided in the following tables:
				• TMI_877-AE(2)-01_Table_1 : This table presents the maximum predicted concentrations during the Site Preparation and Construction Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.1-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Table_2 : This table presents the maximum predicted concentrations during the Operations Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.2-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 TMI_877-AE(2)-01_Table_3: This table presents the maximum predicted concentrations during the Closure Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.3-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).
				To clarify, the only differences between the predictions presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) and TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3 were the changes to the gridded modelling and sensitive receptors locations as a result of the changes to the property line since generating the modelling receptors used in the revised EIS (April 2018).
				As noted above, the property boundary used in the dispersion modelling has changed since the modelling receptors used in the revised EIS (April 2018) were generated. The changes to the property boundary with time can be described with the following three figures:
				 TMI_877-AE(2)-01_Figure_1: This figure shows the property boundary used in the air modelling results presented in the original EIS, as well as air modelling results presented in the revised EIS (April 2018). This property boundary represented the conditions when the air modelling was originally commissioned, which was also shown on Figure 6.1.4.5-1 of the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Figure_2: This figure shows the property boundary used for all disciplines except air quality in the revised EIS (April 2018). This property boundary, which was shown on Figure 1.2.3-1 of the revised EIS (April 2018), includes property obtained by Treasury Metals since the air modelling was originally commissioned, and includes the following differences from TMI_877-AE(2)-01_Figure_1:
				 Treasury Metals acquired the parcel of land to the west of Tree Nursery Road, and to the south of Norman's Road, and
				 Treasury Metals acquired the parcels of land between East Thunder Lake Road and the property boundary shown on TMI_877-AE(2)-01_Figure_1.
				• TMI_877-AE(2)-01_Figure_3: This figure shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses, including the results presented in Tables 1, 2 and 3 of this response, as well as TMI_877-AE(2)-01_Table_4a, TMI_877-AE(2)-01_Table_4b and TMI_877-AE(2)-01_Table_4c of the draft response. This property boundary, includes the property obtained by Treasury Metals since of completion of the revised EIS (April 2018), specifically the following:
				 Treasury Metals acquired the parcel of land to the east of Tree Nursery Road, and to the south of Norman's Road.
				Since the filing of the revised EIS (April 2018), the property ownership and claim status of the lands within the property boundary have also been updated from those presented in Figure 1.2.3-1 of the revised EIS (April 2018). The updated property status is provided on TMI_877-AE(2)-01_Figure_4. As shown on the figure, the lands in the western portion of the property boundary represent private or patent lands, lands for which Treasury Metals hold

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response					
				surface and mineral rights, lands to which Treasury Metals hold mineral rights and surface rights are pending, and lands where conversion from claim to lease is pending. Such lands would be consistent with the definition of a property line used in Ontario Regulation 419/05 (O.Reg. 419/05). As shown on TMI_877-AE(2)-01_Figure_4, Treasury Metals are not planning on bringing the claimed lands within the eastern portion of the property boundary to lease at this time. As such, the limit of private, patent and leased lands (shown with a thick red line on TMI_877-AE(2)-01_Figure_4) would represent the property boundary for modelling in accordance with O.Reg. 419/05. This represents the property boundary used in the in the revised modelling presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3.					
				The above changes to the property boundary also affected the sensitive recept 01_Figure_3 shows the current property boundary used for preparing the Roup presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TM figure, the sensitive receptors that have been excludes as a result of the changer of the figure. It is Treasury Metals intention to remove the residences at e Treasury Metals may retain the secondary structures and outbuildings at these habitat. A decision regarding the fate of the secondary structures and outbuild consultation with Ontario Ministry of Natural Resources and Forestry (MNRF), Change Canada.	nd 2 responses, including the results MI_877-AE(2)-01_Table_3. On the ges to the property lines are marked as ach of these locations. However, e locations for use as possible wildlife ings would be made through as well as Environment and Climate				
				To help illustrate where the predicted maximum concentrations are likely to occur, a series of updated isopleth figures have been prepared. These are provided as TMI_877-AE(2)-01_Attachment_1 (site preparation and construction), TMI_877-AE(2)-01_Attachment_2 (operations), and TMI_877-AE(2)-01_Attachment_3 (closure). The isopleth figures provided in TMI_877-AE(2)-01_Attachment_2 (operations) supersede Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the attachments includes 15 isopleth figures, 14 which correspond to the compounds and averaging periods presented in Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the annual NO ₂ predictions. The updated isopleth figures show where along the limit of private, patent and leased lands (i.e., modeling property boundary in accordance with the O.Reg. 419/05) the maximum point of impingement (MPOI) was predicted to occur, as well as showing at which sensitive receptors the maximum was predicted.					
				PART B: The new Canadian Ambient Air Quality for SQs and NQs that will come into for	rce 2025 are listed in Table 4. These				
				The new Canadian Ambient Air Quality for SO ₂ and NO ₂ that will come into force 2025 are listed in Table 4. These ambient air quality criteria are applicable at community-oriented receptors (CCME 2000), which correspond to the sensitive receptor modelling results presented in Section 6.6 of the revised EIS (April 2018).					
				Table 4: 2025 Canadian Ambient Air Quality Standards for SO ₂ and NO ₂	NO ₂				
				Averaging Period SO2 Annual CAAQS (2025) 8 μg/m³	23 µg/m ³				
				1-hour CAAQS (2025) 169 µg/m ³	79 μg/m ³				

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response							
				into force 2025. should be done a Goliath Gold Pro modelling are sh concentrations w of the SO ₂ mode achieve complian	an Ambient Air (It is important to at "community-(ject are the ser own as "yellow vere numerically elling, additional nce with the ne ill decrease in y , as well as the	Quality (CAAQ o note that the oriented receptor circles" on TM y higher than 1 improvements w CAAQS set years to come, background S	S) of 169 µg/m ³ CCME (2006) ide ors". The only "c locations. The c I_877-AE(2)-01_ 69 µg/m ³ (1-hou or mitigation me to come in force which will aid in O ₂ concentration	(1-hour SO ₂) an entified that con ommunity-orien urrent sensitive Figure_3. In ad r SO ₂) and 8 µg easures for air q in 2025. Howev further reducing s that account f	ad 8 µg/m ³ (anr npliance with a receptor locati dition, none of g/m ³ (annual SC uality are not r er, it is expected both the SO ₂ of	rual SO ₂) that will mbient air quality in the vicinity of the ons used in the re- the predicted MP D_2). Based on the equired in order to ad that the sulphu concentrations fro	come criteria ne evised OI SO ₂ results o r
				Table 5: Maxii	mum 1-hour ai				r		
				Table 5: Maxin Compound	Averaging	Maximum Modelled	at Gridded Recept	Cumulative	Modelled	num at Sensitive Reg	Cumula
				Compound	Averaging Period	Maximum		. ,		num at Sensitive Rea Background ⁽¹⁾	
					Averaging Period and Construction	Maximum Modelled Prediction	at Gridded Recept Background (1)	Cumulative Prediction	Modelled Prediction	Background (1)	Cumula Predict
				Compound	Averaging Period and Construction 1-hour	Maximum Modelled Prediction 0.77	at Gridded Recept Background (1) 4.0	Cumulative Prediction 4.8	Modelled Prediction 0.65	Background ⁽¹⁾ 4.0	Cumula Predict 4.7
				Compound Site Preparation a	Averaging Period and Construction	Maximum Modelled Prediction	at Gridded Recept Background (1)	Cumulative Prediction	Modelled Prediction	Background (1)	Cumula Predict
				Compound Site Preparation a SO ₂ Operations	Averaging Period and Construction 1-hour	Maximum Modelled Prediction 0.77	at Gridded Recept Background (1) 4.0	Cumulative Prediction 4.8	Modelled Prediction 0.65	Background ⁽¹⁾ 4.0	Cumula Predict 4.7
				Compound Site Preparation a SO ₂	Averaging Period and Construction 1-hour Annual	Maximum Modelled Prediction 0.77 0.013	at Gridded Recept Background (1) 4.0 1.0	Cumulative Prediction 4.8 1.0	Modelled Prediction 0.65 0.010	Background (1) 4.0 1.0	Cumula Predict 4.7 1.0
				Compound Site Preparation a SO ₂ Operations	Averaging Period and Construction 1-hour Annual	Maximum Modelled Prediction 0.77 0.013 4.6	at Gridded Recept Background ⁽¹⁾ 4.0 1.0 4.0	Cumulative Prediction 4.8 1.0 8.6	Modelled Prediction 0.65 0.010 0.18	Background (1) 4.0 1.0 4.0	Cumula Predict 4.7 1.0 4.2
				Compound Site Preparation a SO ₂ Operations SO ₂	Averaging Period and Construction 1-hour Annual	Maximum Modelled Prediction 0.77 0.013 4.6	at Gridded Recept Background ⁽¹⁾ 4.0 1.0 4.0	Cumulative Prediction 4.8 1.0 8.6	Modelled Prediction 0.65 0.010 0.18	Background (1) 4.0 1.0 4.0	Cumula Predict 4.7 1.0 4.2

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Reference / Comment / Information Request / Response						
				locations do not obvious that pred additional mitigat noted that predic less than 0.3% o manufacturers' ir	r higher than 79 meet the requir dicted concentr tion measures ted 1-hour NO f the hours mo nprovements t , future improve	9 µg/m ³ (the va rements for "co rations in exces are required to 2 concentration delled (see res o mobile equip ements in the e	lue of the 1-hour mmunity-oriented s of 79 µg/m³ rej ensure complian s in excess of 79 ponse to TMI_88 ment emissions v missions of NO _X	CAAQS for NC d receptors" det presents an exc ice with the new 0 µg/m ³ are extr i0-AE(2)-04). It vill assist in furt	D2 in 2025). How ined by the CC eedance of the v CAAQS for N emely unlikely anticipated that her reducing th	wever, because the ME (2006), it is not e CAAQS. As suc O ₂ . It should also to occur, predicte	nese lot h, no be ed on ects of
				Table 6: Maxir	num 1-hour a			(1120)			
				Compound	Averaging Period	Maximum Modelled Prediction	at Gridded Receptor Background ⁽¹⁾	ors (MPOI) Cumulative Prediction	Maxin Modelled Prediction	Background (1)	ceptors Cumula Predict
				Site Preparation a	and Construction						
				NO ₂	1-hour	50	29	79	36	29	65
					Annual	1.0	14	15	0.84	14	15
				Operations	1-hour	80	29	110	28	29	57
				NO ₂	Annual	9.2	14	23	0.99	14	15
				Closure	7 united	0.2		20	0.00		
				10	1-hour	30	29	59	12	29	41
				NO ₂	Annual	0.70	14	14	0.48	14	14
				predicted 1-hour in 2025), it is rea exceed 79 µg/m ² ambient air quali in the vicinity of t AE(2) 01_Figure	NO ₂ concentration sonable to exp ³ on an infrequi- ty criteria shout he Goliath Gol _3, and there a ot obvious that h, no exceedan	ations were nur bect there would ent basis. How Id be done at " d Project are the are no sensitive predicted conc toes of the new	nerically higher the beareas within ever, given that the community-orient he sensitive receptors or "co entrations in exceptors or and CAAQS would on	han 79 μg/m³ (the property bo he CCME (2000 ted receptors", fotor locations, s mmunity-orient ess of 79 μg/m occur within the	he value of the bundary where b) identified that the only "comm hown as "yellow ed receptors" w represents an property bound		or NO ₂ puld ceptors" _877 ne new

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				and resources", the updated Human Health and Ecological Risk Assessment (2018 HHERA), has specifically included evaluation of the potential effects of exposure to air quality within the property boundary on human health. The 2018 HHERA includes consideration of air quality effects on both Project Workers and those who may transiently pass through areas within the Property Boundary to practice traditional land and resource use. In the case of Project Workers, their exposures were calculated using the area maximum concentrations within the operations area. In the case of areas where Indigenous communities may wish to practice traditional uses of the lands and resources, their exposures were calculated as the area maximum concentration outside of the operations area. The area maximum concentrations for each parameter and averaging period were calculated as the 95 th percentile UCLM of maximum predictions at the gridded modelling points within the property boundary. This approach is most appropriate for a detailed quantitative human health risk assessment as concentrations of chemicals vary spatially and temporally in the air to which humans are exposed. During long-term exposures, humans may move over areas, or in and out of impacted areas. As a result, individuals tend to integrate spatial and temporal variation in the chemical concentrations to which they are exposed. Therefore, estimates of the central tendency (e.g., arithmetic means, upper confidence limits) are generally used in human health exposure models as an expression of the spatial and temporal averaging of chemical concentrations in different media (U.S. EPA, 1992, 2001). The 2018 HHERA shows that there would be no potential risk to human receptors outside of the operations area via the inhalation of air exposure pathway. As such, no additional mitigation measures are required to protect the health of members of Indigenous communities who may wish to practice traditional uses of the lands and resource in areas outside of the operations area, but wit
				PART C. The 2018 HHERA (November revision) included the annual concentrations of NO ₂ identified in Question A, and the new CAAQS thresholds for NO ₂ and SO ₂ . To satisfy a number of Round 2 Information Requests, asking that the Human Health Risk Assessment be revised to include an assessment of potential health impacts in areas where traditional land use is practiced, air quality modelling was re-performed using a receptor grid specifically designed to support the HHERA (August 2018). Activities associated with each Project phase are expected to emit Criteria Air Contaminants (CACs) including CO, NO _x , SO ₂ , TSP, PM ₁₀ , and PM _{2.5} . Treasury Metals recognizes that Project Workers may be exposed to CACs within the Operations Area (Study Area No. 1), and members of Indigenous communities may visit areas that fall outside of the Operations Area, but within the Property Boundary of the Goliath Gold Project, to practice traditional uses of the lands and resources. Project work and traditional land use do not meet the CCME definition of a community-based receptor and thus determination of compliance with the application of Ambient Air Criteria is not appropriate for these receptors. To capture the possible risk to peoples using these areas, the air modelling was redone using the same emissions and methods as presented in Section 6.6 of the revised EIS (April 2018), but focusing on possible modelling receptors covering the HHERA Study Areas. The refined modelling includes 308 modelling receptors located within the Operations Area (Study Area No. 1), 3,474 modelling receptor locations within the Village of Wabigoon (Study Area No. 3). The revised air quality modelling grid in support

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				of the HHERA is shown relative to the Property Boundary and the three Study Areas, on Figure 3.1.1-1 of the 2018 HHERA Report (included as TMI_877-AE(2)-01_Attachment 4). The locations of the sensitive receptors which meet the CCME definition of community-based receptors and are appropriate for determining compliance with ambient air quality criteria, are also shown on Figure 3.1.1-1 of the 2018 HHERA Report. TMI_877-AE(2)-01_Attachment 4 also contains Figure 3.6.2-1 from the 2018 HHERA Report that shows the confirmed Spatial Extent of Effects on Traditional Land and Resource Use Including Country Foods. The 2018 HHERA was completed under the assumption that all areas outside of the operations area will be accessible for traditional land and resource use.
				The assessment of the effects of CACs on human health was performed using a two-step qualitative and quantitative approach. At the request of Health Canada, predicted exposure point concentrations (defined as the the highest UCLM of the maximum modelled over the five-year period modelled, at each receptor) of CACs were compared to the Canadian Ambient Air Quality Standards (CAAQS) or the Ontario Ambient Air Quality Criteria (AAQC) for all available averaging periods. As stated in the EIS (April 2018), there were no CAC exceedances identified at the sensitive receptor locations which are appropriate for determining regulatory compliance. The results indicated that the predicted EPC of CACs in the LSA and Village of Wabigoon were below the qualitative screening criteria. As such there are no potential health risks anticipated to human receptors who may access the areas within the Property Boundary but outside of the Operations Area via inhalation of CACs. There are no residual adverse effects identified to human receptors in the LSA or the Village of Wabigoon who may live, visit, or practice traditional use of land and resources via the inhalation of CACs in air as a result of the Project. Within the Operations Area, the predicted EPCs of NO ₂ , PM _{2.5} , and PM ₁₀ were larger than the CAAQS/AAQC (appropriate for use at sensitive receptors) for select averaging periods. Although a quantitative approach was considered for PM _{2.5} , PM ₁₀ , Treasury Metals was informed by Health Canada that they do not currently support a quantitative assessment of these forms of particulate matter, and the qualitative assessment would suffice at this time. The potential Health implications of NO ₂ to a Project Worker within the Operation Area was quantitatively assessed. There is no access to the Operations Area by members of the public or Indigenous communities during the active life of the roject and highlight that there are no sensitive or community-based receptors within the Operations Area. Under good health and safety practi
				PART D.

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 A Human Health Risk Assessment (HHRA) is the process to estimate the nature and probability of adverse health effects in humans who may be exposed to chemicals in contaminated environmental media, now or in the future. The risk assessment process involves the following four (4) fundamental steps: Problem Formulation; Exposure Assessment; Toxicity Assessment; and Risk Characterization. The 2018 HHERA Report included all four of these components including a problem formulation where receptors, chemicals of concern, and exposure pathways were identified, an exposure assessment where explosure predictions were quarified, a toxicity assessment where the details of the potential health outcome i.e. childhood asthma, cancer, changes to blood pressure were presented, and risk characterization where the effects to human health were qualitatively assessed. These 4 steps were completed for all chemicals identified as being a contaminant of concern based on qualitative screening against regulatory criteria for air, water, soil, waste rock, tailings supernatant water, and pit lake water. PART E: An updated Follow-Up Program, which supersedes Section 13 of the revised EIS (April 2018) has been provided in support of the Round 2 process as the Goliath Gold Follow Up Program Addendum. The updated Follow-Up Program includes details of monitoring with respect to confirming the predicted effects outlined in the HHERA with respect to air, changes in country foods for consumption and human health. The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to include specifically identify PMs_as at the fine particulate to be monitored at the continuous monitoring station, which also includes monitoring of NO2. Agency Comment on Revised Response i) Provide the most recent Follow-up Program Addendum in the
	1			iii:

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 a) Provide a summary of the maximum EPCs used in the HHRA for each contaminant for receptors outside the operations area but within the property boundary. This information will assist in the discussion of potential human health effects as well as providing additional support for monitoring recommendations. b) Revise the language used in the HHRA and supporting IR responses (e.g., where ILCR is below 1 in 100,000, the
				risk may be described as essentially negligible ¹). c) Note that the CAAQS are part of the Air Zone Management Framework to protect air quality in accordance with the
				principles of continuous improvement and keeping clean areas clean ² . Include a discussion of the implications of the CAAQS-associated management levels, a qualitative analysis of the potential health effects of PM _{2.5} in relation to exposure throughout the project area and the potential to reduce emissions of pollutants that form PM _{2.5} .
				Error: in the text on page 14 the incorrect annual SO ₂ value has been referenced (i.e., 23 μ g/m ³ listed). This should be corrected in the final response submission.
				¹ Health Canada. 2010. Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals (DQRACHEM). Contaminated Sites Division, Safe Environments Directorate, Health Canada.
				² Canadian Council of Ministers of the Environment. 2007. Guidance document on Continuous Improvement (CI) and Keeping-Clean-Areas-Clean (KCAC).
				Specific Comment to the Agency Part i) The Final Goliath Gold Follow Up Addendum supersedes all previous versions of the follow up program and captures all requested updated since September 2018 including the aforementioned updates. Treasury Metals will determine the locations of air monitoring in consultation with Indigenous communities and provincial and federal regulatory agencies. Treasury Metals has committed to all Indigenous communities to work with them in developing community specific risk communication plans including with respect to potential risk to human health via the inhalation of air pathway.
				Part ii) The results of the Final HHERA indicate that potential risk to human health via inhalation of criteria air contaminants (including NO ₂) is essentially negligible to those who may practice traditional land use outside of the Operations Area but within the Property Boundary. No residual adverse effects were identified. Although the results of the HHERA do not indicate that risk management or mitigation measures are required during traditional land and resource use, as part of the sign in and access policy, Treasury Metals will offer personal protective equipment to those who prefer to wear it while within the Property Boundary.
				Treasury Metals has committed to working with Indigenous communities to develop community specific risk communication plans to mitigate any perception of risk. Treasury Metals has also committed to consult with Indigenous communities regarding the placement of dustfall monitoring jars to target areas of potential impact that overlap with areas where traditional land and resource occurs (this information will be shared confidentially by the community in the formal Traditional Knowledge studies completed, underway or expected in the future).

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				For Health and Safety purposes, there will also be an access plan, where visitors to the property will be required to sign in. The personal protective equipment will be offered to those individuals during sign in. With these mitigation measures in place, no potential risk via exposure to NO ₂ or other CACs is anticipated to those who practice traditional land and resource use.
				Part iii) a) Section 3.5 of the HHERA provides exposure point concentrations for all contaminants of concern including criteria air contaminants. As per the correspondence with Health Canada in August 2018, the 95 th upper confidence limit of the mean was appropriately selected as the exposure point concentration as per Health Canada's DQRA guidance document. An updated series of isopleths has been provided in support of the Air Quality assessment for the purposes of demonstrating regulatory compliance with the ambient air quality objectives.
				b) The language in the HHERA has been revised to describe risk as "essentially negligible" when predictions are less than the target risk benchmark accepted by the MECP and Health Canada.
				c) Health Canada indicates that the health effects of air contaminants may include disease, increased hospitalizations, and even premature death. At this time, there is not enough toxicological scientific data on PM2.5 to support the quantitative risk assessment of PM2.5 and thus Health Canada advised Treasury Metals and their consultants to proceed with a qualitative screening only (see correspondence dated August 1 through August 8 in TMI_954-HHRA(2)-01_Attachment 1). The results of the HHERA indicated that with the implementation of a health and safety plan (including the prescribed use of personal protective equipment) then exposure and subsequent risk would be essentially negligible to Project Workers within the Operations Area. The HHERA also indicates that potential risk outside of the Operations Areas would be essentially negligible to all receptors including those who practice traditional land and resource use given that there are no exceedances of the CAAQS-associated management levels. As such there are no potential health implications identified as a result of the Goliath Gold Project with respect to PM2.5.
				 Health Canada states that exposure to PM2.5 is most dangerous for the following at-risk groups: children with asthma because it affects breathing functions older adults because it affects breathing, heart and blood functions people with an underlying breathing and/or heart condition because it worsens their condition(s).
				Treasury Metals has committed to developing a risk communication plan which can be used as a platform to communicate to individuals the groups who are more susceptible to PM2.5 exposure (i.e. children with asthma, older adults, and people with underlying breathing issues). For Health and Safety purposes, there will be a sign in for those who wish to use areas within the Property Boundary, and those individuals who are more susceptible to health

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				effects may wish to take advantage of the personal protective equipment Treasury Metals will offer during the sign in process.
				It is unclear which page 14 the reviewer was referring to in their comment, however the Final Response to TMI_877-AE(2)-01 references the annual SO2 value as 8 μ g/m ³ not 23 μ g/m ³
				FINAL RESPONSE PART A:
				As requested, the dispersion modelling results presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) have been updated to include predictions of the annual NO ₂ . The background annual NO ₂ concentrations of14 μ g/m ³ represents the highest measured annual NO ₂ value from the five years of Thunder Bay data used. The updated results are provided in the following tables:
				 TMI_877-AE(2)-01_Table_1: This table presents the maximum predicted concentrations during the Site Preparation and Construction Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.1-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Table_2 : This table presents the maximum predicted concentrations during the Operations Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.2-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Table_3 : This table presents the maximum predicted concentrations during the Closure Phase. These numbers represent updated predictions that supersede the values presented in Table 6.6.4.3-2 of the revised EIS (April 2018). Specifically, the results reflect the predicted maximum point of impingement (MPOI) and sensitive receptor concentration, taking into account changes in the property line and land tenure since generating the modelling receptors used in the revised EIS (April 2018).
				To clarify, the only differences between the predictions presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) and TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3 were the changes to the gridded modelling and sensitive receptors locations as a result of the changes to the property line since generating the modelling receptors used in the revised EIS (April 2018).

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				As noted above, the property boundary used in the dispersion modelling has changed since the modelling receptors used in the revised EIS (April 2018) were generated. The changes to the property boundary with time can be described with the following three figures:
				• TMI_877-AE(2)-01_Figure_1: This figure shows the property boundary used in the air modelling results presented in the original EIS, as well as air modelling results presented in the revised EIS (April 2018). This property boundary represented the conditions when the air modelling was originally commissioned, which was also shown on Figure 6.1.4.5-1 of the revised EIS (April 2018).
				• TMI_877-AE(2)-01_Figure_2: This figure shows the property boundary used for all disciplines except air quality in the revised EIS (April 2018). This property boundary, which was shown on Figure 1.2.3-1 of the revised EIS (April 2018), includes property obtained by Treasury Metals since the air modelling was originally commissioned, and includes the following differences from TMI_877-AE(2)-01_Figure_1:
				 Treasury Metals acquired the parcel of land to the west of Tree Nursery Road, and to the south of Norman's Road, and
				 Treasury Metals acquired the parcels of land between East Thunder Lake Road and the property boundary shown on TMI_877-AE(2)-01_Figure_1.
				• TMI_877-AE(2)-01_Figure_3: This figure shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses, including the results presented in Tables 1, 2 and 3 of this response, as well as TMI_877-AE(2)-01_Table_4a, TMI_877-AE(2)-01_Table_4b and TMI_877-AE(2)-01_Table_4c of the draft response. This property boundary, includes the property obtained by Treasury Metals since of completion of the revised EIS (April 2018), specifically the following:
				 Treasury Metals acquired the parcel of land to the east of Tree Nursery Road, and to the south of Norman's Road.
				Since the filing of the revised EIS (April 2018), the property ownership and claim status of the lands within the property boundary have also been updated from those presented in Figure 1.2.3-1 of the revised EIS (April 2018). The updated property status is provided on TMI_877-AE(2)-01_Figure_4. As shown on the figure, the lands in the western portion of the property boundary represent private or patent lands, lands for which Treasury Metals hold surface and mineral rights, lands to which Treasury Metals hold mineral rights and surface rights are pending, and lands where conversion from claim to lease is pending. Such lands would be consistent with the definition of a property line used in Ontario Regulation 419/05 (O.Reg. 419/05). As shown on TMI_877-AE(2)-01_Figure_4, Treasury Metals are not planning on bringing the claimed lands within the eastern portion of the property boundary to lease at this time. As such, the limit of private, patent and leased lands (shown with a thick red line on TMI_877-AE(2)-01_Figure_4) would represent the property boundary for modelling in accordance with O.Reg. 419/05. This represents the property boundary used in the in the revised modelling presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3.
				The above changes to the property boundary also affected the sensitive receptor locations. TMI_877 AE(2) 01_Figure_3 shows the current property boundary used for preparing the Round 2 responses, including the results

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Req	uest / Response				
				 presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3. On the figure, the sensitive receptors that have been excluded as a result of the changes to the property lines are marked as red on the figure. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and outbuildings would be made through consultation with Ontario Ministry of Natural Resources and Forestry (MNRF), as well as Environment and Climate Change Canada. To help illustrate where the predicted maximum concentrations are likely to occur, a series of updated isopleth figures have been prepared. These are provided as TMI_877-AE(2)-01_Attachment_1 (site preparation and construction), TMI_877-AE(2)-01_Attachment_2 (operations), and TMI_877-AE(2)-01_Attachment_3 (closure). The isopleth figures provided in TMI_877-AE(2)-01_Attachment_2 (operations) supersede Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the attachments includes 15 isopleth figures, 14 which correspond to the compounds and averaging periods presented in Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018), plus a fifteenth figure that provides the annual NO₂ predictions. The updated isopleth figures show where along the limit of private, patent and leased lands (i.e., modeling property boundary in accordance with the O.Reg. 419/05) the maximum was predicted. 					
				Table 4: 2025 Canadian Ambient Air Quality Standards for SO ₂ and NO ₂					
				Averaging Period SO ₂	NO ₂				
				Annual CAAQS (2025) 8 μg/m ³	23 µg/m³				
				1-hour CAAQS (2025) 169 µg/m ³	79 μg/m³				
				As shown in Tables 5 none of the maximum predicted SO ₂ concentrations at the new Canadian Ambient Air Quality (CAAQS) of 169 µg/m ³ (1-hour SO ₂) an into force 2025. It is important to note that the CCME (2006) identified that com should be done at "community-oriented receptors". The only "community-orient Goliath Gold Project are the sensitive receptor locations. The current sensitive modelling are shown as "yellow circles" on TMI_877-AE(2)-01_Figure_3. In add concentrations were numerically higher than 169 µg/m ³ (1-hour SO ₂) and 8 µg of the SO ₂ modelling, additional improvements or mitigation measures for air quachieve compliance with the new CAAQS set to come in force in 2025. However,	d 8 µg/m ³ (annual SO ₂) that will come apliance with ambient air quality criteria ted" receptors in the vicinity of the receptor locations used in the revised dition, none of the predicted MPOI SO ₂ /m ³ (annual SO ₂). Based on the results uality are not required in order to				

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response							
				content in fuel will decrease in years to come, which will aid in further reducing both the SO ₂ concentrations from Project activities, as well as the background SO ₂ concentrations that account for most of the cumulative SO ₂ predictions (87% of the 1-hour SO ₂ and 99% of the annual SO ₂).							
				Table 5: Maxin	mum 1-hour ai	nd Annual SO	2 Predictions				
					Averaging	Maximum	at Gridded Recept	ors (MPOI)	Maxim	um at Sensitive Red	ceptors
				Compound	Period	Modelled Prediction	Background (1)	Cumulative Prediction	Modelled Prediction	Background (1)	Cumula Predict
				Site Preparation a	and Construction						
				SO ₂	1-hour	0.77	4.0	4.8	0.65	4.0	4.7
				302	Annual	0.013	1.0	1.0	0.010	1.0	1.0
				Operations							
				SO ₂	1-hour	4.6	4.0	8.6	0.18	4.0	4.2
				Classes	Annual	0.58	1.0	1.6	0.0024	1.0	1.0
				Closure	1-hour	0.78	4.0	4.8	0.60	4.0	4.6
				SO ₂	Annual	0.015	4.0	4.0	0.0092	1.0	4.0
				NO ₂) that will con ambient air quali receptors in the v locations used in indicates that the were numerically locations do not obvious that predic additional mitigat noted that predic less than 0.3% of manufacturers' in	concentrations I the new Cana me into force 20 ty criteria shoul vicinity of the G the revised me ere are areas al higher than 79 meet the requir dicted concentr tion measures a cted 1-hour NO of the hours moo mprovements to , future improve	for NO ₂ . None dian Ambient A D25. It is import obtain Gold Pro- odelling are sho ong the proper p µg/m ³ (the var ements for "co ations in excess are required to 2 concentration delled (see res 5 mobile equiptements in the e	of the maximum air Quality (CAAC tant to note that is community-orien oject are the sense own as "yellow c ty boundary whe lue of the 1-hour mmunity-oriente s of 79 µg/m ³ re ensure compliar s in excess of 75 ponse to TMI_88 ment emissions of missions of NO _x	a predicted conc QS) of 79 µg/m ³ the CCME (200 ted receptors". sitive receptor lo ircles" on TMI_8 ere the maximur CAAQS for NC d receptors" def presents an exc hce with the new 0 µg/m ³ are extr 30-AE(2)-04). It will assist in furt	centrations at the (1-hour NO ₂) a 6) identified tha The only "commo cations. The cu B77-AE(2)-01_F n predicted 1-ho 2 in 2025). How ined by the CC ceedance of the v CAAQS for No emely unlikely fanticipated that her reducing the	e sensitive recept and 23 µg/m ³ (an t compliance with nunity-oriented" urrent sensitive re igure_3. The mo our NO ₂ concent vever, because th ME (2006), it is n e CAAQS. As suc O ₂ . It should also to occur, predicte on-going	otor nual h ecceptor odeling rations hese not ch, no be ed on ects of

	Maximum	at Gridded Recepto	ors (MPOI)	Maxim	um at Sensitive Rec	eptors
Averaging Period	Modelled Prediction	Background (1)	Cumulative Prediction	Modelled Prediction	Background (1)	Cumul Predic
d Construction						
1-hour	50	29	79	36	29	65
Annual	1.0	14	15	0.84	14	15
1-hour	80	29	110	28	29	57
Annual	9.2	14	23	0.99	14	15
1-hour	30	29	59	12	29	41
Annual	0.70	14	14	0.48	14	14
-	1-hour Annual 1-hour Annual 1-hour	d Construction 1-hour 50 Annual 1.0 1-hour 80 Annual 9.2 1-hour 30	d Construction 29 1-hour 50 29 Annual 1.0 14 1-hour 80 29 Annual 9.2 14 1-hour 30 29	d Construction 29 79 1-hour 50 29 79 Annual 1.0 14 15 1-hour 80 29 110 Annual 9.2 14 23 1-hour 30 29 59	d Construction 29 79 36 1-hour 50 29 79 36 Annual 1.0 14 15 0.84 1-hour 80 29 110 28 Annual 9.2 14 23 0.99 1-hour 30 29 59 12	d Construction 1-hour 50 29 79 36 29 Annual 1.0 14 15 0.84 14 1-hour 80 29 110 28 29 Annual 9.2 14 23 0.99 14 1-hour 30 29 59 12 29

AE(2) 01_Figure_3, and there are no sensitive receptors or "community-oriented receptors" within the property boundary, it is not obvious that predicted concentrations in excess of 79 μg/m³ represents an exceedance of the new CAAQS. As such, no exceedances of the new CAAQS would occur within the property boundary. In recognition that "there may be locations outside of the Operations Area, but within the property boundary of the

In recognition that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources", the updated Human Health and Ecological Risk Assessment (2018 HHERA), has specifically included evaluation of the potential effects of exposure to air quality within the property boundary on human health. The 2018 HHERA includes consideration of air quality effects on both Project Workers and those who may transiently pass through areas within the Property Boundary to practice traditional land and resource use. In the case of Project Workers, their exposures were calculated using the area maximum concentrations within the operations area. In the case of areas where Indigenous communities may wish to practice traditional uses of the lands and resources, their exposures were calculated as the area maximum concentration outside of the operations area. The area maximum concentrations for each parameter and averaging period were calculated as the 95th percentile UCLM of maximum predictions at the gridded modelling points within the property boundary. This approach is most appropriate for a detailed quantitative human health risk assessment as concentrations of chemicals vary spatially and temporally in the air to which humans are exposed. During long-term exposures, humans may move over areas, or in and out of impacted areas. As a result, individuals tend to integrate spatial and temporal variation in the chemical concentrations to which they are exposed. Therefore, estimates of the central tendency (e.g., arithmetic means, upper confidence

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				I limits) are generally used in human health exposure models as an expression of the spatial and temporal averaging of chemical concentrations in different media (U.S. EPA, 1992, 2001). The results of the HHRA screening, identified that three (3) valued components/criteria air contaminants; nitrogen dioxide, and both fractions of particulate matter (NO ₂ , PM ₁₀ and PM _{2.5}) exceeded their respective ambient air quality criteria inside the Operations Area and only during the active phases of mining, thereby indicating that potential risk to Project Workers via the inhalation pathway may not be considered negligible. At the request of Health Canada and the Agency, disele particulate matter (IDPM) was also included in the health assessment even though there are no federal or provincial criteria available within Canada. It should be noted that air quality is not typically modelled within the Property Boundary as part of the EA process unless sensitive receptors are present, as the federal and provincial criteria available within Gold Project, however at the continued request of the Agency and Health Canada, modelling inside the Property Boundary or sensitive receptor locations. There are no sensitive receptors located within the Property Boundary of the Goliath Gold Project, however at the continued request of the Agency and Health Canada, modelling inside the Property Boundary was performed and used to determine the 95 th UCLM concentrations. A Health and Safety Plan including the prescribed use of personal protective equipment (including but not limited to dust masks and other similar equipment) will be implemented for all Project Workers. Concentrations of all CACs modelled within the LSA (including areas within the Property Boundary) and the Village of Wabigoon were below their criteria protective of human health, and the potential risk asociated with exposure to my practice traditional land and resource use, as part of the sign in and accested project. Workers of the Goliath Gol Project. Workers of the Heff

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 PART D. Health Canada indicates that the health effects of air contaminants may include disease, increased hospitalizations, and even premature death. Health Canada states that exposure to PM2.5 is most dangerous for the following at-risk groups: children with asthma because it affects breathing functions older adults because it affects breathing, heart and blood functions people with an underlying breathing and/or heart condition because it worsens their condition(s). Treasury Metals has committed to developing a risk communication plan which can be used as a platform to communicate to individuals the groups who are more susceptible to PM2.5 exposure (i.e. children with asthma, older adults, and people with underlying breathing issues). Although the results of the HHERA do not indicate that risk management or mitigation measures are required during traditional land and resource use, as part of the sign in and access policy, Treasury Metals will offer personal appropriate protective equipment to those who prefer to wear it while within the Property Boundary. A Health and Safety Plan including the prescribed use of personal protective equipment (including but not limited to dust masks and other similar equipment) will be implemented for all Project Workers of the Goliath Gold Project. The Health and Safety Plan will serve as an appropriate risk management/ mitigation measure to mitigate any adverse health effect. PART E: The Final Follow-Up Program includes details of monitoring with respect to confirming the predicted effects outlined in the HHERA with respect to air, changes in country foods for consumption and human health. The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to includes specifically identify PM2 ₂ s as the fine particulate to be monitored at the continuous monitoring stat

TMI_878-AE(2)-02

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Reference / Comment / Information Request / Response
TMI_878-AE(2)- 02	AE(2)-02	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Section 10.1.3.
				Reference to EIS / Appendix	Appendix J-5
				Cross- reference to Round 1 IRs	TMI_168-AE(1)-06
				Context and R	lationale:
				particula respirab illnesses (IARC) c	x J-5, Tables 8, 9 and 10 do not consider diesel particulate matter (DPM) as independent from te matter. DPM is typically fine to ultra-fine in particle size, and is therefore considered a highly le toxic air contaminant associated with cancer and adverse health problems such as respiratory and increased risk of heart disease. In 2013, the International Agency for Research on Cancer concluded that exposure to outdoor air pollution and to PM in outdoor air, which includes DPM, is enic to humans (IARC, Group 1).
				of cance	onal Agency on Cancer Research. 2013. IARC: Outdoor air pollution a leading environmental cause or deaths. Press Release No. 221, dated October 17. http://www.iarc.fr/en/media- r/2013/pdfs/pr221_E.pdf
				Specific Ques	tion / Request for Information:
				A. Indicate the sou activities.	irces and predicted concentrations of diesel particulate matter (DPM) in air as a result of project
				DPM using the uni	han health risk assessment by providing a quantitative assessment of incremental cancer risk from it risk and inhalation slope factor available from the California Office of Health Hazard Assessment, tps://www.arb.ca.gov/toxics/dieseltac/de-fnds.htm
				C. Propose and de	escribe additional mitigation measures to reduce incremental cancer risk from emissions of DPM.
				D. Characterize ef	fects to human health from quantitative assessment developed in Question A.
				monitoring measur	odate the follow-up program for effects to human health, including objectives and any additional res that will be implemented to verify the predictions of concentrations of DPM. Add these new verall Follow-Up Program to be prepared in response to IR# EA(2)-01.

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cro	oss Referenc	ce / Com	ment /	Inform	ation F	Reques	st / Res	ponse		
				Response:										
				PART A										
					S (April 2018) e issions in the m atter (PM ₁₀) and DPM) emissions erations phase llowing is noted pipe particulate	xplicitly ide odelling of d respirable s associate , and closu	ntifies th airborne particul d with th re phase	e source concent ate matte e Project , and the	s of exha trations o er (PM _{2.5} t have be e number	aust parti of total su). At the een tabul rs tabulat	culate as spendec request c ated for t ed in Tal	ssociated I particul of the Ag the site p ble 1. In	d with the ates (TSF ency revi preparatio tabulating	Project, ^D), ewers, on and g the
				particulate m All of the part	(<i>)</i>	Mus and D	Maa) omi	aciona fr	om tha h		norotor		aidarad t	a ha
					ticulate (TSP, F diesel particula			SSIONS II	om the b	аскир у	enerators	s are con		obe
				emitted from was conserva	the particulate n the tailpipes of atively assumed n the vent raise	vehicles op d that diese	perating	undergro	ound. For	the purp	oses of	calculati	ng expos	ures, it
				the particulat	rticulate matter te emissions of le 3.5.3.1-8 of t	TSP, PM10	and PM	2.5 from c	liesel cor					
				Tabl	le 1: Diesel Pa	rticulate M	atter (DI	PM) Emi	ssions (Mg/yr) b	y Projec	t Phase		
				Emission So		e Preparati Construct			Operation	IS		Closure		
					TSI	P PM ₁₀	PM _{2.5}	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}	
				Haul Roads (1	¹⁾ 3.40 9	⁶ 3.469	3.469	2.807	2.807	2.807	3.469	3.469	3.469	
				Bulldozer 1 (1	¹⁾ 0.3 ¹ 2	1 0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312	
				Bulldozer 2 ⁽¹⁾) 0.3 ⁻ 2	1 0.312	0.312	0.312	0.312	0.312	0.312	0.312	0.312	
				Bulldozer_3	1)	_	—	0.312	0.312	0.312	-	-	_	

	X	Group / Stakeholder	Cro	oss Refe	rence	/ Comi	nent /	Inforn	nation I	Reques	st / Res	ponse	
			Loader ⁽¹⁾		0.47 3	0.473	0.473	0.473	0.473	0.473	0.473	0.473	0.473
			Excavator ⁽¹⁾	I	0.12 0	0.120	0.120	0.120	0.120	0.120	0.240	0.240	0.240
			Back-up gen	nerators (2)	4	4	4	4	4	4	2	2	2
			Vent raises (3)	0	0	0	9.5	9.5	9.5	0	0	0
			TOTAL DPN Emissions	Λ	8.68 6	8.686	8.686	17.83 6	17.83 6	17.83 6	6.806	6.806	6.806
			NOTES:		· · ·			1	1	1	1	· · · · ·	
				 (Envir Const emiss from A (2) All of t The pi Air Qu (3) The pi Apper there under workir the pa 	onmental Ai ruction phas ions were ta Appendix B1 the particulate en articulate en ality Assess articulate ma dix B16 to A was no spec ground work ng undergrou rticulate ma	r Quality As the DPM emi- ken from A 8 to Append te emissions for sment) prep atter emissions Jo- tific breakdor ings, a port und. For the tter from the	sessment) ssions were ppendix B7 dix J-2. s from e ba back-up ge ared by RW ons from the 2 (Environn wm provide ion is likely e purposes e e vent raise	prepared by a taken from to Appendi: ck-up gene nerators we /DI Air Inc., e undergrou- nental Air Q d with rega to result fro of the health s was diese	WDI Air Ir Appendix B x J-2, and the rators were a ere taken fror specifically, ind workings rds to the cou- undity Assess rds to the cou- m the tailpipu assessmen el particulate	ac. Specifical 2 to Appendia a Closure phate assumed to b an Appendix E Appendices I (i.e., vent rai ment) prepa mposition of 1 e emissions 1 t, it was cons matter (DPM	ly, the Site P ix J-2, the Op ase DPM em e diesel part 3 to Appendi: B12 and B13 ises) were ta ises) were ta tred by RWD the particulal from diesel fi servatively as i).	b Appendix J- reparation ar berations pha issions were icculate matte x J-2 (Enviror to Appendix ken directly f I Air Inc. Alth te emissions red equipment ssumed that 5	nd se DPM taken r (DPM). mmental J-2. rom ough from the nt 50% of
			As the diesel particular overall particulate matt matter (DPM) would re emissions. Table 2 (Ta from the Project to the Table 2 Comparison	ter emissio elate to the able 3.5.3.1 e emissions	ons, it is r overall p I-9 of the of diese	easonal particula 2018 H I particu	ble to co te predio IHERA) late mat	nclude t ctions in provides tter (DPI	hat the ro a manne s a comp M).	esulting c er consist arison of	concentra ent with t the over	itions of c the propo all particu	liesel particulate rtional late emissions
			Emission Category	Site P	reparati onstruct	on and			erations			Closu	-
				TSP	PM ₁₀	PM	2.5 T	SP	PM ₁₀	PM _{2.5}	TSP	PM ₁	.0 PM2.5
			Overall Project Emissions ⁽¹⁾	631.42 0	173.92 0	27.2 5		9.03 0	184.36 0	56.62 8	622.04 0	168.9 0	54 23.29 0

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	c	Cross Refe	rence /	Comme	nt / Infoi	rmation	Request	t / Resp	onse	
				Diesel Particulate Matter (DPM) ⁽²⁾	8.686	8.686	8.686	17.836	17.836	17.83 6	6.806	6.806	6.806
				DPM, as a Fraction of particulate emissions.	1.4%	5.0%	31.8%	3.1%	9.7%	31.5%	1.1%	4.0%	29.2%
				NOTES :									
				(1)	Based on the s that an error w copies of the e TMI_878-AE(2)	vas found in t mission sumi	he version of mary tables fi	emissions ta	bles included	as part of the	e revised EIS	(April 2018).	Revised
				(2)	As presented i	n Table 2 to t	his response.						
				Although there are California has estate exposure to diesel y given to the potentia completed in suppor Human Health Risk contaminants for the area used throughou health LSA outside throughout the open the end of the closu areas beyond the C resources could by HHERA) provides a of the study areas u	blished levels particulate ma al chronic effe rt of the Rour Assessment e three study but the revised of the operation rating life of the ure phase. Ho Operations Are members of a summary of	for use in atter (DPM ects of DPI and 2 inform for the Go areas use d EIS [Apri ions area) he Project, wever, the ea and with indigenous the model	describing). At the re M on humanation required bliath Gold d, namely I 2018]), the and the Vi from the se local stud hin the prosecommuni led annual	the chron equest of the an health a uests and i Project ide the Opera- ne Local Si illage of W start of the ly area for perty line ties could l exposure	ic cancer a he Agency as part of the ncluded as entifies exp ations Area tudy Area (abigoon. T Site Prepa the Human of the Golia continue. T point conc	and non-ca and their he human part of th posure poil (which is (which incl here will b aration and health R ath Gold P Fable 3 (Ta	ancer risks reviewers, health risk e overall r nt concent consisten udes the p e no acce I Construct isk Asses roject whe able 3.5.3.	associate considera assessm esponse p rations of t with the portions of ss to the c stion Phase sment incl ere the use 1-10 of the	ed with ation has been ent, package. The criteria air operations the human operations are e, through to ludes those e of lands and e 2018
				Table 3: Annual	Exposure Po	oint Conc	entrations	s (µg/m³) o	of Particul	ate Matte	r ⁽¹⁾ from t	he Projec	t, by Phase

Final Atmospheric Environment Round 2 Information Request Response Package

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Site Preparation and Operations Closure Construction Study Area
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
				Operations 34. 30 10. 34 Area ⁽⁵⁾ 7 9.6 1.5 .9 2 2.8 .0 9.3 1.4
				Local Study 1.6 0.5 0.1 1. 0.6 0.2 1. 0.5 0.1 Area 8 6
				Village of 0.3 0.1 0.0 0. 0. 0.1 0.0 0. Wabigoon 3 0.1 0.0 3 0.1 0.0 0.1 0.0
				N CT ES: (Data are compiled from Table 3.5.2.1-1 of the Goliath Gold Project Human 1 Health and Ecological Risk Assessment (September 2018). (Includes background annual TSP of 14 µg/m³. 2 (Includes background annual PM10 of 6.4 µg/m³. 3 (Includes background annual PM25 of 4.3 µg/m³. (There will be no public access to the Operations area throughout the active 5 life of the Project (i.e., from the start of the Site Preparation and Construction) phase through the end of Closure).
				The corresponding exposure point concentrations for diesel particulate matter from the Project can be determined by applying the corresponding relationships between the emissions of particulate matter and DPM emissions to the relevant predicted particulate exposure point concentrations. To ensure the assessment is conservative, Table 4

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross	Referen	ce / Com	ment / In	formatio	n Reques	t / Respo	onse	
				(Table 3.5.3.1 Project phases DPM; and (3) concentrations These values	s for: (1) usi using the re s for each p are used in	ing the relat lationship b hase and st the Human	ionship betw between PM udy area ar Health Risl	ween TSP a l _{2.5} and DPN re summariz k Assessme	nd DPM; (2 1. The relati red in Table nt.) using the onship that 5 (Table 3.	relationship gives the hi 5.3.1-12 of t	between P ghest DPM the 2018 HI	M₁₀ and IERA).
				Table 4: Ca	culated Ar	inual Expo		Concentra he Project,		1°) of Diese	l Particulat	e Matter (D	PM) from
						Preparatior Constructio			Operations	;		Closure	
				Study Area	DPM using TSP Emissio ns	DPM using PM ₁₀ Emissio ns	DPM using PM _{2.5} Emissio ns	DPM using TSP Emissio ns	DPM using PM ₁₀ Emissio ns	DPM using PM _{2.5} Emissio ns	DPM using TSP Emissio ns	DPM using PM ₁₀ Emissio ns	DPM using PM _{2.5} Emissio ns
				Operation s Area ⁽¹⁾	0.48	0.48	0.47	0.97	0.98	0.89	0.37	0.37	0.40
				Local Study Area	0.02	0.02	0.02	0.06	0.05	0.06	0.02	0.02	0.02
				Village of Wabigoon	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00
				NOTE S: (1)				ations area thr igh the end of (-	tive life of the	Project (i.e., fro	om the start of	the Site
				Table 5: Annu	ıal Exposu	re Point Co	oncentratio	ons (µg/m³)	of Diesel F	Particulate I	Matter (DPI	M) from the	Project

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Re	eference / Comment / Inf	ormation Request / R	esponse
				Study Area	Site Preparation and Construction	Operations	Closure
				Operations Area ⁽¹⁾	0.479	0.984	0.396
				Local Study Area	0.023	0.063	0.019
				Village of Wabigoon NOTES:	0.005	0.010	0.004
				PART B	•	ublic access to the Operations a from the start of the Site Prepa f Closure).	
				inhalation slope factor availab HHERA the potential health o considered. The following par Round 2 Information Request explicitly requested that the hi from exposure to DPM using the Hazard Assessment, Californi		Health Hazard Assessment, n-cancer endpoint of DPM v (plain the risk characterizati)-02] and TMI_931-HE(2)-1 titative assessment of incre	CalEPA (2015). In the 2018 were also appropriately ion of DPM in response to th 1 [IR# HE(2)-11]) that mental cancer risk resulting
				Quantitative Risk Character	ization of DPM:		
				characterization methods ado health risks associated with th non-carcinogenic substances, carcinogens (i.e., threshold ch the TRV, which is referred to	s across Canada offer differing <u>c</u> pted by the Province of Ontario he Goliath Gold Project. When c Ontario accepts a hazard quoti hemicals), potential risk is estimative the hazard quotient (HQ) as follow	are accepted for the assess haracterizing the potential r ent (HQ) of 0.2 (exposure s ated by calculating the ratio pws:	sment of potential human isks posed by exposure to ≤ 1/5 TRV). For non-
					Hazard Quotient (HQ) =	Estimated Exposure TRV	
				Therefore, the target HQ for the is important to note that the m	ne Base Case, Project Alone an lagnitude of the HQ does not ne esults of the risk characterizatior	d Project Assessment Scer cessarily correspond to the	magnitude of expected
				6 (3.5.3.1-13 in 2018 HHERA	from exposure to DPM from the Report). None of the estimated are anticipated for all human rec	HQs exceeded Health Can	ada's target of 0.2. As such,

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Com	ment / Information	Request / Resp	onse
				Table 6: Calculated HQ	s based on California E	PA TRV of 5 µg/m ³	3
				Study Area	Site Preparation and Construction	Operations	Closure
				Operations Area ⁽¹⁾	9.6×10 ⁻²	2.0×10 ⁻¹	7.9×10 ⁻²
				Local Study Area	4.5×10 ⁻³	1.3×10 ⁻²	3.7×10 ⁻³
				Village of Wabigoon	9.5×10-4	1.9×10-3	7.5×10-4
				(1) There will be no public access to t start of the Site Preparation and C	onstruction phase through the	e end of Closure).	
				For chemicals with carcinogenic endpoints (i.e., n exposure (amortized as appropriate) is multiplied the potential incremental lifetime cancer risk (ILC	by the appropriate slope	factor to derive a co	onservative estimate of
				Incremental Lifetime	Cancer Risk (ILCR)	$= Exposure \times T$	RV
				Health Canada indicates that cancer risks will be 1 in 100,000 (≤1 × 10 ⁻⁵). For conservatism, the m has been applied in the assessment of carcinoge accepts ILCR targets between 1× 10 ⁻⁴ and 1 ×10 ⁻⁴	ore conservative Ontaric nic effects in the HHRA f	benchmark ILCR o	f 1 in 1 million (1 ×10-6)
				The results indicate that potential cancer risks ma Project based on the California EPA slope factor HHERA). The estimated ILCR values marginally for the LSA and the Village of Wabigoon. Estimat would be considered "essentially negligible" by th Operations Area as an occupational health and s mitigate any potential risk to a Project Worker. No exposure to DPM as a result of the Project. Furth below.	of 3×10 ⁻⁴ (µg/m ³⁾⁻¹ as sho exceed what would be co ed ILCR values for the C e US EPA, however no p afety plan is within good o potential cancer risks a	own in Table 7 (Tab onsidered "essential operations Area man ootential risks are ar construction practic re anticipated to any	le 3.5.3.1-14 in the 2018 ly negligible" in Ontario ginally exceed what nticipated within the es and would effectively / human receptor from
				Table 7: Calculated Cancer Ris	sk Using California EP/	A Slope of 3×10 ⁻⁴ (µ	Jg/m³)⁻¹

Unique Agenc Identifier y IR #	Anne x	Agency / Group / Stakeholder	Cross Refe	erence / Comment / Inf	formation Request	/ Response
			Table 9: Calcula	ted Background Cancer Ri	isk Using California EP/	A Slope of 3×10-4
			Study Area	Site Preparation and Construction	Operations	Closure
			Operations Area (1)	4.1×10-4	4.1×10-4	3.8×10-4
			Local Study Area	4.1×10-4	4.1×10-4	3.8×10-4
			Village of Wabigoon NOTES:	4.1×10-4	4.1×10-4	3.8×10-4
			approach used for calo generators are presen kV transmission line th factors obtained from (implementation of the	Ith Canada has not adopted iscussed above), and that the n receptors, no potential risks indicated that there were no herefore, no residual advers res for other CACs and air q that as described in the EIS 115 kV transmission line tha t DPM emission source asso uipped with backup diesel-fir nt and allow for the safe and but 1 hour every month. The IS (April 2018), based on the invironmental Air Quality Ass culating the emissions from to to provide back-up power in that runs adjacent to the propor Chapter 11.9 of AP-42 (U.S. U.S EPA Tier 1-4 emission s	a quantitative approach file non-cancer risk estima s form DPM are determine potential human health ri- se effects were identified uality were provided in Se (April 2018), the Project at runs adjacent to the pro- pociated with relatively larg ed generators that will be orderly shutdown of ope effects of the backup gene eresults provided in Appe- eresults provided in Appe- sessment (Appendix J-2 to he emergency generators in case of a power failure osed plant site. Emission. EPA 2014). The AP-42 fa standards. It is expected to	for other forms of particulate tes for DPM were below levels ned at this time. isks as a result of exposure to and no mitigation measures ection 6.6.5 of the EIS (April will not have to generate its own oposed processing plant. Power le industrial Projects at remote e used in the event of a power rations. The backup generators nerators on air quality were endix J-2 of the EIS (April 2018). o the revised EIS) describes the s at the Project. These of the power supplied by the 115 s were estimated using emission

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				A summary of all required mitigation measures for the Project are provided in Section 10 of the EIS (April 2018).
				PART D: To date Health Canada and other regulatory agencies with risk assessment guidance in Canada, have not identified DPM to be of sufficient health concern to warrant the establishment of specific criteria or to conduct health studies related to population health effects of DPM. That stated, Health Canada following their review of the EIS (April 2018), noted that the California published a report entitled <i>"The Report on Diesel Exhaust"</i> dated 1988 and requested that the Health Risk Assessment be revised to include a quantitative assessment of potential carcinogenic health outcomes associated with DPM. In the absence of any regulatory guidance including toxicological reference values (TRVs) for DPM in Canada, a quantitative risk assessment of DPM was completed to support the Round 2 Information Request process using the data provided by the CalEPA in their 1988 report of DPM as requested by Health Canada. Potential carcinogenic health risks were not identified in 2018 HHERA via the quantitative risk assessment of exposure to DPM. The Round 2 Information Requests specifically asked that the carcinogenic effects of exposure to DPM be characterized using the Cal EPA slope factor. However, upon reviewing the CalEPA document, a number of potential non-cancer health outcomes were identified, therefore in the 2018 HHERA the non-cancer endpoint of DPM was also appropriately considered. No potential non-carcinogenic health effects were identified in the 2018 HHERA. No effects were predicted from exposure to DPM as a result of the Project, therefore there was no requirement to characterize effects to human health from quantitative assessment developed in Question A.
				For completeness, a toxicological review was performed on the literature used to derive the non-cancer and cancer TRV published by the CalEPA and is summarized within this Information Request. For the non-cancer endpoint, the CalEPA reports that DPM occupational exposures to DPM may result in decreases in lung function, greater incidence of cough, phlegm and chronic bronchitis, and reductions in pulmonary function have also been reported following occupational exposures in chronic studies. For characterizing carcinogenic effects, the inhalation slope factor (also known as a Reference Concentration for Chronic Inhalation Exposure (RfC)) cited by the CalEPA was obtained from the US EPA's Integrated Risk Information System (IRIS), published in 1993 and as reviewed in 2003. Respiratory effects are considered the "critical effect" for the derivation of a chronic RfC for Diesel Engine Exhaust (DE) defined to be a complex mixture of airborne particles and gases. The RfC was derived from the no-observed-adverse-effect level (NOAEL) reported in the results of a 1988 study by Ishinishi et al. and "respiratory effects" as the critical endpoint in a study relying on dosing Fischer rats. While no histopathological changes were observed in the lungs of rats exposed to 0.46 mg/m ³ DPM or less, at higher concentrations, severe morphological changes were observed, including shortened and absent cilia in the tracheal and bronchial epithelium, marked hyperplasia of the bronchiolar epithelium, and swelling of the Type II cellular epithelium. Human equivalent concentrations corresponding to the animal NOAEL, values were computed using a dosimetry model developed by Yu et al. (1991). The highest human equivalent dose

Uniqu Identifi	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
			associated with no apparent effect (NOAEL _{HEC}) is 144 µg DPM/m ³ from the Ishinishi et al. (1988) study; this becomes the point of departure for deriving an RfC. It is worthwhile to mention that the maximum predicted concentration of DPM was a result of the Project was 0.9 µg DPM/m ³ (Table 5, PART A response). To obtain the RfC, this point of departure was divided by two types of uncertainty factors (UFs): a factor of 3 recognizes residual interspecies (i.e., rat to human) extrapolation uncertainties, and a factor of 10 reflects uncertainties about interindividual human variation in sensitivity. Evaluation of chronic effects other than respiratory effects, as well as some aspects of reproductive and developmental toxicity, showed that none of these effects were expected to occur at DPM levels lower than the identified point of departure. The US EPA concluded that they had only moderate confidence in the adoption of the TRV for DE, and while some work indicates that humans may be as sensitive as rats and mice to the immunologic effects, the database used to derive the TRV is currently lacking key exposure-response data. There is also a degree of uncertainty associated with the TRV being published for DE versus DPM.
			PART E. Based on the results of the 2018 HHERA, it was not necessary to update the Follow-Up Program for human health. A revised quantitative health assessment of DPM may be considered once the level of uncertainty associated with the TRV is assessed by government agencies within Canada and formal regulatory guidance is provided to support the feasibility of a quantitative assessment of DPM that would be feasible under Health Canada's definition of "essentially negligible risk". Although exposures to the levels of DPM predicted as a result of the Project would meet what is considered "essentially negligible" by Health Canada, background levels including those reported as common in ambient and indoor air environments by the CalEPA, would not. The U.S. EPA accepts a target ILCR that is less conservative than Health Canada (US EPA accepts 1 × 10 ⁴ compared to Health Canada which accepts 1 × 10 ⁵ – 1 × 10 ⁻⁶). Therefore, in the United States the application of a slope factor for DPM as conservative as the one provided by the CalEPA (as published by the U.S. EPA IRIS, 1993), may not result in ILCR estimates at background that are greater than what may be considered "essentially negligible". Given that Health Canada requires that ILCR values be 1–2 times lower than the requirements of the US EPA in order to rule out potential carcinogenic risks, obtaining "essentially negligible" as per the Health Canada definition may not be feasible with the application of the California EPA slope factor, even for background DPM levels in the environment. The results presented herein as well as in the 2018 HHERA, illustrate the need for additional consideration prior to adopting values provided by other regulatory agencies within Canada. In the absence of any Human Health Risk Assessment guidance, or regulatory guidance for federal Environmental Assessments in Canada with respect to DPM, a Follow-Up Program specific to DPM is not provided at this time.
			References California Air Resources Board. 1998. The Report on Diesel Exhaust. last reviewed July 21, 2015. https://www.arb.ca.gov/toxics/dieseltac/de-fnds.htm

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 Ishinishi, N; Inamasu, T; Hisanaga, A; et al. (1988) Intratracheal instillation study of diesel particulate extracts in hamsters. In: diesel exhaust and health risk. Ibaraki, Japan: Research committee for HERP Studies; pp. 209-216. U.S. EPA (United States Environmental Protection Agency). Integrated Risk Information System. Chemical Assessment Summary. Diesel engine exhaust; CASRN N.A. 2003.
				Agency Comment on Draft Response: A. The proponent indicates "[b]ased on the summary of emissions provided in Table 6.6.1.2-1 of the revised EIS (April 2010) [-] on emerging found in the summary of emissions provided in Table 6.6.1.2-1 of the revised EIS (April
				2018) [] an error was found in the version of emissions tables included as part of the revised EIS (April 2018). Revised copies of the emission summary tables from Section 6.6 of the revised EIS (April 2018) have been included as TMI_878-AE(2)-02_Attachment_1." Details on the error have not been provided. Furthermore it appears that there is an error in the naming structure of TMI_878-AE(2)-02_Attachment_1 which should possibly be labeled as TMI_877-AE(2)-01_Attachment_1 in the attachments.
				A. Provide details on the error in the emissions table from the EIS. Update the attachment reference as appropriate.
				C. Exposure related to project DPM emissions is expected to exceed Health Canada guidance of 1 in 100,000 ILCR in the LSA during operations (Table 3.5.3.1-14). Additionally as background concentrations of DPM are expected to exceed the HC guidance of 1 in 100,000 ILCR for all scenarios (Table 3.5.3.1-16) any project contributions would exacerbate existing background levels. As such, additional mitigation should be proposed to reduce DPM emissions to the extent practical.
				C. Propose additional mitigation measures to reduce DPM project emissions (e.g. reducing idling).
				E. As monitoring of particulate matter has been recommended, DPM ILCR calculations should be completed as part of the follow up plan to validate EA prediction.
				E. Update the monitoring plan and follow-up program to include monitoring for PM2.5 at the MPOI to verify the revised predictions above. The follow- up program should include ILCR calculations for DPM to validate the predictions of the HHRA. See also comment for AE(2)-01.
				Specific response to Agency Comment:
				[A] Table 2 of the draft response to TMI_878-AE(2)-02 included the following footnote:

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / C	comment / Inf	ormation Requ	est / Response	
				(1) Based on the summary of emissions provide was found in the version of emissions tables summary tables from Section 6.6 of the revis	included as part of the	e revised EIS (April 2018). Revised copies of the	emission
				As noted by the reviewers, the footnote erro updated emission tables. In fact, the updated TMI_880-AE(2)-04—Part A. As described in typographical errors in the emission tables p A detailed review of the emissions used in th maximum concentrations for the Site Prepar and that any errors were restricted to the sur typographical errors occurred when transfer used to summarize the emissions Section 6. preparation and construction); Table 6.6.4.2 updated emission tables have been reprodu used as inputs to the dispersion modelling fi and Construction, Operations, and Closure F 2, and 3. Table 1: Air Emissions – Site Prepar	d emission tables the response to resented in Secti ne modelling conf ation and Constru- mmary emission fring the emission 6 of the revised E -1 (operations); a ced below as Tat les used to predio Phases were corr	were provided with TMI_880-AE(2)-04– on 6.6 and Appendi irmed that the mode uction, Operations, a tables presented in numbers from the n EIS (April 2018), spe nd Table 6.6.3-1 (cl oles 1, 2 and 3. It sh ot the maximum con ect, and match the n	in the draft respons –Part A, there were x J-5 of the revised elling files used to p and Closure Phase the revised EIS (App nodel input filed to the crifically: Table 6.6. osure). For conveni- ould be noted that centrations for the second	e to several EIS (April 2018). redict the s were correct, ril 2018). The the spreadsheets 4.1-1 (site ence, the the emissions Site Preparation
						Annual Emissi	on Rate (Mg/y)	
				Emission Source	TSP	PM ₁₀	PM _{2.5}	NOx
				Haul Roads (Including tailpipe)	547	147	18	30
				Dozers (including tailpipe)	<u>547</u>	4	2.6	3.5
				Loader (including tailpipe)	49	13	1.8	2.8
				Material Handling (load/unload)	5.1	2.4	0.36	2.0
				Excavator (tailpipe)	0.12	0.12	0.12	0.67
				Crusher	4.7	2.1	0.32	
				Blasting	2.5	1.3	0.075	0.073
				Back-up generators	4.0	4.0	4.0	99
				Total:	631	174	27	136
				Note: The above table supersedes Table 6.6.4.1-1 of			21	130

Table 2: Air Emissions: Operations Annual Emission Rate (Mg/v)									
Emission Source	Annual Emission Rate (Mg/y)								
	TSP	PM ₁₀	PM2.5	NOx					
Haul roads (Including tailpipe)	477	128	18	75					
Dozers (including tailpipe)	29	5.9	3.9	16					
Loader (including tailpipe)	0.81	0.64	0.51	15					
Material handling (load/unload)	6.5	3.1	0.5	-					
Excavator (tailpipe)	0.12	0.12	0.12	2.0					
Wind erosion of tailings	22	18	10	-					
Crusher	0.18	0.18	0.18	-					
Blasting	10.0	5.2	0.30	0.073					
Vent raises	19	19	19	87					
Drilling	0.32	0.12	0.018	-					
Heaters	0.10	0.10	0.10	1.35					
Back-up generators	4.0	4.0	4.0	100					
Total:	569	184	57	296					

Note: The above table supersedes Table 6.6.4.2-1 of the revised ETS (April 2018).

Table 3: Air Emissions: Closure								
Emission Source	Annual Emission Rate (Mg/y)							
Emission Source	TSP	PM 10	PM _{2.5}	NOx				
Haul Roads (Including tailpipe)	547	147	18	30				
Dozers (including tailpipe)	19	4	2.6	3.5				
Loader (including tailpipe)	49	13	0.1	2.8				
Material Handling (load/unload)	4.8	2.3	0.35	—				
Excavator (tailpipe)	0.12	0.12	0.24	0.67				
Back-up generator	2.0	2.0	2.0	28				
Total:	622	168	23	65				

Note: The above table supersedes Table 6.6.4.2-1 of the revised EIS (April 2018).

[C] As noted by the reviewers, the background concentrations of DPM in the region are expected to result in incremental lifetime cancer risks (ILCR) that are in excess of the Health Canada guidance of 1 in 100,000. As such, the reviewers have suggested that Treasury Metals should propose mitigation measures to help to reduce DPM

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				emissions, to the extent practical. As detailed in Section 6.6.6 of the revised EIS (April 2018), the following mitigation measure will be implemented by Treasury Metals:
				 All internal combustion engines will be properly maintained and all emission control systems (e.g., diesel particulate filters) will be kept in good working order [Mit_044].
				Properly maintained emission control systems, especially diesel particulate filters, will help to ensure diesel particulate emissions are minimized. Additionally, Treasury Metals intend on purchasing diesel-fired equipment that comply with the relevant emission standards, including the phase in periods, for non-road emission standards. As the emissions used in the revised EIS (April 2018) were based on the assumptions that the equipment was manufactured in 2010, it is anticipated that on-going manufacturers' improvements to mobile equipment emissions will assist in reducing the DPM emissions from those used in the assessment. In addition, Treasury Metals plan to implement a number of measures to help reduce costs by reducing haul distances, and thus fuel consumption. Although not targeted as a mitigation measure for air quality, or specifically DPM, the placement of PAG rock in the mined out areas of the open pit (Mit_020) will greatly reduce haul distances and thereby exhaust emissions, including DPM.
				In addition to the above measures, Treasury Metals are willing to consider other fuel saving, and emission cutting measures, where such measures are practical, and do not adversely affect safety of operational performance. One such measure would be a plan that helps reduce the amount of vehicle idling at the mine site. The implementation of measures to reduce vehicle idling would have to recognize the challenges faced during the winter months when such measures may not be practical and could affect safety and mine operations.
				[E] The follow-up program for air quality has been revised as part of the Round 2 process, and is now provided in the Goliath Gold Project Follow-up Program Addendum. This addendum superseded the follow-up program presented in Section 13 of the revised EIS (April 2018). The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to include specifically identify PM _{2.5} as the fine particulate to be monitored at the continuous monitoring station. Treasury Metals plan to commission a single continuous monitoring station at a suitable location. For obvious reasons, the air continuous monitoring station should be located in a secure but accessible location, with ready access to power, and in a location relatively close to the areas where the maximum concentrations were predicted. The maximum point of impingement (MPOI) is an air modeling term that represents location along, or beyond, the property boundary where the maximum predicted concentrations occur. For security reasons, it would be preferred to place the monitoring station within the property boundary. It should also be noted that the MPOI will likely be different for each of the compounds and averaging periods modelled. Therefore, it is unlikely that the MPOI for the 24-hour PM _{2.5} would be exactly the same as for the other compounds. The final location for the monitoring station with Ontario Ministry of Environment, Conservation and Parks (MECP), Environment and Climate Change Canada, and the Agency. Goliath Gold Project Follow-up Program Addendum has incorporated information related to periodic updates to the ILCR calculations related to DPM emissions. However, it is not currently feasible to directly monitor the emissions of

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / C	comment / Infe	ormation Requ	est / Response	
				DPM from operating mine equipment. There calculations will be based on the hourly ope			periodic updates to	the ILCR
				Revised Response:				
				PART A				
				As discussed with the Agency and the Agen support the revised EIS (April 2018) explicit and includes those emissions in the modellii inhalable particulate matter (PM ₁₀) and resp TMI_880-AE(2)-04. Part A) that there were 6.6 and Appendix J-5 of the revised EIS (Ap confirmed that the modelling files used to pr Construction, Operations, and Closure Phase emission tables presented in the revised EIS emission numbers from the model input files	y identifies the so ng of airborne con irable particulate is several typograph ril 2018). A detail edict the maximur ses were correct, S (April 2018). The I to the spreadshe	nurces of exhaust participations of total matter (PM _{2.5}). It was include errors in the errors in the error ed review of the emm concentrations for and that any errors e typographical error erets used to summar	articulate associated suspended particul is identified by the r hission tables prese issions used in the r the Site Preparation were restricted to the rs occurred when the	d with the Project, ates (TSP), reviewers (see nted in Section modelling on and ne summary ransferring the
				revised EIS (April 2018), specifically: Table and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar	the site preparation pectively. It should ximum concentratio nd match the numbe	and construction, on be noted that the en ons for the site prepared	pperations, and missions used as aration and
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons	the site preparation pectively. It should ximum concentratio nd match the numbe struction Annual Emiss	and construction, of be noted that the en ins for the site prepares presented below	operations, and missions used as aration and v in Table 1, 2,
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP	the site preparation pectively. It should ximum concentratio nd match the numbe struction Annual Emiss PM ₁₀	and construction, of be noted that the en- ins for the site prep- ers presented below ion Rate (Mg/y) PM2.5	pperations, and missions used as aration and v in Table 1, 2, NOx
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe)	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547	the site preparation pectively. It should ximum concentration ad match the number struction Annual Emiss PM ₁₀ 147	and construction, of be noted that the en- ns for the site prep- ers presented below ion Rate (Mg/y) PM2.5 18	perations, and missions used as aration and v in Table 1, 2, NOx 30
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe)	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19	the site preparation pectively. It should ximum concentration ad match the number struction Annual Emissi PM ₁₀ 147 4	and construction, of be noted that the en- ins for the site preparent ers presented below ion Rate (Mg/y) PM2.5 18 2.6	perations, and missions used as aration and v in Table 1, 2, NOx 30 3.5
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe)	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19 49	the site preparation pectively. It should ximum concentration and match the number struction Annual Emiss PM ₁₀ 147 4 13	and construction, of be noted that the en- ns for the site prepa- ers presented below ion Rate (Mg/y) PM2.5 18 2.6 1.8	poperations, and missions used as aration and v in Table 1, 2, NOx 30 3.5 2.8
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload)	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19 49 5.1	the site preparation pectively. It should ximum concentration and match the number struction Annual Emissi PM10 147 4 13 2.4	and construction, of be noted that the en- ns for the site prepa- ers presented below on Rate (Mg/y) PM2.5 18 2.6 1.8 0.36	poperations, and missions used as aration and v in Table 1, 2, NOx 30 3.5 2.8 —
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload) Excavator (tailpipe)	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19 49 5.1 0.12	the site preparation pectively. It should ximum concentration and match the number struction Annual Emissi PM10 147 4 13 2.4 0.12	and construction, of be noted that the en- ns for the site prepa- ers presented below PM2.5 18 2.6 1.8 0.36 0.12	NOx 30 3.5 2.8 0.67
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload) Excavator (tailpipe) Crusher	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19 49 5.1 0.12 4.7	the site preparation pectively. It should ximum concentration and match the number struction Annual Emissi PM10 147 4 13 2.4 0.12 2.1	and construction, of be noted that the en- ns for the site prepa- ers presented below PM2.5 18 2.6 1.8 0.36 0.12 0.32	NOx NOx 30 3.5 2.8 0.67
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload) Excavator (tailpipe) Crusher Blasting	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons 547 19 49 5.1 0.12 4.7 2.5	the site preparation pectively. It should ximum concentration and match the number struction Annual Emiss PM10 147 4 13 2.4 0.12 2.1 1.3	and construction, of be noted that the en- ns for the site prepa- ers presented below PM2.5 18 2.6 1.8 0.36 0.12 0.32 0.075	NOx NOx 30 3.5 2.8 0.67 0.073
				and Table 6.6.3-1 (closure). The updated er closure phases have been provided as Tabl inputs to the dispersion modelling files used construction, operations, and closure phase and 3. Table 1: Air Emissions – Site Prepar Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload) Excavator (tailpipe) Crusher	nission tables for es 1, 2 and 3, res to predict the ma s were correct, ar ration and Cons TSP 547 19 49 5.1 0.12 4.7	the site preparation pectively. It should ximum concentration and match the number struction Annual Emissi PM10 147 4 13 2.4 0.12 2.1	and construction, of be noted that the en- ns for the site prepa- ers presented below PM2.5 18 2.6 1.8 0.36 0.12 0.32	NOx NOx 30 3.5 2.8 0.67

Page	45	of	99

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / C	omment / Inf	formation Reque	est / Response		
				Table 2: Air Emissions: Operation	ns				
				Emission Osumos	Annual Emission Rate (Mg/y)				
				Emission Source	TSP	PM 10	PM _{2.5}	NOx	
				Haul roads (Including tailpipe)	477	128	18	75	
				Dozers (including tailpipe)	29	5.9	3.9	16	
				Loader (including tailpipe)	0.81	0.64	0.51	15	
				Material handling (load/unload)	6.5	3.1	0.5	-	
				Excavator (tailpipe)	0.12	0.12	0.12	2.0	
				Wind erosion of tailings	22	18	10	-	
				Crusher	0.18	0.18	0.18	-	
				Blasting	10.0	5.2	0.30	0.073	
				Vent raises	19	19	19	87	
				Drilling	0.32	0.12	0.018	_	
				Drining	0.01				
				Heaters	0.10	0.10	0.10	1.35	
								1.35 100	
				Heaters	0.10 4.0 569	0.10 4.0 184	0.10		
				Heaters Total: Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure	0.10 4.0 569 the revised EIS (Apr	0.10 4.0 184 iil 2018).	0.10 4.0 57	100 296	
				Heaters Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source	0.10 4.0 569 the revised EIS (Apr TSP	0.10 4.0 184 iil 2018). Annual Emissi PM ₁₀	0.10 4.0 57 on Rate (Mg/y) PM _{2.5}	100 296 NO _x	
				Heaters Total: Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure	0.10 4.0 569 the revised EIS (Apr the revised EIS (Apr 547	0.10 4.0 184 iil 2018).	0.10 4.0 57 on Rate (Mg/y)	100 296	
				Heaters Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source	0.10 4.0 569 the revised EIS (Apr TSP	0.10 4.0 184 iil 2018). Annual Emissi PM ₁₀	0.10 4.0 57 on Rate (Mg/y) PM _{2.5}	100 296 NO _x	
				Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source Haul Roads (Including tailpipe)	0.10 4.0 569 the revised EIS (Apr the revised EIS (Apr 547	0.10 4.0 184 il 2018). Annual Emissi PM ₁₀ 147	0.10 4.0 57 on Rate (Mg/y) PM _{2.5} 18	100 296 NOx 30	
				Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe)	0.10 4.0 569 the revised EIS (Apr 547 19	0.10 4.0 184 iil 2018). Annual Emissi PM10 147 4	0.10 4.0 57 on Rate (Mg/y) PM _{2.5} 18 2.6	100 296 NOx 30 3.5	
				Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe)	0.10 4.0 569 the revised EIS (Apr EIS (Apr 547 19 49	0.10 4.0 184 iil 2018). Annual Emissi PM ₁₀ 147 4 13	0.10 4.0 57 on Rate (Mg/y) PM _{2.5} 18 2.6 0.1	100 296 NOx 30 3.5 2.8	
				Heaters Back-up generators Total: Note: The above table supersedes Table 6.6.4.2-1 of Table 3: Air Emissions: Closure Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload)	0.10 4.0 569 the revised EIS (Apr 547 19 49 4.8	0.10 4.0 184 il 2018). Annual Emissi PM ₁₀ 147 4 13 2.3	0.10 4.0 57 0n Rate (Mg/y) PM _{2.5} 18 2.6 0.1 0.35	100 296 NOx 30 3.5 2.8 —	

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross	Referenc	ce / Cor	nment /	Informa	tion Rec	juest / R	espons	e	
				At the request of the Agence tabulated for the site prepart tabulated in Table 4 (this ta tabulating the DPM emission • All of the tailpipe particulate matter • All of the particulate emissions of dies • A portion of the p emitted from the f was conservative released from the • As diesel particulate	ation and c ble reprodu ns, the follo particulate (DPM). ate (TSP, P el particula articulate m ailpipes of ly assumec	constructiuces the isolowing is new signal emission PM ₁₀ and ate matter in the vehicles d that dieses.	on phase, nformation noted: s associat PM _{2.5}) emi (DPM). he exhaus operating sel particu comprised	operation operation ed with the ssions from t from und undergrou late matter	s phase, ai in Table 3. e Project ai m the back erground r nd. For the (DPM) rep es that are	nd closure 5.3.1-8 of re consider up general nine workin purposes presents 50 nearly all I	phase, an the 2018 I red to be e tors are co ngs (i.e., v of calcula 0% of the ess than 1	d the num HHERA). I emissions onsidered ent raises ting expos particulate	bers n of diesel to be) will be sures, it o matter ameter,
				the particulate en other.							numerically	/ the same	as each
				the particulate en	e Matter (I	DPM) En	nissions (numerically	/ the same	as each
				the particulate en other. Table 4: Diesel Particulat	te Matter (I Site P	DPM) En Preparatio	nissions (n and	Mg/yr) by		nase	numerically	/ the same	e as each
				the particulate en other.	te Matter (I Site P	DPM) Err Preparatio onstructio	nissions (n and n	Mg/yr) by	Project Pr Operations	nase	TSP	Closure	
				the particulate en other. Table 4: Diesel Particulat Emission Source	te Matter (I Site P Co TSP	DPM) Err Preparatio onstructio PM ₁₀	nissions (n and on PM _{2.5}	Mg/yr) by TSP	Project Pl Operations PM ₁₀	nase ; PM _{2.5}	TSP	Closure PM ₁₀	PM _{2.5}
				the particulate en other. Table 4: Diesel Particulat	te Matter (I Site P Co	DPM) Err Preparatio onstructio	nissions (n and n	Mg/yr) by	Project Pr Operations	nase		Closure	
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾	te Matter (I Site P Co TSP 3.469	DPM) Em Preparatio onstructio PM ₁₀ 3.469	nissions (n and on PM _{2.5} 3.469	Mg/yr) by TSP 2.807	Project Ph Operations PM ₁₀ 2.807	PM _{2.5} 2.807	TSP 3.469	Closure PM ₁₀ 3.469	PM _{2.5} 3.469
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾ Bulldozer 1 ⁽¹⁾	te Matter (I Site P Co TSP 3.469 0.312	DPM) Em Preparatio onstructio PM ₁₀ 3.469 0.312	nissions (n and on PM _{2.5} 3.469 0.312	Mg/yr) by TSP 2.807 0.312	Project Pr Operations PM10 2.807 0.312	PM _{2.5} 2.807 0.312	TSP 3.469 0.312	Closure PM 10 3.469 0.312	PM _{2.5} 3.469 0.312
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾ Bulldozer 1 ⁽¹⁾ Bulldozer 2 ⁽¹⁾	te Matter (I Site P Cc TSP 3.469 0.312 0.312	DPM) Err Preparatio onstructio PM ₁₀ 3.469 0.312 0.312	115510005 (n and on PM _{2.5} 3.469 0.312 0.312	Mg/yr) by TSP 2.807 0.312 0.312	Project Pr Operations PM ₁₀ 2.807 0.312 0.312	PM _{2.5} 2.807 0.312 0.312	TSP 3.469 0.312 0.312	Closure PM₁₀ 3.469 0.312 0.312	PM _{2.5} 3.469 0.312
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾ Bulldozer 1 ⁽¹⁾ Bulldozer 2 ⁽¹⁾ Bulldozer 2 ⁽¹⁾	te Matter (I Site P Cc TSP 3.469 0.312 0.312 	DPM) Em Preparatio onstructio PM ₁₀ 3.469 0.312 0.312 	nissions (n and pn PM _{2.5} 3.469 0.312 0.312 —	Mg/yr) by TSP 2.807 0.312 0.312 0.312	Project Pl Operations PM₁₀ 2.807 0.312 0.312 0.312	PM _{2.5} 2.807 0.312 0.312 0.312	TSP 3.469 0.312 	Closure PM₁₀ 3.469 0.312 0.312 	PM2.5 3.469 0.312 0.312
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾ Bulldozer 1 ⁽¹⁾ Bulldozer 2 ⁽¹⁾ Bulldozer 3 ⁽¹⁾ Loader ⁽¹⁾	te Matter (I Site P Cc TSP 3.469 0.312 0.312 0.473	DPM) Em Preparatio onstructio PM ₁₀ 3.469 0.312 0.312 0.473	nissions (n and on PM2.5 3.469 0.312 0.312 0.473	Mg/yr) by TSP 2.807 0.312 0.312 0.312 0.312 0.473	Project PH Operations 2.807 0.312 0.312 0.312 0.473	PM2.5 2.807 0.312 0.312 0.312 0.473	TSP 3.469 0.312 0.312 0.473	Closure PM ₁₀ 3.469 0.312 0.312 0.473	PM2.5 3.469 0.312 0.312 0.473
				the particulate en other. Table 4: Diesel Particulat Emission Source Haul Roads ⁽¹⁾ Bulldozer 1 ⁽¹⁾ Bulldozer 2 ⁽¹⁾ Bulldozer 3 ⁽¹⁾ Loader ⁽¹⁾ Excavator ⁽¹⁾	te Matter (I Site P Cc TSP 3.469 0.312 0.312 0.312 	DPM) Em Preparatio onstructio PM ₁₀ 3.469 0.312 0.312 0.312 0.473 0.120	n and on PM2.5 3.469 0.312 0.312 0.473 0.120	Mg/yr) by TSP 2.807 0.312 0.312 0.312 0.473 0.120	Project Ph Operations PM ₁₀ 2.807 0.312 0.312 0.312 0.312 0.473 0.120	PM2.5 2.807 0.312 0.312 0.312 0.473 0.120	TSP 3.469 0.312 0.312 0.473 0.240	Closure PM ₁₀ 3.469 0.312 0.312 0.473 0.240	PM2.5 3.469 0.312 0.312 0.473 0.240

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	(Cross Re	ference /	Comme	ent / Infor	mation R	equest	/ Respon	se	
				Assessm Appendia phase DI (2) All of the emission RWDI Ai (3) The parti Appendia provided the tailpin	matter emised relate to to to the total (Table 3.5.)	by RWDI Air II dix J-2, the Op were taken fro hissions from e generators were ally, Appendice emissions from nental Air Qua o the composit rom diesel fire- d that 50% of the sions, it is ru- he overall p 3.1-9 of the	nc. Specifical erations phas m Appendix back-up ger re taken from as B12 and B the undergr lity Assessmi ion of the pa d equipment he particulate issions fro easonable articulate p 2018 HHE	Ily, the Site Pro- se DPM emiss B18 to Appendi erators were a Appendix B tr 13 to Appendi ound workings ent) prepared triculate emiss working under e matter from the m the Proje to conclude predictions ERA) provid	eparation and i ions were take dix J-2. assumed to be o Appendix J-2 x J-2. (i.e., vent rais by RWDI Air Ir ions from the ground. For th the vent raises ect are asso that the re in a manner es a compa	Construction n from Apper diesel partic (Environmer es) were take inderground e purposes c was diesel p ciated with sulting cor	phase DPM en ndix B7 to App ulate matter (I ntal Air Quality en directly fron here was no s workings, a po f the health as articulate matt the same s ncentrations t with the p	nissions were endix J-2, and PPM). The part Assessment) n Appendix B1 pecific breakdu rriton is likely ti sessment, it w er (DPM). source grou of diesel per roportional	taken from the Closure ticulate prepared by 6 to own o result from vas
				Table 5: Compari	ison of Pro	ject Partic	ulate and	Diesel Part	iculate Mat	ter (DPM)	Emissions	s, by Projec	ct Phase
				Emission		Preparation Construction			Operations			Closure	
				Category Overall Project	TSP	PM 10	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
				Emissions ⁽¹⁾	631.420	173.920	27.275	569.030	184.360	56.628	622.040	168.540	23.290
				Diesel Particulate Matter (DPM) ⁽²⁾	8.686	8.686	8.686	17.836	17.836	17.836	6.806	6.806	6.806
				DPM, as a Fraction of particulate emissions.	1.4%	5.0%	31.8%	3.1%	9.7%	31.5%	1.1%	4.0%	29.2%
				()	n the updates s inted in Table 2			ovided in Table	e 1, 2 and 3 of	this response	9.		
				Although there are	currently no	Canadian	rogulatory	limite for di	and particu	lata matta			State of

February 1, 2019

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross	Referenc	:e / Com	iment / l	nformat	tion Rec	quest / R	espons	e	
				completed in support of the Human Health Risk Assess contaminants for the three area used throughout the re health LSA outside of the o throughout the operating life the end of the closure phas areas beyond the Operation resources could by membe Table 3.5.3.1-10 of the 201 TSP, PM ₁₀ and PM _{2.5} for each Table 6: Annual Exposure	ment for th study areas evised EIS perations a e of the Pro- e. Howeve is Area and rs of Indige 8 HHERA) ch of the s	e Goliath (s used, nar [April 2018 rea) and th oject, from r, the local d within the nous com provides a tudy areas	Gold Proje mely: the C B]), the Loc he Village the start o I study are e property munities c a summary s used in th	ct identifie Operations al Study of of Wabigo f the Site a for the H line of the buld conti of the mo e Human	es exposu s Area (whi oon. There Preparatio Human He Goliath C nue. Table odelled an Health Ri	re point co nich is cons ch includes e will be no on and Cor alth Risk A Gold Projec e 6 (which nual expos isk Assessi	ncentratio sistent with access to astruction assessme to where the reproduce sure point ment.	ns of crite h the oper ons of the o the oper Phase, th nt include ne use of l es the con concentra	ria air ations human ations are rough to s those ands and tent of ations of
				Site Preparation and Construction Operations Closure TSP ⁽²⁾ PM ₁₀ ⁽³⁾ PM _{2.5} ⁽⁴⁾									
									PM _{2.5} ⁽⁴⁾				
				Operations Area (5) 34.7 9.6 1.5 30.9 10.2 2.8 34.0 9.3 1				1.4					
				Local Study Area	1.6	0.5	0.1	1.8	0.6	0.2	1.6	0.5	0.1
				Village of Wabigoon	0.3	0.1	0.0	0.3	0.1	0.0	0.3	0.1	0.0
				Notes: (1) Data are compiled 2018). (2) Includes backgrour (3) Includes backgrour (4) Includes backgrour (5) There will be no pu Preparation and Co The corresponding exposur applying the corresponding relevant predicted particula (which reproduces the cont point concentrations for eac	d annual TSF d annual PM d annual PM blic access to nstruction ph e point cor relationshi te exposure ent of Table	P of 14 µg/m ³ 10 of 6.4 µg/n 2.5 of 4.3 µg/ the Operatio ase through 1 ncentration ps betwee e point cor e 3.5.3.1-1	³ . m ³ . ms area throu the end of Clo en the emis incentration 11 of the 20	ighout the a bsure). I particula sions of p s. To ens)18 HHEF	ate matter particulate ure the as RA) preser	he Project (i.e from the P matter and sessment hts the calc	e., from the s roject car d DPM err is conserv culation of	tart of the S be detern bissions to vative, Tal DPM exp	ite mined by the ole 7 osure

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response r									
				Table 7: Cal the Project,		nual Expos	ure Point (Concentrat	ions (µg/m³) of Diesel	Particulate	Matter (DP	M) from
				•	Site	Preparation Construction			Operations			Closure	
				Study Area	DPM using TSP Emissions	DPM using PM ₁₀ Emissions	DPM using PM _{2.5} Emissions	DPM using TSP Emissions	DPM using PM ₁₀ Emissions	DPM using PM _{2.5} Emissions	DPM using TSP Emissions	DPM using PM ₁₀ Emissions	DPM using PM _{2.5} Emissions
				Operations Area ⁽¹⁾	0.48	0.48	0.47	0.97	0.98	0.89	0.37	0.37	0.40
				Local Study Area	0.02	0.02	0.02	0.06	0.05	0.06	0.02	0.02	0.02
				Village of Wabigoon	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00
					nere will be no reparation and nual Expos	Construction p	hase through t	he end of Clos	sure).				
				Stud	y Area	Sit	e Preparatio Constructio		Оре	erations		Closure)
				Operations Ar	ea (1)		0.479		().984		0.396	
				Local Study A			0.023			0.063		0.019	
				Village of Wat	bigoon		0.005		(0.010		0.004	
				Pr PART B The 2018 HH		Construction p ed a quantite	hase through t	he end of Clos sment of inc	^{sure).} remental ca	ncer risk fro	om DPM usir	ng the unit r	isk and
				inhalation slo HHERA the p considered. T Round 2 Infor explicitly requ	otential hea he following mation Req	lth outcome paragraph uests (TMI_	s associate s and series _878-AE(2)-	d with the n of Tables 6 02 [IR# AE(on-cancer e explain the r 2)-02] and T	ndpoint of E isk characte MI_931-HE	OPM were al erization of E E(2)-11 [IR#	lso appropri DPM in resp HE(2)-11]) t	ately onse to the hat

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross	Reference / Comment / In	formation Request / R	esponse
				Hazard Assessment, Califo Quantitative Risk Charact Provincial regulatory agenc characterization methods a health risks associated with non-carcinogenic substance carcinogens (i.e., threshold		guidance on the risk charact o are accepted for the assess characterizing the potential ri tient (HQ) of 0.2 (exposure ≤ nated by calculating the ratio lows:	erization process. The risk sment of potential human sks posed by exposure to s 1/5 TRV). For non-
				is important to note that the health effects, therefore the risk. The estimated HQs resultin 9 (which reproduces the co exceeded Health Canada's receptors who may be expo	r the Base Case, Project Alone and magnitude of the HQ does not no results of the risk characterization g from exposure to DPM from the ntent from Table 3.5.3.1-13 in 20 target of 0.2. As such, no potention based to DPM in air from the Project	ecessarily correspond to the on will be stated as potential r Project in each of the Study 18 HHERA Report). None of al non-cancer risks are antici ct.	magnitude of expected risk, and negligible potential Areas are provided in Table the estimated HQs
				Study Area	Site Preparation and Construction	Operations	Closure
				Operations Area (1)	9.6 × 10 ⁻²	2.0 × 10 ⁻¹	7.9 × 10 ⁻²
				Local Study Area	4.5 × 10 ⁻³	1.3 × 10 ⁻²	3.7 × 10 ⁻³
				Village of Wabigoon	9.5 × 10 ⁻⁴	1.9 × 10 ⁻³	7.5 × 10 ⁻⁴
				Preparation and Co For chemicals with carcinog exposure (amortized as app	blic access to the Operations area throug instruction phase through the end of Clos genic endpoints (i.e., non-thresho propriate) is multiplied by the app etime cancer risk (ILCR) associat	ure). Id chemicals), deemed to be ropriate slope factor to derive	carcinogenic, the estimated a conservative estimate of

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross R	eference / Comment / Inf	formation Request / Re	esponse
				Incren	iental Lifetime Cancer Ri	sk (ILCR) = Exposure	× TRV
				1 in 100,000 (≤1 × 10 ⁻⁵). For	cancer risks will be deemed to conservatism, the more conserv sment of carcinogenic effects in n 1× 10 ⁻⁴ and 1×10 ⁻⁶ .	ative Ontario benchmark ILC	CR of 1 in 1 million (1 ×10 ⁻⁶)
				Project based on the Californ content from Table 3.5.3.1-14 considered "essentially neglic Operations Area marginally e potential risks are anticipated construction practices and wo	tial cancer risks may not be rul a EPA slope factor of 3×10^4 (µ in the 2018 HHERA). The estin- ible" in Ontario for the LSA and exceed what would be considered within the Operations Area as a uld effectively mitigate any pote receptor from exposure to DPM the paragraph below.	Ig/m ³) ⁻¹ as shown in Table 10 mated ILCR values marginall the Village of Wabigoon. Es id "essentially negligible" by t an occupational health and s ential risk to a Project Worker) (which reproduces the y exceed what would be timated ILCR values for the the US EPA, however no afety plan is within good r. No potential cancer risks
				Table 10: Calculated Cance	er Risk Using California EPA	Slope of 3×10 ⁻⁴ (µg/m³) ⁻¹	
				Study Area	Site Preparation and Construction	Operations	Closure
				Operations Area ⁽¹⁾	1.4 × 10 ⁻⁴	3.0 × 10 ⁻⁴	1.2 × 10 ⁻⁴
				Local Study Area	6.8 × 10 ⁻⁶	1.9 × 10 ⁻⁶	5.6 × 10 ⁻⁶
				Village of Wabigoon	1.4 × 10 ⁻⁶	2.9 × 10 ⁻⁶	1.1 × 10 ⁻⁶
				Preparation and Cons If the same relationship betwe	e access to the Operations area through truction phase through the end of Close een DPM and Project PM _{2.5} that els of PM _{2.5} (which results in th	ure). was applied to the Project e e most conservative DPM EF	missions (Table 5) was PC estimate), then the

Agency /

Group /

Stakeholder

Cross F	Reference / Comment / Inf	ormation Request / Re	esponse
Study Area	Site Preparation and	Operations	Closure
tions Area (1)	Construction 1.37	1.35	1.26
Study Area	1.37	1.35	1.26
e of Wabigoon	1.37	1.35	1.26
ote:	· · · · · · · · · · · · · · · · · · ·		
(1) There will be no pub	lic access to the Operations area through		., from the start of the Site
• • •	instruction phase through the end of Closu		

If the potential carcinogenic risks are then calculated using only background DPM concentrations (see Table 12, which reproduces the content of Table 3.5.3.1-15 of the 2018 HHERA), the resulting ILCR estimates exceed the Health Canada ILCR target, by 2 orders of magnitude, and are higher than the risks associated with the Project. As stated above, the in the U.S. EPA accepts a target ILCR that is less conservative than Health Canada (US EPA accepts 1× 10-4 compared to Health Canada which accepts 1× 10-5 – 1× 10-6). Therefore, in the United States the application of a slope factor for DPM as conservative as 3×10-4 (µg/m³)-1 may not result in ILCR estimates at background that are greater than what may be considered "essentially negligible". Given that Health Canada requires that ILCR values be 1-2 times lower than the requirements of the US EPA in order to rule out potential carcinogenic risks, obtaining "essentially negligible" as per the Health Canada definition may not be feasible with the application of the California EPA slope factor, even for background DPM levels in the environment. Certainly, the results presented herein illustrate the need for additional consideration prior to adopting values provided by other regulatory agencies within Canada.

Operations Area⁽¹⁾

Local Study Area Village of Wabigoon

Note:

Table 12: Calculated Background Cancer Risk Using California EPA Slope of 3×10-4								
Study Area	Site Preparation and Construction	Operations	Closure					
Operations Area ⁽¹⁾	4.1 × 10 ⁻⁴	4.1 × 10 ⁻⁴	3.8 × 10 ⁻⁴					
Local Study Area	4.1 × 10 ⁻⁴	4.1 × 10 ⁻⁴	3.8 × 10 ⁻⁴					
Village of Wabigoon	4.1 × 10 ⁻⁴	4.1 × 10 ⁻⁴	3.8 × 10 ⁻⁴					

Note:

(1) There will be no public access to the Operations area throughout the active life of the Project (i.e., from the start of the Site Preparation and Construction phase through the end of Closure).

Given that there is a relatively large level of uncertainty associated with the application of the California EPA cancer slope factor in Canada, that Health Canada has not adopted a quantitative approach for other forms of particulate matter (i.e., PM10 and PM2.5 as discussed above), and that the non-cancer risk estimates for DPM were below levels anticipated to pose risk to human receptors, no potential risks form DPM are determined at this time.

Unique

Identifier

Agenc

y IR #

Anne

Х

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 <u>PART C:</u> The results of the 2018 HHERA indicated that there were no potential human health risks as a result of exposure to DPM as a result of the Project. Therefore, no residual adverse effects were identified and no mitigation measures were required beyond those provided in Section 6.6.5 of the EIS (April 2018). As noted by the reviewers, the background concentrations of DPM in the region are expected to result in incremental lifetime cancer risks (ILCR) that are in excess of the Health Canada guidance of 1 in 100,000. As such, the reviewers have suggested that Treasury Metals should propose mitigation measures to help to reduce DPM emissions, to the extent practical. As detailed in Section 6.6.6 of the revised EIS (April 2018), the following mitigation measure will be implemented by Treasury Metals: All internal combustion engines will be properly maintained and all emission control systems (e.g., diesel particulate filters) will be kept in good working order [Mit_044]. Properly maintained emission control systems, especially diesel particulate filters, will help to ensure diesel particulate emission standards, including the phase in periods, for non-road emission standards. As the emissions used in the revised EIS (April 2018) were based on the assumptions that the equipment was manufactured in 2010, it is anticipated that on-going manufacturers' improvements to mobile equipment emissions will assist in reducing the DPM emissions from those used in the assessment. In addition, Treasury Metals plan to implement a number of measures to help reduce costs by reducing haul distances, and thus fuel consumption. Although not targeted as a mitigation measure for air quality, or specifically DPM, the placement of PAG rock in the mined out areas of the open pi (Mit_020) will greatly reduce haul distances and thereby exhaust emissions, including DPM. In addition to the above measure
				PART D: To date Health Canada and other regulatory agencies with risk assessment guidance in Canada, have not identified DPM to be of sufficient health concern to warrant the establishment of specific criteria or to conduct health studies related to population health effects of DPM. That stated, Health Canada following their review of the EIS (April 2018), noted that the California published a report entitled <i>"The Report on Diesel Exhaust"</i> dated 1988 and requested that the Health Risk Assessment be revised to include a quantitative assessment of potential carcinogenic health outcomes associated with DPM. In the absence of any regulatory guidance including toxicological reference values (TRVs) for DPM in Canada, a quantitative risk assessment of DPM was completed to support the Round 2 Information Request process using the data provided by the CaIEPA in their 1988 report of DPM as requested by

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Health Canada. Potential carcinogenic health risks were not identified in 2018 HHERA via the quantitative risk assessment of exposure to DPM. The Round 2 Information Requests specifically asked that the carcinogenic effects of exposure to DPM be characterized using the Cal EPA slope factor. However, upon reviewing the CalEPA document, a number of potential non-cancer health outcomes were identified, therefore in the 2018 HHERA the non-cancer endpoint of DPM was also appropriately considered. No potential non-carcinogenic health effects were identified in the 2018 HHERA. No effects were predicted from exposure to DPM as a result of the Project, therefore there was no requirement to characterize effects to human health from quantitative assessment developed in Question A.
				For completeness, a toxicological review was performed on the literature used to derive the non-cancer and cancer TRV published by the CalEPA and is summarized within this Information Request. For the non-cancer endpoint, the CalEPA reports that DPM occupational exposures to DPM may result in decreases in lung function, greater incidence of cough, phlegm and chronic bronchitis, and reductions in pulmonary function have also been reported following occupational exposures in chronic studies. For characterizing carcinogenic effects, the inhalation slope factor (also known as a Reference Concentration for Chronic Inhalation Exposure (RfC)) cited by the CalEPA was obtained from the US EPA's Integrated Risk Information System (IRIS), published in 1993 and as reviewed in 2003. Respiratory effects are considered the "critical effect" for the derivation of a chronic RfC for Diesel Engine Exhaust (DE) defined to be a complex mixture of airborne particles and gases. The RfC was derived from the no-observed-adverse-effect level (NOAEL) reported in the results of a 1988 study by Ishinishi et al. and "respiratory effects" as the critical endpoint in a study relying on dosing Fischer rats. While no histopathological changes were observed, including shortened and absent cilia in the tracheal and bronchial epithelium, marked hyperplasia of the bronchiolar epithelium, and swelling of the Type II cellular epithelium. Human equivalent concentrations corresponding to the animal NOAEL, values were computed using a dosimetry model developed by Yu et al. (1991). The highest human equivalent dose the point of departure for deriving an RfC. It is worthwhile to mention that the maximum predicted concentration of DPM was a result of the Project was 0.9 µg DPM/m ³ (Table 5, PART A response). To obtain the RfC, this point of departure was divided by two types of uncertainty factors (UFs): a factor of 3 recognize residual interspecies (i.e., rat to human) extrapolation uncertainties, and a factor of 10 reflects uncertainties about interindi

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Although the results of the 2018 HHERA did not identify the need to update the Follow-Up Program for human health to address issues related to diesel particulate matter (DPM), the follow-up program for both air quality and human health have been revised as part of the Round 2 process. The updated follow-up program is provided in the Goliath Gold Project Follow-up Program Addendum. This addendum superseded the follow-up program presented in Section 13 of the revised EIS (April 2018).
				The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to include specifically identify PM _{2.5} as the fine particulate to be monitored at the continuous monitoring station. Treasury Metals plan to commission a single continuous monitoring station at a suitable location. For obvious reasons, the air continuous monitoring station should be located in a secure but accessible location, with ready access to power, and in a location relatively close to the areas where the maximum concentrations were predicted. The maximum point of impingement (MPOI) is an air modeling term that represents location along, or beyond, the property boundary where the maximum predicted concentrations occur. For security reasons, it would be preferred to place the monitoring station within the property boundary. It should also be noted that the MPOI will likely be different for each of the compounds and averaging periods modelled. Therefore, it is unlikely that the MPOI for the 24-hour PM _{2.5} would be exactly the same as for the other compounds. The final location for the monitoring station would be selected in consultation with Ontario Ministry of Environment, Conservation and Parks (MECP), Environment and Climate Change Canada, and the Agency.
				the ILCR calculations related to DPM emissions. However, it is not currently feasible to directly monitor the emissions of DPM from operating mine equipment. Therefore, the DPM emissions used in the periodic updates to the ILCR calculations will be based on the hourly operations for the on-site equipment.
				References
				California Air Resources Board. 1998. The Report on Diesel Exhaust. last reviewed July 21, 2015. https://www.arb.ca.gov/toxics/dieseltac/de-fnds.htm
				Ishinishi, N; Inamasu, T; Hisanaga, A; et al. (1988) Intratracheal instillation study of diesel particulate extracts in hamsters. In: diesel exhaust and health risk. Ibaraki, Japan: Research committee for HERP Studies; pp. 209-216.
				U.S. EPA (United States Environmental Protection Agency). Integrated Risk Information System. Chemical Assessment Summary. Diesel engine exhaust; CASRN N.A. 2003.
				Agency Comment on Draft Response
				None Received

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				FINAL RESPONSE Agency accepted Revised Response as Final.

TMI_879-AE(2)-03

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response		
TMI_879-AE(2)- 03	AE(2)-03	1	CEA Agency	Reference to Part 2, Section 10.1.3 EIS Guidelines: Part 2, Section 10.1.3		
				Reference to EIS / Appendix	Section 6.19.1; Section 6.21.4; Appendix J-5	
				Cross- reference to Round 1 IRs	TMI_169-AE(1)-07	
				area wo traditiona activities unclear "access mention • The pote unclear. and ann criteria a to fully u	onale: oonse to IR# TMI_169C indicates that "for safety and security reasons, access to the operations uld be restricted throughout the active life of the Project." The same response indicates that "no al uses of the lands within the project site would be allowed until after the closure and reclamation are complete." While the operations area is presented in Figure 6.21.4-1 of the revised EIS, it is what is meant by the "active life of the Project". Section 6.19.1 of the revised EIS indicates that to the site during operations would be restricted for safety and security reasons", but it doesn't if restrictions to access would occur during construction activities. ential health effects due to traditional use of the operations area during the construction phase are According to Appendix J-5. Table 11, 24-hour total suspended particulate (TSP) concentrations ual dustfall are expected to exceed the criteria, and 24-hour PM10 concentration is close to the at the fenceline. Health impacts should be assessed at locations where site access is not restricted, nderstand the potential effects to human health from using the land within the operations area while activities are occurring.	

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Specific Question / Request for Information:
				A. Based on the project schedule provided in Section 3.2 of the revised EIS, identify the time periods when access to the operations area would be restricted during each phase. Describe the physical means that TMI would use to restrict access to the operations area during each phase. If access to the operations area is allowed during any phase of the Project for traditional use by Indigenous people, respond to questions B-F below.
				B. Identify and list any new receptor locations in the operations area, where traditional use will be allowed during any phase of the Project.
				C. Update the air quality assessment to include any locations identified in question B. Where any contaminants are found to exceed federal or provincial criteria, including the new CAAQS for NO2 and SO2, incorporate this into the frequency analysis (in days or in percentage) found in IR# AE(2)-04 Question B.
				D. Provide and describe additional mitigation measures to reduce concentrations of contaminants at receptor locations identified in question B.
				E. Update the human health risk assessment to include any new receptors identified in Question B.
				F. If necessary, update the follow-up program for effects to human health, including objectives and any additional monitoring measures that will be implemented to verify the predictions of concentrations in locations identified in question B. Add these new measures to the overall Follow-Up Program to be prepared in response to IR# EA(2)-01.
				Draft Response:
				<u>PART A:</u> During the active life of the Project (i.e., Site Preparation and Construction, Operations, and Closure) access to the Operations area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of Indigenous communities or members of the public during the active life of the Project. There will be no harvesting of country foods allowed within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. As part of the site preparation and construction activities, a perimeter ditch and seepage collection system will be constructed around the perimeter of the Operations Area. The spoils from this activity will be used to construct a berm along the outboard edge of the ditch that will act as a physical barrier to accessing the site. In addition, Treasury Metals will implement administrative controls on access including posting signs around the site and regular patrols by security personal. In some areas, Treasury Metals may also implement additional physical barriers in the form of exclusionary fencing.
				Following Closure, during the passive Post-Closure Phase of the Project, full access to the Operations Area will be allowed to resume once the regulators are confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required. Once access is restored to the Operations Area, members of Indigenous communities will be free to practice traditional uses of the land and resources.
				PART B. As described in the response to Part A, there will be no access allowed to members of Indigenous communities or members of the public to the Operations Area throughout the active life of the Project (i.e., Site

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Preparation and Construction, Operations, and Closure). There are no identified community-oriented (i.e., sensitive receptors) within the operations area, or within the property boundary of the Treasury Metals property. As discussed in the response to TMI_877-AE(2)-01, Treasury Metals has acquired additional properties since the air modelling receptors used in the revised EIS (April 2018) were identified. As a result, several sensitive (i.e., community oriented) receptors used in the revised EIS (April 2018) no longer exist.
				PART C. As discussed in the response to TMI_877-AE(2)-01, Treasury Metals has acquired additional properties since the air modelling receptors used in the revised EIS (April 2018) were identified. As a result, several sensitive (i.e., community oriented) receptors used in the revised EIS (April 2018) no longer exist. The modelling results that reflect the new property line for the Goliath Gold Project, as well as removal of those sensitive receptors that have eliminated through purchase by Treasury Metals, have been presented in TMI_877-AE(2)-01_Table_4. None of the maximum predicted concentrations exceed the relevant criteria at the sensitive receptors (including the new CAAQS for NO ₂ and SO ₂ that will be implemented in 2025). As described in the response to TMI_880-AE(2)-04, Part B, there are predicted concentrations at a limited number of the gridded receptors on and outside the property boundary that exceed the 1-hour CAAQS for NO ₂ (to be implemented in 2025). Part B of the response to TMI_880-AE(2)-04 provides a frequency analysis for the predicted concentration in excess of the 1-hour CAAQS for NO ₂ (to be implemented in 2025) at the gridded receptors on and outside the property boundary.
				PART D. As described in Part B of TMI_877-AE(2)-01, none of the predicted maximum concentrations (including background) at any of the sensitive receptor locations exceed the relevant criteria (including the new CAAQS values for NO ₂ and SO ₂ to be implemented in 2025). As stated by the CCME (2000), achievement of ambient air quality criteria, (which included the new CAAQS) is based on community-oriented receptors, which correspond with the sensitive receptor location used in the air quality assessment. Therefore, additional improvements/mitigation measures for air quality are not required as the modelling shows the maximum concentrations meet the new CAAQS at all sensitive receptor locations. In addition, it is anticipated that on-going manufacturers' improvements to mobile equipment emissions will assist in reducing the anticipated effects of the Project, especially for NO ₂ . In addition, the on-going manufacturers' improvements to mobile equipment emissions will also result in decreases to the background levels in the future. Furthermore, the sulphur content in fuel is expected lower in years to come, which will aid in further reducing the Project and background SO ₂ concentrations.
				In addition to the air quality mitigation measures described in the revised EIS (April 2018), details were provided for a Health and Safety Plan (Mit_30) to effectively mitigate any potential risk to Project Workers. Based on the results of the 2018 HHERA (discussed in the response to Part E, and included as part of the overall Round 2 information request response package), there are is no need for additional mitigation measures for the protection of human health. A summary of mitigation measures (including Mit_130) are provided ion Section 10 of the revised EIS (April 2018).

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				<u>PART E.</u> As described in the responses to Parts A through D, there will be no access to the Operations Area during the active life of the Project, and there are no additional receptors identified within the operations area through preparing the responses to Parts A through D. Access to the Operations Area by members of Indigenous communities for traditional uses of lands and resources will only be permitted in the post-closure phase of the Project, once the regulators are confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required.
				However, in preparing the responses to the Round 2 information requests, Treasury Metals have prepared a detailed Human Health and Ecological Risk Assessment (referred to as the 2018 HHERA) that has been provided as part of the overall responses to the Round 2 information requests. While there will be no access permitted in the Operations Area during the active life of the Project, and there are no community-based identified by CCME (2000) as the appropriate locations for evaluating achievement of ambient air quality criteria (including the new CAAQS) within either the Operations Area of the property boundary for the Goliath Gold Project, the 2018 HHERA recognizes that there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources. Additionally, throughout the active life of the Project, workers will be accessing the operations area and be exposed to the air quality that may be higher than those at sensitive receptors beyond the property boundary.
				To capture these exposures and effects in 2018 HHERA, revised air modelling was completed using a refined receptor grid that provided additional focus on areas within the operations area and within the property boundary. However, the predictions within the Operations Area (where access will not be allowed to members of Indigenous communities and members of the public during the active life of the Project) and at locations outside the operations and within the property line do not represent community-based receptors as described by the CCME (2000) to used when determining whether ambient air quality criteria are achieved. Additionally, the reviewers have stated, as part of the Round 2 information request process, that Treasury Metals should not assume that members of Indigenous communities will avail themselves of opportunities to access lands and resources within the property boundary for the Project, and that those areas where Treasury Metals have committed to providing ,escorted access (for safety reasons) to members of Indigenous communities should be evaluated as if there will be no access (see response TMI_940-AC(2)-07).
				The 2018 HHERA assessed potential risk at three Study Areas chosen to represent the areas where human and ecological receptors would experience the highest magnitude, frequency, and duration of chemical exposure representative of the various phases of the Project. The 2018 HHERA considered all active phases of the Project (Site Preparation and Construction, Operations and Closure), as well as the Post-Closure Phase when there would be no sources of air emissions at the Project. The three Study Areas assessed are as follows:
				• Study Area No 1. Operations area: The Operations Area includes all of the active mining areas associated with the Project. During the active life of the Project access to the Operations Area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of the public or Indigenous communities during the active life of the Project. There will be no harvesting of country foods within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. Following Closure, during the

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				passive Post-Closure phase of the Project, full access to the Operations Area will resume as will the practice of traditional land and resource use. A total of 308 gridded air modelling receptors were placed at 100 m intervals across the Operation Area (Study Area No. 1).
				• Study Area No. 2 Local Study Area: The LSA corresponds with the LSA used in the revised EIS (April 2018) for evaluating the effects of the Project on wildlife and wildlife habitat, as well as evaluating the effects of the Project on terrestrial vegetation. The LSA excludes the Operations Area but includes areas within the Property Boundary where traditional land and resource use may be practiced. The LSA includes areas within the Property Boundary of the Project (i.e., the lands leased by Treasury Metals, or for which Treasury Metals holds surface and mineral rights), which would continue to be available for traditional uses by members of Indigenous communities. There are no community-based receptors within the Property Boundary. A total of 3,474 gridded air modelling receptors were placed at 100 m intervals across within the LSA (Study Area No. 2), including 1,445 receptors that fall inside the property boundary.
				• Study Area No. 3 Village of Wabigoon: The Village of Wabigoon is located approximately 4 km to the south of the Project and represents the closest populated community to the Project. A total of 46 gridded air modelling receptor were located within the Village of Wabigoon (Study Area No. 3).
				As part of the 2018 HHERA, the air modelling was redone using the same emissions and methods as presented in Section 6.6 of the revised EIS (April 2018), but focusing on above three study
				<u>PART F.</u> As described in Part D, none of the predicted concentrations (including background) at any of the sensitive receptor locations exceed the relevant criteria (including the new CAAQS values for NO ₂ and SO ₂ to be implemented in 2025). As stated by the CCME (2000), achievement with ambient air quality criteria, (which included the new CAAQS) is based on community-oriented receptors, which correspond with the sensitive receptor location used in the air quality assessment. Therefore, no refinements are warranted to the follow-up program with respect to air quality at the community-oriented receptors. However, Section 7 of the 2018 HHERA report provides new details regarding the Follow-Up Program for human health, mostly with respect to follow-up related to the country foods assessment of the 2018 HHERA. With respect to air and human health, the expectation for the Follow-Up Program is that it will rely heavily on the Follow-Up Program described for verifying the Air Quality Modeling predictions, including the predictions of concentrations of NO ₂ and SO ₂ .
				As part of the Round 2 information request process there are several questions relating to updates to the Follow-Up Program submitted as Section 13 of the revised EIS (April 2018). In order to effectively responds to these various requests, and specifically to respond to TMI_869-EA(2)-01, Treasury Metals has prepared the Goliath Gold Follow-Up Addendum, which has been provided as part of the overall response package to the Round 2 information. This document delivers a comprehensive and consolidated answer to all Round 2 Information Requests related to the Follow-Up Programs including those related to human health.
				Agency Comment on Draft Response:
				The following Agency feedback on the draft responses identified the following comment as applying to each of TMI_877-AE(2)-01, TMI_879-AE(2)-03, and TMI_880-AE(2)-04. A full response to each of these comments

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				has been provided in the response to TMI_877 AE(2) 01. The portions of the Agency feedback relevant to the draft response for TMI_879 AE(2) 03 have been highlighted below, and are addressed specifically in this response.
				The responses to these IRs indicate that Treasury Metals has acquired additional properties since the air modelling receptors used in the April 2018 Revised EIS were identified. The response to TMI_877-AE(2)-01C indicates that "the revised air quality modelling grid in support of the HHERA is shown relative to the Property Boundary and the three Study Areas, on Figure 3.1.1-1 of the 2018 HHERA Report (August 2018)". The property boundary shown in Figure 3.1.1-1 of the 2018 HHERA Report appears similar to the property boundary used in the April 2018 Revised EIS in the inset of Figure 6.6.2.2-1 as well as figure 1.2.3-1. It is unclear where the newly acquired properties are located, and how the property boundary has changed. It is also unclear if the Property
				Boundary demarcated in the various documents of the EIS is an indication of all property owned by Treasury Metals Inc. or if this is a delineation of the lands for which the proponent holds surface/mineral rights and mining claims but which they may not own.
				[i] In the response to AE(2)-01, provide a map with the updated property boundary, and describe how the property boundary has changed since the April 2018 Revised EIS. Clarify whether the updated property boundary meets the understanding of the property boundary as it is applied in Ontario Regulation 419/05. Clarify the property ownership and claim status of the lands within the updated property boundary.
				[ii] Identify where along the updated property boundary would be the maximum point of impingement, and where the sensitive receptor with maximum concentrations would be located.
				[ii] Clarify whether the differences between the predictions in TMI_877-AE(2)-01_Table_4a, 4b and 4c and the predictions in the April 2018 Revised EIS, Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 are only due to the change in location of the property boundary, or whether there have been changes in the model itself. If necessary, describe any changes to the model since the April 2018 Revised EIS.
				The response to TMI_879-AE(2)-03C indicates that some sensitive receptors were "eliminated" through purchase by Treasury Metals.
				[iv] Identify the sensitive receptors that were no longer considered in the updated air quality assessment, and whether they will be physically removed or will no longer meet the definition of a sensitive receptor due to its location within the updated property boundary.
				The response to TMI_877-AE(2)-01B states that, for NO ₂ and SO ₂ , "additional improvements/mitigation measures for air quality are not required as the modelling shows the maximum concentrations meet the new CAAQS [Canadian Ambient Air Quality Standards] at all sensitive receptor locations." While the Agency understands that this conclusion is based on sensitive receptors outside of the updated property boundary, it notes that exceedances of the new CAAQS for 1-hour NO ₂ are predicted at maximum point of impingement along the updated property boundary, and therefore there would be exceedances within the property boundary. The response to TMI_879-AE(2)-03E indicates that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources". It remains that Indigenous users may be exposed to air with

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				NO ₂ concentrations above the new CAAQS.
				[v] The Agency reiterates question TMI_877-AE(2)-01B, in consideration of locations where Indigenous use may occur and where exceedances of CAAQS for NO ₂ may
				Specific Response to Agency Comment:
				A full response to each of the above comments from the Agency has been provided in the response to TMI_877-AE(2)-01. The following provides a responses to those comments relevant to the draft response for TMI_879-AE(2)-03.
				[iv] TMI_877 AE(2) 01_Figure_3 shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses,. This property boundary, includes the property obtained by Treasury Metals since of completion of the revised EIS (April 2018). The changes to the property boundary resulted in the elimination of five (5) sensitive receptors. The sensitive receptors that have been excludes as a result of the changes to the property lines are marked as red on TMI_877 AE(2) 01_Figure_3. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and Forestry (MNRF), as well as Environment and Climate Change Canada.
				[v] The CCME (2006) identified that compliance with ambient air quality criteria should be done at "community- oriented receptors" only. The only "community-oriented" receptors in the vicinity of the Goliath Gold Project are the sensitive receptor locations, shown as "yellow circles" on TMI_877 AE(2) 01_Figure_3. There are no community- oriented receptors within the property boundary. In recognition that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources", the updated Human Health and Ecological Risk Assessment (2018 HHERA), has specifically included evaluation of the potential effects of exposure to air quality within the property boundary on human health. The 2018 HHERA includes consideration of air quality effects on both Project Workers and those who may transiently pass through areas within the Property Boundary to practice traditional land and resource use. In the case of Project Workers, their exposures were calculated using the area maximum concentrations within the operations area. In the case of areas where Indigenous communities may wish to practice traditional uses of the lands and resources, their exposures were calculated as the area maximum concentration outside of the operations area. The area maximum concentrations for each parameter and averaging period were calculated as the 95 th percentile UCLM of maximum predictions at the gridded modelling points within the property boundary. This approach is most appropriate according to Health Canada guidance for a detailed quantitative human health risk assessment as concentrations of chemicals vary spatially and temporally in the air to which humans are exposed. During long-term exposures, humans may move over areas, or in and out of impacted

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				areas. As a result, individuals tend to integrate spatial and temporal variation in the chemical concentrations to which they are exposed. Therefore, estimates of the central tendency (e.g., arithmetic means, upper confidence limits) are generally used in human health exposure models as an expression of the spatial and temporal averaging of chemical concentrations in different media (U.S. EPA, 1992, 2001). The 2018 HHERA shows that there would be no potential risk to human receptors outside of the operations area via the inhalation of air exposure pathway. As such, no additional mitigation measures are required to protect the health of members of Indigenous communities who may wish to practice traditional uses of the lands and resource in areas outside of the operations area, but within the property boundary of the Goliath Gold Project.
				With respect to NO ₂ , none of the predicted air concentrations at the identified community-oriented receptors exceeded the relevant ambient air quality criteria, including the new 1-hour CAAQS for NO ₂ that will come into force in 2025. As noted by the reviewers, there were areas along the property boundary and beyond where the maximum predicted 1-hour NO ₂ concentrations were numerically higher than 79 μ g/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025). However, because these locations do not meet the requirements for "community-oriented receptors" defined by the CCME (2006), it is not obvious that predicted concentrations in excess of 79 μ g/m ³ represents an exceedance of the CAAQS. As such, no additional mitigation measures are required to ensure compliance with the new CAAQS for NO ₂ . In addition, it is anticipated that on-going manufacturers' improvements to mobile equipment emissions will assist in further reducing the anticipated effects of the Project. Future improvements in the emissions of NO _X from motor vehicles will also have a noticeable effect on reducing the background NO ₂ levels in the future.
				Revised Response:
				PART A: During the active life of the Project (i.e., Site Preparation and Construction, Operations, and Closure) access to the Operations area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of Indigenous communities or members of the public during the active life of the Project. There will be no harvesting of country foods allowed within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. As part of the site preparation and construction activities, a perimeter ditch and seepage collection system will be constructed around the perimeter of the Operations Area. The spoils from this activity will be used to construct a berm along the outboard edge of the ditch that will act as a physical barrier to accessing the site. In addition, Treasury Metals will implement administrative controls on access including posting signs around the site and regular patrols by security personal. In some areas, Treasury Metals may also implement additional physical barriers in the form of exclusionary fencing.
				Following Closure, during the passive Post-Closure Phase of the Project, full access to the Operations Area will be allowed to resume once the regulators are confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required. Once access is restored to the Operations Area, members of Indigenous communities will be free to practice traditional uses of the land and resources.

Unique Iden	ifier Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
			Stakeholder	PART B. As described in the response to Part A, there will be no access allowed to members of Indigenous communities or members of the public to the Operations Area throughout the active life of the Project (i.e., Site Preparation and Construction, Operations, and Closure). There are no community-oriented receptors (i.e., sensitive receptors) within the operations area. In addition, no traditional land and resource use will be allowed within the operations area through the active life of the Project. There are also no community-oriented receptors (i.e., sensitive receptors) within the property boundary of the Treasury Metals property. Additionally, Treasury Metals has acquired further properties since the air modelling receptors used in the revised EIS (April 2018) were identified. TMI_877 AE(2) 01_Figure_3 shows the current property boundary, includes the property boundary used for preparing the Round 2 responses. This property boundary, includes the property boundary the dimination of five (5) sensitive receptors. The sensitive receptors that have been excludes as a result of the changes to the property lines are marked as red on TMI_877 AE(2) 01_Figure_3. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and outbuildings at these olcations area) where members of Indigenous communities may wish to practice traditional uses of lands and resources would not meet the definition of "community-oriented receptors". In recognition that "there may be locations subide of the porty boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources", the updated Human Health and Ecological Risk Assessment (2018 HHERA), has specifically included evaluation of the potential effects of exposure to air quality within the prop
				models as an expression of the spatial and temporal averaging of chemical concentrations in different media (U.S. EPA, 1992, 2001).

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				PART C. As discussed in the response to Part B, there are no additional sensitive receptors identified within the property boundary, and especially within operations area. As described in the response to Parts A and B, Treasury Metals has acquired further properties since the air modelling receptors used in the revised EIS (April 2018) were identified. As a result, several sensitive receptors (i.e., community-oriented receptors) used in the revised EIS (April 2018) no longer exist. The air quality modelling has been updated to reflect the new property boundary and list of sensitive receptors. None of the maximum predicted concentrations exceed the relevant criteria at the sensitive receptors (including the new CAAQS for NO ₂ and SO ₂ that will be implemented in 2025). As described in the response to TMI_880-AE(2)-04, Part B, there are a limited number of the gridded receptors where the maximum predicted 1-hour NO ₂ concentrations were numerically higher than 79 μg/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025). However, because these locations do not meet the requirements for "community-oriented receptors" as defined by the CCME (2006), it is not obvious that predicted concentrations in excess of 79 μg/m ³ represents an exceedance of the CAAQS. Regardless, Part B of the response to TMI_880-AE(2)-04 provides a frequency analysis for the predicted concentration in excess of 79 μg/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025).
				PART D. As described in the responses to Parts A, B and C, there were no sensitive receptors identified either within the operations area, or outside the operations area but within the property boundary. Additionally, changes to the property boundary since the identification of the air modelling receptors used in the revised EIS (April 2018) have resulted in the elimination of five (5) of the sensitive receptors used in the revised EIS (April 2018). As described in Part C, none of the predicted maximum concentrations (including background) at any of the sensitive receptor locations exceed the relevant criteria (including the new CAAQS values for NO ₂ and SO ₂ to be implemented in 2025). As stated by the CCME (2000), achievement of ambient air quality criteria, (which included the new CAAQS) is based on community-oriented receptors, which correspond with the sensitive receptor location used in the air quality assessment. Therefore, additional improvements/mitigation measures for air quality are not required as the modelling shows the maximum concentrations meet the new CAAQS at all sensitive receptor locations. In addition, it is anticipated that ongoing manufacturers' improvements to mobile equipment emissions will assist in reducing the anticipated effects of the Project, especially for NO ₂ . In addition, the on-going manufacturers' improvements to mobile equipment emissions will asso result in decreases to the background levels in the future. Furthermore, the sulphur content in fuel is expected lower in years to come, which will aid in further reducing the Project and background SO ₂ concentrations.
				PART E. As described in the responses to Parts A through D, there will be no access to the Operations Area during the active life of the Project, and there are no additional receptors identified within the operations area through preparing the responses to Parts A through D. Access to the Operations Area by members of Indigenous communities for traditional uses of lands and resources will only be permitted in the post-closure phase of the Project, once the regulators are

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required.
				However, in preparing the responses to the Round 2 information requests, Treasury Metals have prepared a detailed Human Health and Ecological Risk Assessment (referred to as the 2018 HHERA) that has been provided as part of the overall responses to the Round 2 information requests. While there will be no access permitted in the Operations Area during the active life of the Project, and there are no community-oriented receptors as identified by CCME (2000) as the appropriate locations for evaluating achievement of ambient air quality criteria (including the new CAAQS) within either the Operations Area of the property boundary for the Goliath Gold Project, the 2018 HHERA recognizes that there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources. Additionally, throughout the active life of the Project, workers will be accessing the operations area and be exposed to the air quality that may be higher than those at sensitive receptors beyond the property boundary.
				To capture these exposures and effects in 2018 HHERA, revised air modelling was completed using a refined receptor grid that provided additional focus on areas within the operations area and within the property boundary. However, the predictions within the Operations Area (where access will not be allowed to members of Indigenous communities and members of the public during the active life of the Project) and at locations outside the operations and within the property line do not represent community-based receptors as described by the CCME (2000) to used when determining whether ambient air quality criteria are achieved. Additionally, the reviewers have stated, as part of the Round 2 information request process, that Treasury Metals should not assume that members of Indigenous communities will avail themselves of opportunities to access lands and resources within the property boundary for the Project, and that those areas where Treasury Metals have committed to providing ,escorted access (for safety reasons) to members of Indigenous communities should be evaluated as if there will be no access (see response TMI_940-AC(2)-07).
				The 2018 HHERA assessed potential risk at three Study Areas chosen to represent the areas where human and ecological receptors would experience the highest magnitude, frequency, and duration of chemical exposure representative of the various phases of the Project. The 2018 HHERA considered all active phases of the Project (Site Preparation and Construction, Operations and Closure), as well as the Post-Closure Phase when there would be no sources of air emissions at the Project. The three Study Areas assessed are as follows:
				• Study Area No 1. Operations area: The Operations Area includes all of the active mining areas associated with the Project. During the active life of the Project access to the Operations Area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of the public or Indigenous communities during the active life of the Project. There will be no harvesting of country foods within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. Following Closure, during the passive Post-Closure phase of the Project, full access to the Operations Area will resume as will the practice of traditional land and resource use. A total of 308 gridded air modelling receptors were placed at 100 m intervals across the Operation Area (Study Area No. 1).

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 Study Area No. 2 Local Study Area: The LSA corresponds with the LSA used in the revised EIS (April 2018) for evaluating the effects of the Project on wildlife and wildlife habitat, as well as evaluating the effects of the Project on terrestrial vegetation. The LSA excludes the Operations Area but includes areas within the Property Boundary where traditional land and resource use may be practiced. The LSA includes areas within the Property Boundary of the Project (i.e., the lands leased by Treasury Metals, or for which Treasury Metals holds surface and mineral rights), which would continue to be available for traditional uses by members of Indigenous communities. There are no community-based receptors within the Property Boundary. A total of 3,474 gridded air modelling receptors were placed at 100 m intervals across within the LSA (Study Area No. 2), including 1,445 receptors that fall inside the property boundary. Study Area No. 3 Village of Wabigoon: The Village of Wabigoon is located approximately 4 km to the south of
				the Project and represents the closest populated community to the Project. A total of 46 gridded air modelling receptor were located within the Village of Wabigoon (Study Area No. 3).
				As part of the 2018 HHERA, the air modelling was redone using the same emissions and methods as presented in Section 6.6 of the revised EIS (April 2018), but focusing on above three study
				PART F. As described in Part D, none of the predicted concentrations (including background) at any of the sensitive receptor
				locations exceed the relevant criteria (including the new CAAQS values for NO ₂ and SO ₂ to be implemented in 2025). As stated by the CCME (2000), achievement with ambient air quality criteria, (which included the new CAAQS) is based on community-oriented receptors, which correspond with the sensitive receptor location used in the air quality assessment. Although no changes were warranted to the follow-up program for to address human health issues related to additional sensitive receptors, the follow-up program for human health and air quality has been revised as part of the Round 2 process and are provided in the Goliath Gold Project Follow-up Program Addendum, which superseded Section 13 of the revised EIS (April 2018).
				Agency Comment on Draft Response
				None Received
				FINAL RESPONSE
				Agency accepted Revised Response as Final.

TMI_880-AE(2)-04

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response	
TMI_880-AE(2)- 04	AE(2)-04	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Section 10.1.3
				Reference to EIS / Appendix	Section 6.6.4; Appendix J-5
				Cross- reference to Round 1 IRs	TMI_168-AE(1)-06, TMI_169-AE(1)-07
				 Context and Rationale: The response to IR# TMI_169B provides maximum predicted concentrations for various contaminants and averaging periods in the construction, operations and "decommissioning/restoration" phases, which are also found in Section 6.6.4 of the revised EIS, Tables 6.6.4.1-2, 6.6.4.2-2, and 6.6.4.3-2. Several contaminants have maximum predicted concentrations that exceed applicable federal and provincial criteria, including 24-hour total suspended particulate (TSP) and 1-hour NO2 (based on new CAAQS) for construction, operation and decommissioning phases, and 24-hour PM10 and PM2.5 during the operations phase. However, there is no analysis of the frequency of exceedances, in terms of days or percentage of days when exceedances may occur, along with meteorological conditions and seasons when exceedances would be more likely, in Appendix J or in Section 6 of the revised EIS. In Appendix J-5, Table 9, the total of operation phase maximum hourly emissions for all of the contaminants is smaller than some individual sources. It is unclear whether the individual source emission rates or the 	

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response						
				total maximum hourly emission rates are incorrect. It is also unclear whether the dispersion modelling used the correct source emission rates.						
				Specific Question / Request for Information:						
				A. Review total maximum hourly emission rates for the operations phase (Appendix J-5, Table 9) to provide the correct individual sources and the correct total maximum hourly emission rates. If necessary, redo the dispersion modelling based on the correct emission rates.						
				B. Provide a frequency analysis (in days or in percentage) for any pollutants that are predicted to exceed the standards based on cumulative concentrations shown in Appendix J-5, Tables 11, 12 and 13. Describe how meteorological conditions and the season of the year would affect the likelihood of an exceedance. Ensure that this frequency analysis uses new CAAQS standards for NO2 and SO2, as discussed in IR# AE(2)-01.						
				C. Update the human health risk assessment to reflect any changes to the air quality assessment from the responses to Questions A to D.						
				D. If necessary, update the follow-up program for effects to human health, including objectives and any additional monitoring measures that will be implemented to verify the predictions of concentrations in locations within the operations area where access will be allowed during any phase of the Project. Add these new measures to the overall Follow-Up Program to be prepared in response to IR# EA(2)-01.						
				Draft Response:						
				Part A. As noted by the reviewers, there were several typographical errors in the emission tables presented in Section 6.6 and Appendix J-5 of the revised EIS (April 2018). A detailed review of the emissions used in the modelling confirmed that the modelling files used to predict the maximum concentrations for the Site Preparation and Construction, Operations, and Closure Phases were correct, and that any errors were restricted to the summary emission tables presented in the revised EIS (April 2018). Therefore, there is no requirement to redo the dispersion modelling to address apparent issues related to the emissions. As noted in the revised EIS (April 2018), Treasury Metals has acquired additional properties since the air modelling receptors used in the revised EIS (April 2018) were identified. The dispersion modelling has been redone to reflect the new property line for the Goliath Gold Project, as well as removal of those sensitive receptors that have eliminated through purchase by Treasury Metals. An updated summary of the emissions for the site preparation and construction, operations, and closure phases are						
				presented, respectively, in Tables 1, 2 and 3.						
				Table 1: Air Emissions – Site Prepa	aration and Const					
				Emission Source	TSP	Annual Emissi PM ₁₀	ion Rate (Mg/y) PM _{2.5}	NOx		
				Haul Roads (Including tailpipe)	547	147	18	30		

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / C	Comment / Information Request / Response				
				Dozers (including tailpipe)	19	4	2.6	3.5	
				Loader (including tailpipe)	49	13	1.8	2.8	
				Material Handling (load/unload)	5.1	2.4	0.36	—	
				Excavator (tailpipe)	0.12	0.12	0.12	0.67	
				Crusher	4.7	2.1	0.32		
				Blasting	2.5	1.3	0.075	0.073	
				Back-up generators	4.0	4.0	4.0	99	
				Total:	631	174	27	136	
				Table 2: Air Emissions: Operations Emission Source					
					TSP	PM 10	PM _{2.5}	NOx	
				Haul roads (Including tailpipe)	477	128	18	75	
				Dozers (including tailpipe)	29	5.9	3.9	16	
				Loader (including tailpipe)	0.81	0.64	0.51	15	
				Material handling (load/unload)	6.5	3.1	0.5	-	
				Excavator (tailpipe)	0.12	0.12	0.12	2.0	
				Wind erosion of tailings	22	18	10	-	
				Crusher	0.18	0.18	0.18	-	
				Blasting	10.0	5.2	0.30	0.073	
				Vent raises	19	19	19	87	
				Drilling	0.32	0.12	0.018	-	
				Heaters	0.10	0.10	0.10	1.35	
				Back-up generators	4.0	4.0	4.0	100	
				Total:	569	184	57	296	
				Note: The above table supersedes Table 6.6.4.2-1 of	f the revised EIS (Apr	il 2018).			

Table 3: Air Emissions: Closure									
	Annual Emission Rate (Mg/y)								
Emission Source	TSP	PM ₁₀	PM2.5	NOx					
Haul Roads (Including tailpipe)	547	147	18	30					
Dozers (including tailpipe)	19	4	2.6	3.5					
Loader (including tailpipe)	49	13	0.1	2.8					
Material Handling (load/unload)	4.8	2.3	0.35	_					
Excavator (tailpipe)	0.12	0.12	0.24	0.67					
Back-up generator	2.0	2.0	2.0	28					
Total:	622	168	23	65					

Note: The above table supersedes Table 6.6.4.2-1 of the revised EIS (April 2018).

Part B. As noted in the response to TMI_879-AE(2)-01, Treasury Metals has acquired additional properties since the air modelling receptors used in the revised EIS (April 2018) were identified. Table 4 summarizes the results of the dispersion modelling that has been redone to reflect the new property line for the Goliath Gold Project, as well as removal of those sensitive receptors that have eliminated through purchase by Treasury Metals. The results in Table 4 present the maximum concentrations predicted at the sensitive receptor locations, which correspond to the community-oriented receptors identified by CCME (2000) as the appropriate location for determining the achievement with ambient air quality criteria (e.g., the new CAAQS for NO₂ and SO₂). None of the predicted maximum concentrations exceed the relevant criteria, including the new CAAQS for NO₂ and SO₂ scheduled to come into force in 2025.

Table 4: Residual Adverse Air Quality Effects								
	Averaging	Maximum Cumulative Prediction at Sensitive Receptors (1,2)						
Compound	Averaging Period	Site Preparation and Construction	Operations	Closure	Post-closure ⁽⁴⁾			
TSP	24-hour	50	47	50	—			
15P	Annual	17	16.3	16.7	—			
PM10	24-hour	20	19	20	—			
	24-hour	11	11	11	—			
PM _{2.5}	Annual	4.4	4.5	4.4	—			
Duetfell (3)	30 day	0.65	0.57	0.63	_			
Dustfall ⁽³⁾	Annual	0.51	0.45	0.49	_			
00	1-hour	1,257	1258	1251	_			
CO	8-hour	1,251	1253	1249	_			
NO	1-hour	65	57	41	_			
NO ₂	24-hour	30	31	28	—			

Final Atmospheric Environment Round 2 Information Request Response Package

Page	72	of	99
------	----	----	----

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response					
					Annual	15	15	14	_
					1-hour	4.7	4.2	4.6	_
				SO ₂	24-hour	4.1	4.0	4.1	_
					Annual	1.0	1.0	1.0	—
				Arsenic	24-hour	0.0015	0.0014	0.0015	—
				Barium	24-hour	0.008	0.0065	0.0078	—
				Beryllium	24-hour	0.000040	0.000033	0.000039	—
				Cadmium	24-hour	0.000057	0.000047	0.000056	—
				Chromium	24-hour	0.0074	0.0070	0.0074	—
				Cobalt	24-hour	0.00020	0.00016	0.00020	—
				Lead	24-hour	0.0069	0.0065	0.0068	—
				Manganese	24-hour	0.028	0.027	0.028	—
				Nickel	24-hour	0.00065	0.00053	0.00063	—
				NICKEI	Annual	0.00065	0.00053	0.00063	—
				Phosphorous	24-hour	0.0085	0.0070	0.0084	—
				Platinum	24-hour	0.00034	0.00028	0.00033	—
				Rhodium	24-hour	0.00010	0.00008	0.00010	<u> </u>
				Thallium	24-hour	0.00028	0.00023	0.00028	_
				Titanium	24-hour	0.031	0.025	0.030	_
				Uranium	24-hour	0.00017	0.00014	0.00017	_
				Oranian	Annual	0.00017	0.00014	0.00017	_
				Vanadium	24-hour	0.00081	0.00066	0.00079	_
				 The air quality locations" use The values in Predicted dus 	y effects are presented a of by CCME (2000). The the above table include tfall values are in units of	Table 6.6.6-1 of the revised at the sensitive receptor loc e cumulative predictions inc background concentrations of g/m²/30 days. Annual va s during the post-closure ph	ations, which correspond lude background air con s. lues are averaged over	centrations.	nunity-oriented
				achievement with an on, and beyond, the predicted to exceed	nbient air quality cr property line, only any of the relevant	definition of commun iteria, the revised disp the maximum 1-hour criteria. It should be r either the current amb	ersion modelling id NO ₂ concentrations noted that the maxir	entified that at the gr (including backgrou num 1-hour NO ₂ con	idded receptors nd) were centrations

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				maximum 1-hour NO ₂ concentrations (including background), exceed the CAAQS for NO ₂ of 60 ppb (112.8 μ g/m ³) scheduled to come into force in 2020. Only the maximum 1-hour NO ₂ concentrations (including background) during operations are predicted to exceed the CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. During site preparation and construction, the maximum 1-hour NO ₂ concentrations (including background) were predicted to equal, but not exceed, the new CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. The maximum 1-hour NO ₂ concentrations (including background) during closure were below the new CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. The maximum 1-hour NO ₂ concentrations (including background) during closure were below the new CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. TMI_880-AE(2)-04_Table_5 presents the requested frequency analysis for receptors along the property line where the maximum 1-hour NO ₂ concentrations during operations (including background) were predicted to exceed the new CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. TMI_880-AE(2)-04_Table_5 presents the requested frequency analysis for receptors along the property line where the maximum 1-hour NO ₂ concentrations during operations (including background) were predicted to exceed the new CAAQS for NO ₂ of 42 ppb (79 μ g/m ³) scheduled to come into force in 2025. It is important to note that these gridded receptors along the property line do not represent community-oriented receptors identified by CCME (2000) as appropriate locations for determining whether the ambient air quality criteria are achieved.
				Part C. As described in the responses to TMI_879-AE(2)-03, there will be no access to the Operations Area during the active life of the Project, and there are no additional receptors identified within the operations area through preparing the responses to Parts A through D. Access to the Operations Area by members of Indigenous communities for traditional uses of lands and resources will only be permitted in the Post-Closure Phase of the Project, once the regulators are confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required.
				However, in preparing the responses to the Round 2 information requests, Treasury Metals have prepared a detailed Human Health and Ecological Risk Assessment (referred to as the 2018 HHERA) that has been provided as part of the overall responses to the Round 2 information requests. While there will be no access permitted in the Operations Area during the active life of the Project, and there are no community-based identified by CCME (2000) as the appropriate locations for evaluating achievement of ambient air quality criteria (including the new CAAQS) within either the operations area of the property boundary for the Goliath Gold Project, the 2018 HHERA recognizes that there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources. Additionally, throughout the active life of the Project, workers will be accessing the Operations Area and be exposed to the air quality that may be higher than those at sensitive receptors beyond the property boundary. The three Study Areas assessed in the 2018 HHERA are as follows:
				• Study Area No 1. Operations Area: The Operations Area includes all of the active mining areas associated with the Project. During the active life of the Project access to the Operations Area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of the public or Indigenous communities during the active life of the Project. There will be no harvesting of country foods within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. Following Closure, during the passive Post-Closure Phase of the Project, full access to the Operations Area will resume as will the practice of

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 traditional land and resource use. A total of 308 gridded air modelling receptors were placed at 100 m intervals across the operation area (Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area No. 1). Study Area No. 2 Local Study Area: The LSA corresponds with the LSA includes areas within the Property Boundary where traditional land and resource use may be practiced. The LSA includes areas within the Property Boundary of the Project (i.e., the lands leased by Treasury Metals, or for which Treasury Metals holds surface and mineral rights), which would continue to be available for traditional uses by members of Indigenous communities. There are no community-based receptors within the Property Boundary. A total of 3.474 gridded air modelling receptors were placed at 100 m intervals across within the LSA (Study Area No. 2), including 1,445 receptors that fall inside the property boundary. Study Area No. 3 Village of Wabigoon: The Village of Wabigoon is located approximately 4 km to the south of the Project and represents the closest populated community to the Project. A total of 46 gridded air modelling receptor were located within the Village of Wabigoon (Study Area No. 3). As part of the 2018 HHERA, the air modelling was redone using the same emissions and methods as presented in Section 6.6 of the revised EIS (April 2018), but focusing on above three study Part D. As described in Part B, none of the predicted concentrations (including background) at any of the sensitive receptor location secced the relevant criteria (including the eresourd Vollage AGQS) to b
				References:

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Canadian Council of Ministers of the Environment. 1999. Canadian National Ambient Air Quality Objectives: Process and Status. Excerpt from Publication No. 1299; ISBN 1-896997-34-1. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment. Winnipeg, MB.
				Canadian Council of Ministers of the Environment (CCME). 2000. Canada-Wide Standards for Particulate Matter (PM) and Ozone. Ottawa, Canada. CEAA (Canadian Environmental Assessment Agency). 2013. Guidelines for the preparation of an Environmental Impact Statement for an environmental assessment conducted pursuant to the Canadian Environmental Assessment Act, 2012. Goliath Gold Project, Treasury Metals Inc. February 2013.
				Agency Comment 1 of 2 on Draft Response:
				In response to TMI_880-AE(2)-04B, a table was provided for frequency analysis of exceedances of NO ₂ . This information would be better conveyed in a map. While it is understood that this list includes "these gridded receptors along the property line", it should also include locations within the updated property boundary where Indigenous use could occur.
				Provide a map with isopleths that conveys the information given in TMI_880-AE(2)-04_Table_1. The map should also include locations within the property boundary where Indigenous use may occur, particularly within Study Area Number 2 (the Local Study Area).
				Specific Response to Agency Comment 1 of 2:
				Given the extremely low number of 1-hour NO ₂ concentrations predicted to be numerically higher than 79 μ g/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025), it is unclear how the information provided in TMI_880-AE(2)-04_Table_5 could be more clearly presented in a map. The table shows that none of the gridded modelling receptors experienced maximum 1-hour NO ₂ concentrations above 79 μ g/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025), more than 0.3% of the hours modelled. In fact, of all receptors where at least 1-hour was predicted to experience NO ₂ concentrations in excess of 79 μ g/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025), 97% were predicted with concentration in excess of 79 μ g/m ³ less than 0.1% of the five (5) years of hourly data modelled.
				It should also be noted that none of the gridded modelling receptors where maximum 1-hour NO ₂ concentrations were to be numerically higher than 79 µg/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025) meet the requirements for "community-oriented receptors" as defined by the CCME (2006). Given CCME (2006) indicated that compliance with ambient air criteria should only be done at "community-oriented receptors", it is not obvious that predicted concentrations in excess of 79 µg/m ³ represents an exceedance of the CAAQS.
				To help illustrate where the predicted maximum concentrations are likely to occur, as well as those areas where modelled concentrations were predicted to be numerically higher than the relevant criteria, a series of updated isopleth figures have been prepared. These have been provided as TMI_877-AE(2)-01_Attachment_1 (site preparation and construction), TMI_877-AE(2)-01_Attachment_2 (operations), and TMI_877-AE(2)-01_Attachment_3 (closure). The isopleth figures provided in TMI_877-AE(2)-01_Attachment_2 (operations) supersede Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the attachments includes 15 isopleth figures, 14

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				which correspond to the compounds and averaging periods presented in Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018), plus a fifteenth figure that provides the annual NO ₂ predictions. The updated isopleth figures show concentrations contours outside of the limit of private, patent and leased lands, which is consistent with the definition for property boundaries used for modelling in accordance with O.Reg. 419/05.
				Agency Comment 2 of 2 on Draft Response:
				The following Agency feedback on the draft responses identified the following comment as applying to each of TMI_877-AE(2)-01, TMI_879-AE(2)-03, and TMI_880-AE(2)-04. A full response to each of these comments has been provided in the response to TMI_877 AE(2) 01. Although there are no specific components of this request related to the draft response for TMI_880 AE(2) 04, the full text has been provided for completeness.
				The responses to these IRs indicate that Treasury Metals has acquired additional properties since the air modelling receptors used in the April 2018 Revised EIS were identified. The response to TMI_877-AE(2)-01C indicates that "the revised air quality modelling grid in support of the HHERA is shown relative to the Property Boundary and the three Study Areas, on Figure 3.1.1-1 of the 2018 HHERA Report (August 2018)". The property boundary shown in Figure 3.1.1-1 of the 2018 HHERA Report similar to the property boundary used in the April 2018 Revised EIS in the inset of Figure 6.6.2.2-1 as well as figure 1.2.3-1. It is unclear where the newly acquired properties are located, and how the property boundary has changed. It is also unclear if the Property
				Boundary demarcated in the various documents of the EIS is an indication of all property owned by Treasury Metals Inc. or if this is a delineation of the lands for which the proponent holds surface/mineral rights and mining claims but which they may not own.
				[i] In the response to AE(2)-01, provide a map with the updated property boundary, and describe how the property boundary has changed since the April 2018 Revised EIS. Clarify whether the updated property boundary meets the understanding of the property boundary as it is applied in Ontario Regulation 419/05. Clarify the property ownership and claim status of the lands within the updated property boundary.
				[ii] Identify where along the updated property boundary would be the maximum point of impingement, and where the sensitive receptor with maximum concentrations would be located.
				[ii] Clarify whether the differences between the predictions in TMI_877-AE(2)-01_Table_4a, 4b and 4c and the predictions in the April 2018 Revised EIS, Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 are only due to the change in location of the property boundary, or whether there have been changes in the model itself. If necessary, describe any changes to the model since the April 2018 Revised EIS.
				The response to TMI_879-AE(2)-03C indicates that some sensitive receptors were "eliminated" through purchase by Treasury Metals.
				[iv] Identify the sensitive receptors that were no longer considered in the updated air quality assessment, and whether they will be physically removed or will no longer meet the definition of a sensitive receptor due to its

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				location within the updated property boundary.
				The response to TMI_877-AE(2)-01B states that, for NO ₂ and SO ₂ , "additional improvements/mitigation measures for air quality are not required as the modelling shows the maximum concentrations meet the new CAAQS [Canadian Ambient Air Quality Standards] at all sensitive receptor locations." While the Agency understands that this conclusion is based on sensitive receptors outside of the updated property boundary, it notes that exceedances of the new CAAQS for 1-hour NO ₂ are predicted at maximum point of impingement along the updated property boundary, and therefore there would be exceedances within the property boundary. The response to TMI_879-AE(2)-03E indicates that "there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources". It remains that Indigenous users may be exposed to air with NO ₂ concentrations above the new CAAQS.
				[v] The Agency reiterates question TMI_877-AE(2)-01B, in consideration of locations where Indigenous use may occur and where exceedances of CAAQS for NO ₂ may
				Specific Response to Agency Comment 2 of 2:
				The following Agency feedback on the draft responses identified the following comment as applying to each of TMI_877-AE(2)-01, TMI_879-AE(2)-03, and TMI_880-AE(2)-04. A full response to each of these comments has been provided in the response to TMI_877 AE(2) 01. As there are no specific components of this request related to the draft response for TMI_880 AE(2) 04, a summary of the detailed information provided in has been included as a response.
				The property boundary used in the dispersion modelling has changed since the modelling receptors used in the revised EIS (April 2018) were generated. TMI_877-AE(2)-01_Figure_3 shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses. Since the filing of the revised EIS (April 2018), the property ownership and claim status of the lands within the property boundary have also been updated from those presented in Figure 1.2.3-1 of the revised EIS (April 2018). The updated property status is provided on TMI_877-AE(2)-01_Figure_4. As shown on the figure, the lands in the western portion of the property boundary represent private or patent lands, lands for which Treasury Metals hold surface and mineral rights, lands to which Treasury Metals hold mineral rights and surface rights are pending, and lands where conversion from claim to lease is pending. Such lands would be consistent with the definition of a property line used in Ontario Regulation 419/05 (O.Reg. 419/05). As shown on TMI_877-AE(2)-01_Figure_4, Treasury Metals are not planning on bringing the claimed lands within the eastern portion of the property boundary to lease at this time. As such, the limit of private, patent and leased lands (shown with a thick red line on TMI_877-AE(2)-01_Figure_4) would represent the property boundary for modelling in accordance with O.Reg. 419/05. This represents the property boundary used in the in the revised modelling to support the Round 2 responses.

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response					
				The above changes to the property boundary also affected the sensitive receptor locations. TMI_877 AE(2) 01_Figure_3 shows the current property boundary used for preparing the Round 2 responses, including the results presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3. On the figure, the sensitive receptors that have been excludes as a result of the changes to the property lines are marked as red on the figure. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and outbuildings would be made through consultation with Ontario Ministry of Natural Resources and Forestry (MNRF), as well as Environment and Climate Change Canada.					
l				Revised Response:					
				Revised Response: Part A. As noted by the reviewers, there were several typographical errors in the emission tables presented in Section 6.6 and Appendix J-5 of the revised EIS (April 2018). A detailed review of the emissions used in the modelling confirmed that the modelling files used to predict the maximum concentrations for the Site Preparation and Construction, Operations, and Closure Phases were correct, and that any errors were restricted to the summary emission tables presented in the revised EIS (April 2018). Therefore, there is no requirement to redo the dispersion modelling to address apparent issues related to the emissions. As noted in the response to TMI_879-AE(2)-01, Treasury Metals has acquired additional properties since the air modelling receptors used in the revised EIS (April 2018) were identified. The dispersion modelling has been redone to reflect the new property line for the Goliath Gold Project, as well as removal of those sensitive receptors that have eliminated through purchase by Treasury Metals. An updated summary of the emissions for the site preparation and construction, operations, and closure phases are presented, respectively, in Tables 1, 2 and 3.					
				Table 1: Air Emissions – Site Prep	aration and Con	struction			
						Annual Emissi			
				Emission Source	TSP	Annual Emissi PM ₁₀	PM _{2.5}	NOx	
				Emission Source Haul Roads (Including tailpipe)	TSP 547	Annual Emissi PM ₁₀ 147	РМ_{2.5} 18	30	
				Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe)	TSP 547 19	Annual Emissi PM ₁₀ 147 4	PM _{2.5} 18 2.6	30 3.5	
				Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe)	TSP 547 19 49	Annual Emissi PM ₁₀ 147 4 13	PM _{2.5} 18 2.6 1.8	30 3.5 2.8	
				Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload)	TSP 547 19 49 5.1	Annual Emissi PM ₁₀ 147 4 13 2.4	PM _{2.5} 18 2.6 1.8 0.36	30 3.5 2.8 —	
				Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload) Excavator (tailpipe)	TSP 547 19 49 5.1 0.12	Annual Emissi PM ₁₀ 147 4 13 2.4 0.12	PM _{2.5} 18 2.6 1.8 0.36 0.12	30 3.5 2.8	
				Emission Source Haul Roads (Including tailpipe) Dozers (including tailpipe) Loader (including tailpipe) Material Handling (load/unload)	TSP 547 19 49 5.1	Annual Emissi PM ₁₀ 147 4 13 2.4	PM _{2.5} 18 2.6 1.8 0.36	30 3.5 2.8 —	

Final Atmospheric Environment Round 2 Information Request Response Package

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / C	comment / Inf	ormation Reque	est / Response	
				Total:	631	174	27	136
				Note: The above table supersedes Table 6.6.4.1-1 of Table 2: Air Emissions: Operatio		I 2018)		
				Table 2. All Emissions. Operation	115		B ((B ()	
				Emission Source	TOD	Annual Emissi		NO
					TSP	PM ₁₀	PM _{2.5}	NOx
				Haul roads (Including tailpipe)	477	128	18	75
				Dozers (including tailpipe)	29	5.9	3.9	16
				Loader (including tailpipe)	0.81	0.64	0.51	15
				Material handling (load/unload)	6.5	3.1	0.5	-
				Excavator (tailpipe)	0.12	0.12	0.12	2.0
				Wind erosion of tailings	22	18	10	-
				Crusher	0.18	0.18	0.18	-
				Blasting	10.0	5.2	0.30	0.073
				Vent raises	19	19	19	87
				Drilling	0.32	0.12	0.018	-
				Heaters	0.10	0.10	0.10	1.35
				Back-up generators	4.0	4.0	4.0	100
				Total: Note: The above table supersedes Table 6.6.4.2-1 of	569 the revised EIS (Apri	184	57	296
				Table 3: Air Emissions: Closure				
				Emission Source		Annual Emissi		
					TSP	PM ₁₀	PM _{2.5}	NOx
				Haul Roads (Including tailpipe)	547	147	18	30
				Dozers (including tailpipe)	19	4	2.6	3.5
				Loader (including tailpipe)	49	13	0.1	2.8
				Material Handling (load/unload)	4.8	2.3	0.35	—
				Excavator (tailpipe)	0.12	0.12	0.24	0.67
				Back-up generator	2.0	2.0	2.0	28

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Total: 622 168 23 65
				Note: The above table supersedes Table 6.6.4.2-1 of the revised EIS (April 2018).
				Part B.
				The property boundary used in the dispersion modelling has changed since the modelling receptors used in the revised EIS (April 2018) were generated. TMI_877-AE(2)-01_Figure_3 shows the current property boundary, and corresponds to the property boundary used for preparing the Round 2 responses. Since the filing of the revised EIS (April 2018), the property ownership and claim status of the lands within the property boundary have also been updated from those presented in Figure 1.2.3-1 of the revised EIS (April 2018). The updated property status is provided on TMI_877-AE(2)-01_Figure_4. As shown on the figure, the lands in the western portion of the property boundary represent private or patent lands, lands for which Treasury Metals hold surface and mineral rights, lands to which Treasury Metals hold mineral rights and surface rights are pending, and lands where conversion from claim to lease is pending. Such lands would be consistent with the definition of a property line used in Ontario Regulation 419/05 (O.Reg. 419/05). As shown on TMI_877-AE(2)-01_Figure_4, Treasury Metals are not planning on bringing the claimed lands within the eastern portion of the property boundary to lease at this time. As such, the limit of private, patent and leased lands (shown with a thick red line on TMI_877-AE(2)-01_Figure_4) would represent the property boundary for modelling in accordance with O.Reg. 419/05. This represents the property boundary used in the in the revised modelling to support the Round 2 responses.
				The above changes to the property boundary also affected the sensitive receptor locations. TMI_877 AE(2) 01_Figure_3 shows the current property boundary used for preparing the Round 2 responses, including the results presented in TMI_877-AE(2)-01_Table_1, TMI_877-AE(2)-01_Table_2 and TMI_877-AE(2)-01_Table_3. On the figure, the sensitive receptors that have been excludes as a result of the changes to the property lines are marked as red on the figure. It is Treasury Metals intention to remove the residences at each of these locations. However, Treasury Metals may retain the secondary structures and outbuildings at these locations for use as possible wildlife habitat. A decision regarding the fate of the secondary structures and outbuildings would be made through consultation with Ontario Ministry of Natural Resources and Forestry (MNRF), as well as Environment and Climate Change Canada.
				Table 4 summarizes the results of the dispersion modelling at the sensitive receptors, that reflect the adjustments to the property boundary and sensitive receptor locations discussed above. The sensitive receptor locations correspond to the definition of "community-oriented receptors" identified by CCME (2000) as the appropriate location for determining the achievement with ambient air quality criteria (e.g., the new CAAQS for NO ₂ and SO ₂). None of the predicted maximum concentrations at the sensitive receptor locations exceed the relevant criteria, including the new CAAQS for NO ₂ and SO ₂ scheduled to come into force in 2025.

Anne x	Agency / Group / Stakeholder	С	ross Referenc	ce / Comment / Inf	ormation Requ	est / Response	9	
		Table 4: Maximum	Cumulative Predict	tion at Sensitive Recept	ors ⁽¹⁾⁽²⁾			
				Maximum Concentration (µg/m ³) ⁽³⁾				
		Compound	Averaging Period	Site Preparation and Construction	Operations	Closure	Post-closure (4)	
		TOD	24-hour	50	47	50	_	
		TSP	Annual	17	16.3	16.7	_	
		PM10	24-hour	20	19	20	_	
		PM _{2.5}	24-hour	11	11	11	_	
			Annual	4.4	4.5	4.4	_	
			30 day	0.65	0.57	0.63	_	
		Dustfall (3)	Annual	0.51	0.45	0.49	_	
			1-hour	1,257	1258	1251	_	
		со	8-hour	1,251	1253	1249	_	
			1-hour	65	57	41	_	
		NO ₂	24-hour	30	31	28	_	
			Annual	15	15	14	_	
			1-hour	4.7	4.2	4.6	_	
		SO ₂	24-hour	4.1	4.0	4.1	_	
			Annual	1.0	1.0	1.0	_	
		Arsenic	24-hour	0.0015	0.0014	0.0015	_	
		Barium	24-hour	0.008	0.0065	0.0078	_	
		Beryllium	24-hour	0.000040	0.000033	0.000039	_	
		Cadmium	24-hour	0.000057	0.000047	0.000056	_	
		Chromium	24-hour	0.0074	0.0070	0.0074	_	
		Cobalt	24-hour	0.00020	0.00016	0.00020	_	
		Lead	24-hour	0.0069	0.0065	0.0068	_	
		Manganese	24-hour	0.028	0.027	0.028	_	
			24-hour	0.00065	0.00053	0.00063	_	
		Nickel	Annual	0.00065	0.00053	0.00063	_	
		Phosphorous	24-hour	0.0085	0.0070	0.0084	_	
		Platinum	24-hour	0.00034	0.00028	0.00033	_	
			1	1		ł	+	

0.00010

0.00028

0.031

0.00008

0.00023

0.025

0.00010

0.00028

0.030

24-hour

24-hour

24-hour

Rhodium

Thallium

Titanium

Unique Identifier

Agenc y IR #

February 1, 2019

_

_

_

Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	с	ross Referenc	e / Comment / Inf	ormation Requ	iest / Respons	e
				Uranium	24-hour	0.00017	0.00014	0.00017	_
				Uranium	Annual	0.00017	0.00014	0.00017	_
				Vanadium	24-hour	0.00081	0.00066	0.00079	_
				 (2) The values in (3) Predicted dus (4) There are no Table 5 summarizes receptors are not co compliance with am NO₂ concentrations 	the above table include stall values are in units sources of air emission the results of the of nsistent with the C bient criteria. A rev (including backgro	the cumulative predictions ind background concentrations of g/m²/30 days. Annual va is during the post-closure pr dispersion modelling a CME definition of "con riew of the results pres und) were predicted to	s. lues are averaged over ' hase. t the gridded model nmunity-oriented rec ented in Table 5 sho numerically higher	12 months. lling receptors. The ceptors" used for c ows that only the r than the ambient	letermining naximum 1-hour criteria, specifically
					uding background), hey numerically la	, are not numerically la rger than do 1-hour CA	rger than the currer	nt ambient air qual	ity criteria of
				concentrations (inclu 400 µg/m³, nor are t come into force in 20	uding background), hey numerically lan 020.	, are not numerically la	rger than the currer AAQS for NO ₂ of 60	nt ambient air qual	ity criteria of
				concentrations (inclu 400 µg/m³, nor are t come into force in 20	uding background), hey numerically lan 020. Cumulative Predict	, are not numerically la rger than do 1-hour C/	rger than the currer AAQS for NO ₂ of 60	nt ambient air qual ppb (112.8 µg/m³	ity criteria of
				concentrations (inclu 400 µg/m³, nor are t come into force in 20	uding background), hey numerically lan 020.	, are not numerically la rger than do 1-hour C/	rger than the currer \AQS for NO ₂ of 60 I g Receptors ⁽¹⁾⁽²⁾⁽³⁾	nt ambient air qual ppb (112.8 µg/m³	ity criteria of
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound	uding background), hey numerically lan 020. Cumulative Predict Averaging	, are not numerically la rger than do 1-hour CA ion at Gridded Modellin Site Preparation	AQS for NO ₂ of 60 Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾	ity criteria of) scheduled to
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum	uding background), hey numerically lan 020. Cumulative Predict Averaging Period	, are not numerically la rger than do 1-hour CA ion at Gridded Modellin Site Preparation and Construction	rger than the currer AQS for NO ₂ of 60 Ig Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾ Closure	ity criteria of) scheduled to Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound	uding background), hey numerically lar 020. Cumulative Predict Averaging Period 24-hour	, are not numerically la rger than do 1-hour CA ion at Gridded Modellin Site Preparation and Construction 55	rger than the currer AQS for NO ₂ of 60 In Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61	nt ambient air qual ppb (112.8 µg/m ³ tration (µg/m ³) ⁽⁴⁾ Closure 56	ity criteria of) scheduled to Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀	uding background), hey numerically lar 020. Cumulative Predict Averaging Period 24-hour Annual	ion at Gridded Modellin Site Preparation and Construction 55 18	rger than the currer AQS for NO ₂ of 60 ng Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾ Closure 56 18	Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP	Uding background), hey numerically land 020. Cumulative Predict Averaging Period 24-hour Annual 24-hour	ion at Gridded Modellin Site Preparation and Construction 55 18 21	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾ Closure 56 18 21	Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀ PM _{2.5}	uding background), hey numerically land 020. Cumulative Predict Averaging Period 24-hour Annual 24-hour 24-hour	are not numerically la rger than do 1-hour CA ion at Gridded Modellin Site Preparation and Construction 55 18 21 11	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾ Closure 56 18 21 11	Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀	uding background), hey numerically lar 020. Cumulative Predict Averaging Period 24-hour 24-hour 24-hour 24-hour Annual	ion at Gridded Modellin Site Preparation and Construction 55 18 21 11 4.5 0.96 0.76	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23 5.0 1.52 0.95	nt ambient air qual ppb (112.8 µg/m³ tration (µg/m³) ⁽⁴⁾ Closure 56 18 21 11 4.5 0.95 0.76	Post-closure ⁽⁵⁾ Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀ PM _{2.5} Dustfall ⁽⁴⁾	uding background), hey numerically lan 020. Cumulative Predict Averaging Period 24-hour 24-hour 24-hour 24-hour 24-hour 30 day	ion at Gridded Modellin Site Preparation and Construction 55 18 21 11 4.5 0.96 0.76 1263	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23 5.0 1.52 0.95 1273	tration (µg/m³) ⁽⁴⁾ Closure 56 18 21 11 4.5 0.95 0.76 1259	Post-closure ⁽⁵⁾ Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀ PM _{2.5}	Iding background), hey numerically land 020. Cumulative Predict Averaging Period 24-hour 24-hour 24-hour 24-hour 24-hour 30 day Annual 1-hour 8-hour	ion at Gridded Modellin Site Preparation and Construction 55 18 21 11 4.5 0.96 0.76 1263 1253	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23 5.0 1.52 0.95 1273 1261	tration (μg/m³) ⁽⁴⁾ tration (μg/m³) ⁽⁴⁾ Closure 56 18 21 11 4.5 0.95 0.76 1259 1,251	Post-closure ⁽⁵⁾
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀ PM _{2.5} Dustfall ⁽⁴⁾	uding background), hey numerically lan 020. Cumulative Predict Averaging Period 24-hour 24-hour 24-hour 24-hour 24-hour 30 day Annual 1-hour 8-hour 1-hour	ion at Gridded Modellin Site Preparation and Construction 55 18 21 11 4.5 0.96 0.76 1263 1253 79	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23 5.0 1.52 0.95 1273 1261 110 ⁽⁶⁾	nt ambient air qual ppb (112.8 µg/m³) tration (µg/m³) ⁽⁴⁾ Closure 56 18 21 11 4.5 0.95 0.76 1259 1,251 59	Post-closure ⁽⁵⁾ Post-closure ⁽⁵⁾ Comparison (5) Comparison (5
				concentrations (inclu 400 µg/m³, nor are t come into force in 20 Table 5: Maximum Compound TSP PM ₁₀ PM _{2.5} Dustfall ⁽⁴⁾	Iding background), hey numerically land 020. Cumulative Predict Averaging Period 24-hour 24-hour 24-hour 24-hour 24-hour 30 day Annual 1-hour 8-hour	ion at Gridded Modellin Site Preparation and Construction 55 18 21 11 4.5 0.96 0.76 1263 1253	rger than the currer AQS for NO ₂ of 60 g Receptors ⁽¹⁾⁽²⁾⁽³⁾ Maximum Concent Operations 61 18 37 23 5.0 1.52 0.95 1273 1261	tration (μg/m³) ⁽⁴⁾ tration (μg/m³) ⁽⁴⁾ Closure 56 18 21 11 4.5 0.95 0.76 1259 1,251	Post-closure ⁽⁵⁾ Post-closure ⁽⁵⁾

February 1, 2019

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cr	oss Reference	e / Comment / Inf	ormation Requ	est / Response	
					1-hour	4.8	8.6	4.8	_
				SO ₂	24-hour	4.1	6.2	4.1	—
					Annual	1.0	1.6	1.0	_
				Arsenic	24-hour	0.0017	0.0019	0.0017	_
				Barium	24-hour	0.011	0.013	0.011	—
				Beryllium	24-hour	0.000053	0.000066	0.000053	—
				Cadmium	24-hour	0.000076	0.000095	0.000077	—
				Chromium	24-hour	0.0082	0.0090	0.0083	_
				Cobalt	24-hour	0.00027	0.00033	0.00027	_
				Lead	24-hour	0.0075	0.0081	0.0075	—
				Manganese	24-hour	0.032	0.035	0.032	—
				Nickel	24-hour	0.00086	0.0011	0.00087	_
				NICKEI	Annual	0.00086	0.0011	0.00087	_
				Phosphorous	24-hour	0.011	0.014	0.011	_
				Platinum	24-hour	0.00045	0.00057	0.00046	_
				Rhodium	24-hour	0.00013	0.00017	0.00014	—
				Thallium	24-hour	0.00038	0.00048	0.00038	—
				Titanium	24-hour	0.041	0.051	0.041	—
				Uronium	24-hour	0.00022	0.00028	0.00023	—
				Uranium	Annual	0.00022	0.00028	0.00023	—
				Vanadium	24-hour	0.0011	0.0014	0.0011	—
				 The gridded m compliance wit The cumulative The values in t He values in t Predicted dust There are no s The numbers h ambient criteria receptors", it is 	odelling receptors do n th ambient criteria. e predictions include ba he above table include fall values are in units o ources of air emissions highlighted bold and sh a. Given CCME (2006)	Table 6.6.6-1 of the revised ot meet the definition of "co ackground air concentrations background concentrations of g/m ² /30 days. Annual va s during the post-closure ph ading indicates where the p indicated that compliance v cted concentrations numeri oient criteria.	ommunity-oriented recep s. lues are averaged over ase. oredicted maximum conc with ambient air criteria s	12 months. entrations are numerical should only be done at "c	ly higher that the ommunity-oriented
				the maximum 1-hour	NO ₂ concentration	ne requested frequences ns during operations (i for NO ₂ of 42 ppb (79	ncluding backgrour	nd) were predicted to	o numerically

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				important to note that these gridded receptors along the property line do not represent community-oriented receptors identified by CCME (2000) as appropriate locations for determining whether the ambient air quality criteria are achieved.
				Given the extremely low number of 1-hour NO ₂ concentrations predicted to be numerically higher than 79 µg/m ³ (the value of the 1-hour CAAQS for NO ₂ in 2025), the information provided in TMI_880-AE(2)-04_Table_6 cannot be readily presented on a map. However, to illustrate where the predicted maximum concentrations are likely to occur, as well as those areas where modelled concentrations were predicted to be numerically higher than the relevant criteria, a series of updated isopleth figures have been prepared. These have been provided as TMI_877-AE(2)-01_Attachment_1 (site preparation and construction), TMI_877-AE(2)-01_Attachment_2 (operations), and TMI_877-AE(2)-01_Attachment_3 (closure). The isopleth figures provided in TMI_877-AE(2)-01_Attachment_2 (operations) supersede Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the attachments includes 15 isopleth figures, 14 which correspond to the compounds and averaging periods presented in Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018). Each of the annual NO ₂ predictions. The updated isopleth figures show concentrations contours outside of the limit of private, patent and leased lands, which is consistent with the definition for property boundaries used for modelling in accordance with O.Reg. 419/05.
				Part C. As described in the responses to TMI_879-AE(2)-03, there will be no access to the Operations Area during the active life of the Project, and there are no additional receptors identified within the operations area through preparing the responses to Parts A through D. Access to the Operations Area by members of Indigenous communities for traditional uses of lands and resources will only be permitted in the Post-Closure Phase of the Project, once the regulators are confident the closure landscape is functioning properly and institutional controls on access to the areas are no longer required.
				However, in preparing the responses to the Round 2 information requests, Treasury Metals have prepared a detailed Human Health and Ecological Risk Assessment (referred to as the 2018 HHERA) that has been provided as part of the overall responses to the Round 2 information requests. While there will be no access permitted in the Operations Area during the active life of the Project, and there are no community-based identified by CCME (2000) as the appropriate locations for evaluating achievement of ambient air quality criteria (including the new CAAQS) within either the operations area of the property boundary for the Goliath Gold Project, the 2018 HHERA recognizes that there may be locations outside of the Operations Area, but within the property boundary of the Goliath Gold Project, where members of Indigenous communities may wish to practice traditional uses of the lands and resources. Additionally, throughout the active life of the Project, workers will be accessing the Operations Area and be exposed to the air quality that may be higher than those at sensitive receptors beyond the property boundary. The three Study Areas assessed in the 2018 HHERA are as follows:

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				• Study Area No 1. Operations Area: The Operations Area includes all of the active mining areas associated with the Project. During the active life of the Project access to the Operations Area will be restricted for safety and security reasons. Only employees of Treasury Metals will be allowed within the Operations Area. There will be no access to the Operations Area by members of the public or Indigenous communities during the active life of the Project. There will be no harvesting of country foods within the Operations Area for the active phases of the Project, and there are no community-based receptors within the Operations Area. Following Closure, during the passive Post-Closure Phase of the Project, full access to the Operations Area will resume as will the practice of traditional land and resource use. A total of 308 gridded air modelling receptors were placed at 100 m intervals across the operation area (Study Area No. 1).
				• Study Area No. 2 Local Study Area: The LSA corresponds with the LSA used in the revised EIS (April 2018) for evaluating the effects of the Project on wildlife and wildlife habitat, as well as evaluating the effects of the Project on terrestrial vegetation. The LSA excludes the Operations Area but includes areas within the Property Boundary where traditional land and resource use may be practiced. The LSA includes areas within the Property Boundary of the Project (i.e., the lands leased by Treasury Metals, or for which Treasury Metals holds surface and mineral rights), which would continue to be available for traditional uses by members of Indigenous communities. There are no community-based receptors within the Property Boundary. A total of 3,474 gridded air modelling receptors were placed at 100 m intervals across within the LSA (Study Area No. 2), including 1,445 receptors that fall inside the property boundary.
				• Study Area No. 3 Village of Wabigoon: The Village of Wabigoon is located approximately 4 km to the south of the Project and represents the closest populated community to the Project. A total of 46 gridded air modelling receptor were located within the Village of Wabigoon (Study Area No. 3).
				As part of the 2018 HHERA, the air modelling was redone using the same emissions and methods as presented in Section 6.6 of the revised EIS (April 2018), but focusing on above three study
				Part D. The follow-up program for to address human health issues related to additional sensitive receptors, the follow-up program for human health and air quality has been revised as part of the Round 2 process and are provided in the Goliath Gold Project Follow-up Program Addendum, which superseded Section 13 of the revised EIS (April 2018).
				References:
				Canadian Council of Ministers of the Environment. 1999. Canadian National Ambient Air Quality Objectives: Process and Status. Excerpt from Publication No. 1299; ISBN 1-896997-34-1. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment. Winnipeg, MB.
				Canadian Council of Ministers of the Environment (CCME). 2000. Canada-Wide Standards for Particulate Matter (PM) and Ozone. Ottawa, Canada. CEAA (Canadian Environmental Assessment Agency). 2013. Guidelines for the

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				preparation of an Environmental Impact Statement for an environmental assessment conducted pursuant to the Canadian Environmental Assessment Act, 2012. Goliath Gold Project, Treasury Metals Inc. February 2013.
				Agency Comment on Draft Response
				None Received
				FINAL RESPONSE
				Agency accepted Revised Response as Final.
				The although the Agency did not issue an formal comment on TMI_880-AE(2)-04. Email correspondence dated December 17, 2018 provided a series of clarifications to the Agency. This correspondence has been included as TMI_880-AE(2)-04_Attachment 1.

TMI_881-AE(2)-05

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder		Cross Reference / Comment / Information Request / Response		
TMI_881-AE(2)- 05	AE(2)-05	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Section 16		
				Reference to EIS / Appendix	Section 13.6.3		
				Cross- reference to Round 1 IRs	TMI_163-AE(1)-01, TMI_164-AE(1)-02		
			Context and R	Rationale:			
			 construct clarificat whether form par It is note consulta consider methods submitte 	on 13.6.3 of the revised EIS, the proponent has committed to monitoring ambient air quality during ction, operation and until "heavy equipment operations cease in the closure phase". Further tion is needed to understand the program that is being committed by the proponent. It is unclear the monitoring plan will be developed to meet provincial regulatory requirements, or whether it will t of a follow-up program to validate predictions made in the EA in the air quality assessment. ed that the proponent has not developed an ambient air quality follow-up monitoring program in tion with relevant regulatory agencies that clearly outlines thresholds that trigger the need to r additional mitigation. The plan should include the details about the monitoring parameters, s, sampling locations, applicable standards, duration, and frequencies for information to be ad for review prior to commencing work for the construction phase. Also, the program should			
			 Section 13.6.3 of the revised EIS also indicates that "particulate mat day period using dust fall jars. These collected samples will be subm well as for the metals content within the collected particulates." It is r collected or what parameters will be included. The response to IR# TMI_168 states that "greater [air quality] control that applying additional controls is not necessary for compliance since residences and the MOECC guidelines do not include roadway emis contingent on monitoring results." As part of the follow- up plan that 13.6, it is important for the Agency to understand the additional mean 				ass measures to address public concerns, where appropriate. 13.6.3 of the revised EIS also indicates that "particulate matter will be collected passively over a 30- od using dust fall jars. These collected samples will be submitted for analysis of total dustfall, as for the metals content within the collected particulates." It is not clear where the dust samples will be d or what parameters will be included.
				that applying additional controls is not necessary for complia residences and the MOECC guidelines do not include roadw contingent on monitoring results." As part of the follow- up p 13.6, it is important for the Agency to understand the additio			ponse to IR# TMI_168 states that "greater [air quality] controls are possible but we would suggest lying additional controls is not necessary for compliance since the CCME guidelines apply at the ces and the MOECC guidelines do not include roadway emissions. Additional controls will be ent on monitoring results." As part of the follow- up plan that is proposed for air quality in Section s important for the Agency to understand the additional measures that would be taken if it is found, dictions in the EA are not met even if they are under the thresholds for compliance.
				Specific Ques	tion / Request for Information:		
					the "continuous air monitoring station" will include real-time monitoring for PM10, PM2.5 and NO2, it will be used to ensure timely mitigation measures are implemented in case of exceedances.		

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				B. Discuss whether airborne metals, specifically the ones shown in Table 1 of the response to IR# TMI_163B (arsenic, chromium, manganese, lead), would be collected and analyzed as a portion of total suspended particulates (TSP) collected at the continuous air monitoring station, or provide a clear rationale for not doing so.
				C. Provide the locations of the dust fall jars mentioned in Section 13.6.3, and specify whether the metals shown in Table 1 of the response to IR# TMI_163B (arsenic, chromium, manganese, lead) would be analyzed within these samples.
				D. Provide details of additional mitigation measures that could be applied in case that the predictions in the EA are found to not be met.
				E. Include the information requested in Questions A to D in the overall Follow-Up Program and Environmental Monitoring Program to be prepared in response to IR# EA(2)-01.
				Draft Response:
				Part A. The proposed air monitoring programs for the Goliath Gold Project would include a combination of periodic samplers (e.g., high volume samplers for TSP, and one of PM10 or PM2.5), passive samplers (e.g., dustfall), and a continuous monitoring station (e.g., samplers for NO2 and one of the fine particles [PM10 or PM2.5]). It is not usual for the continuous samplers to be configured to provide real time results, especially for fine particles (e.g. PM10 or PM2.5) that are regulated on a 24-hour integrated basis. The continuous monitoring station would only be configured to provide real-time air sampling results if such results are essential for the implementation of the mitigation strategies. If real time air sampling results are to be provided, the continuous monitors would be logged on the basis of the 1-hour readings, consistent with the new CAAQS to come into force in 2020 and 2025. In the case of fine particles (e.g. PM10 or PM2.5), warnings would be logged on a 24-hour basis. Treasury Metals would then review any of the logged warnings, the measurement information, and the meteorological records to determine whether the exceedance was due to activities on site (and the likely source of the emissions), or whether due to external influences (e.g., forest fires). As soon as practical, Treasury Metals would implement actions to reduce concentrations resulting from sources on-site, which may include increased road watering, reductions in vehicle speed, change in equipment, or reduction in plant operations as a form of operational control.
				Part B. The airborne metals will be collected and analyzed on TSP filter samples. There is no approved technology for completing these measurements in real-time so the samples will be collected on 24-hour sample filters that will be sampled on the 6-day NAPS schedule.
				Part C. The dustfall jars will be deployed along the property boundary, and may be placed at selected locations within the property boundary, but outside of the Operations Area. The siting of air quality monitoring station(s) is dependent on the physical site characteristics including: unobstructed airflow at least a horizontal distance 10 times the vertical height of any obstruction from the nearest obstruction, safe access for sample retrieval, relatively flat terrain, etc. The siting requirements for dust fall are specified in documents from the MOECP, USEPA and ASTM. The locations

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				 cannot be chosen without a physical inspection of the site. Metals will not be analyzed in the dustfall samples since there are no criteria for metals in dustfall. Part D. Additional mitigation measures can be implemented if required to minimize concentrations. The recommended controls would be completely dependent on the nature of the impacts. Examples could include increased road watering or surfactant applications, limitations on maximum vehicle speed, administrative controls that restrict activities based on forecast meteorology. Part E. In response to TMI_869 EA(1) 01, Treasury Metals has prepared two addendums (Goliath Gold Project Follow-up Program Addendum and Goliath Gold Project Monitoring Addendum) that provide details on the monitoring programs planned to support the follow-up program, as well as the ongoing monitoring (separate from the follow-up program) planned for the Project. As with any regulatory monitoring program, the details of the air monitoring for the Goliath Gold Project (separate from monitoring to support the follow-up program) will be finalized through engagement with the appropriate regulatory agency as part of the permitting process. Agency Comment on Draft Response: C. The proponent stated in the response to HE(2)-12 that "there are no anticipated changes to environmental media (soil, water, sediment, country foods) as a result of the project dustfall rates associated with the Project. As such, no adverse effects as a result of the Project are anticipated". A follow-up program is required to validate this finding. Furthermore dustfall jars should be located in areas within the property boundary (but outside the operations area) where country foods harvesting activities are likely to occur (e.g., blueberry and mushroom collection south of the tree nursery, HHRA Section 3.6.2). C. Update the follow-up program such that dustfall sample jars be located within the property boundary
				 where country foods harvesting activities may occur. E. See comment for AE(2)-01. Specific Response to Agency Comment: [C] The Follow-Up Program for both air quality and human health have been revised as part of the Round 2 process. The updated follow-up program is provided in the Goliath Gold Project Follow-up Program Addendum. This addendum superseded the follow-up program presented in Section 13 of the revised EIS (April 2018). Text has been added to the Goliath Gold Project Follow-up Program Addendum related to the siting of dustfall monitors "within the property boundary (but outside the operations area) where country foods harvesting activities are likely to occur".

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				[E] The air monitoring program described in the Goliath Gold Project Follow-up Program Addendum has been revised to include specifically identify PM _{2.5} as the fine particulate to be monitored at the continuous monitoring station, which also includes monitoring of NO ₂ . Treasury Metals plan to commission a single continuous monitoring station at a suitable location. For obvious reasons, the air continuous monitoring station should be located in a secure but accessible location, with ready access to power, and in a location relatively close to the areas where the maximum concentrations were predicted. The maximum point of impingement (MPOI) is an air modeling term that represents location along, or beyond, the property boundary where the maximum predicted concentrations occur. For security reasons, it would be preferred to place the monitoring station within the property boundary. It should also be noted that the MPOI will likely be different for each of the compounds and averaging periods modelled. Therefore, it is unlikely that the MPOI for the 24-hour PM _{2.5} would be exactly the same as for the other compounds. The final location for the monitoring station would be selected in consultation with Ontario Ministry of Environment, Conservation and Parks (MECP), Environment and Climate Change Canada, and the Agency.
				Revised Response:Part A.The proposed air monitoring programs for the Goliath Gold Project would include a combination of periodic samplers(e.g., high volume samplers for TSP, and one of PM10 or PM2.5), passive samplers (e.g., dustfall), and a continuous monitoring station (e.g., samplers for NO2 and fine particulate matter [PM2.5]). It is not usual for the continuous samplers to be configured to provide real time results, especially for fine particles (e.g., PM10 or PM2.5) that are regulated on a 24-hour integrated basis. The continuous monitoring station would only be configured to provide real- time air sampling results if such results are essential for the implementation of the mitigation strategies. If real time air sampling results are to be provided, the continuous monitors would be configured to provide Treasury Metals a warning of any exceedance. In the case of the NO2 analyzer, warnings would be logged on the basis of the 1-hour readings, consistent with the new CAAQS to come into force in 2020 and 2025. In the case of fine particles (PM2.5), warnings would be logged on a 24-hour basis. Treasury Metals would the neview any of the logged warnings, the measurement information, and the meteorological records to determine whether the exceedance was due to activities on site (and the likely source of the emissions), or whether due to external influences (e.g., forest fires). As soon as practical, Treasury Metals would implement actions to reduce concentrations resulting from sources on-site, which may include increased road watering, reductions in vehicle speed, change in equipment, or reduction in plant operations as a form of operational control.
				Part B. The airborne metals will be collected and analyzed on TSP filter samples. There is no approved technology for completing these measurements in real-time so the samples will be collected on 24-hour sample filters that will be sampled on the 6-day NAPS schedule.

Unique Identifier	Agenc y IR #	Anne x	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Part C. The dustfall jars will be deployed along the property boundary, and may be placed at selected locations within the property boundary, but outside of the Operations Area. At the request of the reviewers, language has been included in the Goliath Gold Project Follow-up Program Addendum related to the siting of dustfall monitors "within the property boundary (but outside the operations area) where country foods harvesting activities are likely to occur". The siting of air quality monitoring station(s) is dependent on the physical site characteristics including: unobstructed airflow at least a horizontal distance 10 times the vertical height of any obstruction from the nearest obstruction, safe access for sample retrieval, relatively flat terrain, etc. The siting requirements for dust fall are specified in documents from the MOECP, USEPA and ASTM. The locations cannot be chosen without a physical inspection of the site. Metals will not be analyzed in the dustfall samples since there are no criteria for metals in dustfall. Part D. Additional mitigation measures can be implemented if required to minimize concentrations. The recommended controls would be completely dependent on the nature of the impacts. Examples could include increased road watering or surfactant applications, limitations on maximum vehicle speed, administrative controls that restrict activities based on forecast meteorology. Part E. In response to TMI_869 EA(1) 01, Treasury Metals has prepared two addendums (Goliath Gold Project Follow-up Program Addendum and Goliath Gold Project Monitoring Addendum) that provide details on the monitoring programs planned to support the follow-up program, as well as the ongoing monitoring (separate from the follow-up program) planned for the Project. As with any regulatory monitoring program) will be finalized thr
				particulate to be monitored at the continuous monitoring station, which also includes monitoring of NO ₂ . <u>Agency Comment on Draft Response</u>
				None Received
				FINAL RESPONSE
				Agency accepted Revised Response as Final.

TMI_882-AE(2)-06

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder		Cross Reference / Comment / Information Request / Response
TMI_882-AE(2)- 06	AE(2)-06	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Section 10.1.2
				Reference to EIS / Appendix	Section 6.4
				Cross- reference to Round 1 IRs	TMI_184-AE(1)-22
				fisheries Howeve fish habi include I IR respo guideline • Section to spawn needs to any othe timing co	Rationale: bonse to IR# TMI_184C indicates that "the effects of potential noise and vibration impacts on , specifically spawning shoals has been evaluated as part of Section 6.4 of the revised EIS." r, Section 6.4 of the revised EIS does not describe effects of blasting- related vibration on fish and tat. The vibration sensitive points of reception, listed in Section 6.4.4.1, Table 6.4.4.1-4, do not ocations within fish- bearing waterbodies such as Blackwater Creek. There is no discussion in the inse, in Section 6 of the revised EIS, or in Appendices H or Q, about Fisheries and Oceans Canada es for blasting. http://www.dfo- mpo.gc.ca/Library/232046.pdf 6.4.5 of the revised EIS indicates, as a mitigation measure, that "where potential effects of vibration ning shoals is identified, blasting practices will be adjusted to mitigate the effects." The Agency o understand where these potential effects could occur, how blasting practices could be adjusted, er mitigation measures that could be applied to avoid or reduce effects to fish habitat (including bridgensity), and any follow-up that would be undertaken to ensure that fish and fish habitat are ted by blasting.

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Specific Question / Request for Information:
				A. Identify fish-bearing waterbodies adjacent to the open pit or any other locations expected to have blasting activities.
				B. Include, in the noise and vibration assessment, sensitive points of reception in any waterbody within 500 metres of blasting activities where fish may be located and fish spawning would be expected to occur.
				C. Update the noise and vibration assessment to include the locations identified in Question A and B, and compare against Fisheries and Oceans Canada Guidelines for blasting (including peak particle velocity and overpressure).
				D. Clarify how blasting practices could be adjusted if peak particle velocity and overpressure levels identified in Question C are found to exceed Fisheries and Oceans Canada guidelines.
				E. Provide an assessment of effects on fish and fish habitat as a result of blasting during the Project.
				F. Describe mitigation measures that would be used to avoid effects on fish and fish habitat from blasting.
				G. Characterize residual effects on fish and fish habitat that would occur due to vibration from blasting activities.
				H. Update the follow-up program designed in response to IR# EA(2)-01 to include blasting noise and vibration for receptors related to fish habitat, including objectives and any monitoring measures that will be implemented to verify the predictions of effects and evaluate the effectiveness of the proposed mitigation measures. Identify any monitoring that would be required by Fisheries and Oceans Canada. If follow-up is not required, provide a rationale.
				Response:
				There was a typographical error in the response to IR# TMI_184C. It should have said "the effects of potential noise and vibration impacts on fisheries, specifically spawning shoals has been evaluated as part of Section 6.14 of the revised EIS." In Section 6.14 it is stated, for both the Site Preparation and Construction Phase and the Operations Phase, under the heading "Blasting", "Fish habitat within the Operations Area will be isolated and fish will be relocated at the outset of the Project. Therefore, it is not expected that there will be fish in proximity to blasting. Should this not be the case, DFO guidelines for the use of explosives in or near Canadian fisheries waters (Wright and Hopky 1998) will be adhered to in order to ensure that no harm to fish occurs." As also indicated in Section 6.14.1, no blasting is anticipated during the Closure Phase and no blasting will occur during the Post-Closure Phase.
				<u>PART A:</u> No blasting activities are expected except at the open pit and associated underground mine. Under baseline conditions, the only fish-bearing waterbody in proximity to the open pit is Blackwater Creek Tributary 1 (please refer to TMI_882-AE(2)-06_Figure_1). As part of the site preparation and construction activities, a perimeter berm and ditch will be constructed to isolate the areas where activities are occurring from the surrounding environment. The fish

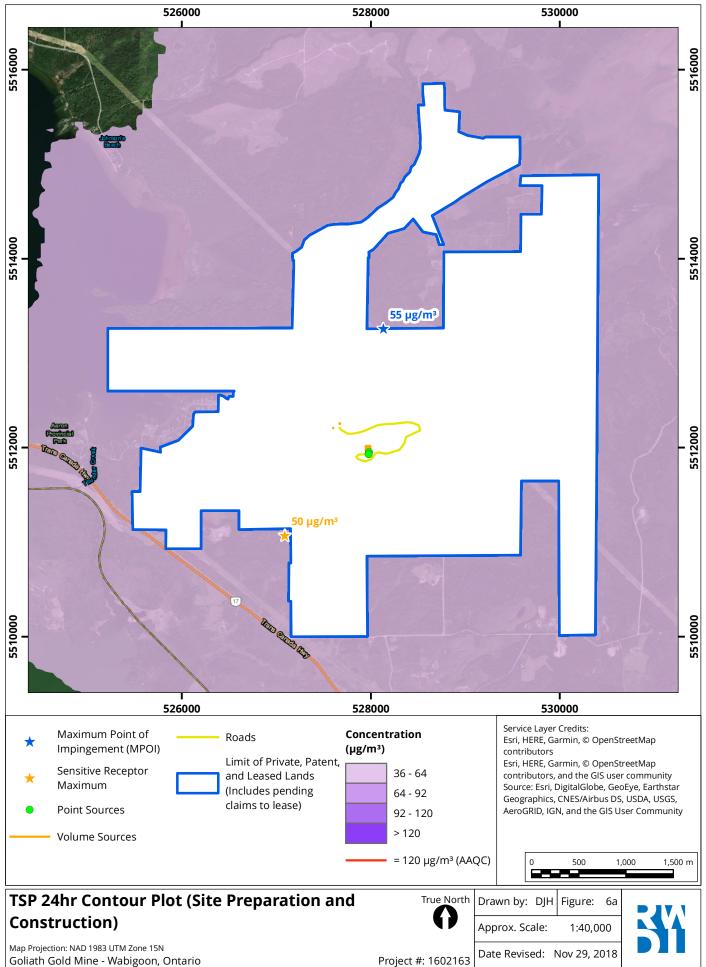
Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				found in the isolated portion of Blackwater Creek Tributary 1 will be relocated, to the extent practicable (some fish mortality is expected as described in Section 6.14 of the revised EIS [April 2018]). Following the fish relocation, and prior to blasting occurring, the isolated portion of Blackwater Creek Tributary 1 will be drained and it will no longer be fish habitat. The elimination of the upper reaches of Blackwater Creek Tributary 1 will reduce flow in Blackwater Creek Tributary 1 downstream from the Operations Area. The portions of Blackwater Creek Tributary 1 that are immediately downstream from the Operations Area are unlikely to contain water, and thus unlikely to contain fish, during the remainder of the Site Preparation and Construction, Operations, and Closure Phases. Blasting is only expected to occur during the Site Preparation and Construction Phase, and during the Operations Phase.
				<u>PART B:</u> The only known fish habitat within 500 m of the perimeter of the open pit, where blasting will occur, is Blackwater Creek Tributary 1 (please refer to TMI_882-AE(2)-06_Figure_1). Resident small-bodied fish that are present under baseline conditions are not aggregate spawners; they will spawn throughout the creek, including in beaver ponds. Therefore, no specific locations are considered to be more sensitive. As indicated in Part A, the portion of Blackwater Creek Tributary 1 that is within the Operations Area will be isolated and, following fish relocation, drained so that it will not contain fish during either the Site Preparation and Construction Phase, or the Operations Phase of the Project, which are the phases during which blasting will occur. Further, with the removal of the upstream drainage area, the portion of Blackwater Creek Tributary 1 that is immediately downstream from the Operations Area is expected to be dry and, therefore, it is not expected to contain fish.
				<u>PART C.</u> Based on a review of the proposed blasting practices, the baseline fisheries information, and the areas where fish habitat will remain after the construction of the perimeter berm and ditch, noise and vibration predictions were made at three (3) potential areas where blasting could affect fish and fish habitat. These locations, which are illustrated on TMI_882-AE(2)-06_Figure 2, include the following:
				On the shoreline for Thunder Lake, at the location closest to the open pit;
				On Blackwater Creek, main stem, at the location closest to the open pit; and On Blackwater Creek Tributer (1, immediately downstream from the parimeter horm surrounding the
				 On Blackwater Creek Tributary 1, immediately downstream from the perimeter berm surrounding the Operations Area.
				It should be noted that the responses to Part A and Part B confirm that while the third location is outside of the Operations Area, there is expected to be virtually no flow in the portion of Blackwater Creek Tributary 1 as over 90% of the catchment for the watercourse will be contained within the perimeter berm and ditch that is to be constructed around the perimeter of the Operations Area. Therefore, this location will have no water, and thus will not support fish during Site Preparation and Construction, and Operations Phases of the Project (the phases when blasting will occur).
				The results of the blasting analysis at the above locations (including the location on Blackwater Creek Tributary 1 that will not have any water) has been presented in nTMI_882-AE(2)-06_Table 1. The results show that the estimated

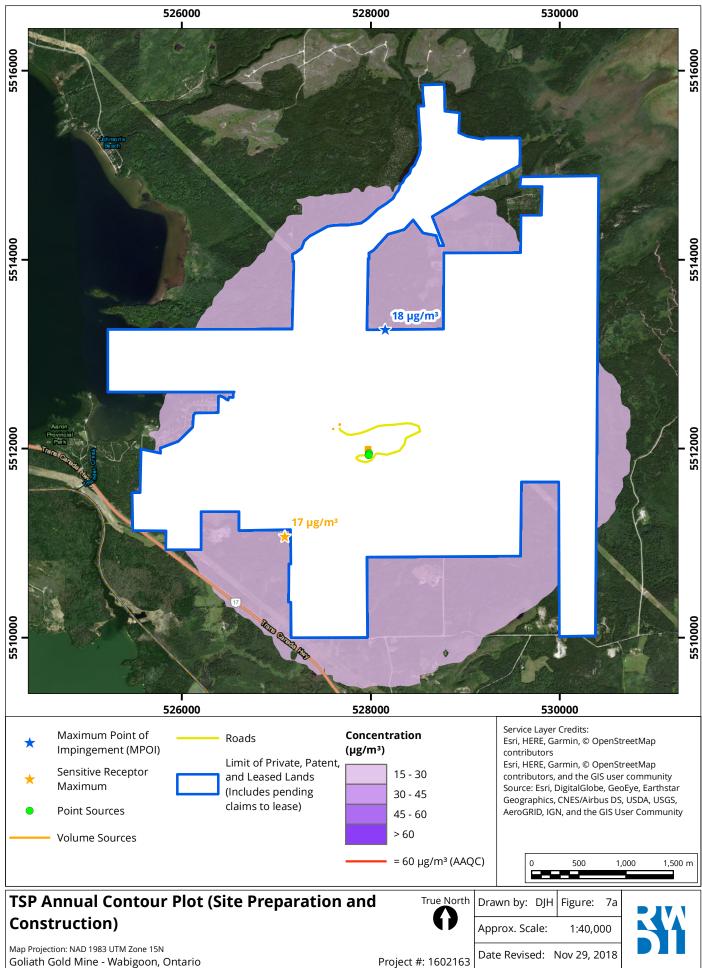
Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				blasting pressure in water, assuming a 100 kg charge weight, are below the 100 kPa limit for water overpressure set out in (Wright and Hopky 1998). In addition, the peak particle velocities, assuming a 100 kg charge weight, are below the 13 mm/s limit suggested in Wright and Hopky (1998) at the closest points in Thunder Lake and Blackwater Creek to the open pit in. The only location predicted to exceed the 13 mm/s limit is within Blackwater Creek Tributary 1, immediately downstream of the berm surrounding the Operations Area. Once the perimeter berm is constructed around the Operations Area, this watercourse is not expected to have sufficient flow to support fish as more than 90% of the catchment areas for this portion of Blackwater Creek Tributary 1 will be contained within the perimeter berm and ditch. Therefore, there would be no fish, and no spawning areas to be affected during the Site Preparation and Construction, and Operations Phases (the phases of the Project when blasting will occur).
				PART D: Mitigation measures presented in the EIS to reduce the potential impacts of blasting on fish, including:
				• Mit_029 - "Implement a modern blasting program that minimizes the blast area, the overall amount of explosives required, and through detonating procedures, minimize the amount of explosives per delay."
				 Mit_030 – "Adjust blasting practices if effects of vibration to spawning shoals is identified."
				In the event that vibration is identified to cause effects to fish and fish habitat, the quantity of explosives used during one detonation will be altered along with the timing of blasting. These changes to blasting practices will be completed by a qualified person and will continue to be altered until blasting effects no longer effect fish or fish habitat.
				PART E: As described in the response to Part C, the predicted overpressure in water as a result blasting from the Project is less than the 100 kPa limit set out in (Wright and Hopky 1998). Additionally, the peak particle velocities at the nearest point in Blackwater Creek and Thunder Lake to the open pit are less than the 13 mm/s limit set out in (Wright and Hopky 1998). The only location predicted to exceed the 13 mm/s limit is within Blackwater Creek Tributary 1, immediately downstream of the berm surrounding the Operations Area. Once the perimeter berm and ditch is constructed around the Operations Area, this watercourse is not expected to have sufficient flow to support fish as more than 90% of the catchment areas for this portion of Blackwater Creek Tributary 1 will be contained within the perimeter berm and ditch. Therefore, there would be no fish, and no fish spawning areas to be affected during the Site Preparation and Construction, and Operations phases (the phases of the Project when blasting will occur). This conclusion is consistent with the analysis of blasting effects on fish and fish habitat presented in Section 6.14 of the revised EIS (April 2018).
				<u>PART F</u> : Based on the responses provided in Parts C and E of this response the Mitigation Measures described in the revised EIS (April 2018) and provided in Part D of this response, remain the mitigation measures that would be used to avoid effects on fish and fish habitat from blasting.

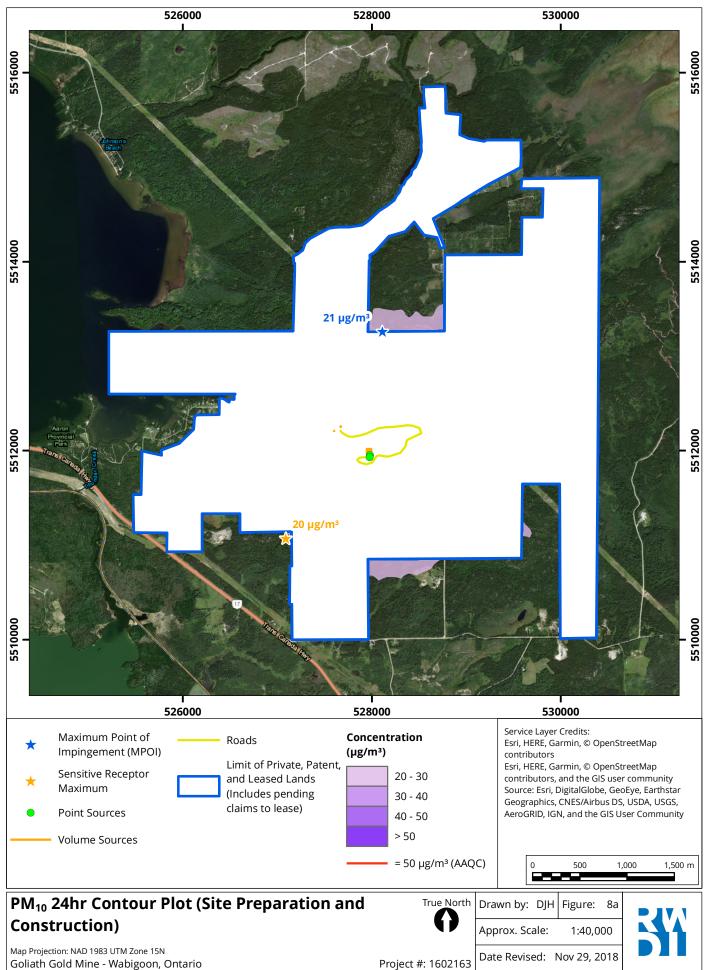
Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				PART H: A number of Round 2 information requests have requested for revisions and updates be made to the Follow-Up Program submitted as Section 13 of the revised EIS (April 2018). The Goliath Gold Follow-Up Addendum has been provided in support of the overall response package to the Round 2 information requests, and provides a comprehensive and consolidated answer to all Round 2 information requests related to the Follow-Up Programs including those related to verifying the predictions with respect to blasting and vibration on fish and fish habitat. References: Wright, D.G., and G.E. Hopky. 1998. Guidelines for the use of explosives in or near Canadian fisheries waters. Can. Tech. Rep. Fish. Aquat. Sci. 2107: iv + 34p. Agency Comment on Draft Response None Received Revised Response Not required. Agency accepted Draft Response.

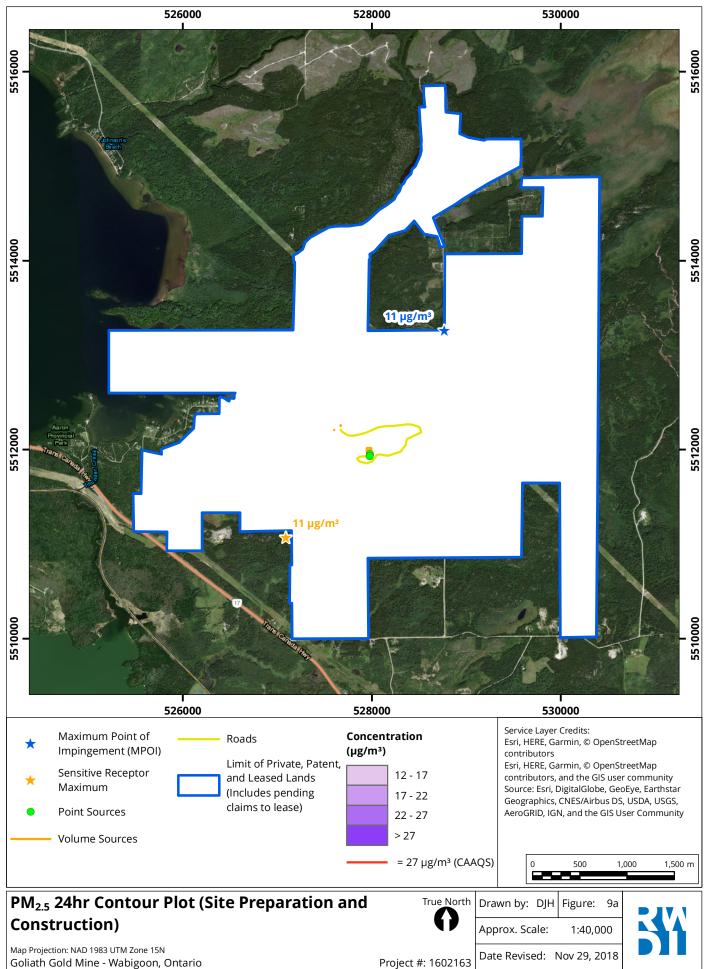
TMI_883-AE(2)-07

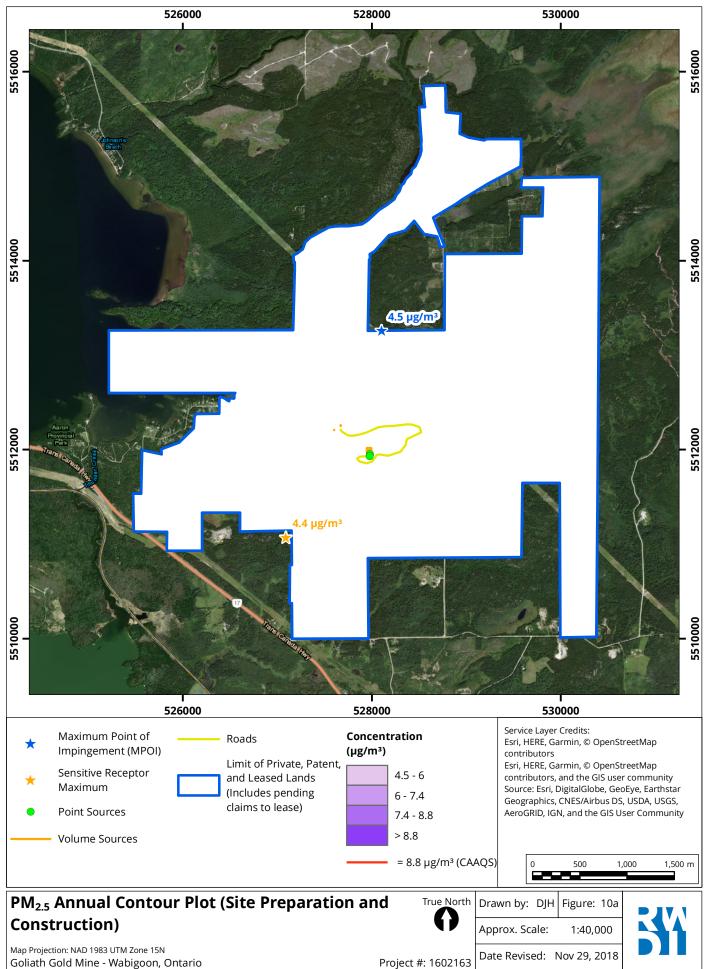
Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response	
TMI_883-AE(2)- 07	AE(2)-07	1	CEA Agency	Reference to EIS Guidelines:	Part 2, Sections 11.1.2, 11.4
				Reference to EIS / Appendix	Section 13.4; Appendix H-2, Section 3.2
				Cross- reference to Round 1 IRs	TMI_185-AE(1)-23, TMI_193-AE(1)-31
				Context and F	Rationale:
			 The response to IR# TMI_185B indicates that, in order to reduce noise levels on the event that they are unacceptable to nearby sensitive receptors, "mitigation measures will be developed as necessary based on field data collected as part of the complaint response process". The response to TMI_185C further states that a process for complaint resolution will be developed as part of a noise management plan "as part of the environmental compliance approval process". The Agency requires an understanding of likely mitigation measures that would be applied. 		
It is noted in Section 13 in accordance with Prov from Figure 6.4.6-1 that operations phase, a mo levels are met, along wi This information is need	ed in Section 13.4.3.1 of the revised EIS that ambient noise monitoring is expected to be conducted dance with Provincial approvals, but otherwise every three years during operations. As it appears, ure 6.4.6-1 that noise effects will occur in areas where access will not be restricted during the ns phase, a more stringent follow-up program is recommended to ensure that predictions of noise re met, along with proposed mitigation measures in case the noise levels are higher than predicted. fected by noise will remain as predicted in the EA.				
				Specific Ques	tion / Request for Information:
				annoyar	earest receptor around the project footprint, discuss potential mitigation measures to reduce ace or increase the quality of experience, and what metrics would be used to determine the on of these measures.
					e how Indigenous groups would be involved in the development of the noise management plan, and how complaints from Indigenous people related to noise would be managed.
				Response:	
				meet the applicab	and vibration assessment is based on conservative assumptions that allow for sound levels that will le guideline levels in spite of natural operational variations; hence a specific need for monitoring or es is not anticipated. The reference in the EIS to monitoring is a voluntary commitment by the

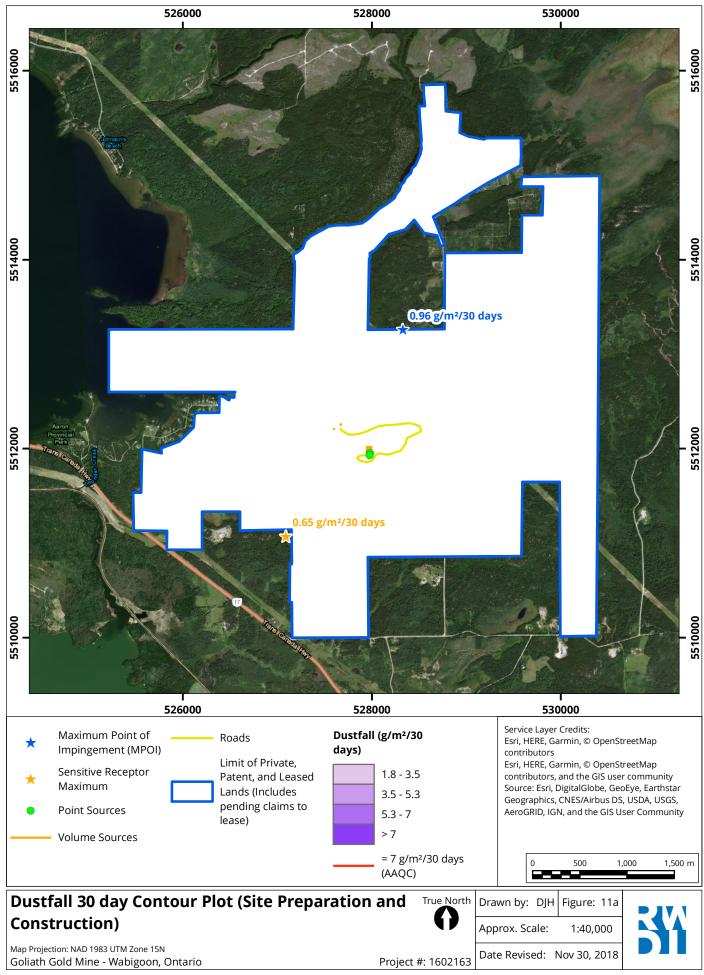


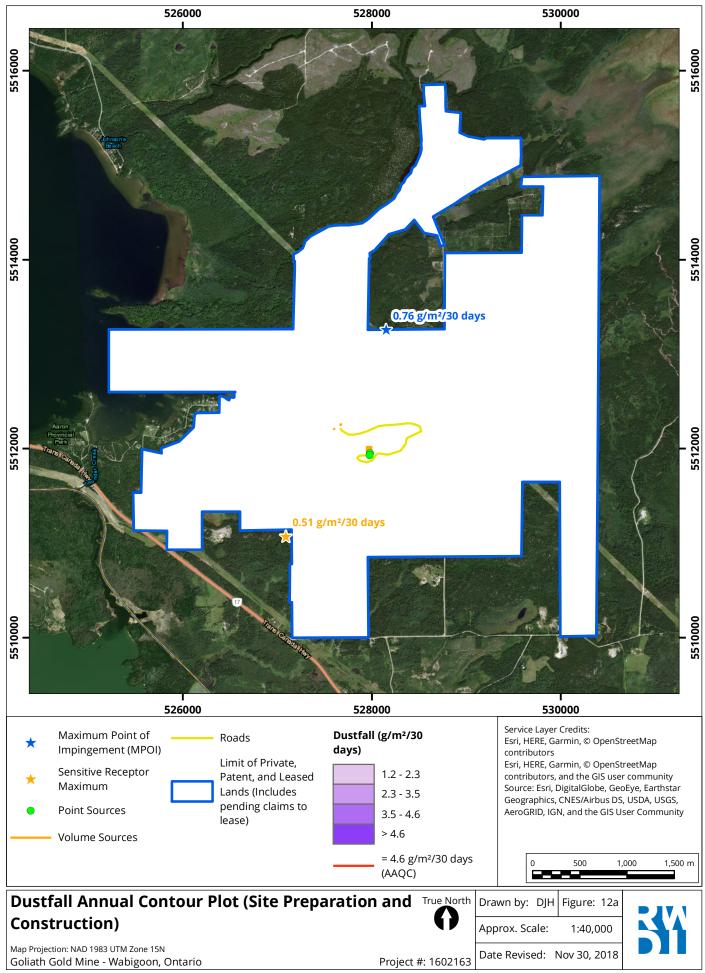

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				proponent to improve trust in the results of the assessment and to address issues that may arise in the future that were not known at this time.
				Hence, sound or vibration monitoring could be conducted if:
				Required by the Provincial permitting process.
				• Required by the site operator; currently this is anticipated as outlined in Section 13.4.3.1 of the revised EIS.
				 In the event that a complaint is recorded and subsequently confirmed per the noise management plan. In this case, monitoring would be used to validate the extent of any excess of the applicable guidelines and would inform the required approach for mitigation.
				Compliance with the applicable guideline limits will be based on the same metrics evaluated in the EA as described in Section 13.4.3.1, unless specifically prescribed by a regulator (e.g., the Province).
				If any of the above scenarios result in levels above the applicable guideline levels at a sensitive receptor, action would be taken to mitigate the excess. The specifics of the mitigation plan would be subject to many factors such as the particular source, the position relative to the sensitive receptor, and the types of practical measures possible. As a result, at this stage in the assessment, hypothetical mitigation techniques are too numerous to specifically identify. However, they could include (in order of preference):
				 At source mitigation such as mufflers, silencers, baffles, barriers, or alterations in operations processes (eg, reduced blast size, changes in operating time).
				 Intermediate mitigation such as property line barriers (eg, berms or walls).
				 At receptor mitigation such as barriers, upgraded façade or window construction.
				<u>Part B.</u> A noise management plan would include items such as the complaint process, communications process, and types of potential actions. In preparing the noise management plan, Treasury Metals will engage with affected stakeholders, including members of Indigenous communities. A key aspect of the plan would be tracking and responding to noise complaints. All complaints received under a noise management plan would need to be confirmed prior to specific action being taken. Based on the assessment results, predicted levels are below the applicable thresholds and and any anticipated complaints will be dealt with through the appropriate channels using scientifically based support.
				Indigenous people are expected to have the same access to the noise management plan as any other person. In any instance of expressed noise concern by a member of the indigenous community or public, fully understanding the concern and communicating the actions, investigations, and results of those will be key. Hence, communication is a critical part of all complaint investigation and noise management. All complaints would be assessed relative to the applicable guideline levels identified in the assessment or as required by Provincial regulation.
				Agency Comment on Draft Response
				None Received

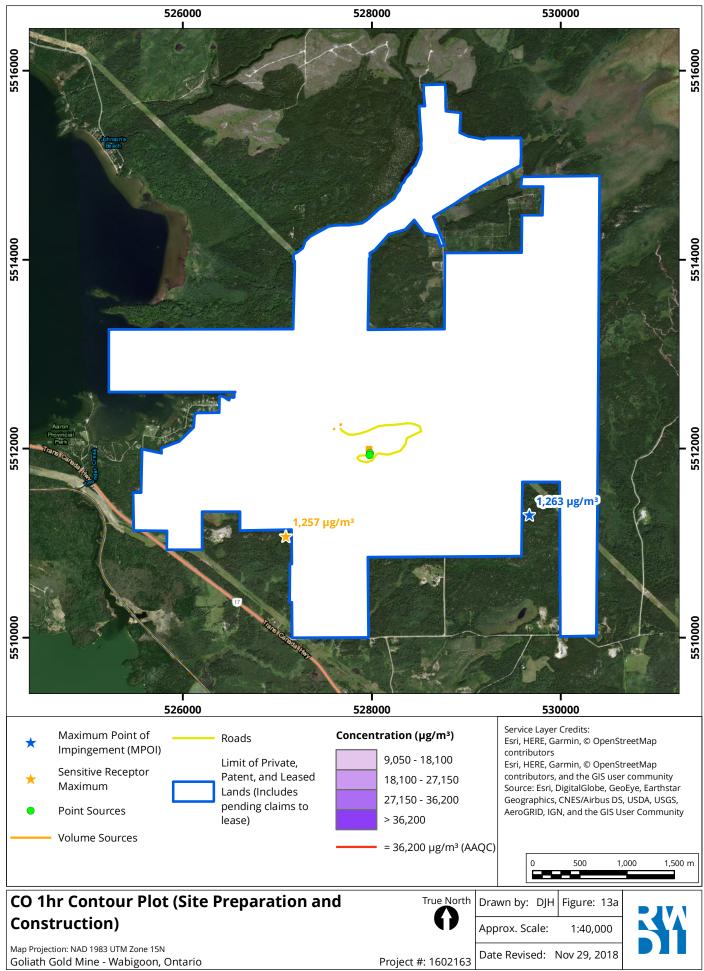


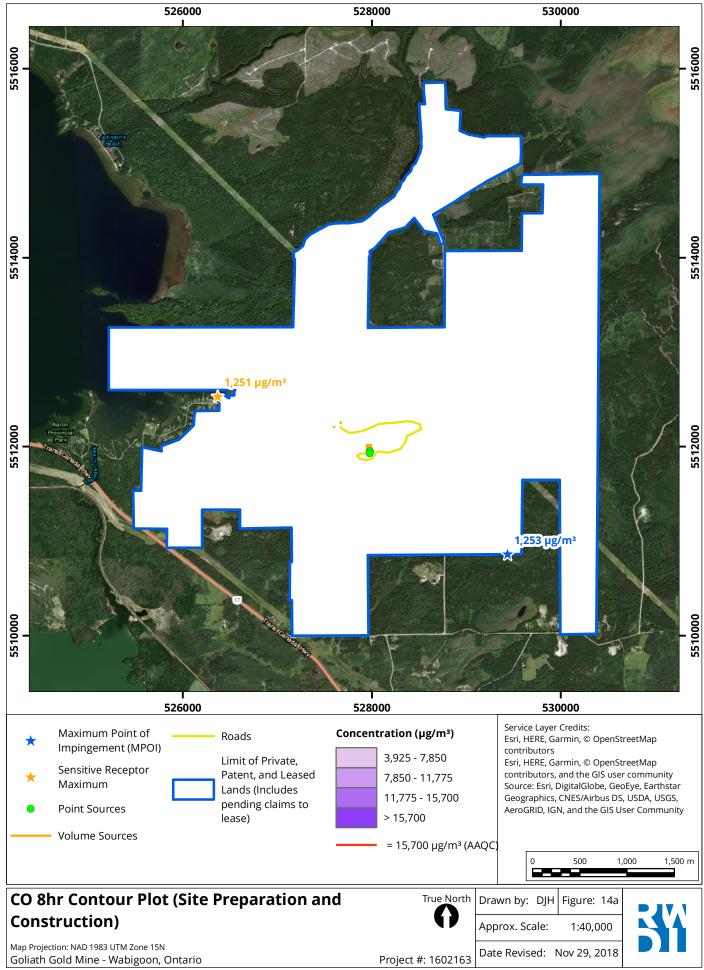

Unique Identifier	Agency IR #	Annex	Agency / Group / Stakeholder	Cross Reference / Comment / Information Request / Response
				Revised Response Not required. Agency accepted Draft Response.

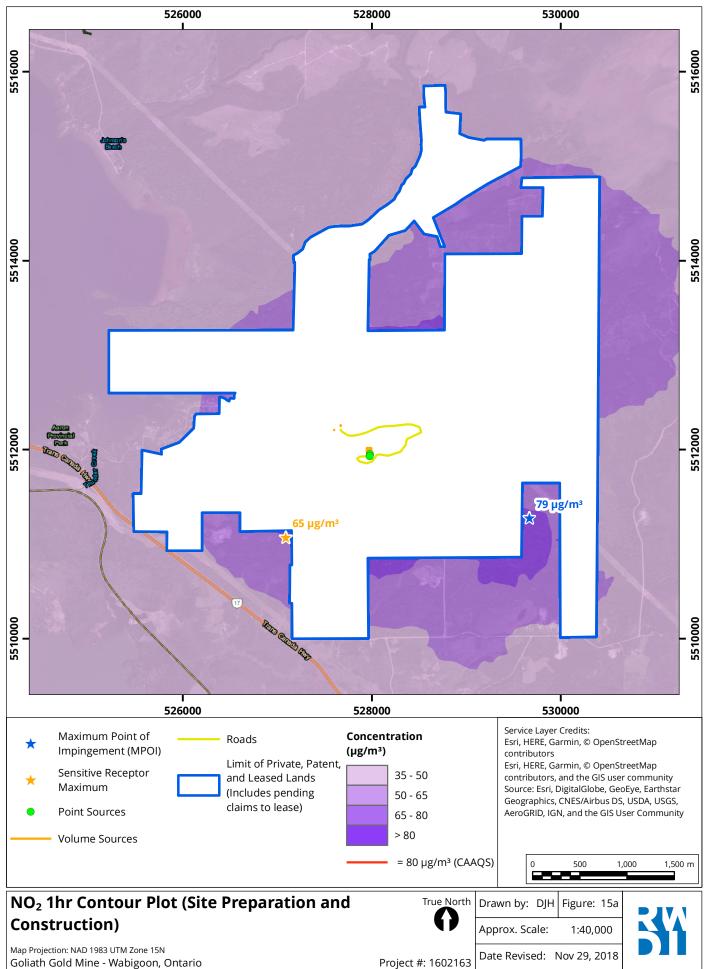


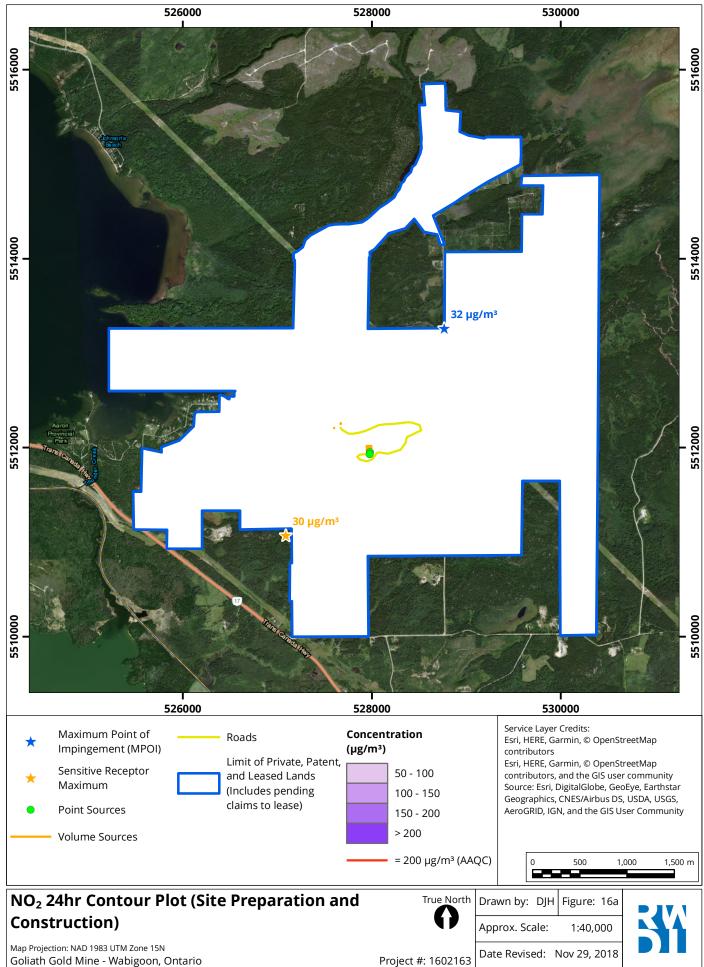


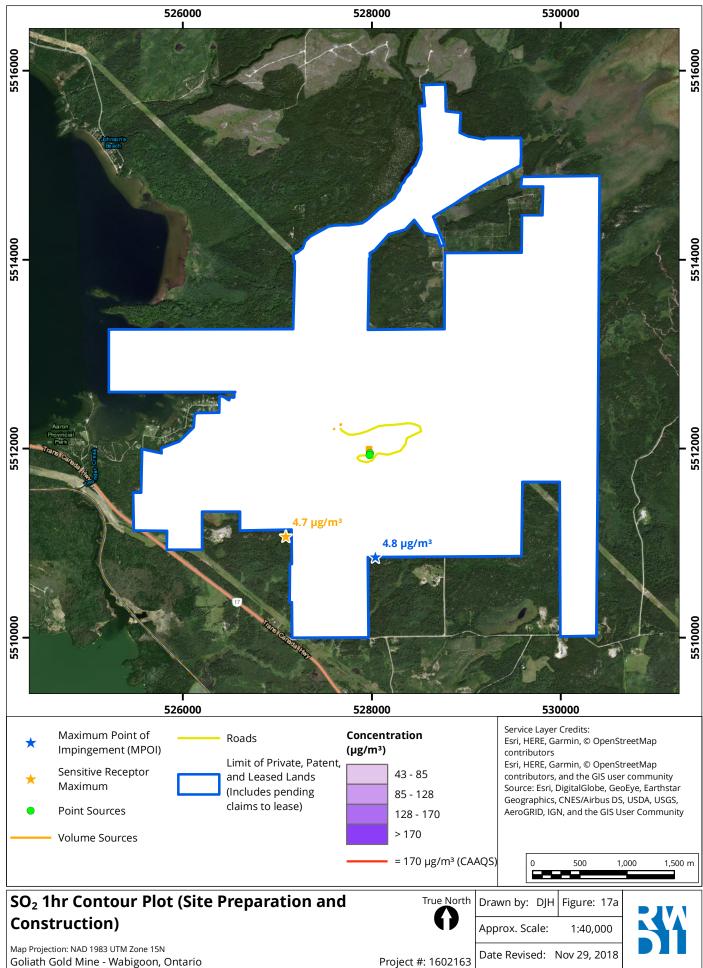


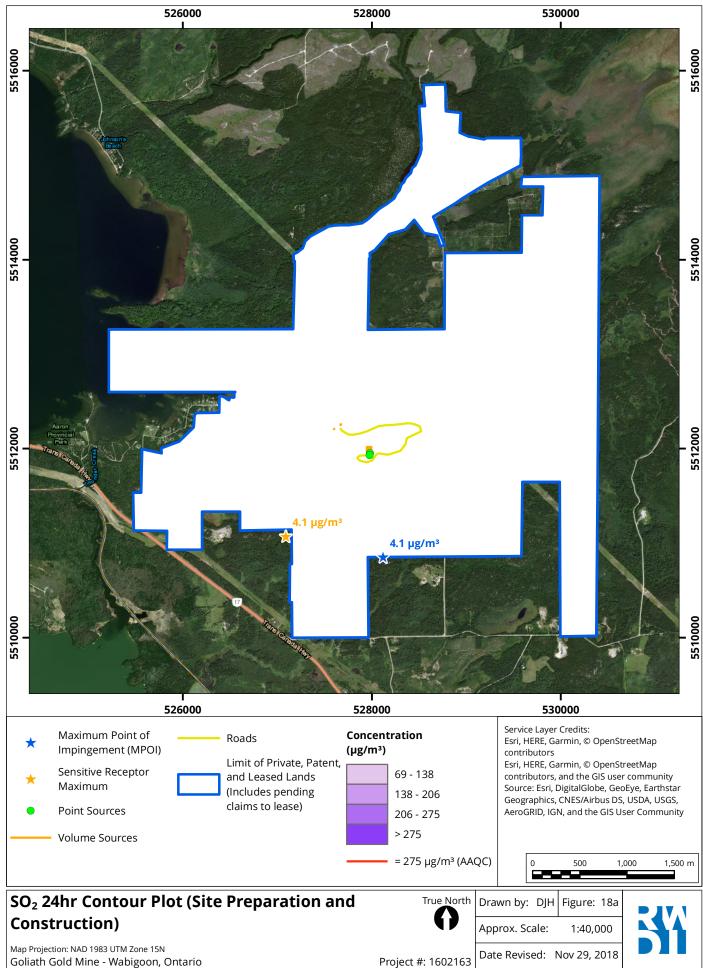


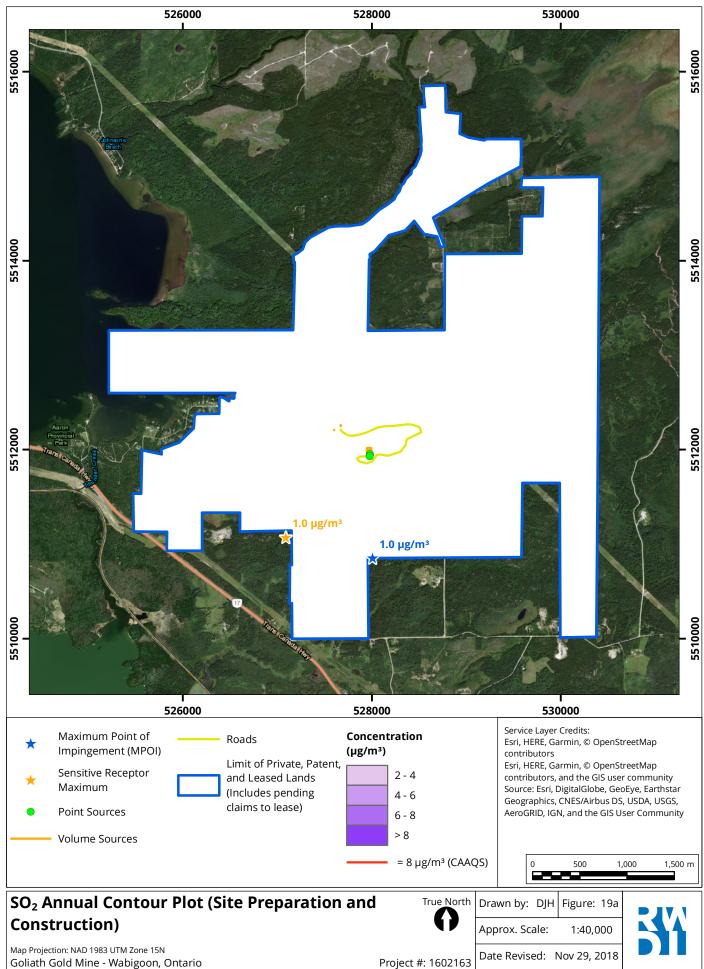


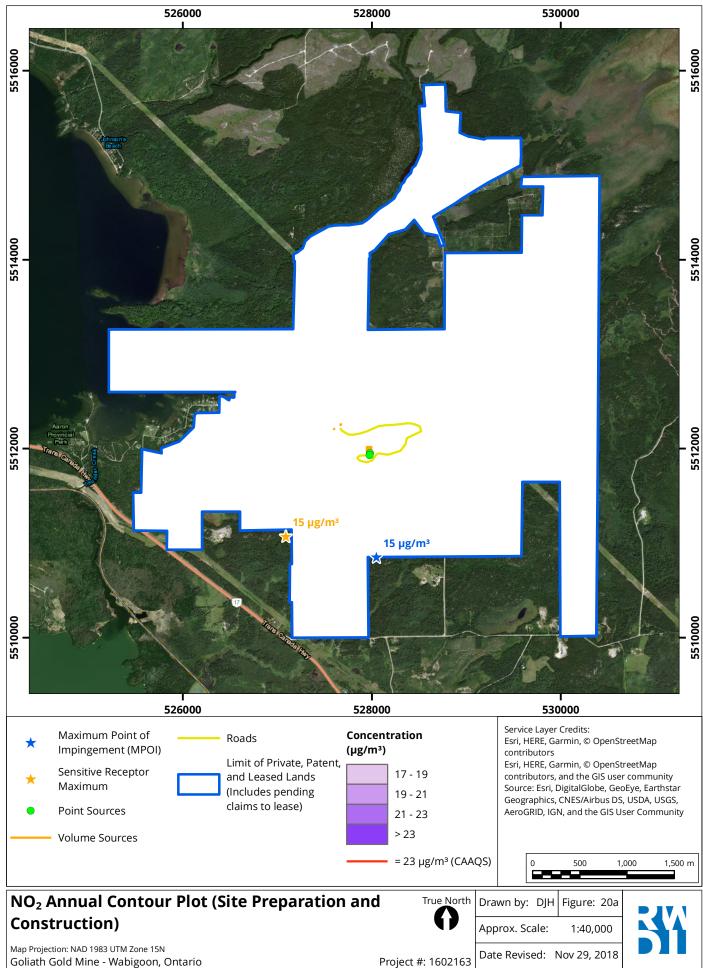


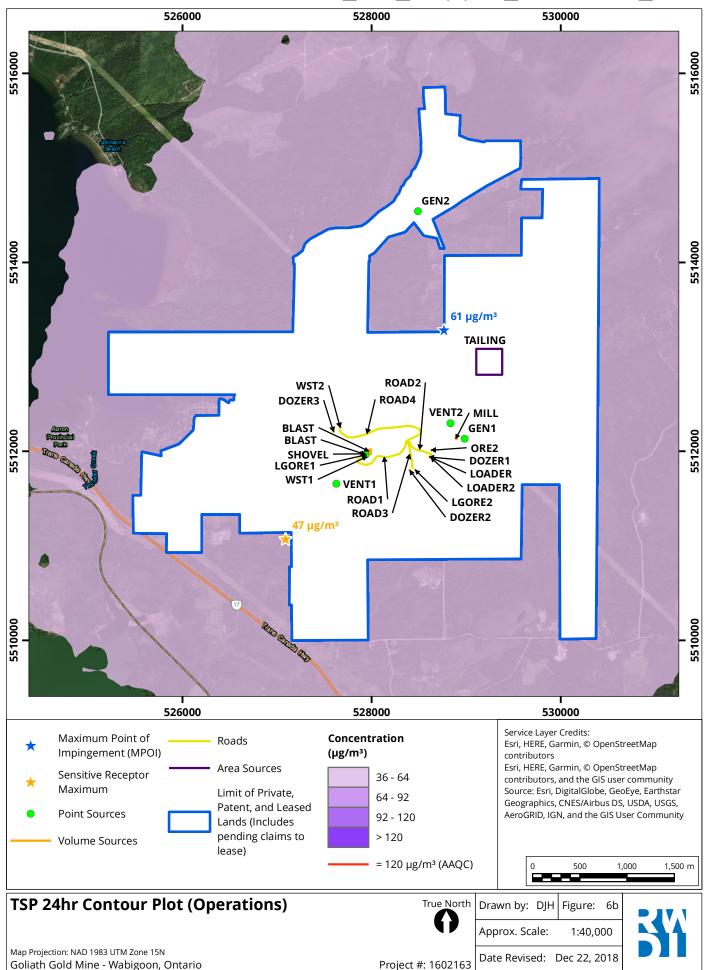


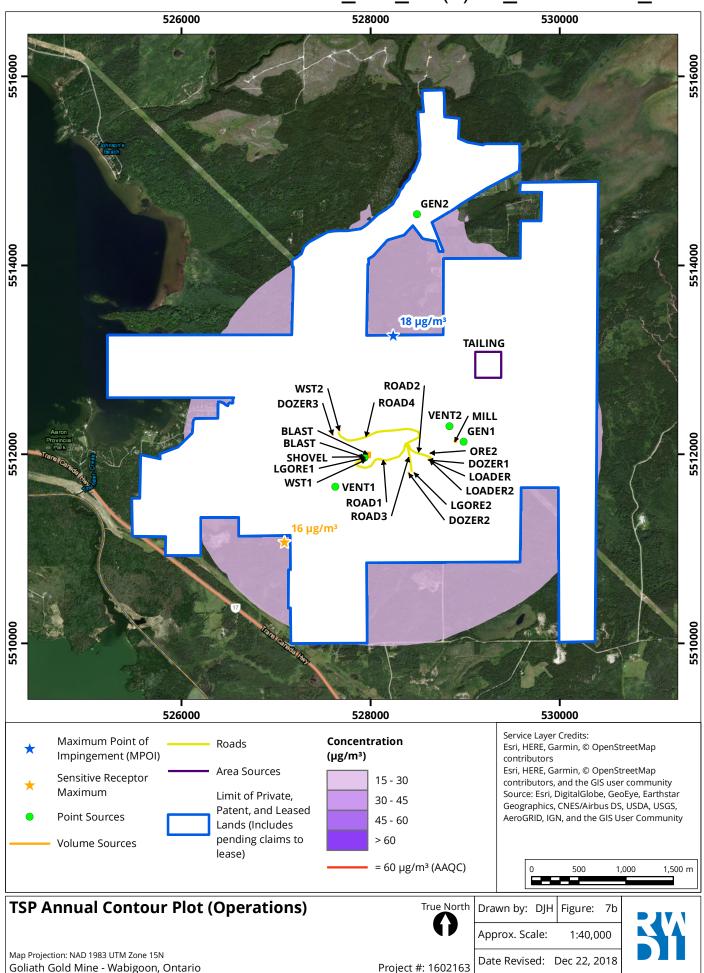


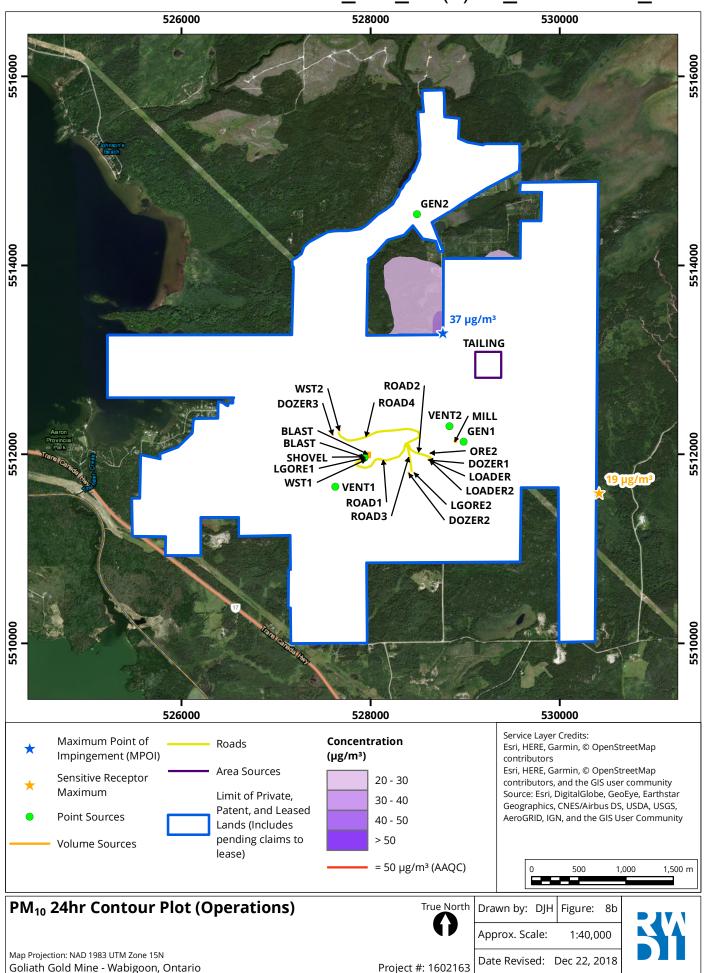


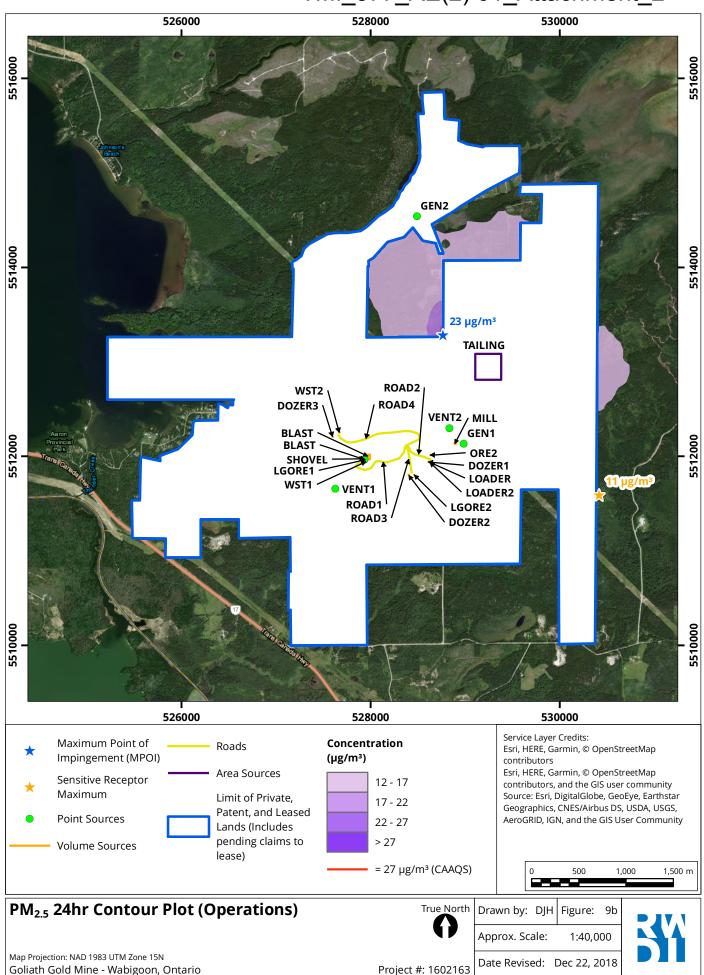


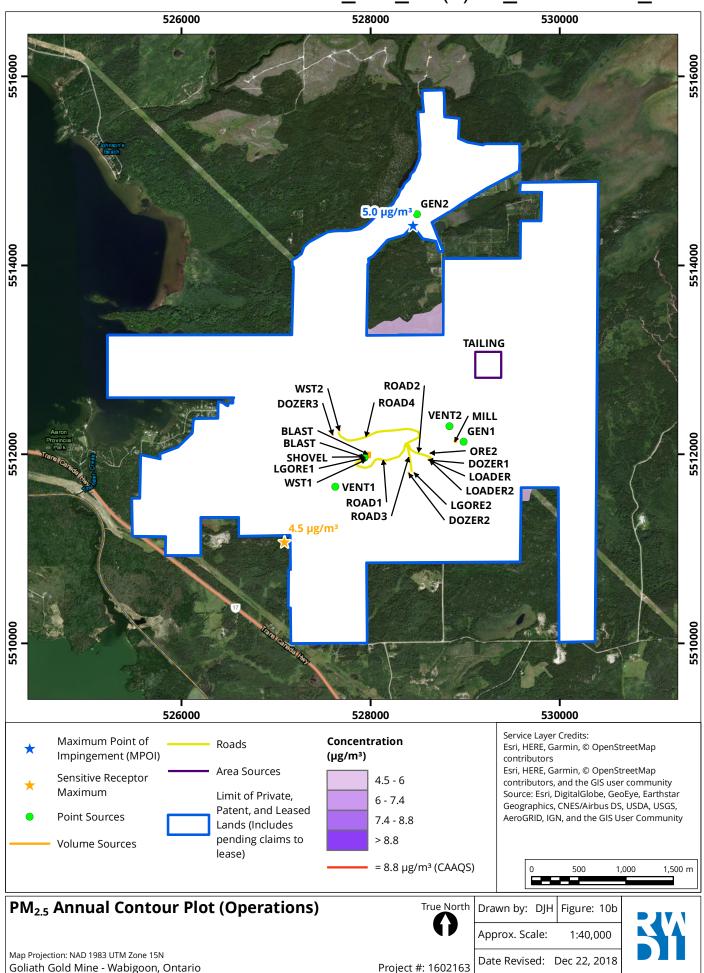


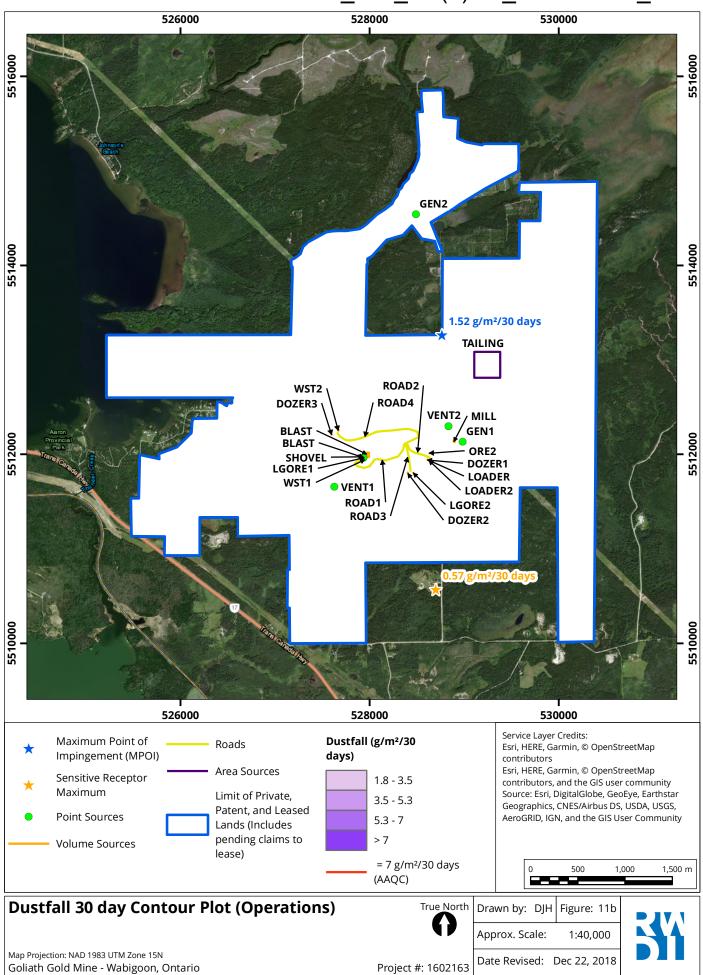


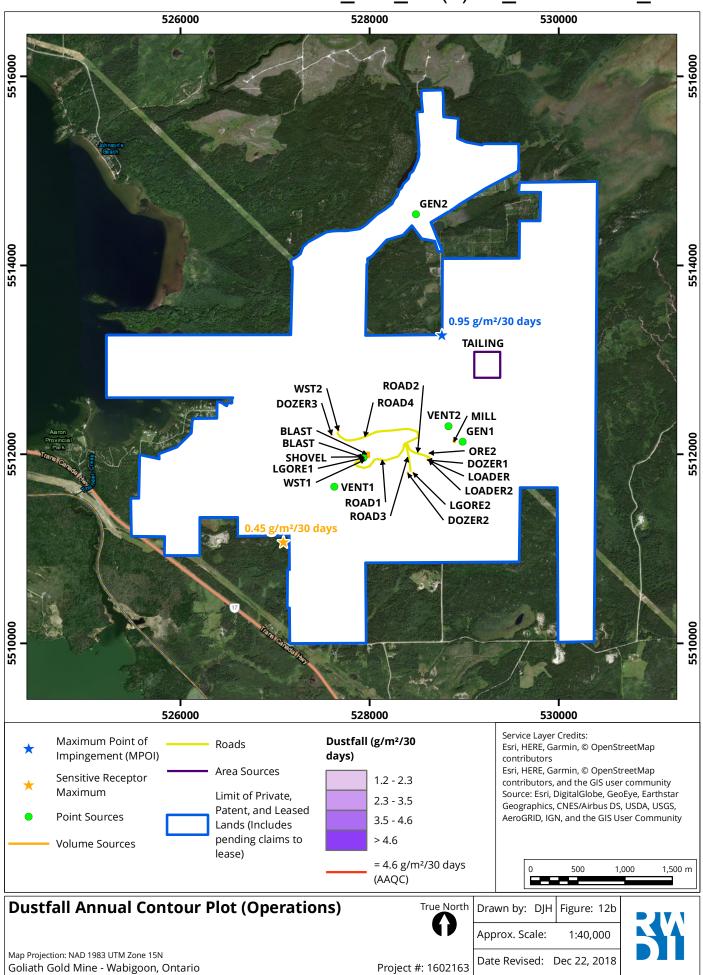


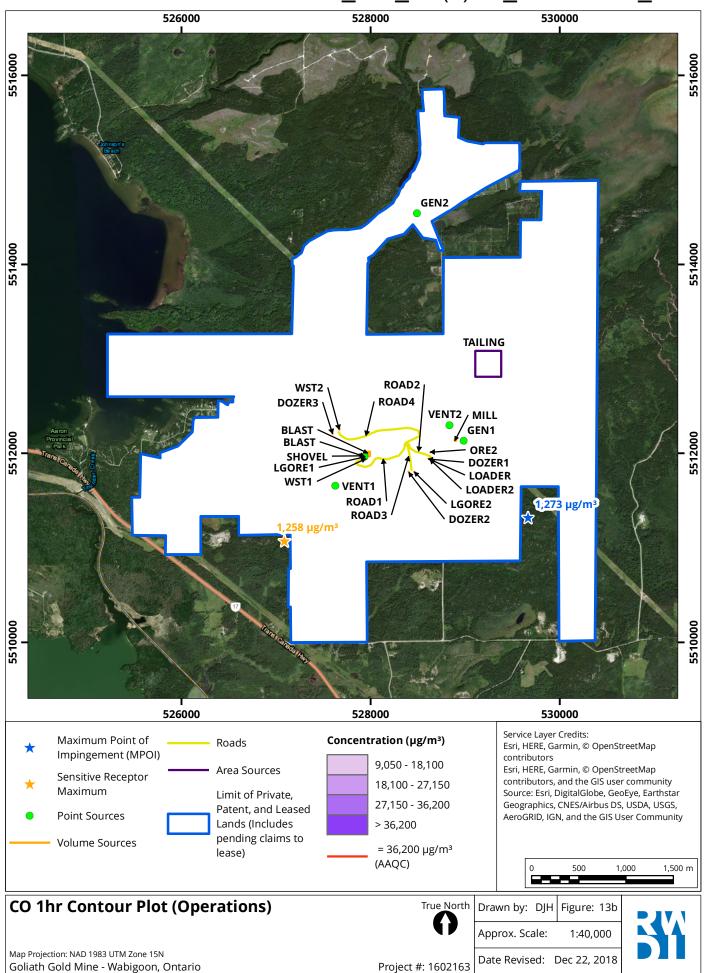


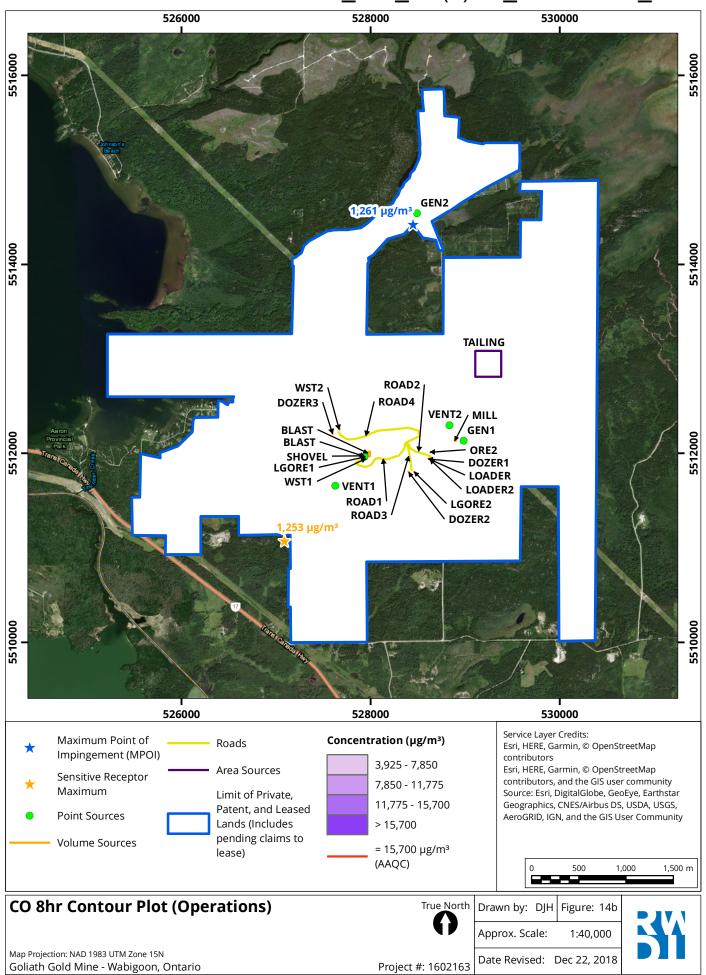


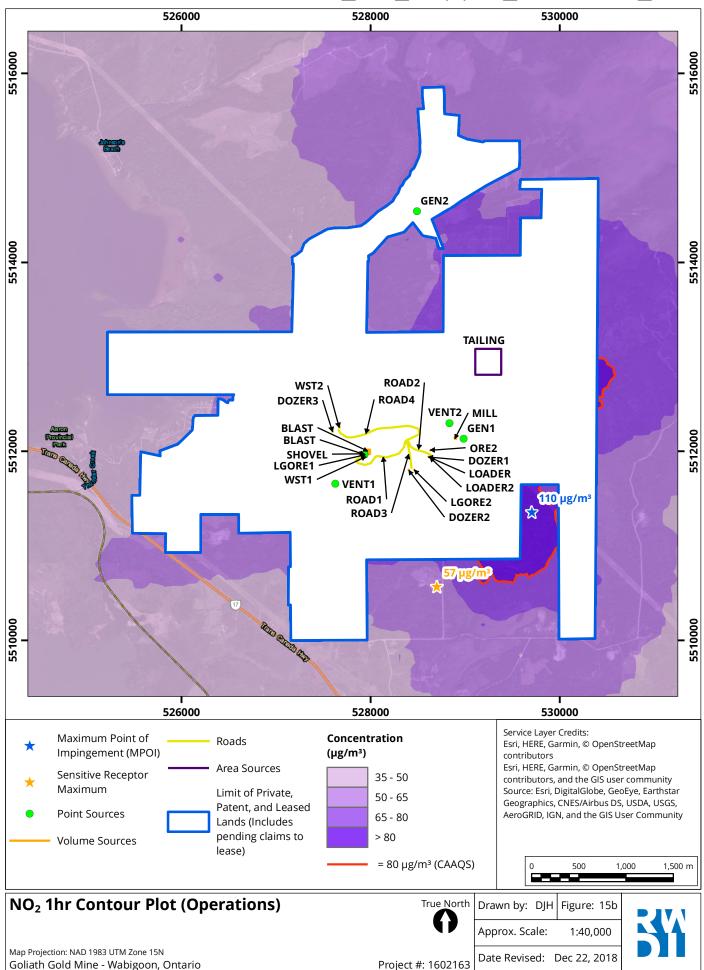


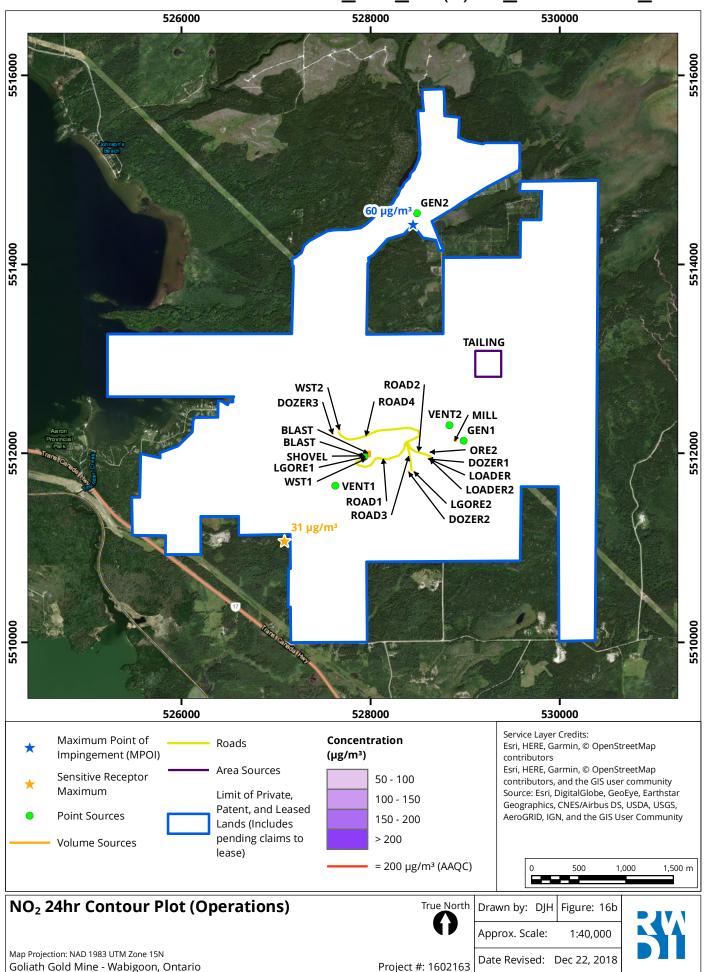


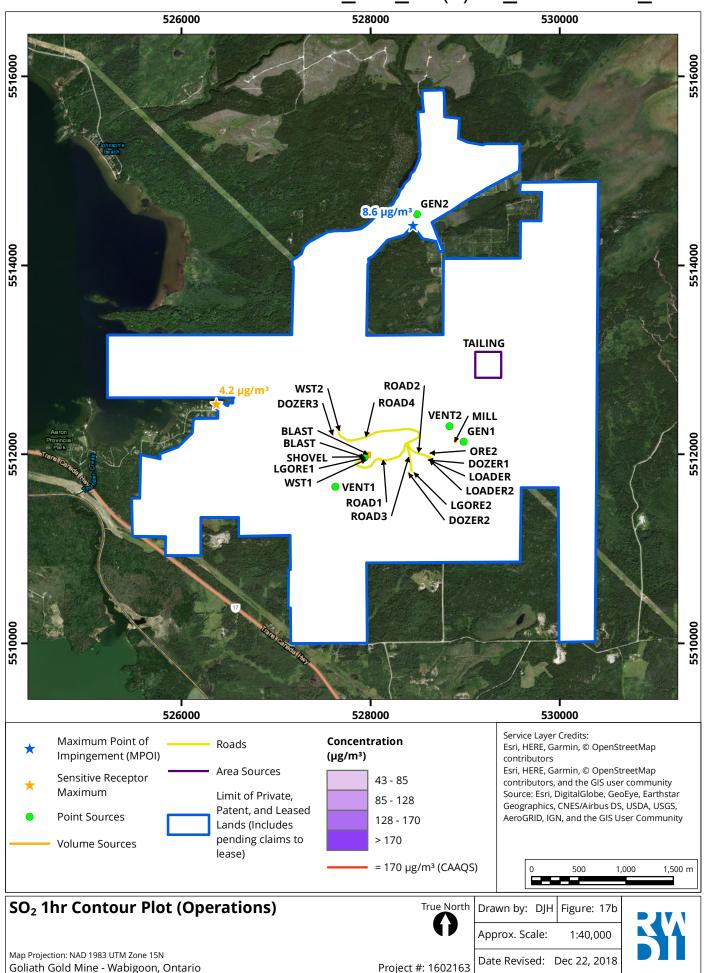


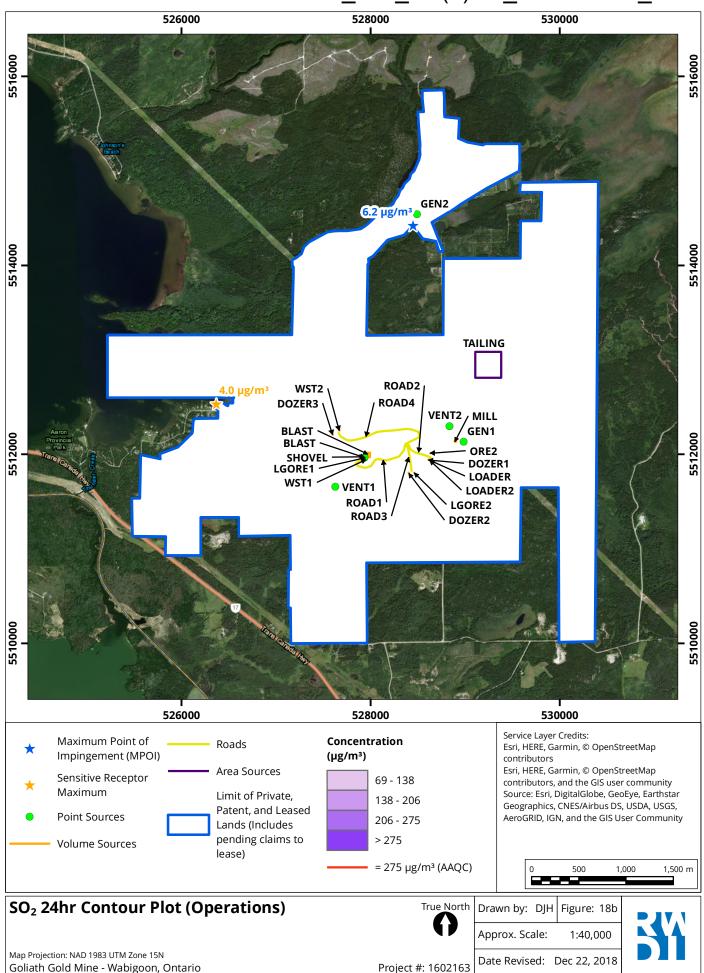


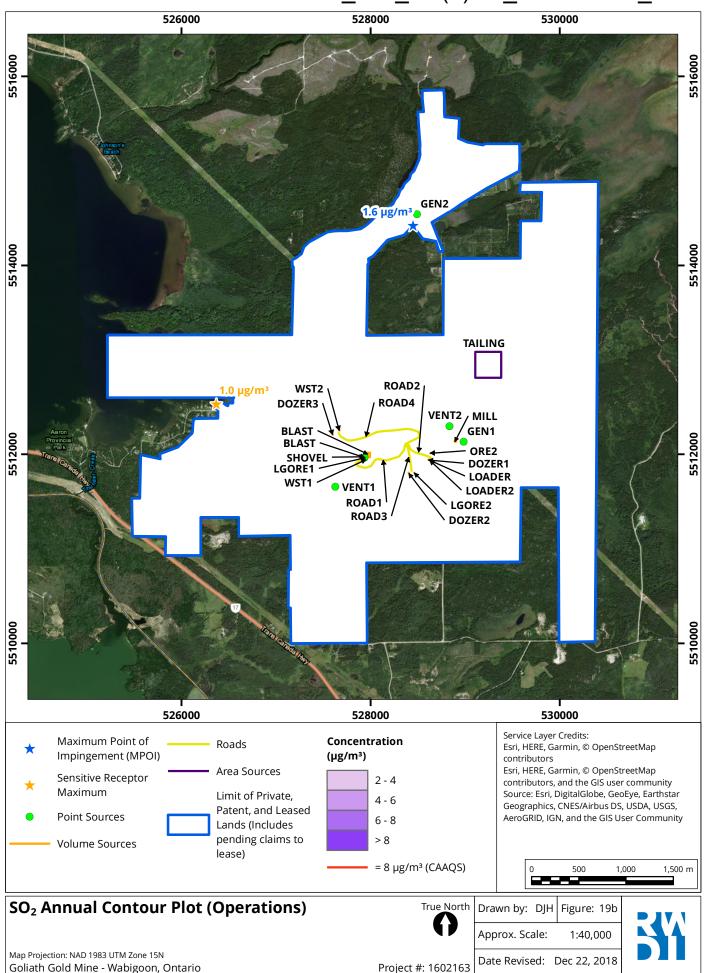


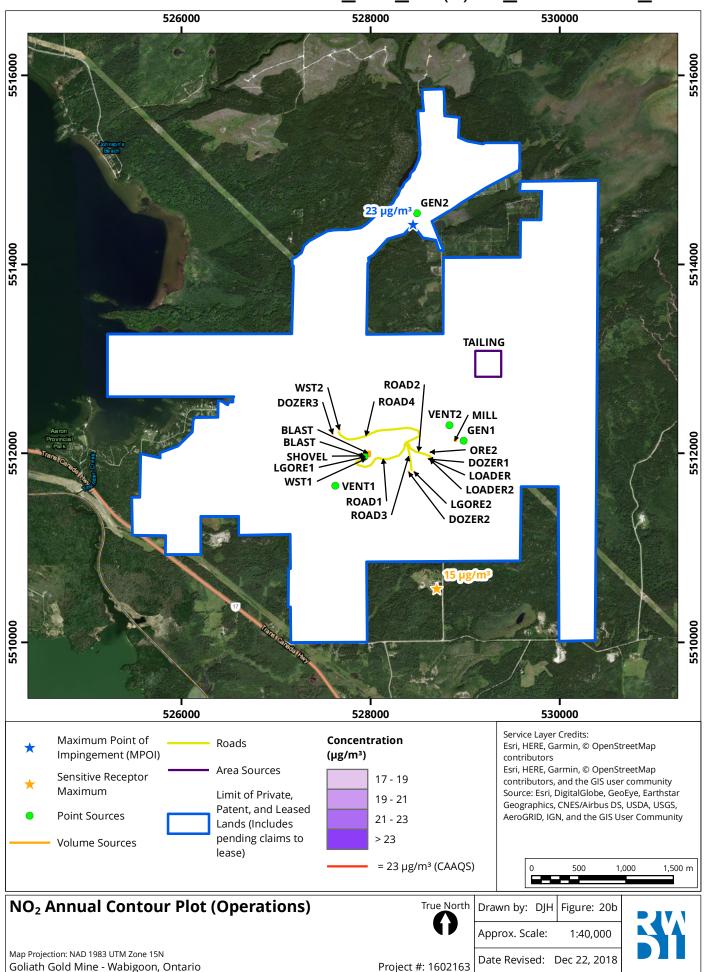


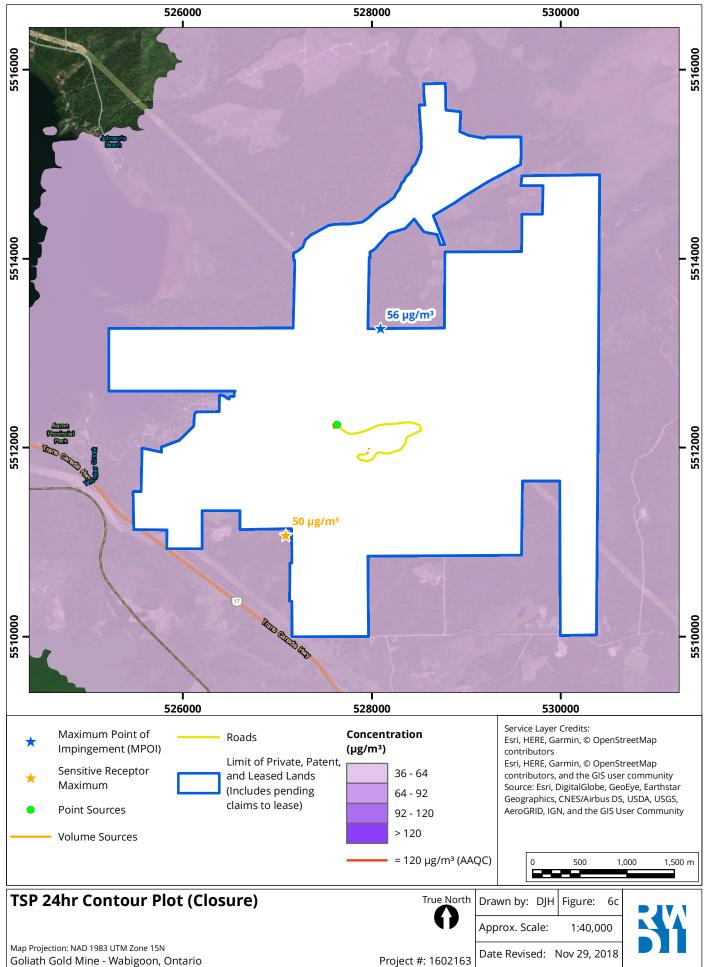


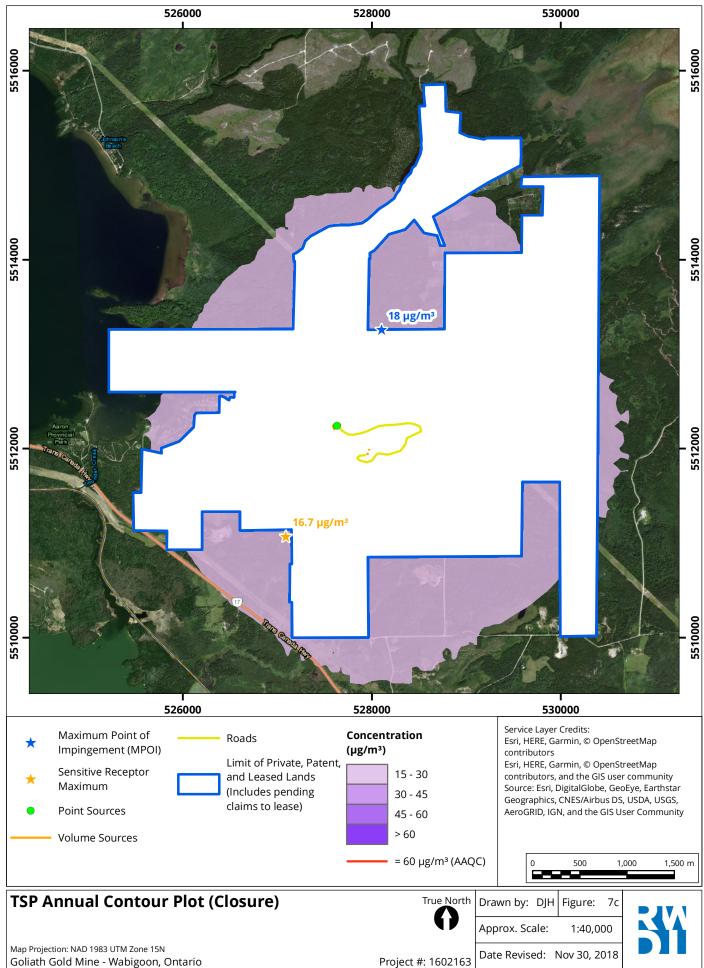


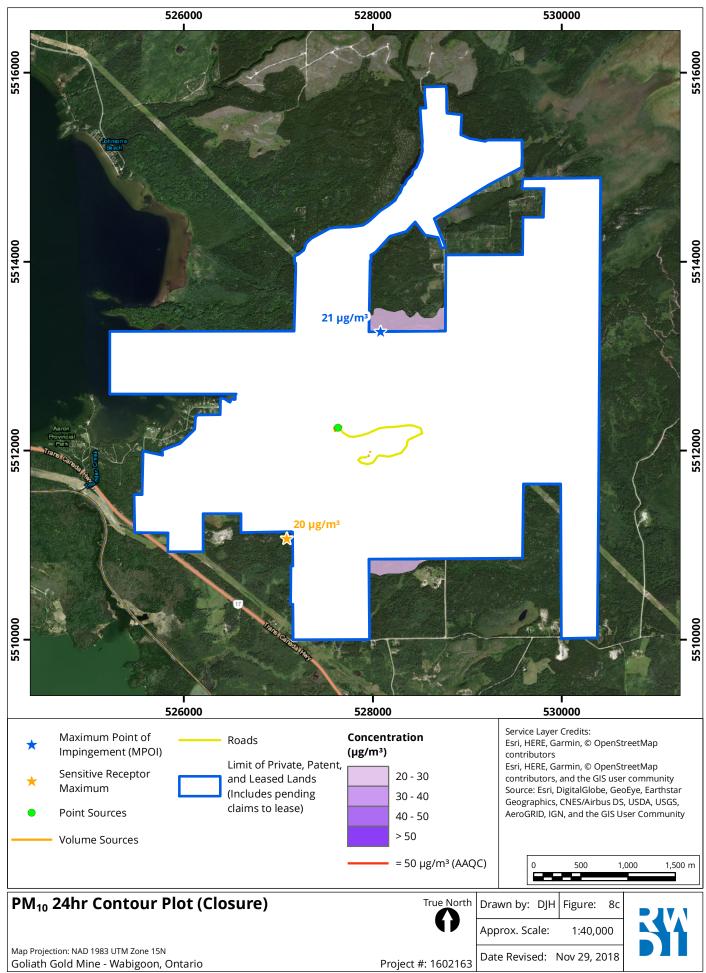


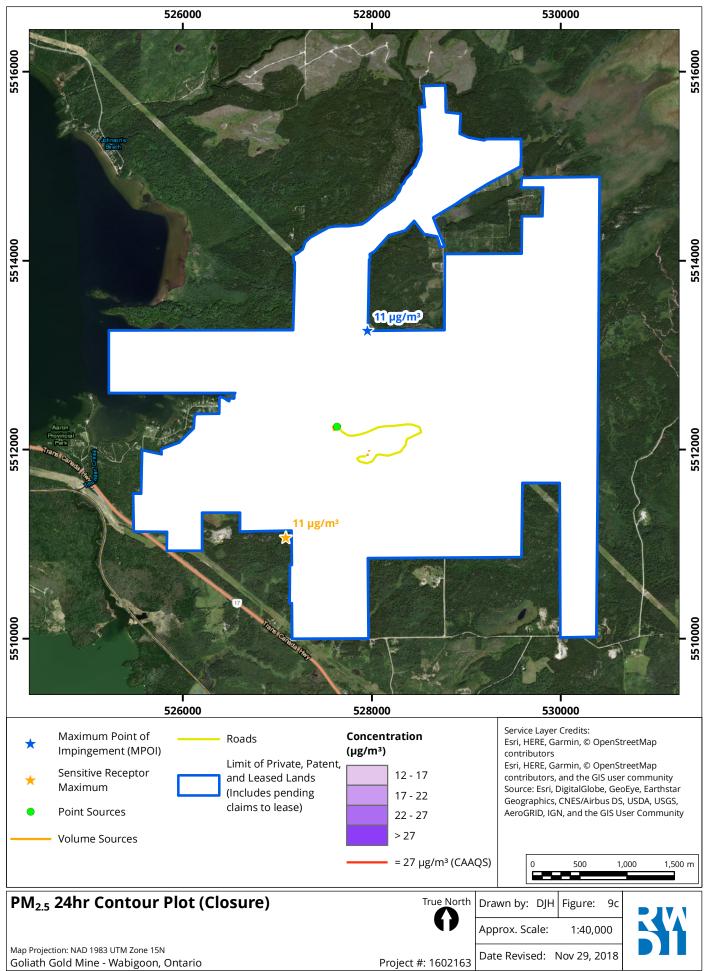


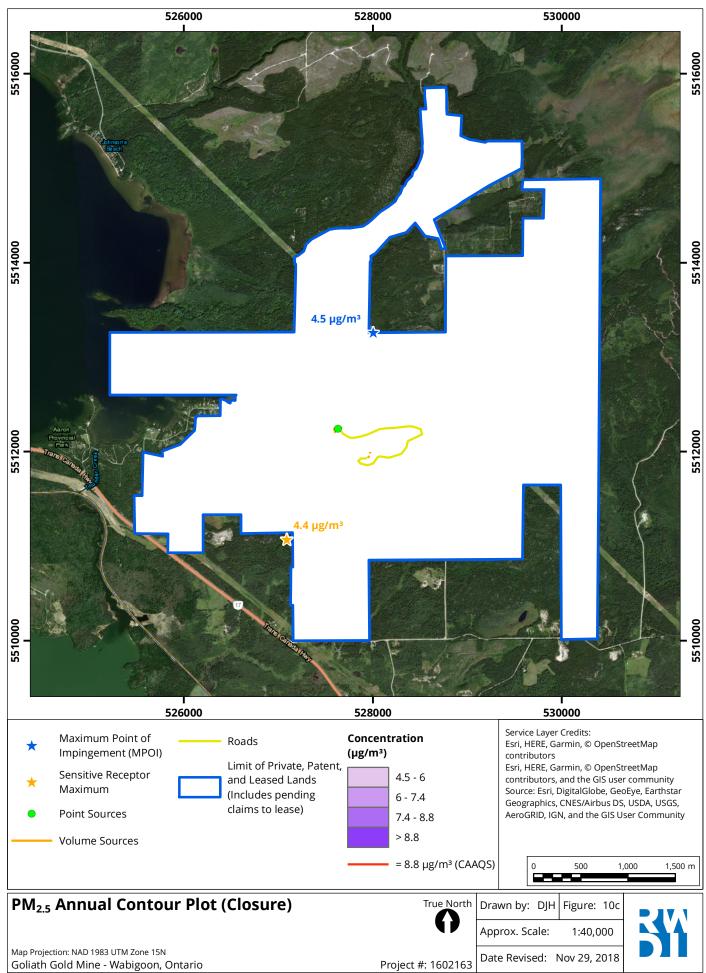


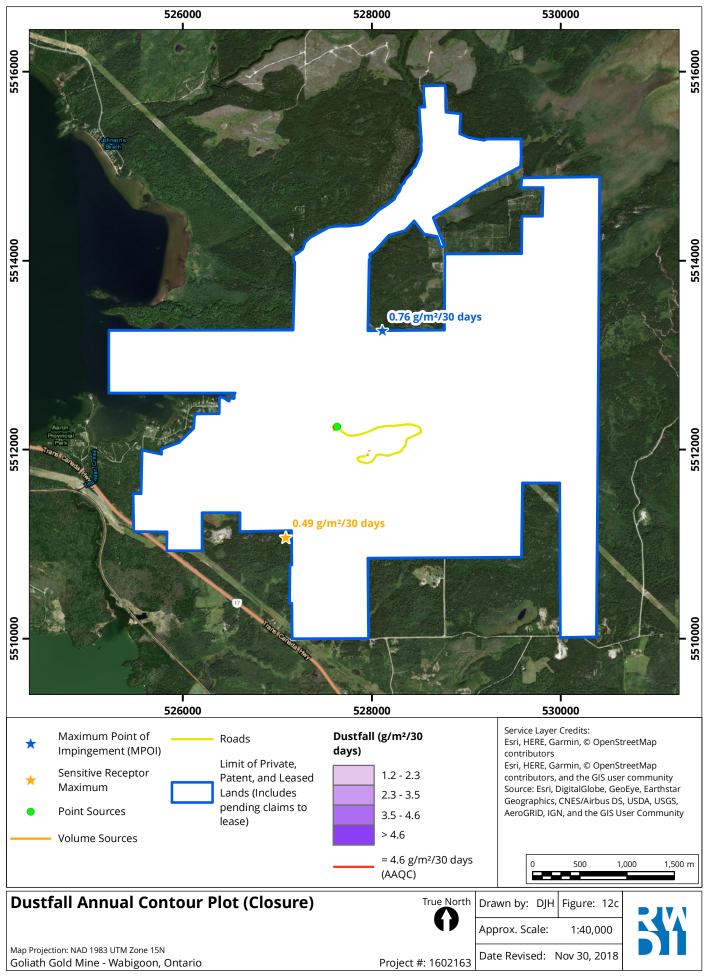


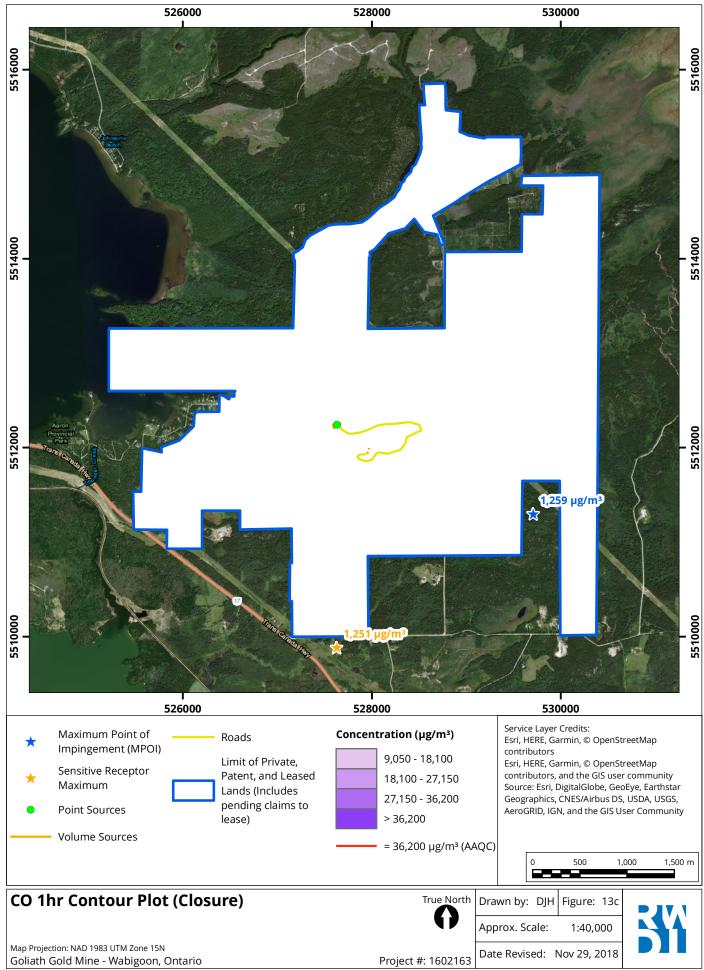


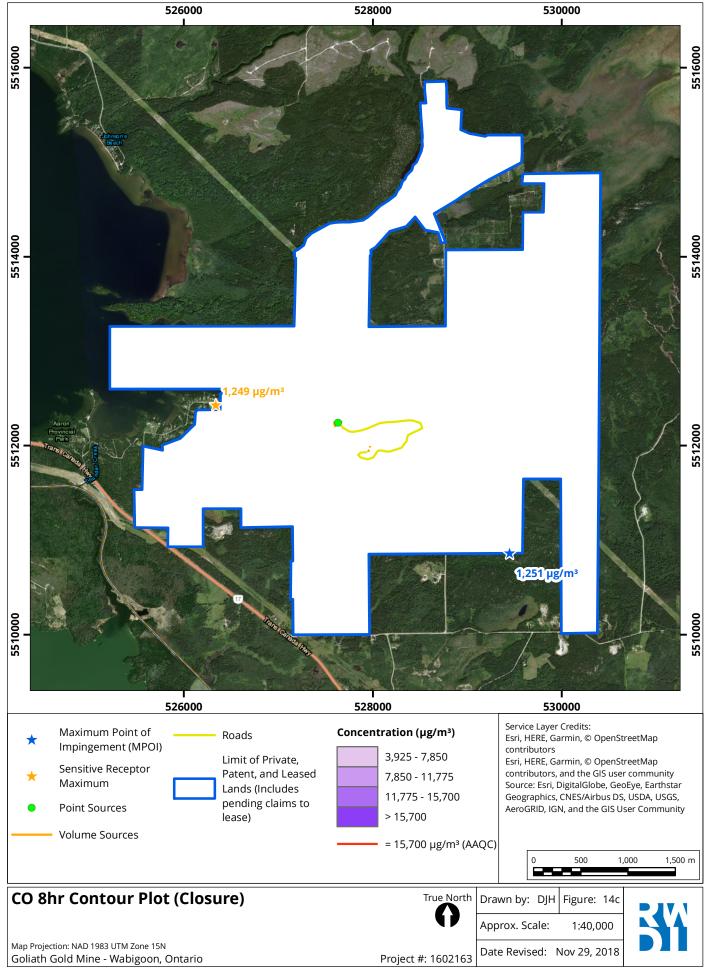


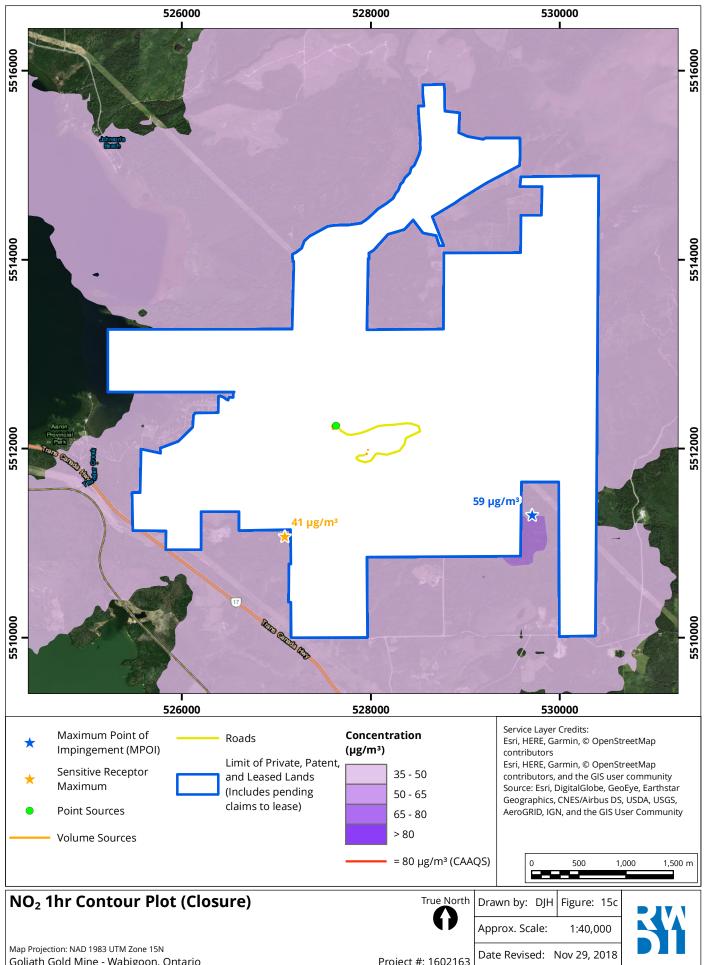


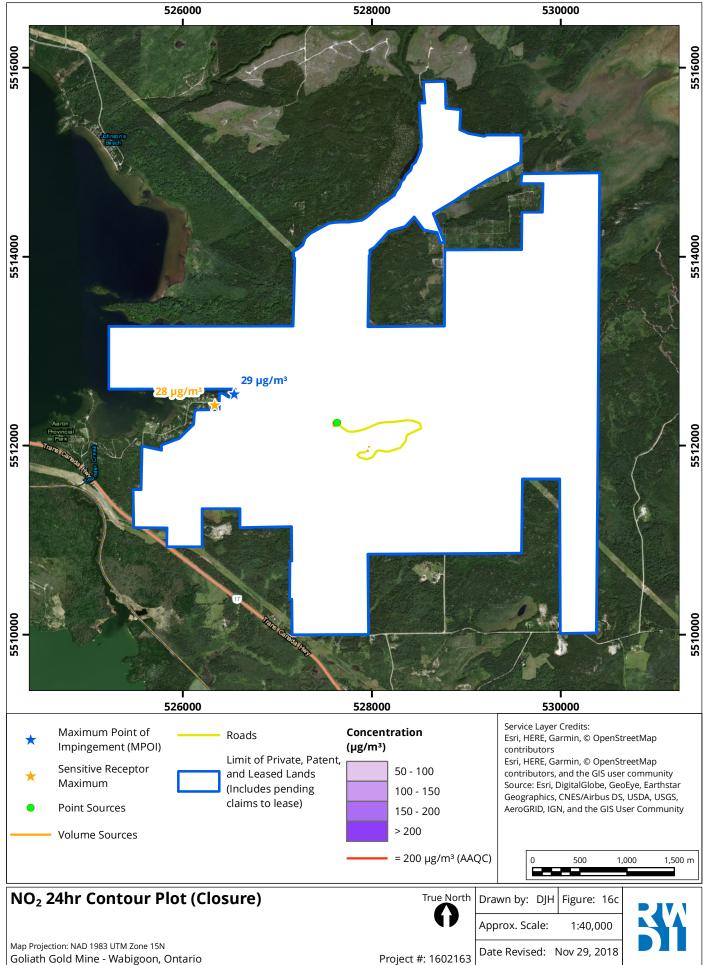


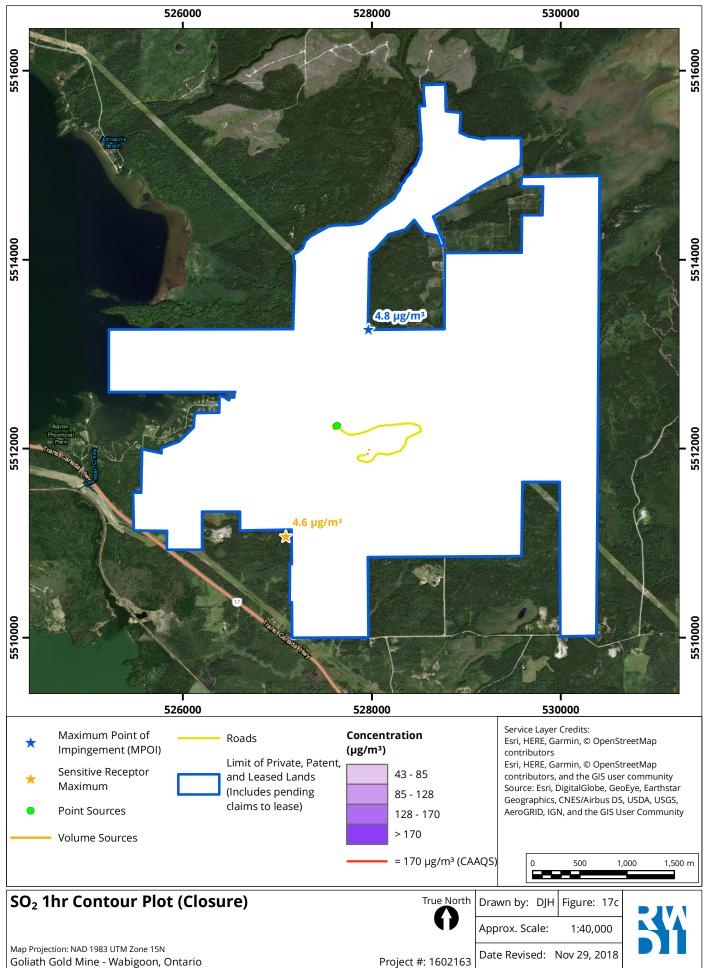


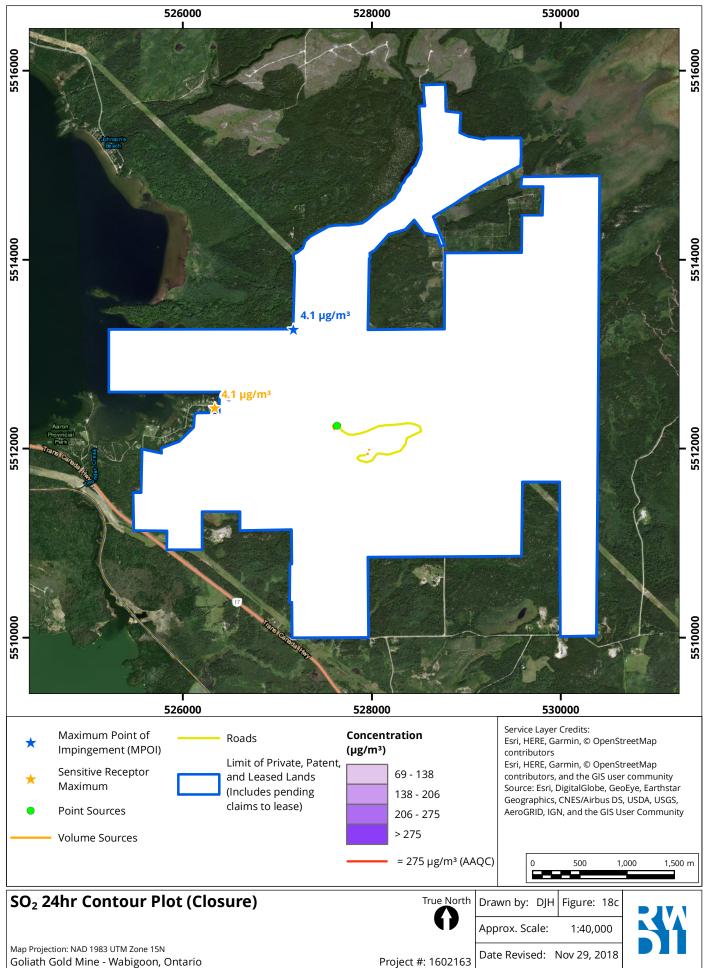


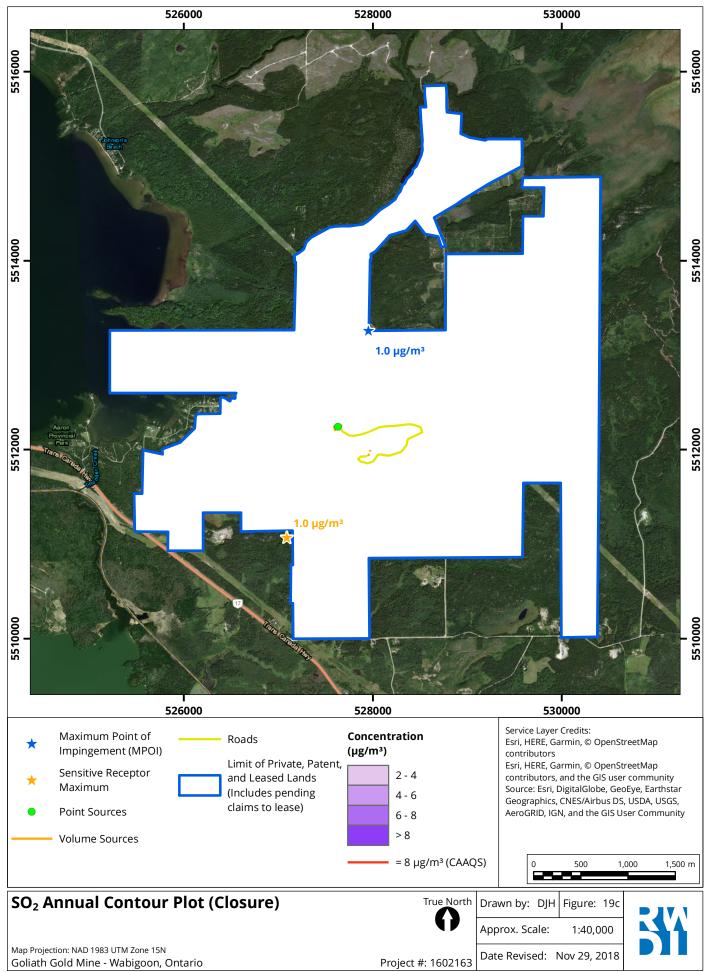


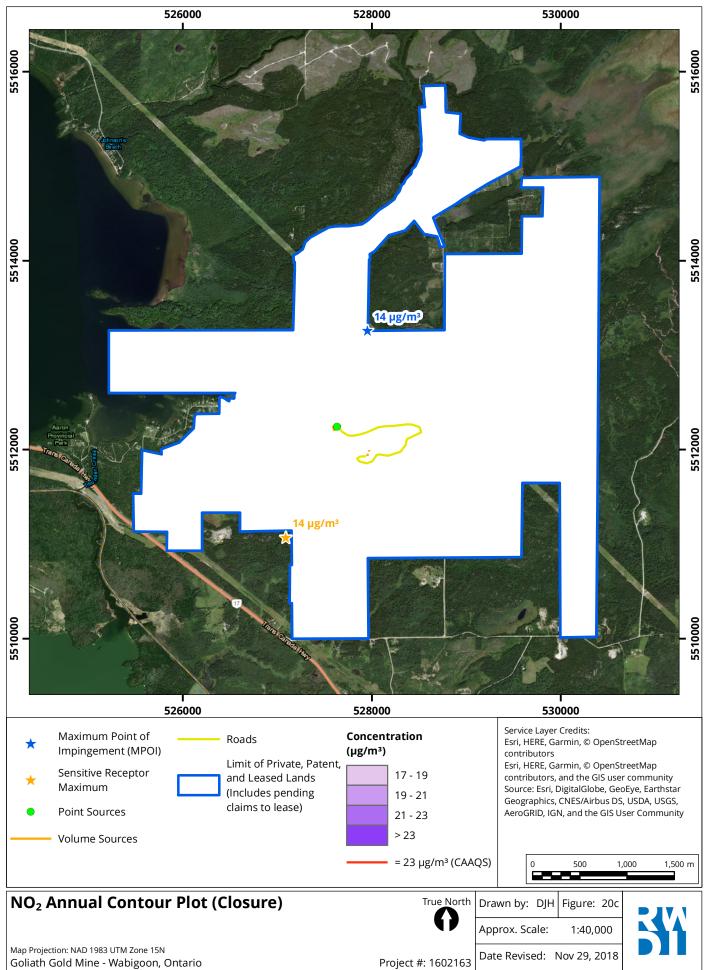


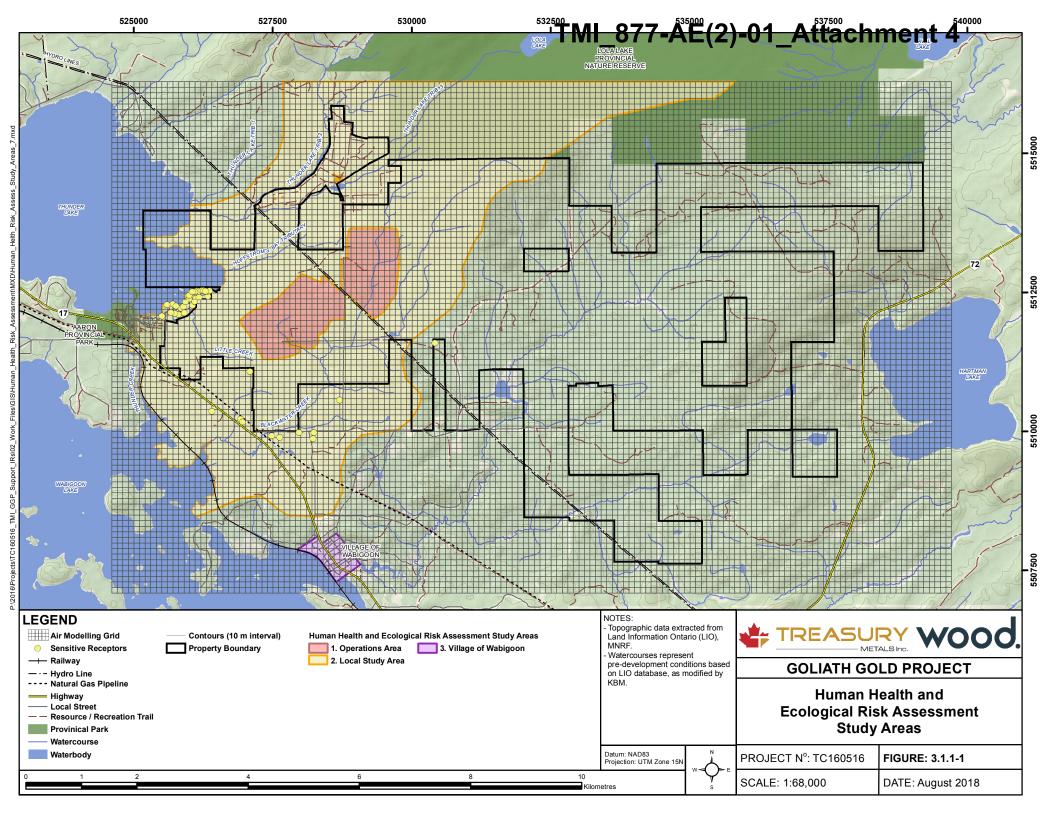


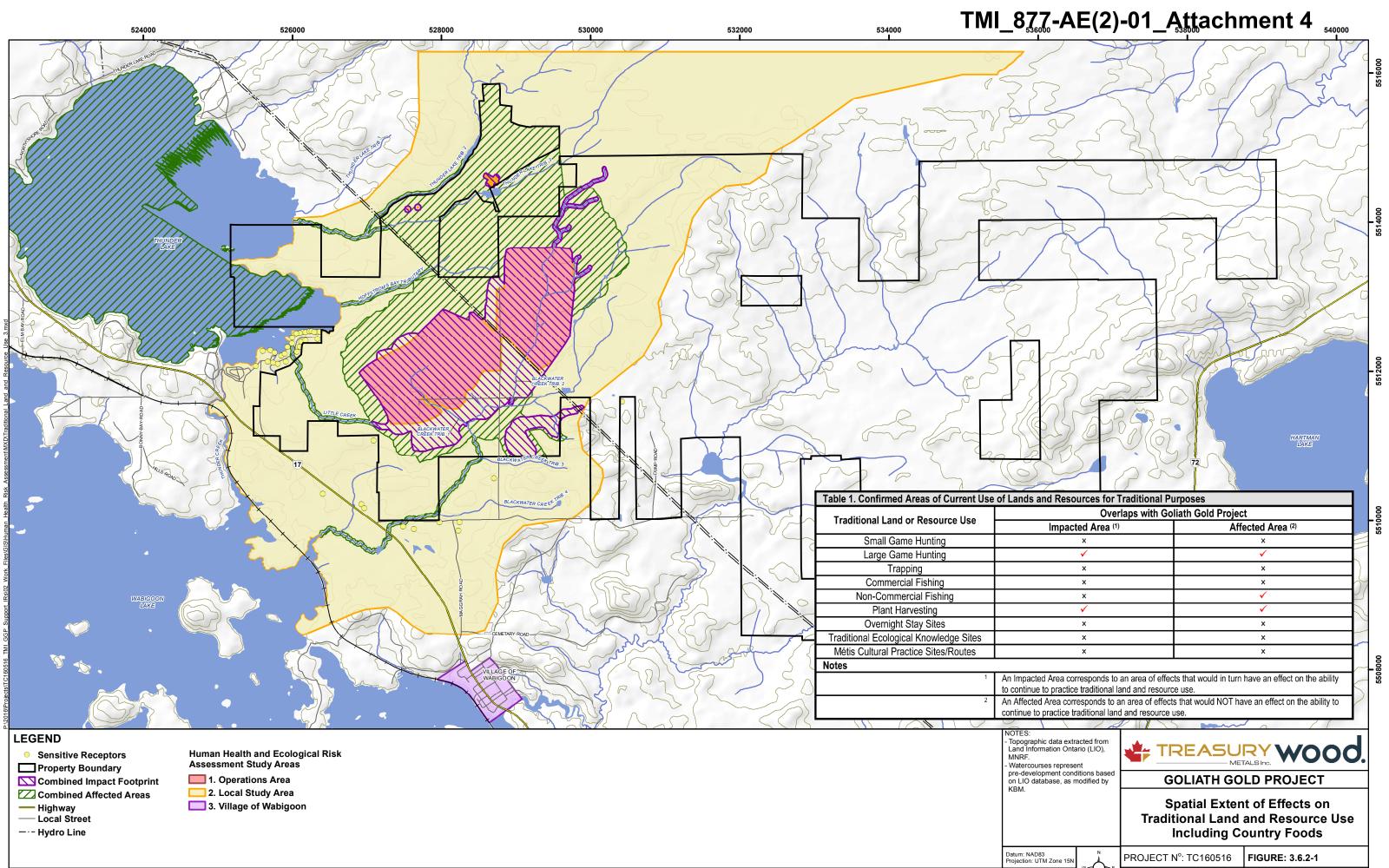


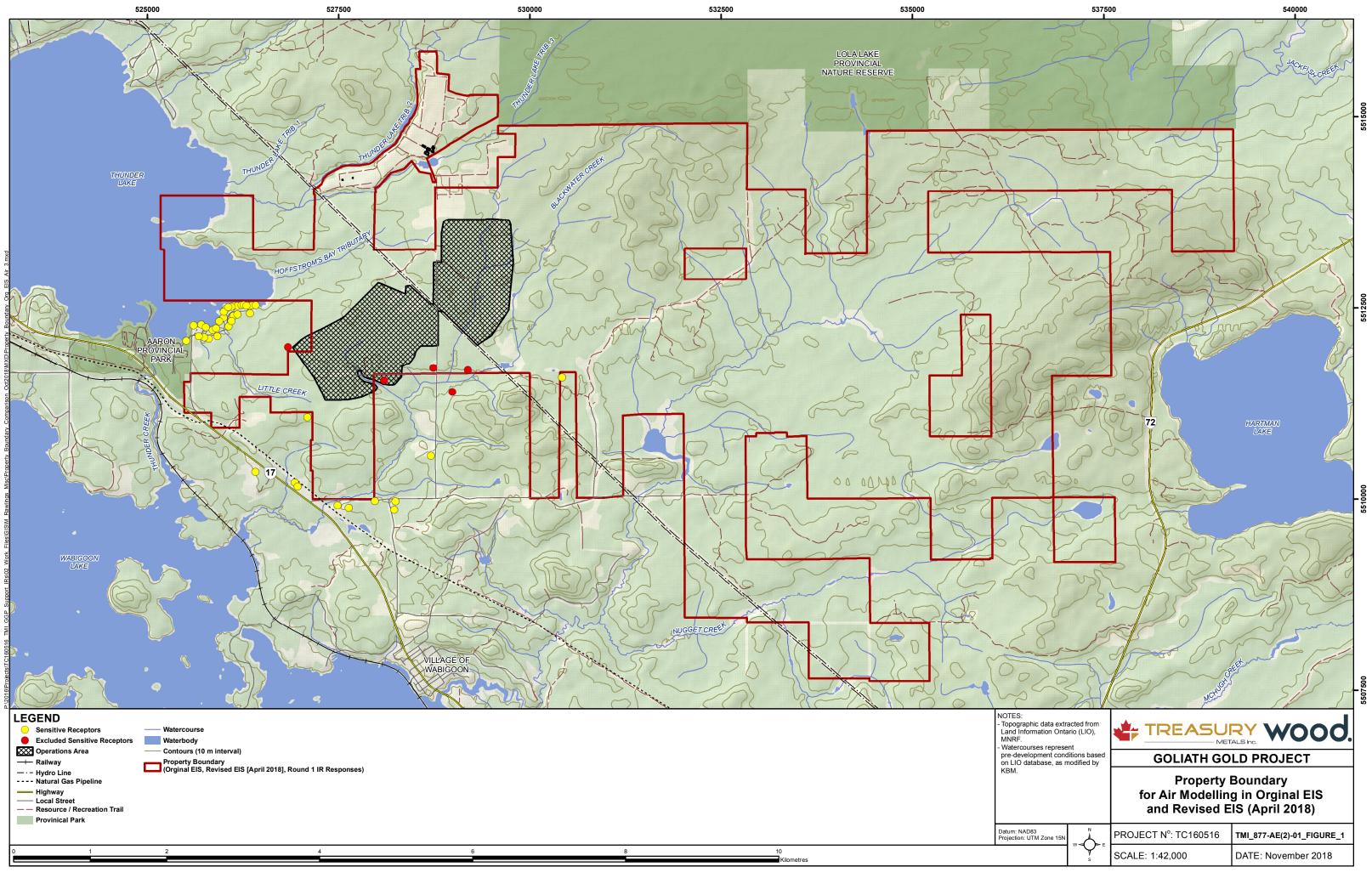


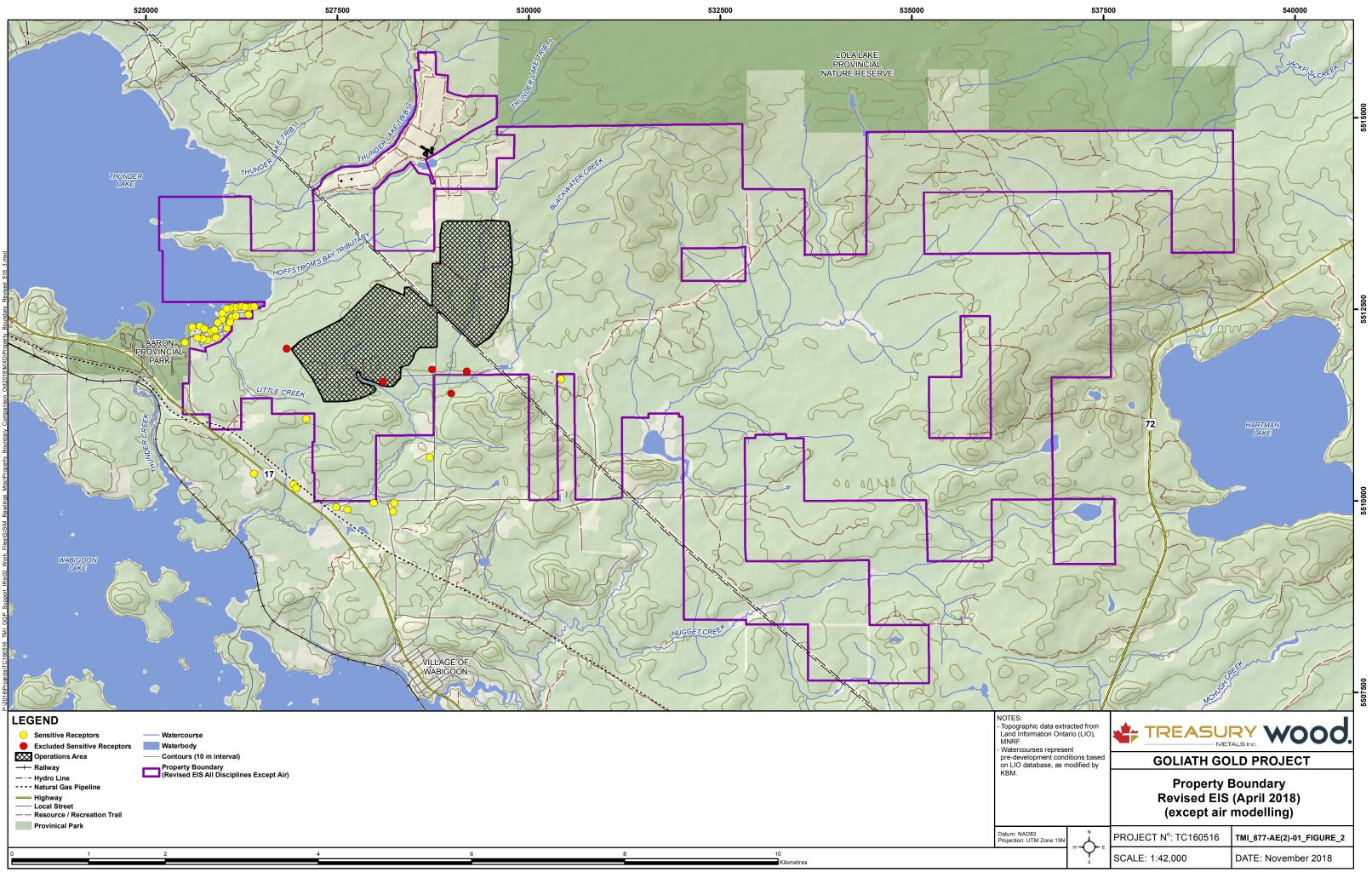



Goliath Gold Mine - Wabigoon, Ontario



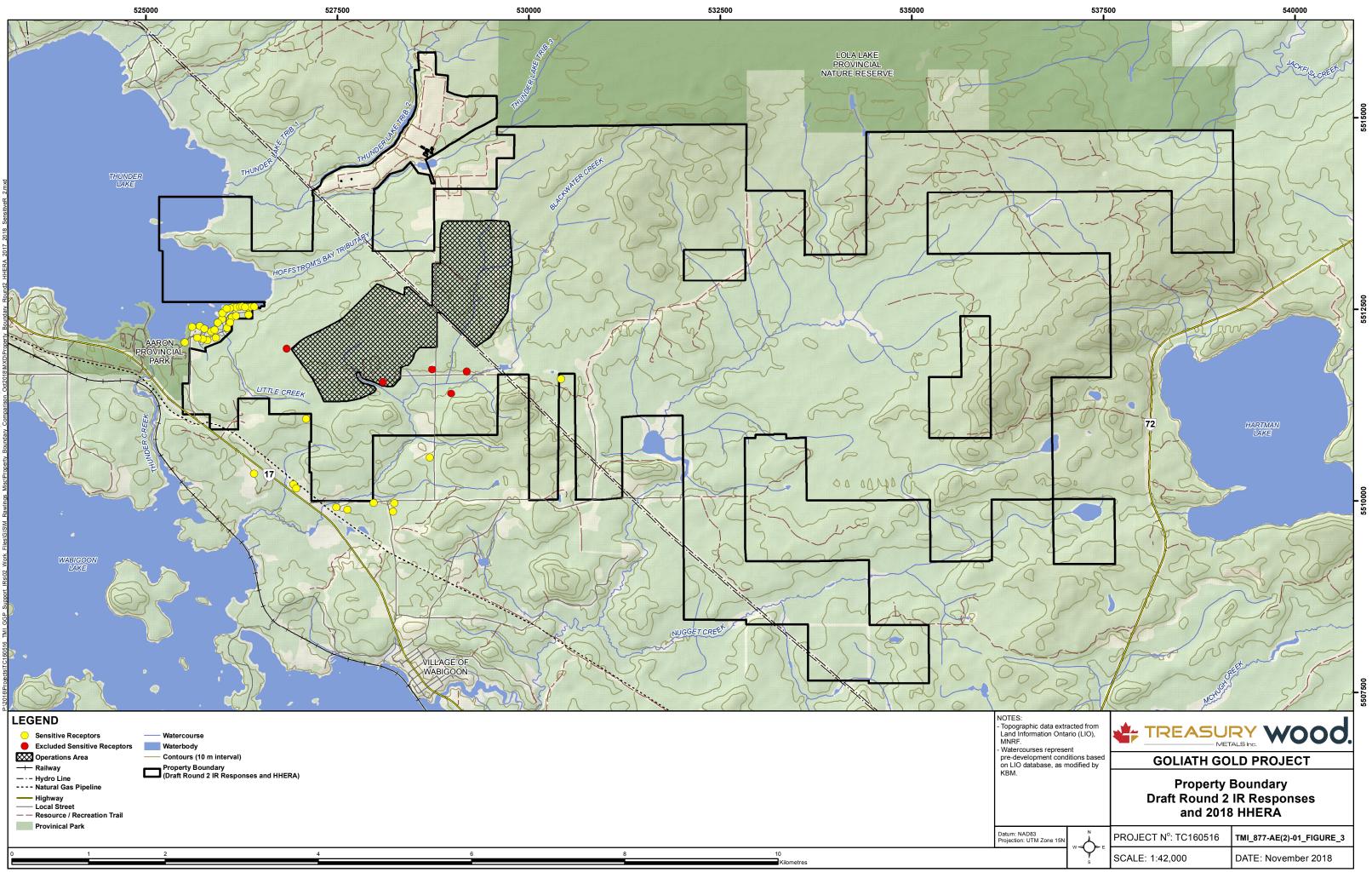




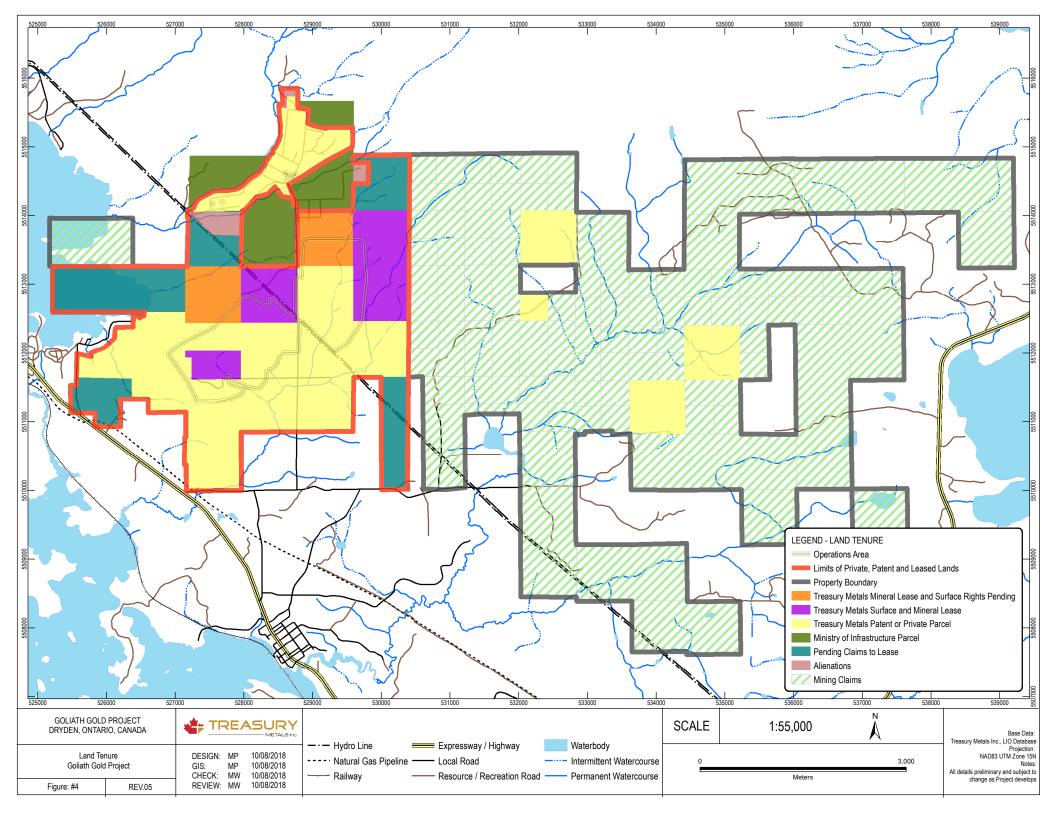

0.5

	urposes	inds and Resources for Traditional Pu
8	liath Gold Project	Overlaps with Go
5510000	Affected Area (2)	Impacted Area ⁽¹⁾
-	×	×
	✓	✓
1	×	×
-	×	×
5	✓	×
~	✓	\checkmark
	×	×
_	×	×
	×	×
8		

ES: ographic data extr d Information Onta RF. tercourses represe development cono LIO database, as n	ario (LIO), ent litions based	GOLIATH GOLD PROJECT				
И.		Traditional Land	nt of Effects on and Resource Use ountry Foods			
n: NAD83 ction: UTM Zone 15N		PROJECT Nº: TC160516	FIGURE: 3.6.2-1			
	Ĩ	SCALE: 1:44,000	DATE: November 2018			



Provinical Park	



4	4	6

	Averaging	Maximum a	t Gridded Recep	otors (MPOI)	Maximum at Sensitive Receptors			
Compound	Period	Modelled Prediction	Background (1)	Cumulative Prediction	Modelled Prediction	Background	Cumulative Prediction	
TOD	24-hour	22	33	55	17	33	50	
13P	Annual	3.8	14	18	2.7	14	17	
PM10	24-hour	6.2	15	21	4.7	15	20	
DM.	24-hour	0.90	10	11	0.76	10	11	
TSP	Annual	0.15	4.3	4.5	0.12	4.3	4.4	
Duetfell (2)	30 day	0.96	(3)	0.96	0.65	_	0.65	
Dustrali (2)	Annual	0.76	_	0.76	0.51	_	0.51	
00	1-hour	15	1,248	1263	8.6	1,248	1,257	
CO	8-hour (4)	5.1	1,248	1253	2.5	1,248	1,251	
	1-hour	50	29	79	36	29	65	
NO ₂	24-hour	7.2	25	32	5.9	25	30	
	Annual	1.0	14	15	0.84	14	15	
	1-hour	0.77	4.0	4.8	0.65	4.0	4.7	
SO ₂	24-hour	0.11	4.0	4.1	0.082	4.0	4.1	
	Annual	0.013	1.0	1.0	0.010	1.0	1.0	
Arsenic	24-hour	0.00072	0.001	0.0017	0.00054	0.001	0.0015	
Barium	24-hour	0.011	—	0.011	0.0079	_	0.008	
Beryllium	24-hour	0.000053	_	0.000053	0.000040	_	0.000040	
Cadmium	24-hour	0.000076	_	0.000076	0.000057	_	0.000057	
Chromium	24-hour	0.0032	0.005	0.0082	0.0024	0.005	0.0074	
Cobalt	24-hour	0.00027	—	0.00027	0.00020	_	0.00020	
Lead	24-hour	0.0025	0.005	0.0075	0.0019	0.005	0.0069	
Manganese	24-hour	0.013	0.019	0.032	0.0095	0.019	0.028	
	24-hour	0.00086	_	0.00086	0.00065	_	0.00065	
NICKEI	Annual	0.00086	—	0.00086	0.00065	_	0.00065	
Phosphorous	24-hour	0.011	—	0.011	0.0085	_	0.0085	
•	24-hour	0.00045	_	0.00045	0.00034	_	0.00034	
	24-hour	0.00013	_	0.00013	0.00010	_	0.00010	
	24-hour	0.00038	_	0.00038	0.00028	_	0.00028	
Titanium	24-hour	0.041	_	0.041	0.031	_	0.031	
	24-hour	0.00022	_	0.00022	0.00017	_	0.00017	
Uranium	Annual	0.00022	_	0.00022	0.00017	_	0.00017	
Vanadium	24-hour	0.0011	_	0.0011	0.00081		0.00081	

TMI_877-AE(2)-01_Table_1: Predicted Air Quality Effects – Site Preparation and Construction

Notes:

The above table supersedes Table 6.6.4.1-2 of the revised EIS (April 2018). ⁽¹⁾ The 1-hour and 24-hour background values were based on 90th percentile of the monitoring data. The annual background values were based on the highest of the annual mean value over the latest 5 years of available monitoring data (see Section 5.2.4) Predicted dustfall values are in units of g/m²/30 days. Annual values are averaged over 12 months.

(2)

(3) The "---" in the table indicates that background values were not available for the compound.

(4) The 8-hour predicted CO concentration is calculated from 1-hr predicted concentration using a published conversion factor [Ontario Regulation 419/05, 17(2)].

	Averaging	Maximum a	t Gridded Rece	otors (MPOI)	Maximur	Maximum at Sensitive Receptors			
Compound	Averaging Period	Modelled Prediction	Background	Cumulative Prediction	Modelled Prediction	Background	Cumulative Prediction		
тер	24-hour	28	33	61	14	33	47		
135	Annual	3.6	14	18	2.3	14	16.3		
PM ₁₀	24-hour	22	15	37	3.9	15	19		
DM.	24-hour	13	10	23	0.95	10	11		
TSP PM10 PM2.5 Dustfall (2) CO NO2 SO2 SO2 Arsenic Barium Barium Cadmium Cadmium Chromium Cobalt Lead Manganese Nickel Phosphorous	Annual	0.73	4.3	5.0	0.16	4.3	4.5		
Duetfell (2)	30 day	1.5	(3)	1.52	0.57	—	0.57		
Dustrali (2)	Annual	0.95	_	0.95	0.45	—	0.45		
00	1-hour	25	1,248	1273	10	1,248	1258		
CO	8-hour	13	1,248	1261	4.5	1,248	1253		
	1-hour	80	29	110	28	29	57		
NO ₂	24-hour	35	25	60	6.6	25	31		
	Annual	9.2	14	23	0.99	14	15		
	1-hour	4.6	4.0	8.6	0.18	4.0	4.2		
SO ₂	24-hour	2.2	4.0	6.2	0.022	4.0	4.0		
	Annual	0.58	1.0	1.6	0.0024	1.0	1.0		
Arsenic	24-hour	0.00090	0.001	0.0019	0.00044	0.001	0.0014		
Barium	24-hour	0.013	_	0.013	0.0065	_	0.0065		
Beryllium	24-hour	0.000066	_	0.000066	0.000033	_	0.000033		
Cadmium	24-hour	0.000095	_	0.000095	0.000047	_	0.000047		
Chromium	24-hour	0.0040	0.005	0.0090	0.0020	0.005	0.0070		
Cobalt	24-hour	0.00033	_	0.00033	0.00016	_	0.00016		
Lead	24-hour	0.0031	0.005	0.0081	0.0015	0.005	0.0065		
Manganese	24-hour	0.016	0.019	0.035	0.0078	0.019	0.027		
	24-hour	0.0011	_	0.0011	0.00053	_	0.00053		
NICKEI	Annual	0.0011	—	0.0011	0.00053	_	0.00053		
Phosphorous	24-hour	0.014	—	0.014	0.0070	—	0.0070		
Platinum	24-hour	0.00057	_	0.00057	0.00028	_	0.00028		
Rhodium	24-hour	0.00017	_	0.00017	0.00008	_	0.00008		
Thallium	24-hour	0.00048	_	0.00048	0.00023	_	0.00023		
	24-hour	0.051	_	0.051	0.025	_	0.025		
	24-hour	0.00028	_	0.00028	0.00014	_	0.00014		
Uranium	Annual	0.00028	_	0.00028	0.00014	_	0.00014		
Vanadium	24-hour	0.0014	_	0.0014	0.00066		0.00066		

TMI_877-AE(2)-01_Table_2: Predicted Air Quality Effects – Operations

Notes:

The above table supersedes Table 6.6.4.2-2 of the revised EIS (April 2018).
 The 1-hour and 24-hour background values were based on 90th percentile of the monitoring data. The annual background values were based on the highest of the annual mean value over the latest 5 years of available monitoring data (see Section 5.2.4)
 Predicted dustfall values are in units of g/m²/30 days. Annual values are averaged over 12 months.
 The "—" in the table indicates that background values were not available for the compound.

	Averaging	Maximum a	t Gridded Rece	otors (MPOI)	Maximur	Maximum at Sensitive R		
Compound	Period	Modelled Prediction	Background	Cumulative Prediction	Modelled Prediction	Background	Cumulative Prediction	
тер	24-hour	23	33	56	17	33	50	
15P	Annual	3.8	14	18	2.7	14	16.7	
PM ₁₀	24-hour	6.2	15	21	4.5	15	20	
DM	24-hour	0.83	10	11	0.65	10	11	
PIVI2.5	Annual	0.15	4.3	4.5	0.11	4.3	4.4	
TSP PM10 PM2.5 Dustfall (2) CO CO NO2 SO2 SO2 Arsenic Barium Barium Barium Cadmium Cadmium Chromium Cobalt Lead Manganese Nickel Phosphorous	30 day	0.95	(3)	0.95	0.63	—	0.63	
Dustrali (2)	Annual	0.76	—	0.76	0.49	—	0.49	
<u> </u>	1-hour	11	1248	1259	3.5	Background (1) 33 14 15 10 4.3	1251	
CO	8-hour	3.3	1,248	1,251	1.4	1,248	1249	
	1-hour	30	29	59	12	29	41	
NO ₂	24-hour	4.0	25	29	3.3	25	28	
	Annual	0.70	14	14	0.48	14	14	
	1-hour	0.78	4.0	4.8	0.60	4.0	4.6	
SO ₂	24-hour	0.14	4.0	4.1	0.11	4.0	4.1	
	Annual	0.015	1.0	1.0	0.0092	1.0	1.0	
Arsenic	24-hour	0.00072	0.001	0.0017	0.00053	0.001	0.0015	
Barium	24-hour	0.011	—	0.011	0.0078	—	0.0078	
Beryllium	24-hour	0.000053	—	0.000053	0.000039	—	0.000039	
Cadmium	24-hour	0.000077	—	0.000077	0.000056	—	0.000056	
Chromium	24-hour	0.0033	0.005	0.0083	0.0024	0.005	0.0074	
Cobalt	24-hour	0.00027	—	0.00027	0.00020	—	0.00020	
Lead	24-hour	0.0025	0.005	0.0075	0.0018	0.005	0.0068	
Manganese	24-hour	0.013	0.019	0.032	0.0093	0.019	0.028	
Niekol	24-hour	0.00087	—	0.00087	0.00063	—	0.00063	
INICKEI	Annual	0.00087	—	0.00087	0.00063	—	0.00063	
Phosphorous	24-hour	0.011	—	0.011	0.0084	—	0.0084	
Platinum	24-hour	0.00046		0.00046	0.00033	_	0.00033	
Rhodium	24-hour	0.00014	—	0.00014	0.00010	_	0.00010	
Thallium	24-hour	0.00038	_	0.00038	0.00028		0.00028	
Titanium	24-hour	0.041	_	0.041	0.030		0.030	
Uropium	24-hour	0.00023		0.00023	0.00017	_	0.00017	
Uranium	Annual	0.00023		0.00023	0.00017	_	0.00017	
Vanadium	24-hour	0.0011	—	0.0011	0.00079	—	0.00079	

TMI_877-AE(2)-01_Table_3: Predicted Air Quality Effects – Closure

Notes:

The above table supersedes Table 6.6.4.3-2 of the revised EIS (April 2018). ⁽¹⁾ The 1-hour and 24-hour background values were based on 90th percentile of the monitoring data. The annual background values were based on the highest of the annual mean value over the latest 5 years of available monitoring data (see Section 5.2.4)

Predicted dustfall values are in units of g/m²/30 days. Annual values are averaged over 12 months.
 The "—" in the table indicates that background values were not available for the compound.

NO2 Frequency Analysis

Treasury Metals

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Excursions of		
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	oncentrations	
					1-hour		Above CAAQ	S (79µg/m³)	
					Concentration		Over 5 Ye	ar Period	
							Count	Frequency	
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)	
R01	Gridded Receptor	528483	5514372	400.0	50.1	79.1	6	<0.1%	
R02	Gridded Receptor	528463	5514392	399.6	56.2	85.2	100	0.2%	
R03	Gridded Receptor	528463	5514372	399.4	49.1	78.1	0	n/a	
R04 R05	Gridded Receptor Gridded Receptor	528452 528433	5514424 5514403	401.6 400.5	70.9 57.3	99.9 86.3	<u>112</u> 63	0.3%	
R05	Gridded Receptor	526433	5514403	400.5	61.3	90.3	89	0.1%	
R07	Gridded Receptor	528446	5514417	400.9	65.8	94.8	102	0.2%	
R08	Gridded Receptor	528458	5514416	400.8	66.8	95.8	91	0.2%	
R09	Gridded Receptor	528464	5514408	400.4	63.6	92.6	77	0.2%	
R10	Gridded Receptor	528469	5514400	400.1	60.4	89.4	60	0.1%	
R11	Gridded Receptor	528475	5514392	399.9	57.3	86.3	53	0.1%	
R12	Gridded Receptor	528481	5514384	400.0	54.4	83.4	36	<0.1%	
R13	Gridded Receptor	528486	5514377	400.0	51.6	80.6	24	<0.1%	
R14	Gridded Receptor	528492 528650	5514369 5514456	400.0 408.7	49.0 53.1	78.0 82.1	0 44	n/a 0.1%	
R15 R16	Gridded Receptor Gridded Receptor	528650 528654	5514456 5514446	408.7	53.1	82.1 79.0	<u> </u>	0.1% n/a	
R17	Gridded Receptor	528658	5514460	407.0	51.3	80.3	23	<0.1%	
R18	Gridded Receptor	528667	5514465	408.7	49.2	78.2	0	n/a	
R19	Gridded Receptor	528675	5514470	408.7	49.9	78.9	0	n/a	
R20	Gridded Receptor	529438	5510818	416.4	57.4	86.4	4	<0.1%	
R21	Gridded Receptor	529388	5510818	409.7	51.0	80.0	2	<0.1%	
R22	Gridded Receptor	529488	5510618	411.9	46.4	75.4	0	n/a	
R23	Gridded Receptor	529488	5510518	415.4	47.9	76.9	0	n/a	
R24	Gridded Receptor	529388	5510618	416.9	52.7	81.7	6	<0.1%	
R25	Gridded Receptor	529388	5510518	419.7 421.3	51.5	80.5	6	<0.1%	
R26 R27	Gridded Receptor Gridded Receptor	529288 529288	5510618 5510518	421.3	56.2 53.9	85.2 82.9	12 8	<0.1% <0.1%	
R28	Gridded Receptor	529188	5510618	420.9	57.9	86.9	10	<0.1%	
R29	Gridded Receptor	529277	5510860	404.7	45.3	74.3	0	n/a	
R30	Gridded Receptor	529287	5510860	405.2	46.2	75.2	0	n/a	
R31	Gridded Receptor	529297	5510860	405.9	47.6	76.6	0	n/a	
R32	Gridded Receptor	529306	5510860	406.8	49.2	78.2	0	n/a	
R33	Gridded Receptor	529316	5510860	407.7	50.4	79.4	1	<0.1%	
R34	Gridded Receptor	529326	5510860	408.5	51.3	80.3	3	<0.1%	
R35	Gridded Receptor	529336 520346	5510860	409.3 410.1	51.9 53.1	80.9 82.1	3	<0.1%	
R36 R37	Gridded Receptor Gridded Receptor	529346 529356	5510860 5510860	410.1	54.5	83.5	<u> </u>	<0.1% <0.1%	
R38	Gridded Receptor	529366	5510860	412.2	55.8	84.8	4	<0.1%	
R39	Gridded Receptor	529376	5510861	413.3	57.0	86.0	4	<0.1%	
R40	Gridded Receptor	529386	5510861	414.3	58.0	87.0	4	<0.1%	
R41	Gridded Receptor	529396	5510861	415.3	58.7	87.7	3	<0.1%	
R42	Gridded Receptor	529406	5510861	416.3	59.4	88.4	3	<0.1%	
R43	Gridded Receptor	529416	5510861	417.4	59.9	88.9	3	<0.1%	
R44	Gridded Receptor	529426	5510861	418.5	60.3	89.3	2	<0.1%	
R45 R46	Gridded Receptor Gridded Receptor	529436 528663	5510861 5514432	419.6 404.9	60.6 47.3	89.6 76.3	2 0	<0.1% n/a	
R40 R47	Gridded Receptor	528663 529608	5514432	404.9	61.7	90.7	10	n/a <0.1%	
R47	Gridded Receptor	529608	5511138	412.0	64.2	93.2	10	<0.1%	
R49	Gridded Receptor	529608	5511158	415.5	66.7	95.7	12	<0.1%	
R50	Gridded Receptor	529608	5511178	417.2	68.7	97.7	12	<0.1%	
R51	Gridded Receptor	529608	5511198	418.6	69.9	98.9	14	<0.1%	
R52	Gridded Receptor	529608	5511218	419.6	70.6	99.6	14	<0.1%	
R53	Gridded Receptor	529608	5511238	420.0	72.6	101.6	12	<0.1%	
R54	Gridded Receptor	529608	5511258	419.2	74.2	103.2	14	<0.1%	
R55	Gridded Receptor	529608	5511278	418.0	74.9	103.9	14	<0.1%	
R56	Gridded Receptor	529608	5511298	416.4	74.7	103.7	14	<0.1%	
R57	Gridded Receptor	529608	5511318	414.6	73.5	102.5	14	<0.1%	

ID# Desc R58 Gridded Re R59 Gridded Re R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R66 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re	eceptor 529608 eceptor 529628	Y (m) 5511338 5511358 5511358 5511378 5511378 5511418 5511418 5511438 5511138 5511138 5511178 5511178 5511218 5511238 5511258 5511278 5511298	Z (m) 413.0 411.6 409.8 408.1 406.4 404.6 413.5 415.3 417.3 419.3 420.7 421.9 422.7 422.4	Maximum Predicted 1-hour Concentration (ug/m ³) 71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 65.2 67.5 69.1 69.7 74.5	Cummulative Concentration (ug/m ³) 100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5 98.1	Cumulative Co Above CAAC Over 5 Ye Count (hours) 14 14 14 14 10 10 10 10 10 10 10 12 12	Ar Period Frequency (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R58Gridded ReR59Gridded ReR60Gridded ReR61Gridded ReR62Gridded ReR63Gridded ReR64Gridded ReR65Gridded ReR66Gridded ReR67Gridded ReR68Gridded ReR69Gridded ReR70Gridded ReR71Gridded ReR72Gridded ReR73Gridded ReR74Gridded ReR75Gridded ReR76Gridded ReR80Gridded ReR81Gridded ReR83Gridded ReR84Gridded ReR85Gridded ReR86Gridded ReR87Gridded ReR88Gridded ReR89Gridded ReR89Gridded ReR89Gridded ReR89Gridded ReR89Gridded ReR89Gridded ReR90Gridded ReR91Gridded ReR92Gridded ReR93Gridded ReR94Gridded ReR95Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded ReR96Gridded Re	(m) ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529628 ecceptor 529628	5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278	413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	Concentration (ug/m ³) 71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 65.2 67.5 69.1 69.7	100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5	Over 5 Ye Count (hours) 14 14 14 14 10 10 10 10 10 12 12 12	Ar Period Frequency (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R59 Gridded Re R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re </th <th>ecceptor 529608 ecceptor 529628 ecceptor</th> <th>5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278</th> <th>413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</th> <th>(ug/m³) 71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 65.2 67.5 69.1 69.7</th> <th>100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5</th> <th>Over 5 Ye Count (hours) 14 14 14 14 10 10 10 10 10 12 12 12</th> <th>Ar Period Frequency (%) <0.1% <0.1%</th>	ecceptor 529608 ecceptor 529628 ecceptor	5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278	413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	(ug/m ³) 71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 65.2 67.5 69.1 69.7	100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5	Over 5 Ye Count (hours) 14 14 14 14 10 10 10 10 10 12 12 12	Ar Period Frequency (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R59 Gridded Re R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re </th <th>ecceptor 529608 ecceptor 529628 ecceptor</th> <th>5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278</th> <th>413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</th> <th>71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7</th> <th>100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5</th> <th>(hours) 14 14 14 10 10 10 10 10 12 12 12</th> <th>(%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%</th>	ecceptor 529608 ecceptor 529628 ecceptor	5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278	413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7	100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5	(hours) 14 14 14 10 10 10 10 10 12 12 12	(%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R59 Gridded Re R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re </th <th>ecceptor 529608 ecceptor 529628 ecceptor</th> <th>5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278</th> <th>413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</th> <th>71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7</th> <th>100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5</th> <th>14 14 14 10 10 10 10 10 12 12 12</th> <th>(%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%</th>	ecceptor 529608 ecceptor 529628 ecceptor	5511338 5511358 5511378 5511378 5511418 5511418 5511418 5511138 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278	413.0 411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	71.6 70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7	100.6 99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5	14 14 14 10 10 10 10 10 12 12 12	(%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R59 Gridded Re R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re </th <th>eceptor 529608 eceptor 529628 eceptor 529628</th> <th>5511358 5511378 5511378 5511418 5511418 5511438 5511138 5511138 5511158 5511178 5511198 5511198 5511218 5511238 5511278</th> <th>411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</th> <th>70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7</th> <th>99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5</th> <th>14 14 10 10 10 10 10 12 12</th> <th><0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%</th>	eceptor 529608 eceptor 529628	5511358 5511378 5511378 5511418 5511418 5511438 5511138 5511138 5511158 5511178 5511198 5511198 5511218 5511238 5511278	411.6 409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	70.5 68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7	99.5 97.9 95.0 90.6 85.1 91.5 94.2 96.5	14 14 10 10 10 10 10 12 12	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R60 Gridded Re R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R77 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re </th <th>ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529628 ecceptor</th> <th>5511378 5511398 5511418 5511418 5511438 5511138 5511158 5511178 5511198 5511218 5511238 5511238 5511258 5511278</th> <th>409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</th> <th>68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7</th> <th>97.9 95.0 90.6 85.1 91.5 94.2 96.5</th> <th>14 10 10 10 10 10 12 12</th> <th><0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%</th>	ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529608 ecceptor 529628 ecceptor	5511378 5511398 5511418 5511418 5511438 5511138 5511158 5511178 5511198 5511218 5511238 5511238 5511258 5511278	409.8 408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	68.9 66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7	97.9 95.0 90.6 85.1 91.5 94.2 96.5	14 10 10 10 10 10 12 12	<0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
R61 Gridded Re R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re </td <td>eceptor 529608 eceptor 529608 eceptor 529608 eceptor 529628 eceptor 529628</td> <td>5511398 5511418 5511418 5511438 551118 551118 5511158 5511178 5511198 5511218 5511238 5511258 5511278</td> <td>408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7</td> <td>66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7</td> <td>95.0 90.6 85.1 91.5 94.2 96.5</td> <td>10 10 10 10 12 12</td> <td><0.1%</td> <0.1%	eceptor 529608 eceptor 529608 eceptor 529608 eceptor 529628	5511398 5511418 5511418 5511438 551118 551118 5511158 5511178 5511198 5511218 5511238 5511258 5511278	408.1 406.4 413.5 415.3 417.3 419.3 420.7 421.9 422.7	66.0 61.6 56.1 62.5 65.2 67.5 69.1 69.7	95.0 90.6 85.1 91.5 94.2 96.5	10 10 10 10 12 12	<0.1%
R62 Gridded Re R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re </td <td>eceptor 529608 eceptor 529608 eceptor 529628 eceptor 529628</td> <td>5511418 5511438 551118 551118 551118 551118 551118 551118 551118 551118 551118 551118 551128 551128 551128 551128 551128 551128 551128 551128 5511278</td> <td>406.4 404.6 413.5 415.3 417.3 419.3 420.7 421.9 422.7</td> <td>61.6 56.1 62.5 65.2 67.5 69.1 69.7</td> <td>90.6 85.1 91.5 94.2 96.5</td> <td>10 10 10 12 12</td> <td><0.1%</td> <0.1%	eceptor 529608 eceptor 529608 eceptor 529628	5511418 5511438 551118 551118 551118 551118 551118 551118 551118 551118 551118 551118 551128 551128 551128 551128 551128 551128 551128 551128 5511278	406.4 404.6 413.5 415.3 417.3 419.3 420.7 421.9 422.7	61.6 56.1 62.5 65.2 67.5 69.1 69.7	90.6 85.1 91.5 94.2 96.5	10 10 10 12 12	<0.1%
R63 Gridded Re R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re </td <td>eceptor 529608 eceptor 529628 eceptor 529628</td> <td>5511438 5511118 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278</td> <td>404.6 413.5 415.3 417.3 419.3 420.7 421.9 422.7</td> <td>56.1 62.5 65.2 67.5 69.1 69.7</td> <td>85.1 91.5 94.2 96.5</td> <td>10 10 12 12</td> <td><0.1% <0.1% <0.1%</td>	eceptor 529608 eceptor 529628	5511438 5511118 5511138 5511158 5511178 5511178 5511198 5511218 5511238 5511258 5511278	404.6 413.5 415.3 417.3 419.3 420.7 421.9 422.7	56.1 62.5 65.2 67.5 69.1 69.7	85.1 91.5 94.2 96.5	10 10 12 12	<0.1% <0.1% <0.1%
R64 Gridded Re R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re </td <td>ecceptor 529628 ecceptor 529628</td> <td>5511118 5511138 5511158 5511178 5511178 5511218 5511238 5511258 5511278</td> <td>413.5 415.3 417.3 419.3 420.7 421.9 422.7</td> <td>62.5 65.2 67.5 69.1 69.7</td> <td>91.5 94.2 96.5</td> <td>10 12 12</td> <td><0.1% <0.1%</td>	ecceptor 529628	5511118 5511138 5511158 5511178 5511178 5511218 5511238 5511258 5511278	413.5 415.3 417.3 419.3 420.7 421.9 422.7	62.5 65.2 67.5 69.1 69.7	91.5 94.2 96.5	10 12 12	<0.1% <0.1%
R65 Gridded Re R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re </td <td>eceptor 529628 eceptor 529628</td> <td>5511138 5511158 5511178 5511178 5511218 5511238 5511258 5511278</td> <td>415.3 417.3 419.3 420.7 421.9 422.7</td> <td>65.2 67.5 69.1 69.7</td> <td>94.2 96.5</td> <td>12 12</td> <td><0.1%</td>	eceptor 529628	5511138 5511158 5511178 5511178 5511218 5511238 5511258 5511278	415.3 417.3 419.3 420.7 421.9 422.7	65.2 67.5 69.1 69.7	94.2 96.5	12 12	<0.1%
R66 Gridded Re R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R96 Gridded Re </td <td>ecceptor 529628 ecceptor 529628</td> <td>5511158 5511178 5511198 5511218 5511238 5511258 5511278</td> <td>417.3 419.3 420.7 421.9 422.7</td> <td>67.5 69.1 69.7</td> <td>96.5</td> <td>12</td> <td></td>	ecceptor 529628	5511158 5511178 5511198 5511218 5511238 5511258 5511278	417.3 419.3 420.7 421.9 422.7	67.5 69.1 69.7	96.5	12	
R67 Gridded Re R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R80 Gridded Re R81 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R87 Gridded Re R88 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R95 Gridded Re </td <td>eceptor 529628 eceptor 529628</td> <td>5511178 5511198 5511218 5511238 5511258 5511278</td> <td>419.3 420.7 421.9 422.7</td> <td>69.1 69.7</td> <td></td> <td></td> <td><0.1%</td>	eceptor 529628	5511178 5511198 5511218 5511238 5511258 5511278	419.3 420.7 421.9 422.7	69.1 69.7			<0.1%
R68 Gridded Re R69 Gridded Re R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re </td <td>eceptor 529628 eceptor 529628</td> <td>5511198 5511218 5511238 5511258 5511278</td> <td>420.7 421.9 422.7</td> <td>69.7</td> <td>J 30.1</td> <td>12</td> <td><0.1%</td>	eceptor 529628	5511198 5511218 5511238 5511258 5511278	420.7 421.9 422.7	69.7	J 30.1	12	<0.1%
R70 Gridded Re R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R88 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R95 Gridded Re R96 Gridded Re R96 Gridded Re </td <td>ecceptor 529628 ecceptor 529628</td> <td>5511238 5511258 5511278</td> <td>422.7</td> <td>74 5</td> <td>98.7</td> <td>14</td> <td><0.1%</td>	ecceptor 529628	5511238 5511258 5511278	422.7	74 5	98.7	14	<0.1%
R71 Gridded Re R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R89 Gridded Re R90 Gridded Re R90 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor529628eceptor529628eceptor529628eceptor529628eceptor529628	5511258 5511278		71.5	100.5	12	<0.1%
R72 Gridded Re R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor529628eceptor529628eceptor529628	5511278	1 122 1	74.1	103.1	12	<0.1%
R73 Gridded Re R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor 529628 eceptor 529628		422.4	75.9	104.9	14	<0.1%
R74 Gridded Re R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor 529628	1 6611200	421.6	77.0	106.0	14	<0.1%
R75 Gridded Re R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R95 Gridded Re R95 Gridded Re R96 Gridded Re R96 Gridded Re			420.5	77.3	106.3	14	<0.1%
R76 Gridded Re R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511318 5511338	418.5 416.5	76.3 75.0	105.3 104.0	14 14	<0.1% <0.1%
R77 Gridded Re R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R95 Gridded Re R96 Gridded Re R97 Gridded Re R93 Gridded Re R95 Gridded Re R96 Gridded Re		5511358	416.5	75.0	104.0	14	<0.1%
R78 Gridded Re R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R95 Gridded Re R96 Gridded Re		5511378	414.5	73.0	104.0	12	<0.1%
R79 Gridded Re R80 Gridded Re R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re R95 Gridded Re R96 Gridded Re		5511398	409.7	69.4	98.4	12	<0.1%
R81 Gridded Re R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511418	407.5	64.7	93.7	10	<0.1%
R82 Gridded Re R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor 529628	5511438	405.6	59.2	88.2	10	<0.1%
R83 Gridded Re R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor 529648	5511118	414.8	63.4	92.4	12	<0.1%
R84 Gridded Re R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511138	416.7	65.7	94.7	12	<0.1%
R85 Gridded Re R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511158	418.7	67.5	96.5	12	<0.1%
R86 Gridded Re R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511178	420.7	68.6	97.6	14	<0.1%
R87 Gridded Re R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511198 5511218	422.1 423.4	70.0	99.0 101.4	<u>12</u> 12	<0.1% <0.1%
R88 Gridded Re R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511238	424.7	74.8	101.4	12	<0.1%
R89 Gridded Re R90 Gridded Re R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511258	424.8	76.5	105.5	14	<0.1%
R91 Gridded Re R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re		5511278	424.5	77.5	106.5	14	<0.1%
R92 Gridded Re R93 Gridded Re R94 Gridded Re R95 Gridded Re R96 Gridded Re	eceptor 529648	5511298	423.7	77.9	106.9	14	<0.1%
R93Gridded ReR94Gridded ReR95Gridded ReR96Gridded Re	· ·	5511318	421.9	77.1	106.1	12	<0.1%
R94Gridded ReR95Gridded ReR96Gridded Re		5511338	419.9	77.9	106.9	12	<0.1%
R95 Gridded Re R96 Gridded Re		5511358	417.9	78.6	107.6	12	<0.1%
R96 Gridded Re		5511378 5511398	414.2 410.8	75.9 71.2	104.9 100.2	12 12	<0.1% <0.1%
		5511418	410.8	66.0	95.0	12	<0.1%
		5511438	406.7	62.2	91.2	10	<0.1%
R98 Gridded Re		5511118	415.5	63.5	92.5	12	<0.1%
R99 Gridded Re	eceptor 529668	5511138	417.0	65.2	94.2	12	<0.1%
R100 Gridded Re		5511158	418.6	66.3	95.3	12	<0.1%
R101 Gridded Re		5511178	420.2	67.6	96.6	12	<0.1%
R102 Gridded Re		5511198	422.3	70.1	99.1	12	<0.1%
R103 Gridded Re R104 Gridded Re		5511218	424.3 426.0	72.8	101.8	12 14	<0.1% <0.1%
R104 Gridded Re R105 Gridded Re		5511238 5511258	426.0	75.0 76.4	104.0 105.4	14	<0.1%
R106 Gridded Re		5511278	426.9	77.3	105.4	14	<0.1%
R107 Gridded Re		5511298	427.0	77.4	106.4	12	<0.1%
R108 Gridded Re	eceptor 529668	5511318	424.8	77.5	106.5	12	<0.1%
R109 Gridded Re		5511338	422.3	79.3	108.3	12	<0.1%
R110 Gridded Re	eceptor 529668	5511358	419.5	79.7	108.7	12	<0.1%
R111 Gridded Re	eceptor 529668 eceptor 529668 eceptor 529668	5511378	415.2	76.7	105.7	14	<0.1%
R112 Gridded Re	ecceptor 529668 ecceptor 529668 ecceptor 529668 ecceptor 529668 ecceptor 529668	5511398	411.5	71.8	100.8	12	<0.1%
R113 Gridded Re	eceptor 529668	FEAAAAA	408.9	66.9 62.6	95.9 91.6	10	<0.1% <0.1%
R114 Gridded Re R115 Gridded Re	eceptor 529668	5511418	407.0 415.9	62.6 63.1	91.6 92.1	10 12	<0.1%
R115 Gridded Re	eceptor 529668	5511438			93.3	12	<0.1%
R117 Gridded Re	eceptor 529668	5511438 5511118	I 417.2	1 04.5			
R118 Gridded Re	eceptor 529668 eceptor 529688 eceptor 529688 eceptor 529688	5511438	417.2 418.5	64.3 65.0	94.0	12	<0.1%

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	oncentrations
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Ye	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R119	Gridded Receptor	529688	5511198	422.4	70.3	99.3	12	<0.1%
R120 R121	Gridded Receptor Gridded Receptor	529688 529688	5511218 5511238	424.9 427.1	72.9 74.8	101.9 103.8	12 14	<0.1% <0.1%
R121	Gridded Receptor	529688	5511258	428.0	75.9	103.0	12	<0.1%
R123	Gridded Receptor	529688	5511278	428.8	76.3	105.3	12	<0.1%
R124	Gridded Receptor	529688	5511298	429.5	76.0	105.0	12	<0.1%
R125	Gridded Receptor	529688	5511318	427.3	78.2	107.2	12	<0.1%
R126	Gridded Receptor	529688	5511338	424.4	80.1	109.1	10	<0.1%
R127 R128	Gridded Receptor	529688	5511358	420.9	80.2	109.2	<u> </u>	<0.1%
R120	Gridded Receptor Gridded Receptor	529688 529688	5511378 5511398	416.2 412.1	77.1 72.0	106.1 101.0	10	<0.1% <0.1%
R130	Gridded Receptor	529688	5511418	409.3	67.0	96.0	10	<0.1%
R131	Gridded Receptor	529688	5511438	407.2	62.3	91.3	10	<0.1%
R132	Gridded Receptor	529708	5511118	415.9	62.4	91.4	12	<0.1%
R133	Gridded Receptor	529708	5511138	417.2	63.3	92.3	10	<0.1%
R134	Gridded Receptor	529708	5511158	418.5	64.8	93.8	12	<0.1%
R135 R136	Gridded Receptor Gridded Receptor	529708 529708	5511178 5511198	419.9 422.4	67.3 70.3	96.3 99.3	<u>12</u> 12	<0.1% <0.1%
R130	Gridded Receptor	529708	5511218	422.4	70.3	101.8	12	<0.1%
R138	Gridded Receptor	529708	5511238	427.7	74.4	101.0	12	<0.1%
R139	Gridded Receptor	529708	5511258	429.1	75.1	104.1	12	<0.1%
R140	Gridded Receptor	529708	5511278	430.1	75.0	104.0	12	<0.1%
R141	Gridded Receptor	529708	5511298	430.8	75.5	104.5	10	<0.1%
R142	Gridded Receptor	529708	5511318	429.0	78.4	107.4	10	<0.1%
R143	Gridded Receptor	529708	5511338	426.2	80.4	109.4	<u> </u>	<0.1%
R144 R145	Gridded Receptor Gridded Receptor	529708 529708	5511358 5511378	422.3 417.1	80.4 77.2	109.4 106.2	<u> </u>	<0.1% <0.1%
R145	Gridded Receptor	529708	5511378	417.1	71.9	100.2	10	<0.1%
R147	Gridded Receptor	529708	5511418	409.3	66.3	95.3	10	<0.1%
R148	Gridded Receptor	529728	5511118	416.0	61.5	90.5	10	<0.1%
R149	Gridded Receptor	529728	5511138	416.8	62.2	91.2	10	<0.1%
R150	Gridded Receptor	529728	5511158	418.1	64.5	93.5	12	<0.1%
R151	Gridded Receptor	529728	5511178	419.8	67.4	96.4	12	<0.1%
R152 R153	Gridded Receptor Gridded Receptor	529728 529728	5511198 5511218	422.0 424.6	70.0 72.2	99.0 101.2	<u>12</u> 14	<0.1% <0.1%
R153	Gridded Receptor	529728	5511218	424.0	73.7	101.2	14	<0.1%
R155	Gridded Receptor	529728	5511258	429.6	74.0	103.0	12	<0.1%
R156	Gridded Receptor	529728	5511278	430.9	73.4	102.4	10	<0.1%
R157	Gridded Receptor	529728	5511298	431.5	75.8	104.8	10	<0.1%
R158	Gridded Receptor	529728	5511318	430.2	78.5	107.5	10	<0.1%
R159	Gridded Receptor	529728	5511338	427.6	80.2	109.2	8	<0.1%
R160 R161	Gridded Receptor Gridded Receptor	529728 529728	5511358 5511378	423.6 418.8	80.3 77.8	109.3 106.8	<u> </u>	<0.1% <0.1%
R162	Gridded Receptor	529728	5511378	410.0	73.1	100.8	10	<0.1%
R163	Gridded Receptor	529728	5511418	410.0	66.7	95.7	10	<0.1%
R164	Gridded Receptor	529748	5511118	416.3	60.7	89.7	10	<0.1%
R165	Gridded Receptor	529748	5511138	416.9	62.1	91.1	10	<0.1%
R166	Gridded Receptor	529748	5511158	418.0	64.6	93.6	12	<0.1%
R167	Gridded Receptor	529748	5511178	419.8	67.3	96.3	12	<0.1%
R168 R169	Gridded Receptor Gridded Receptor	529748 529748	5511198 5511218	421.8 424.3	69.6 71.6	98.6 100.6	12 12	<0.1% <0.1%
R169	Gridded Receptor	529748	5511218	424.3	71.6	100.6	12	<0.1%
R170	Gridded Receptor	529748	5511258	429.8	72.7	101.7	12	<0.1%
R172	Gridded Receptor	529748	5511278	431.3	73.6	102.6	10	<0.1%
R173	Gridded Receptor	529748	5511298	431.9	76.0	105.0	10	<0.1%
R174	Gridded Receptor	529748	5511318	430.8	78.3	107.3	8	<0.1%
R175	Gridded Receptor	529748	5511338	428.6	79.9	108.9	8	<0.1%
R176	Gridded Receptor	529748	5511358	425.2	80.0	109.0	10	<0.1%
R177 R178	Gridded Receptor	529748 529768	5511378	420.6 417.0	78.0	107.0 89.9	10 10	<0.1% <0.1%
R178	Gridded Receptor Gridded Receptor	529768	5511118 5511138	417.0	60.9 62.7	89.9 91.7	10	<0.1%
111/9		525100	5511130	U.11-	02.1	31.7	12	NU.170

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	ncentrations
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Yea	ar Period
							Count	Frequency
5.400		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R180 R181	Gridded Receptor Gridded Receptor	529768 529768	5511158 5511178	418.5 419.9	64.9 67.1	93.9 96.1	<u>12</u> 12	<0.1% <0.1%
R182	Gridded Receptor	529768	5511178	419.9	69.2	98.2	12	<0.1%
R183	Gridded Receptor	529768	5511218	424.3	70.9	99.9	12	<0.1%
R184	Gridded Receptor	529768	5511238	427.7	71.7	100.7	12	<0.1%
R185	Gridded Receptor	529768	5511258	429.8	71.6	100.6	10	<0.1%
R186	Gridded Receptor	529768	5511278	431.3	74.0	103.0	10	<0.1%
R187	Gridded Receptor	529768	5511298	431.9	76.2	105.2	8	<0.1%
R188 R189	Gridded Receptor Gridded Receptor	529768 529768	5511318 5511338	430.8 429.2	78.1 79.2	107.1 108.2	8	<0.1% <0.1%
R109	Gridded Receptor	529788	5511118	429.2	61.4	90.4	10	<0.1%
R191	Gridded Receptor	529788	5511138	417.8	63.0	92.0	12	<0.1%
R192	Gridded Receptor	529788	5511158	418.5	64.8	93.8	12	<0.1%
R193	Gridded Receptor	529788	5511178	419.9	66.8	95.8	12	<0.1%
R194	Gridded Receptor	529788	5511198	421.4	68.4	97.4	12	<0.1%
R195	Gridded Receptor	529788	5511218	423.7	69.8 70.5	98.8	<u>12</u> 10	<0.1% <0.1%
R196 R197	Gridded Receptor Gridded Receptor	529788 529788	5511238 5511258	427.1 429.6	70.5	99.5 101.1	10	<0.1%
R198	Gridded Receptor	529788	5511278	431.3	74.3	103.3	8	<0.1%
R199	Gridded Receptor	529788	5511298	431.9	76.1	105.1	8	<0.1%
R200	Gridded Receptor	529788	5511318	430.8	77.7	106.7	8	<0.1%
R201	Gridded Receptor	529838	5511268	429.9	73.5	102.5	8	<0.1%
R202	Gridded Receptor	529838	5511218	423.8	67.2	96.2	10	<0.1%
R203	Gridded Receptor	529838	5511168	419.6	65.0	94.0	10	<0.1%
R204 R205	Gridded Receptor Gridded Receptor	529838 529838	5511118 5511068	419.0 419.8	62.4 59.6	91.4 88.6	<u>12</u> 10	<0.1% <0.1%
R205	Gridded Receptor	529636	5511068	419.0	59.6	88.6	8	<0.1%
R207	Gridded Receptor	529838	5510968	419.9	58.3	87.3	6	<0.1%
R208	Gridded Receptor	529888	5511218	425.0	68.2	97.2	8	<0.1%
R209	Gridded Receptor	529888	5511168	420.5	63.8	92.8	8	<0.1%
R210	Gridded Receptor	529888	5511118	420.0	62.5	91.5	8	<0.1%
R211	Gridded Receptor	529888	5511068	420.9	60.3	89.3	8	<0.1%
R212 R213	Gridded Receptor Gridded Receptor	529888 529888	5511018 5510968	420.6 418.0	57.4 56.1	86.4 85.1	<u> </u>	<0.1% <0.1%
R213	Gridded Receptor	529888	5511168	418.0	61.6	90.6	8	<0.1%
R215	Gridded Receptor	529938	5511118	421.1	61.9	90.9	6	<0.1%
	Gridded Receptor	529938	5511068	421.6	60.6	89.6	8	<0.1%
R217	Gridded Receptor	529938	5511018	419.4	56.4	85.4	6	<0.1%
R218	Gridded Receptor	529988	5511118	421.7	60.5	89.5	6	<0.1%
R219	Gridded Receptor	529988	5511068	420.6	59.4	88.4	6	<0.1%
R220	Gridded Receptor Gridded Receptor	529788 520788	5511068	419.6	61.1	90.1	10	<0.1% <0.1%
R221 R222	Gridded Receptor	529788 529788	5511018 5510968	421.0 420.0	61.2 58.7	90.2 87.7	8	<0.1%
R223	Gridded Receptor	529738	5511068	418.1	62.2	91.2	12	<0.1%
R224	Gridded Receptor	529738	5511018	421.0	61.9	90.9	10	<0.1%
R225	Gridded Receptor	529688	5511068	415.9	61.6	90.6	10	<0.1%
R226	Gridded Receptor	529688	5511018	419.7	61.6	90.6	8	<0.1%
R227	Gridded Receptor	529638	5511068	414.3	60.5	89.5	8	<0.1%
R228 R229	Gridded Receptor	529588 520580	5511071	414.3	61.3	90.3 90.1	4 4	<0.1% <0.1%
R229 R230	Gridded Receptor Gridded Receptor	529589 529589	5511081 5511091	413.6 413.0	61.1 60.9	90.1 89.9	4 4	<0.1%
R231	Gridded Receptor	529589	5511101	412.6	60.9	89.9	4 4	<0.1%
R232	Gridded Receptor	529589	5511111	412.3	61.0	90.0	5	<0.1%
R233	Gridded Receptor	529589	5511121	412.0	61.2	90.2	5	<0.1%
R234	Gridded Receptor	529589	5511131	412.3	62.2	91.2	5	<0.1%
R235	Gridded Receptor	529589	5511141	412.7	63.2	92.2	5	<0.1%
R236	Gridded Receptor	529589 520500	5511151	413.0	64.1	93.1	6	<0.1%
R237 R238	Gridded Receptor Gridded Receptor	529590 529590	5511161 5511171	413.7 414.4	65.4 66.6	94.4 95.6	<u>6</u> 6	<0.1% <0.1%
R230	Gridded Receptor	529590	5511171	414.4	67.6	95.6	6	<0.1%
R240	Gridded Receptor	529590	5511191	415.7	68.5	97.5	6	<0.1%
							-	

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Yea	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R241	Gridded Receptor	529590	5511201	416.4	69.3	98.3	7	<0.1%
R242	Gridded Receptor	529590	5511211	417.0	69.8	98.8	7	<0.1%
R243	Gridded Receptor	529590	5511221	417.0	69.8	98.8	7	<0.1%
R244	Gridded Receptor	529590	5511231	417.1	69.9	98.9	7	<0.1%
R245 R246	Gridded Receptor Gridded Receptor	529590 529591	5511241 5511251	417.0 416.4	70.7 71.2	99.7 100.2	7 7 7	<0.1% <0.1%
R240	Gridded Receptor	529591	5511261	415.8	71.6	100.2	6	<0.1%
R248	Gridded Receptor	529591	5511271	415.1	71.8	100.8	7	<0.1%
R249	Gridded Receptor	529591	5511281	414.1	71.4	100.4	7	<0.1%
R250	Gridded Receptor	529591	5511291	413.2	70.7	99.7	7	<0.1%
R251	Gridded Receptor	529591	5511301	412.2	69.9	98.9	7	<0.1%
R252 R253	Gridded Receptor Gridded Receptor	529591 529591	5511311 5511321	411.6 410.9	69.3 68.5	98.3 97.5	7	<0.1% <0.1%
R253	Gridded Receptor	529591	5511321	410.9	67.7	97.5	7	<0.1%
R255	Gridded Receptor	529592	5511341	409.9	67.2	96.2	7	<0.1%
R256	Gridded Receptor	529592	5511351	409.6	66.7	95.7	7	<0.1%
R257	Gridded Receptor	529592	5511361	409.2	66.0	95.0	7	<0.1%
R258	Gridded Receptor	529592	5511371	408.5	65.3	94.3	7	<0.1%
R259	Gridded Receptor	529592	5511381	407.9	64.4	93.4	7	<0.1%
R260	Gridded Receptor	529592	5511391	407.2	63.1	92.1	6	<0.1%
R261	Gridded Receptor	529592	5511400	406.5	61.5	90.5	5	<0.1%
R262 R263	Gridded Receptor Gridded Receptor	529593 529593	5511410 5511420	405.8 405.2	59.6 57.5	88.6 86.5	5	<0.1% <0.1%
R264	Gridded Receptor	529593	5511430	404.5	55.3	84.3	5	<0.1%
R265	Gridded Receptor	529995	5511119	421.5	60.1	89.1	3	<0.1%
R266	Gridded Receptor	529995	5511109	421.5	60.2	89.2	3	<0.1%
R267	Gridded Receptor	529995	5511099	421.5	60.2	89.2	3	<0.1%
R268	Gridded Receptor	529995	5511089	421.5	60.1	89.1	3	<0.1%
R269	Gridded Receptor	529995	5511079	420.8	59.6	88.6	3	<0.1%
R270	Gridded Receptor	529995	5511069	420.1	59.0	88.0	3	<0.1%
R271 R272	Gridded Receptor Gridded Receptor	529995 529995	5511059 5511049	419.4 418.3	58.4 57.3	87.4 86.3	3	<0.1% <0.1%
R273	Gridded Receptor	529995	5511039	417.1	56.1	85.1	2	<0.1%
R274	Gridded Receptor	528664	5514419	403.0	45.9	74.9	0	n/a
R275	Gridded Receptor	528661	5514428	404.4	47.2	76.2	0	n/a
R276	Gridded Receptor	528657	5514437	406.0	48.4	77.4	0	n/a
R277	Gridded Receptor	528684	5514475	408.8	51.1	80.1	1	<0.1%
	Gridded Receptor	529648	5511458	405.1	57.4	86.4	8	<0.1%
R279	Gridded Receptor	529668	5511458	405.2	57.2	86.2	8	<0.1%
R280	Gridded Receptor	529688 529708	5511458	405.2 407.2	56.7 61.6	85.7 90.6	<u>8</u> 10	<0.1% <0.1%
R281 R282	Gridded Receptor Gridded Receptor	529708	5511438 5511458	407.2	56.2	85.2	8	<0.1%
R283	Gridded Receptor	529728	5511438	407.8	62.3	91.3	10	<0.1%
R284	Gridded Receptor	529728	5511458	405.8	57.4	86.4	10	<0.1%
R285	Gridded Receptor	529728	5511478	403.8	52.1	81.1	4	<0.1%
R286	Gridded Receptor	529748	5511398	415.9	73.9	102.9	10	<0.1%
R287	Gridded Receptor	529748	5511418	411.0	67.5	96.5	10	<0.1%
R288	Gridded Receptor	529748	5511438	408.6	63.3	92.3	10	<0.1%
R289 R290	Gridded Receptor Gridded Receptor	529748 529748	5511458 5511478	406.5 404.5	58.6 53.7	87.6 82.7	<u> </u>	<0.1% <0.1%
R290 R291	Gridded Receptor	529748	5511478	404.5	79.4	82.7 108.4	10	<0.1%
R291	Gridded Receptor	529768	5511378	422.6	77.9	106.9	10	<0.1%
R293	Gridded Receptor	529768	5511398	417.7	75.2	104.2	14	<0.1%
R294	Gridded Receptor	529768	5511418	412.4	69.4	98.4	14	<0.1%
R295	Gridded Receptor	529768	5511438	409.5	64.8	93.8	14	<0.1%
R296	Gridded Receptor	529768	5511458	407.1	59.8	88.8	10	<0.1%
R297	Gridded Receptor	529768	5511478	405.1	54.9	83.9	8	<0.1%
R298	Gridded Receptor	529768	5511498	403.7	51.8	80.8	4	<0.1%
R299 R300	Gridded Receptor Gridded Receptor	529788 529788	5511338 5511358	429.5 428.3	78.4 78.5	107.4 107.5	8 10	<0.1% <0.1%
R300	Gridded Receptor	529788	5511356	426.3	77.8	107.5	10	<0.1%
1,001	Chaded Receptor	020100	00110/0	727.0	11.0	100.0	10	1 .170

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	oncentrations
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Ye	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R302	Gridded Receptor	529788	5511398	419.2	76.0	105.0	14	<0.1%
R303 R304	Gridded Receptor Gridded Receptor	529788 529788	5511418 5511438	414.3 411.0	71.5 67.1	100.5 96.1	<u> </u>	<0.1% <0.1%
R305	Gridded Receptor	529788	5511458	408.4	62.4	91.4	10	<0.1%
R306	Gridded Receptor	529788	5511478	406.4	57.9	86.9	10	<0.1%
R307	Gridded Receptor	529788	5511498	405.0	54.4	83.4	6	<0.1%
R308	Gridded Receptor	529788	5511518	403.5	51.3	80.3	4	<0.1%
R309	Gridded Receptor	529838	5511518	405.5	55.0	84.0	8	<0.1%
R310	Gridded Receptor	529838	5511468	410.9	65.0	94.0	<u> </u>	<0.1%
R311 R312	Gridded Receptor Gridded Receptor	529838 529838	5511418 5511368	418.0 427.7	73.4 77.2	102.4 106.2	8	<0.1% <0.1%
R313	Gridded Receptor	529838	5511318	430.4	75.9	100.2	8	<0.1%
R314	Gridded Receptor	529888	5511518	406.2	56.1	85.1	14	<0.1%
R315	Gridded Receptor	529888	5511468	411.6	64.7	93.7	16	<0.1%
R316	Gridded Receptor	529888	5511418	418.5	71.3	100.3	12	<0.1%
R317	Gridded Receptor	529888	5511368	428.6	75.8	104.8	6	<0.1%
R318 R319	Gridded Receptor Gridded Receptor	529888 529938	5511318 5511518	431.3 404.4	73.2 50.2	102.2 79.2	<u>6</u> 2	<0.1% <0.1%
R319	Gridded Receptor	529938	5511468	404.4	62.2	91.2	14	<0.1%
R321	Gridded Receptor	529938	5511418	417.7	68.1	97.1	14	<0.1%
R322	Gridded Receptor	529938	5511368	426.4	73.2	102.2	10	<0.1%
R323	Gridded Receptor	529938	5511318	429.6	72.4	101.4	6	<0.1%
R324	Gridded Receptor	529988	5511518	403.5	47.0	76.0	0	n/a
R325	Gridded Receptor	529988	5511468	408.9	58.5	87.5	14	<0.1%
R326	Gridded Receptor	529988	5511418	415.5	64.3	93.3	<u> </u>	<0.1%
R327 R328	Gridded Receptor Gridded Receptor	529988 529988	5511368 5511318	421.2 422.6	68.7 68.9	97.7 97.9	6	<0.1% <0.1%
R329	Gridded Receptor	529993	5511518	403.6	47.2	76.2	0	n/a
R330	Gridded Receptor	529993	5511508	404.6	49.4	78.4	0	n/a
R331	Gridded Receptor	529993	5511498	405.7	51.9	80.9	2	<0.1%
R332	Gridded Receptor	529993	5511488	406.7	54.4	83.4	5	<0.1%
R333	Gridded Receptor	529993	5511478	407.7	56.4	85.4	6	<0.1%
R334	Gridded Receptor	529993	5511468	408.7	58.0	87.0	7	<0.1%
R335 R336	Gridded Receptor Gridded Receptor	529993 529993	5511458 5511448	409.7 410.8	59.4 60.5	88.4 89.5	7 7	<0.1% <0.1%
R337	Gridded Receptor	529993	5511438	412.2	61.9	90.9	7	<0.1%
R338	Gridded Receptor	529993	5511428	413.5	63.0	92.0	7	<0.1%
R339	Gridded Receptor	529993	5511418	414.9	63.7	92.7	7	<0.1%
R340	Gridded Receptor	529993	5511408	416.2	64.4	93.4	6	<0.1%
R341	Gridded Receptor	529993	5511398	417.5	65.6	94.6	6	<0.1%
R342	Gridded Receptor	529993 520002	5511388	418.8	66.7	95.7	6	<0.1%
R343 R344	Gridded Receptor Gridded Receptor	529993 529993	5511378 5511368	419.6 420.5	67.4 68.1	96.4 97.1	<u>6</u> 5	<0.1% <0.1%
R345	Gridded Receptor	529993	5511358	420.3	68.6	97.6	5	<0.1%
R346	Gridded Receptor	529994	5511349	421.4	68.7	97.7	4	<0.1%
R347	Gridded Receptor	529994	5511339	421.6	68.7	97.7	3	<0.1%
R348	Gridded Receptor	529994	5511329	421.7	68.6	97.6	3	<0.1%
R349	Gridded Receptor	529994	5511319	421.5	68.2	97.2	3	<0.1%
R350	Gridded Receptor	529994	5511309	421.4	67.7	96.7	3	<0.1%
R351 R352	Gridded Receptor Gridded Receptor	529994 529994	5511299 5511289	421.2 420.5	67.1 66.1	96.1 95.1	4 3	<0.1% <0.1%
R352 R353	Gridded Receptor	529994 529994	5511289 5511279	420.5	65.5	95.1 94.5	3	<0.1%
R354	Gridded Receptor	528692	5514480	408.9	51.7	80.7	1	<0.1%
R355	Gridded Receptor	528701	5514485	408.9	51.3	80.3	1	<0.1%
R356	Gridded Receptor	528709	5514490	408.9	50.5	79.5	1	<0.1%
R357	Gridded Receptor	528717	5514495	409.0	49.7	78.7	0	n/a
R358	Gridded Receptor	528726	5514500	408.9	49.0	78.0	0	n/a
R359	Gridded Receptor	528734	5514505	408.7	48.2	77.2	0	n/a
R360	Gridded Receptor	528426 528408	5514396	400.2	53.7	82.7	45	0.1%
R361 R362	Gridded Receptor Gridded Receptor	528498 528443	5514361 5514372	400.0 399.1	46.6 47.5	75.6 76.5	0	n/a n/a
11302		520443	JJ143/2	J99. I	47.0	10.5	U	11/a

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	
	·				1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Yea	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R363	Gridded Receptor	528417	5514919	402.6	50.5	79.5	3	<0.1%
R364	Gridded Receptor	528424	5514944	401.3	47.5	76.5	0	n/a
R365	Gridded Receptor	528422	5514936	401.8	48.5	77.5	0	n/a
R366	Gridded Receptor	528420	5514927	402.2 402.1	49.5 50.0	78.5 79.0	0	n/a
R367 R368	Gridded Receptor Gridded Receptor	528411 528405	5514914 5514908	402.1	49.1	79.0	0	n/a n/a
R369	Gridded Receptor	528399	5514902	400.7	47.8	76.8	0	n/a
R370	Gridded Receptor	528420	5514389	400.0	50.3	79.3	5	<0.1%
R371	Gridded Receptor	529608	5511458	403.0	50.0	79.0	0	n/a
R372	Gridded Receptor	529608	5511478	401.4	46.7	75.7	0	n/a
R373	Gridded Receptor	529608	5511498	400.2	46.2	75.2	0	n/a
R374 R375	Gridded Receptor Gridded Receptor	529608 529608	5511558	398.0 397.3	45.9 46.8	74.9 75.8	0	n/a n/a
R375	Gridded Receptor	529608	5511578 5511598	397.3	40.0	75.8	0	n/a
R377	Gridded Receptor	529608	5511618	395.6	48.5	77.5	0	n/a
R378	Gridded Receptor	529608	5511638	394.7	49.0	78.0	0	n/a
R379	Gridded Receptor	529628	5511458	403.9	53.7	82.7	8	<0.1%
R380	Gridded Receptor	529628	5511478	402.4	48.4	77.4	0	n/a
R381	Gridded Receptor	529628	5511498	401.1	46.8	75.8	0	n/a
R382	Gridded Receptor	529628	5511518	399.9	45.5	74.5	0	n/a
R383	Gridded Receptor	529628	5511558	398.4	45.3	74.3	0	n/a
R384 R385	Gridded Receptor Gridded Receptor	529628 529628	5511578 5511598	397.7 397.1	46.2 47.2	75.2 76.2	0	n/a n/a
R386	Gridded Receptor	529628	5511618	396.0	47.8	76.8	0	n/a
R387	Gridded Receptor	529628	5511638	395.0	48.1	77.1	0	n/a
R388	Gridded Receptor	529648	5511478	403.1	50.9	79.9	2	<0.1%
R389	Gridded Receptor	529648	5511498	401.7	47.7	76.7	0	n/a
R390	Gridded Receptor	529648	5511518	400.4	46.3	75.3	0	n/a
R391	Gridded Receptor	529648	5511578	397.7	45.8	74.8	0	n/a
R392	Gridded Receptor	529648	5511598	397.1	46.5	75.5	0	n/a
R393 R394	Gridded Receptor Gridded Receptor	529648 529648	5511618 5511638	396.4 395.7	47.0 47.1	76.0 76.1	0	n/a n/a
R395	Gridded Receptor	529668	5511478	403.2	50.9	79.9	2	<0.1%
R396	Gridded Receptor	529668	5511498	401.8	47.5	76.5	0	n/a
R397	Gridded Receptor	529668	5511518	400.5	46.1	75.1	0	n/a
R398	Gridded Receptor	529688	5511478	403.2	50.6	79.6	2	<0.1%
R399	Gridded Receptor	529688	5511498	401.8	47.3	76.3	0	n/a
	Gridded Receptor	529708	5511478	403.2	50.4	79.4	2	<0.1%
R401	Gridded Receptor	529838	5510918	418.7	55.6	84.6	6	<0.1%
R402 R403	Gridded Receptor Gridded Receptor	529838 529838	5510868 5510818	415.3 414.7	51.7 50.2	80.7 79.2	6	<0.1% <0.1%
R404	Gridded Receptor	529888	5510918	416.1	53.8	82.8	4	<0.1%
R405	Gridded Receptor	529888	5510868	413.1	49.5	78.5	0	n/a
R406	Gridded Receptor	529888	5510818	413.1	48.0	77.0	0	n/a
R407	Gridded Receptor	529938	5510968	414.4	52.3	81.3	4	<0.1%
R408	Gridded Receptor	529938	5510918	409.8	47.1	76.1	0	n/a
R409	Gridded Receptor	529938	5510868	410.0	46.0	75.0	0	n/a
R410	Gridded Receptor	529938 520088	5510818 5511018	410.5	45.1	74.1	0 4	n/a
R411 R412	Gridded Receptor Gridded Receptor	529988 529788	5511018	415.0 419.4	53.5 56.4	82.5 85.4	6	<0.1% <0.1%
R413	Gridded Receptor	529788	5510868	417.0	53.5	82.5	6	<0.1%
R414	Gridded Receptor	529788	5510818	415.4	51.9	80.9	2	<0.1%
	Gridded Receptor	529738	5510968	420.9	59.5	88.5	6	<0.1%
R416	Gridded Receptor	529738	5510918	420.0	57.0	86.0	6	<0.1%
R417	Gridded Receptor	529738	5510868	417.7	55.4	84.4	4	<0.1%
R418	Gridded Receptor	529738	5510818	416.0	52.9	81.9	2	<0.1%
R419	Gridded Receptor	529688	5510968	420.0	59.2	88.2	6	<0.1%
R420 R421	Gridded Receptor Gridded Receptor	529688 529688	5510918 5510868	420.0 418.9	58.9 56.7	87.9 85.7	<u>6</u> 4	<0.1% <0.1%
R421	Gridded Receptor	529688	5510808	418.9	53.6	82.6	4 4	<0.1%
R423	Gridded Receptor	529638	5511018	418.2	61.1	90.1	6	<0.1%
		020000	00.1010		, , , , , , , , , ,		~	0.170

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	oncentrations
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Ye	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R424	Gridded Receptor	529638	5510968	420.0	61.4	90.4	6	<0.1%
R425 R426	Gridded Receptor Gridded Receptor	529638 529638	5510918 5510868	420.0 420.0	59.7 56.9	88.7 85.9	8 4	<0.1% <0.1%
R420	Gridded Receptor	529588	5511018	417.5	62.7	91.7	8	<0.1%
R428	Gridded Receptor	529588	5510968	420.0	62.4	91.4	8	<0.1%
R429	Gridded Receptor	529588	5510918	420.1	59.3	88.3	6	<0.1%
R430	Gridded Receptor	529588	5510868	421.0	57.6	86.6	4	<0.1%
R431	Gridded Receptor	529988	5510718	420.4	49.0	78.0	0	n/a
R432	Gridded Receptor	529888	5510718	417.3	49.5 57.7	78.5 86.7	0 2	n/a <0.1%
R433 R434	Gridded Receptor Gridded Receptor	529586 529595	5510862 5511650	421.0 394.3	49.9	78.9	0	<0.1% n/a
R435	Gridded Receptor	529566	5510862	421.0	58.7	87.7	3	<0.1%
R436	Gridded Receptor	529576	5510862	421.0	58.2	87.2	3	<0.1%
R437	Gridded Receptor	529586	5510872	421.0	57.7	86.7	2	<0.1%
R438	Gridded Receptor	529586	5510882	421.0	57.6	86.6	2	<0.1%
R439	Gridded Receptor	529586	5510892	421.0	57.7	86.7	2	<0.1%
R440 R441	Gridded Receptor Gridded Receptor	529586 529587	5510902 5510912	421.0 421.0	58.5 59.2	87.5 88.2	3	<0.1% <0.1%
R441	Gridded Receptor	529587	5510912	421.0	59.6	88.6	3	<0.1%
R443	Gridded Receptor	529587	5510922	420.1	60.3	89.3	3	<0.1%
R444	Gridded Receptor	529587	5510942	420.1	60.9	89.9	3	<0.1%
R445	Gridded Receptor	529587	5510952	420.1	61.5	90.5	4	<0.1%
R446	Gridded Receptor	529587	5510962	420.0	62.0	91.0	4	<0.1%
R447	Gridded Receptor	529587	5510972	419.9	62.5	91.5	4	<0.1%
R448	Gridded Receptor	529587	5510982	419.3	62.6	91.6	4	<0.1%
R449 R450	Gridded Receptor Gridded Receptor	529587 529588	5510992 5511001	418.6 418.0	62.6 62.6	91.6 91.6	4 4	<0.1% <0.1%
R450	Gridded Receptor	529588	5511001	418.0	62.7	91.0	4 4	<0.1%
R452	Gridded Receptor	529588	5511021	417.4	62.7	91.7	4	<0.1%
R453	Gridded Receptor	529588	5511031	417.0	62.6	91.6	4	<0.1%
R454	Gridded Receptor	529588	5511041	416.4	62.2	91.2	3	<0.1%
R455	Gridded Receptor	529588	5511051	415.7	61.7	90.7	4	<0.1%
R456	Gridded Receptor	529588	5511061	415.0	61.4	90.4	4	<0.1%
R457 R458	Gridded Receptor Gridded Receptor	529593 529593	5511440 5511450	403.8 403.1	53.0 50.3	82.0 79.3	4	<0.1% <0.1%
R456	Gridded Receptor	529593	5511460	403.1	47.4	79.3	0	 n/a
R460	Gridded Receptor	529593	5511470	401.2	46.8	75.8	0	n/a
R461	Gridded Receptor	529594	5511550	397.8	46.6	75.6	0	n/a
R462	Gridded Receptor	529594	5511560	397.5	46.8	75.8	0	n/a
R463	Gridded Receptor	529594	5511570	397.2	46.9	75.9	0	n/a
R464	Gridded Receptor	529595 520505	5511580	396.8	47.4	76.4	0	n/a
R465 R466	Gridded Receptor Gridded Receptor	529595 529595	5511590 5511600	396.5 396.2	47.8 48.1	76.8 77.1	0	n/a n/a
R400 R467	Gridded Receptor	529595	5511600	395.8	48.6	77.6	0	n/a
R468	Gridded Receptor	529595	5511620	395.4	49.0	78.0	0	n/a
R469	Gridded Receptor	529595	5511630	395.0	49.3	78.3	0	n/a
R470	Gridded Receptor	529595	5511640	394.7	49.6	78.6	0	n/a
R471	Gridded Receptor	529605	5511650	394.3	49.4	78.4	0	n/a
R472	Gridded Receptor	529615	5511650	394.3	48.8	77.8	0	n/a
R473	Gridded Receptor	529625 520635	5511650 5511650	394.5	48.3	77.3	0	n/a
R474 R475	Gridded Receptor Gridded Receptor	529635 529645	5511650	394.9 395.2	47.7 47.4	76.7 76.4	0	n/a n/a
R475	Gridded Receptor	529045	5510800	411.6	47.4	74.4	0	n/a
R477	Gridded Receptor	529996	5510790	412.1	45.6	74.6	0	n/a
R478	Gridded Receptor	529996	5510780	413.6	46.7	75.7	0	n/a
R479	Gridded Receptor	529996	5510770	415.1	47.6	76.6	0	n/a
R480	Gridded Receptor	529996	5510760	416.6	48.3	77.3	0	n/a
R481	Gridded Receptor	529996	5510750	417.7	48.7	77.7	0	n/a
R482	Gridded Receptor	529996 520006	5510740 5510730	418.9	49.0	78.0	0	n/a
R483 R484	Gridded Receptor Gridded Receptor	529996 529996	5510730 5510720	420.0 420.3	49.2 49.0	78.2 78.0	0	n/a n/a
1\404		523330	3310720	420.3	49.0	70.0	U	11/a

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Ye	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R485	Gridded Receptor	529996	5510710	420.7	48.8	77.8	0	n/a
R486	Gridded Receptor	529996	5510700	421.0	48.5	77.5	0	n/a
R487	Gridded Receptor	529996	5510690	421.2	48.3	77.3	0	n/a
R488	Gridded Receptor	529996	5510680	421.4 421.6	48.4	77.4 77.5	0	n/a
R489 R490	Gridded Receptor Gridded Receptor	529997 529997	5510670 5510660	421.6	48.5 48.4	77.4	0	n/a n/a
R491	Gridded Receptor	529997	5510650	421.4	48.3	77.3	0	n/a
R492	Gridded Receptor	529997	5510640	421.0	48.2	77.2	0	n/a
R493	Gridded Receptor	529997	5510630	420.7	48.0	77.0	0	n/a
R494	Gridded Receptor	528413	5514382	400.0	48.7	77.7	0	n/a
R495	Gridded Receptor	529708	5511498	401.8	47.1	76.1	0	n/a
R496 R497	Gridded Receptor Gridded Receptor	529728 529748	5511498 5511498	402.4 403.1	48.4 50.2	77.4 79.2	0 2	n/a <0.1%
R497 R498	Gridded Receptor	529748	5511518	403.1	46.9	75.9	0	 n/a
R499	Gridded Receptor	529768	5511518	402.4	48.8	77.8	0	n/a
R500	Gridded Receptor	529768	5511538	401.1	45.8	74.8	0	n/a
R501	Gridded Receptor	529788	5511538	401.8	47.6	76.6	0	n/a
R502	Gridded Receptor	529838	5511568	401.2	46.2	75.2	0	n/a
R503	Gridded Receptor	529888	5511568	401.2	45.3	74.3	0	n/a
R504	Gridded Receptor	529888	5511268	430.7	72.8	101.8	8	<0.1%
R505	Gridded Receptor	529938	5511268	428.0	71.0	100.0	6	<0.1%
R506 R507	Gridded Receptor Gridded Receptor	529938 529988	5511218 5511268	423.2 420.3	67.4 66.1	96.4 95.1	8 6	<0.1% <0.1%
R508	Gridded Receptor	529988	5511200	416.9	62.6	91.6	8	<0.1%
R509	Gridded Receptor	529988	5511168	416.6	59.4	88.4	8	<0.1%
R510	Gridded Receptor	529994	5511269	419.1	65.2	94.2	3	<0.1%
R511	Gridded Receptor	529994	5511259	418.5	64.7	93.7	3	<0.1%
R512	Gridded Receptor	529994	5511249	417.8	64.0	93.0	3	<0.1%
R513	Gridded Receptor	529994	5511239	417.1	63.3	92.3	3	<0.1%
R514	Gridded Receptor	529994	5511229	416.4	62.4	91.4	3	<0.1%
R515 R516	Gridded Receptor Gridded Receptor	529994 529994	5511219 5511209	415.8 415.1	61.4 60.4	90.4 89.4	3	<0.1% <0.1%
R517	Gridded Receptor	529994	5511199	414.9	59.7	88.7	4	<0.1%
R518	Gridded Receptor	529994	5511189	414.7	59.0	88.0	4	<0.1%
R519	Gridded Receptor	529994	5511179	414.7	58.3	87.3	4	<0.1%
R520	Gridded Receptor	529994	5511169	416.0	59.0	88.0	4	<0.1%
R521	Gridded Receptor	529994	5511159	417.3	59.4	88.4	4	<0.1%
	Gridded Receptor	529994	5511149	418.6	59.6	88.6	4	<0.1%
R523	Gridded Receptor	529994 520005	5511139	419.6	59.4	88.4	4	<0.1%
R524 R525	Gridded Receptor Gridded Receptor	529995 529995	5511129 5511029	420.6 415.9	59.7 54.8	88.7 83.8	3	<0.1% <0.1%
R526	Gridded Receptor	528743	5514510	408.5	47.2	76.2	0	n/a
R527	Gridded Receptor	528751	5514515	408.3	46.0	75.0	0	n/a
R528	Gridded Receptor	529993	5511528	402.6	45.2	74.2	0	n/a
R529	Gridded Receptor	529638	5510818	419.9	54.7	83.7	4	<0.1%
R530	Gridded Receptor	529588	5510818	419.9	56.8	85.8	6	<0.1%
R531	Gridded Receptor	529538	5510818	420.6	58.0	87.0	4	<0.1%
R532 R533	Gridded Receptor Gridded Receptor	529488 529588	5510818 5510718	420.3 409.8	58.0 45.9	87.0 74.9	4 0	<0.1%
R533 R534	Gridded Receptor	529588	5510718	409.8	45.9	74.9	0	n/a n/a
R535	Gridded Receptor	529446	5510861	420.1	60.4	89.4	2	<0.1%
R536	Gridded Receptor	529456	5510861	420.3	60.0	89.0	2	<0.1%
R537	Gridded Receptor	529466	5510861	420.6	59.7	88.7	2	<0.1%
R538	Gridded Receptor	529476	5510861	420.8	60.0	89.0	2	<0.1%
R539	Gridded Receptor	529486	5510861	421.2	60.3	89.3	2	<0.1%
R540	Gridded Receptor	529496	5510861	421.5	60.4	89.4	3	<0.1%
R541	Gridded Receptor	529506	5510861	421.7	60.5	89.5	3	<0.1%
R542 R543	Gridded Receptor Gridded Receptor	529516 529526	5510861 5510861	421.8 422.0	60.5 60.4	89.5 89.4	3	<0.1% <0.1%
R544	Gridded Receptor	529520	5510861	422.0	60.1	89.4	3	<0.1%
R545	Gridded Receptor	529546	5510862	421.5	59.7	88.7	3	<0.1%
		0_00+0	0010002			00.7	~	

	Receptor	r Informatio	n		Maximum	Cummulative	Predicted Ex	cursions of
ID#	Description	X	Y	Z	Predicted	Concentration	Cumulative Co	ncentrations
					1-hour		Above CAAQ	S (79µg/m³)
					Concentration		Over 5 Ye	ar Period
							Count	Frequency
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)
R546	Gridded Receptor	529556	5510862	421.1	59.2	88.2	3	<0.1%
R547 R548	Gridded Receptor Gridded Receptor	528427 528380	5514952 5514347	400.9 399.9	46.3 45.6	75.3 74.6	0	n/a n/a
R549	Gridded Receptor	528387	5514354	399.9	46.5	75.5	0	n/a
R550	Gridded Receptor	528394	5514361	399.9	47.3	76.3	0	n/a
R551	Gridded Receptor	528400	5514368	399.9	48.0	77.0	0	n/a
R552	Gridded Receptor	528407	5514375	400.0	48.5	77.5	0	n/a
R553	Gridded Receptor	529668	5511618	396.4	46.0	75.0	0	n/a
R554	Gridded Receptor	529668	5511638	395.7	46.4	75.4	0	n/a
R555 R556	Gridded Receptor Gridded Receptor	529688 529708	5511638 5511638	395.7 395.7	46.0 45.5	75.0 74.5	0	n/a n/a
R557	Gridded Receptor	529728	5511518	401.2	46.0	75.0	0	n/a
R558	Gridded Receptor	529988	5510968	410.1	47.0	76.0	0	n/a
R559	Gridded Receptor	529655	5511650	395.4	47.2	76.2	0	n/a
R560	Gridded Receptor	529665	5511650	395.4	47.0	76.0	0	n/a
R561	Gridded Receptor	529675	5511649	395.4	46.8	75.8	0	n/a
R562	Gridded Receptor	529685 529695	5511649	395.4	46.5	75.5	0	n/a
R563 R564	Gridded Receptor Gridded Receptor	529695 529705	5511649 5511649	395.4 395.4	46.2 45.9	75.2 74.9	0	n/a n/a
R565	Gridded Receptor	529705	5511649	395.4	45.6	74.9	0	n/a
R566	Gridded Receptor	529724	5511649	395.5	45.2	74.2	0	n/a
R567	Gridded Receptor	529995	5511019	414.4	53.0	82.0	2	<0.1%
R568	Gridded Receptor	529995	5511009	412.9	51.0	80.0	2	<0.1%
R569	Gridded Receptor	529995	5510999	411.4	48.8	77.8	0	n/a
R570	Gridded Receptor	529995	5510989	410.8	47.5	76.5	0	n/a
R571	Gridded Receptor	529995	5510979	410.1	46.8	75.8	0	n/a
R572	Gridded Receptor	530382	5510738	420.2	45.2	74.2	0	n/a
R573 R574	Gridded Receptor Gridded Receptor	530382 530382	5510748 5510758	419.8 419.3	45.4 45.5	74.4 74.5	0	n/a n/a
R575	Gridded Receptor	529608	5511518	399.3	45.5	74.5	0	n/a
R576	Gridded Receptor	529608	5511538	398.7	45.6	74.6	0	n/a
R577	Gridded Receptor	529988	5510618	420.3	47.8	76.8	0	n/a
R578	Gridded Receptor	529888	5510618	418.9	47.3	76.3	0	n/a
R579	Gridded Receptor	529788	5510718	412.6	46.5	75.5	0	n/a
R580	Gridded Receptor	529593	5511480	400.2	46.1	75.1	0	n/a
R581 R582	Gridded Receptor Gridded Receptor	529593 529594	5511490	399.9 399.5	45.9 45.7	74.9 74.7	0	n/a
	Gridded Receptor	529594 529594	5511500 5511510	399.5	45.7	74.7	0	n/a n/a
R584	Gridded Receptor	529594	5511520	398.8	45.6	74.6	0	n/a
R585	Gridded Receptor	529594	5511530	398.5	46.0	75.0	0	n/a
	Gridded Receptor	529594	5511540	398.1	46.3	75.3	0	n/a
R587	Gridded Receptor	529997	5510620	420.3	47.7	76.7	0	n/a
R588	Gridded Receptor	529997	5510610	420.0	47.5	76.5	0	n/a
R589	Gridded Receptor	529997	5510600	419.7	47.2	76.2	0	n/a
R590 R591	Gridded Receptor Gridded Receptor	529997 529997	5510590 5510580	419.3 419.0	46.8 46.5	75.8 75.5	0	n/a
R591 R592	Gridded Receptor	529997	5510580 5510570	419.0	46.5	75.5	0	n/a n/a
R593	Gridded Receptor	529997	5510570	418.3	45.7	74.7	0	n/a
R594	Gridded Receptor	529997	5510550	418.0	45.2	74.2	0	n/a
R595	Gridded Receptor	529388	5510418	413.9	46.2	75.2	0	n/a
R596	Gridded Receptor	529288	5510418	415.2	48.0	77.0	0	n/a
R597	Gridded Receptor	529188	5510518	418.5	53.6	82.6	6	<0.1%
R598	Gridded Receptor	529088	5510618	412.9	54.4	83.4	8	<0.1%
R599 R600	Gridded Receptor Gridded Receptor	529088 528988	5510518 5510518	416.1 412.9	53.8 52.9	82.8 81.9	<u>8</u> 10	<0.1% <0.1%
R600	Gridded Receptor	528988	5510518	412.9	47.4	76.4	0	<0.1% n/a
R602	Gridded Receptor	528888	5510518	406.5	47.4	74.2	0	n/a
R603	Gridded Receptor	529188	5510418	412.6	47.6	76.6	0	n/a
R604	Gridded Receptor	529788	5510618	413.3	45.2	74.2	0	n/a
R605	Gridded Receptor	529688	5510718	411.2	46.7	75.7	0	n/a
R606	Gridded Receptor	528443	5514332	399.0	45.3	74.3	0	n/a

	Recepto	r Informatio	n		Maximum	Cummulative	Predicted Excursions of		
ID#	Description	X	Y	Z	Predicted 1-hour Concentration	Concentration	Above CAA	oncentrations QS (79µg/m³) ear Period	
							Count	Frequency	
		(m)	(m)	(m)	(ug/m³)	(ug/m³)	(hours)	(%)	
R607	Gridded Receptor	528443	5514352	399.0	46.8	75.8	0	n/a	
R608	Gridded Receptor	528463	5514352	399.4	45.6	74.6	0	n/a	
R609	Gridded Receptor	528388	5515118	408.1	46.0	75.0	0	n/a	
R610	Gridded Receptor	528429	5514961	400.4	45.2	74.2	0	n/a	
R611	Gridded Receptor	528393	5514897	400.0	46.2	75.2	0	n/a	
R612	Gridded Receptor	528503	5514352	400.0	46.0	75.0	0	n/a	
R613	Gridded Receptor	528504	5514353	400.0	46.1	75.1	0	n/a	
R614	Gridded Receptor	528509	5514345	400.0	46.4	75.4	0	n/a	
R615	Gridded Receptor	528515	5514337	400.1	46.3	75.3	0	n/a	
R616	Gridded Receptor	528521	5514329	400.4	46.0	75.0	0	n/a	
R617	Gridded Receptor	528526	5514321	400.7	45.4	74.4	0	n/a	
R618	Gridded Receptor	528464	5514999	401.3	45.5	74.5	0	n/a	
R619	Gridded Receptor	528457	5514993	400.9	45.1	74.1	0	n/a	
R620	Gridded Receptor	529668	5511578	397.7	45.2	74.2	0	n/a	
R621	Gridded Receptor	529668	5511598	397.1	45.8	74.8	0	n/a	
R622	Gridded Receptor	529688	5511518	400.5	45.8	74.8	0	n/a	
R623	Gridded Receptor	529708	5511518	400.7	45.5	74.5	0	n/a	
R624	Gridded Receptor	529995	5510969	409.4	46.2	75.2	0	n/a	
R625	Gridded Receptor	529995	5510959	408.9	45.6	74.6	0	n/a	
R626	Gridded Receptor	529996	5510810	411.1	45.2	74.2	0	n/a	
R627	Gridded Receptor	529088	5510418	409.3	45.6	74.6	0	n/a	

From:Bell, Dave (CEAA/ACEE)To:Denyes, MackenzieSubject:RE: Goliath-Atmospheric clarifications IR#2Date:December-17-18 4:41:14 PMAttachments:image001.png

Recevied and forwarded.

From: Denyes, Mackenzie <mackenzie.denyes@woodplc.com>
Sent: December 17, 2018 4:39 PM
To: Bell, Dave (CEAA/ACEE) <dave.bell@canada.ca>
Cc: Mark Wheeler <mark@treasurymetals.com>; Rawlings, Martin <martin.rawlings@woodplc.com>
Subject: Goliath-Atmospheric clarifications IR#2

Dave,

Please find below our responses in red to the atmospheric environment related questions raised last week.

Mackenzie Denyes, PhD, P.Geo. Environmental Scientist Office: +1 905.568.2929 ext. 4146 Cell: +1 905.330.1601 www.woodplc.com

CLARIFICATIONS FOR GOLIATH GOLD ATMOSPHERIC ENVIRONMENT IR#2 UPDATED RESPONSES

1. On page 8, it is stated that "the isopleth figures provided in TMI_877-AE(2)-01_Attachment_2 (operations) supersede Figures 6 through 19 of Appendix J-2 of the revised EIS (April 2018)". The response [iii] on page 9 states that "the only differences between the predictions presented in Tables 6.6.4.1-2, 6.6.4.2-2 and 6.6.4.3-2 of the revised EIS (April 2018) and TMI_877-AE(2)-01_Table_4a, TMI_877-AE(2)-01_Table_4b and TMI_877-AE(2)-01_Table_4c were the changes to the gridded modelling locations as a result of the changes to the property line described in the response to [i], as well as the changes to the sensitive receptors described in the response to part [iv]". This response implies that the underlying air quality model (emissions and sources) has not changed since April 2018.

Yes, the underlying air quality used to create the isopleth figures are unchanged. Only the property line, receptor locations, and shading contour levels were changed.

Therefore, it would be expected that the isopleths in Attachment 2 should be consistent with their analogous isopleths in Figures 6 to 19 of Appendix J-2, with only the locations of some of the boundaries changing. The Agency has not compared all 14 pairs of figures, but it has found two examples that appear to show inconsistencies.

- a) NO₂ 1hr contour plot (Appendix J-2, Figure 15 vs TMI_877_AE(2) 01_Attachment_2, Figure 15b): the older figure shows areas to the north of the tailings source with predicted concentrations of 100 to 125 μ g/m³. Those same areas, in the revised figure, shows concentrations between 50 to 80 μ g/m³. In the new figure, the area across the Nursery Road from the location identified as being 57 μ g/m³ shows concentrations of 50 to 65 and 65 to 80 μ g/m³; in the older figure, this area shows 100 to 125 μ g/m³.
- b) PM_{2.5} 24hr contour plot (Appendix J-2, Figure 9 vs TMI_877_AE(2) 01_Attachment_2, Figure 9b): the revised figure shows the concentration at the maximum point of impingement (MPOI) at 23 μg/m³, and an area to the north of the MPOI with concentrations above 12 μg/m³. That area in the older figure indicates concentrations of less than 5 μg/m³.

The Agency comments are noted, but the air modelling team provides assurances that the results used as the basis for both sets figures are the same and the apparent differences may be the result of both the changes to the contour levels used for the shading and the location of the property lines. One additional item to note is that the AERMOD model version has changed twice between generating the figure in Appendix J-2 and the figures included in TMI_877-AE(2)-01_Attachment_2. The figures in Appendix J-2 were generated using the 12345 version of AERMOD, which was the regulatory model in Ontario at the time. The figures in TMI_877-AE(2)-01_Attachment_2 were generated using the 16216 version of AERMOD, which is the current regulatory model in Ontario. The current version of AERMOD (16216) typically results in lower concentrations for the volume sources used to model emissions from material handling and haul roads (note that Ontario MECP confirmed this trend in their own sensitivity tests when they moved to the new model version).

It is also noted that the figures in Attachment 2 do not show a number of the area sources that are in the older figures (e.g., DOZER1, DOZER2, DOER 3, LOADER, ORE). It is not clear whether this is an error in creating the revised figures, or an indication of changes to the air quality model by removing some sources.

As stated above, the air quality modelling files used to create both sets of isopleth figures are unchanged. Only the property line, receptor locations, shading contour levels, and the version of AERMOD used (TMI_877-AE(2)-01_Attachment_2 was created using the current regulatory model in Ontario, vesion 16216 of AERMOD). The area sources (i.e., DOZER1, DOZER2, DOER 3, LOADER, ORE) had been omitted from the operation phase modelling (i.e., Figures 6b through 20b) to avoid clutter. The figures are being regenerated to include the locations of the area sources that were used in the modelling.

Explain the differences between Figures 6 to 19 in Appendix J-2 and their analogous figures in Attachment 2, particularly the two examples given above. Confirm whether any sources or parameters in the air quality modelling changed between April 2018 and December 2018. If so, provide a list of sources or parameters that have changed, and the rationale for the changes.

The only differences between the original isopleth figures included in Appendix J-2 and Figures 6b through 19b of TMI_877-AE(2)-01_Attachment_2 are the property line, receptor locations, shading contour levels, and the regulatory version of AERMOD used

(TMI_877-AE(2)-01_Attachment_2 used the 16216 version of AERMOD). None of the sources were changed or omitted. With respect to the apparent differences for the 1-hour NO2 and 24-hour PM2.5 isopleths between those presented in Appendix J-2 and those presented in TMI_877-AE(2)-01_Attachment_2, the air modelling team provides assurances that the sources used as the basis for both sets figures are the same and the any apparent differences will be the result of changes to the contour levels used for the shading, the location of the property lines, and the version of the model used.

2. On page 65, the Agency requested a map with frequency of exceedances of NO₂. No map was provided, as "given the extremely low number of 1-hour NO2 concentrations predicted to be numerically higher than 79 μ g/m³ (the value of the 1-hour CAAQS for NO₂ in 2025), it is unclear how the information provided in TMI_880-AE(2)-O4_Table_5 [sic] could be more clearly presented in a map." It is much easier for the reviewers to see the locations where the exceedances could occur in a figure instead of plotting numerous easting and northing values on a map. Further, while Table 6 shows receptor RO2 as having a maximum cumulative concentration of 85.2 μ g/m³, that location in Attachment 2, Figure 15b (NO2 1hr contour plot) appears in a zone with concentration between 50-65 μ g/m³. It is also unclear why the percentage exceedances listed in Table 6 are based on a benchmark of 45 μ g/m³, as the CAAQS threshold would be 79 μ g/m³.

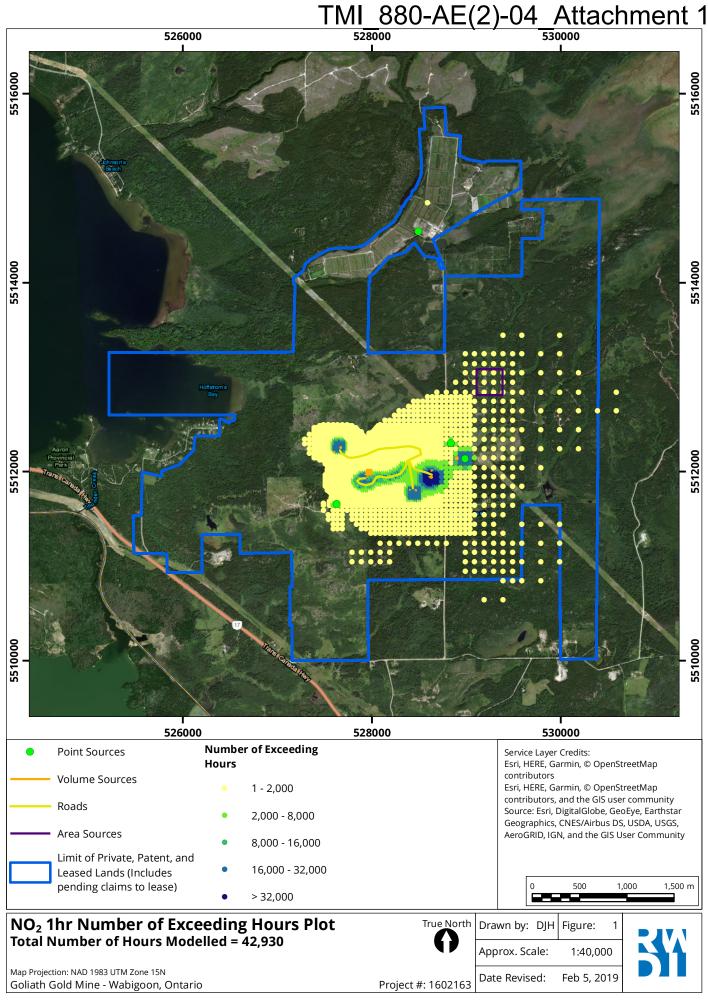
Figure 15b of TMI_877-AE(2)-01_Attachment_2 provides the concentration isopleths for 1-hour NO2 during the operations phase, and clearly shows where the predicted 1-hour NO2 exceeds the CAAQS of 42 ppb set to come in force in 2025 (depending on the temperature used in the conversion, 42 ppb converts to either 79 or μ g/m³). A figure clearly showing those areas where the concentrations are predicted to exceed the CAAQS, along with the frequency of exceeding the CAAQS of 42 ppb is being prepared. This figure will allow for direct analysis and avoid the need to try and plot the results from TMI_880-AE(2)-04_Table_6 receptors on the figure. There was a error in the table. Th frequencies were calculated for the model results directly, and the frequency should have been based on 50 μ g/m³ (i.e., 79 μ g/m³, less 29 μ g/m³ of background). A revised table will be provided that determines the frequencies based on the cumulative predictions.

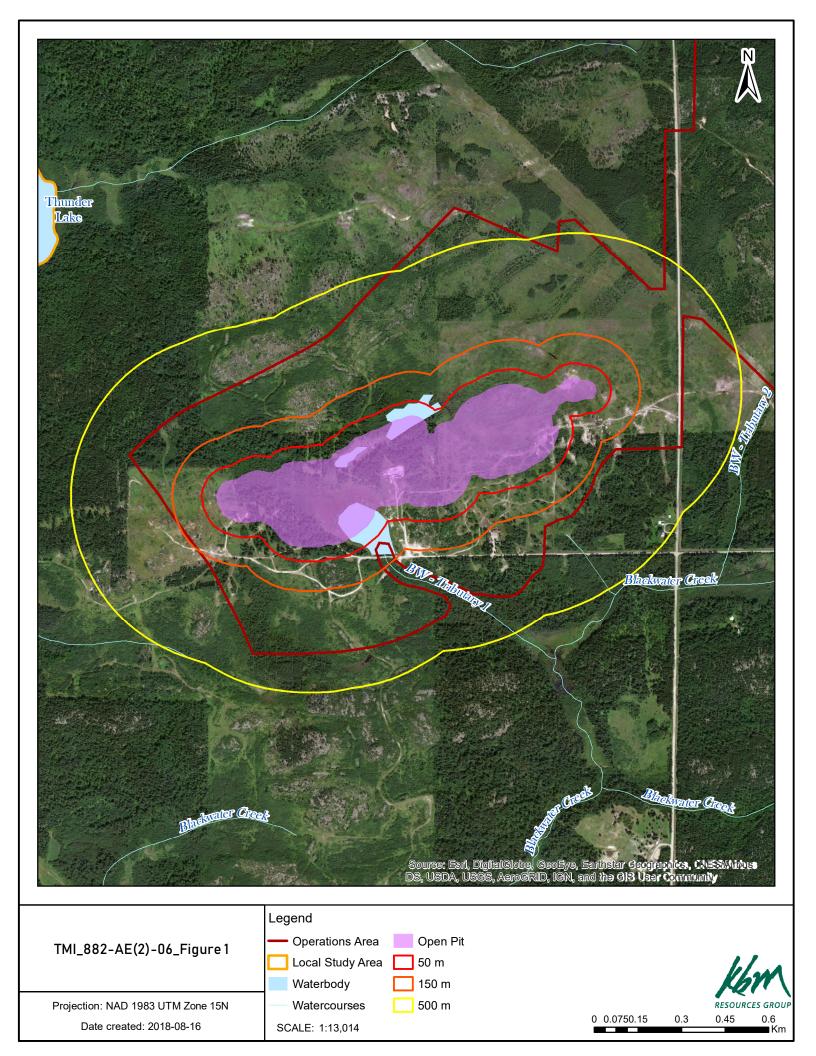
The Agency reiterates its comment: In response to TMI_880-AE(2)-04B, a table was provided for frequency analysis of exceedances of NO_2 . This information would be better conveyed in a map. While it is understood that this list includes "these gridded receptors along the property line", it should also include locations within the updated property boundary where Indigenous use could occur.

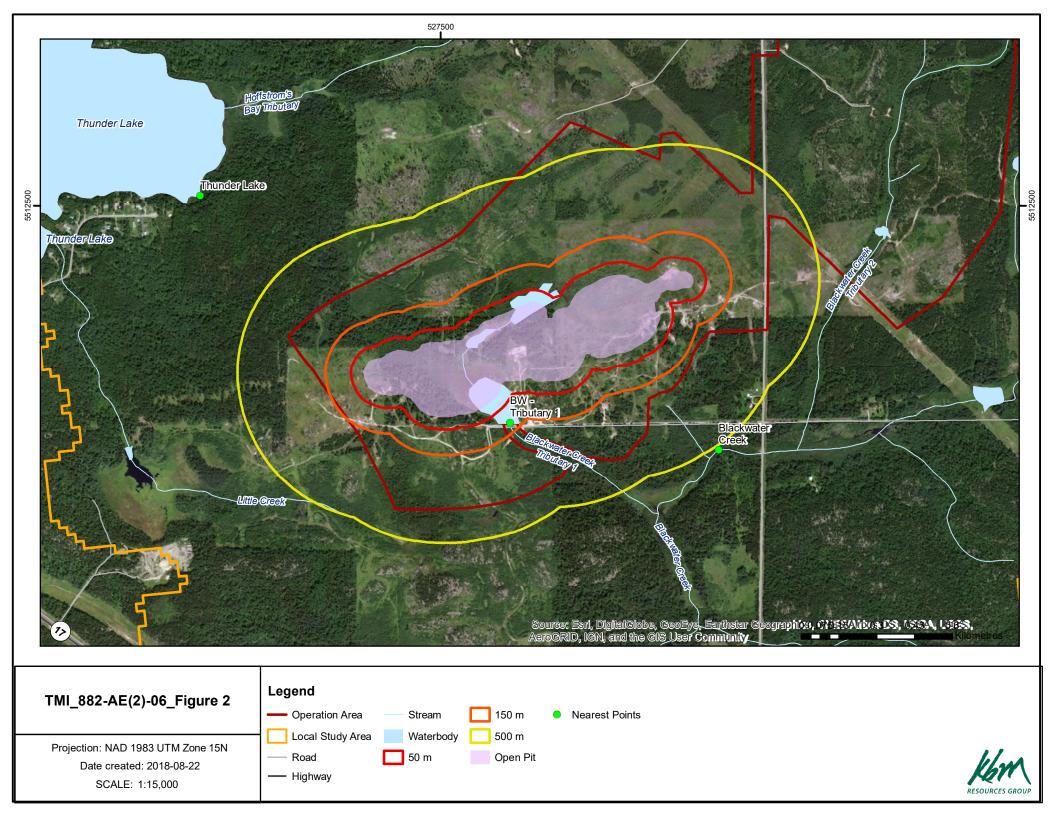
Provide a map with isopleths of frequency levels that conveys the information given in TMI_880-AE(2)-04_Table_6. The map should also include locations within the property boundary where Indigenous use may occur, particularly within Study Area Number 2 (the Local Study Area). The Agency notes that the original question AE(2)-04B asked for a frequency analysis (in days or in percentage) for any pollutants that are predicted to exceed the standards based on <u>cumulative</u> <u>concentrations</u>..."

It should be noted that as part of TMI_940-AC(2)-07, the Agency requested that the effects of the

Project to Aboriginal peoples, specifically their traditional use of lands and resources, be recalculated to include not only those areas where the resources would lost as a result of the Project, but also those areas where "Changes in access" and "Diminished on-the-land experience" were predicted to occur. These areas were calculated as lost for the purposes of traditional land use, and include all areas where predicted air quality is expected to have concentrations above a criteria level that is based on health. These have been recalculated to include the new CAAQS for 1-hour NO2. Therefore, the EIS has assumed that traditional land use will not occur in all areas where resources are not accessible (i.e., the operations area), all areas where access is controlled for safety reasons (i.e., the former MNRF tree nursery) and all areas within the property line where maximum air concentrations are predicted to be higher than relevant health based criteria.


Additionally, the 2018 HHERA has explicitly evaluated the potential effects to the health of individual members of Indigenous communities that practice traditional uses of the lands within Treasury Metals property boundary.


This message is the property of John Wood Group PLC and/or its subsidiaries and/or affiliates and is intended only for the named recipient(s). Its contents (including any attachments) may be confidential, legally privileged or otherwise protected from disclosure by law. Unauthorized use, copying, distribution or disclosure of any of it may be unlawful and is strictly prohibited. We assume no responsibility to persons other than the intended named recipient(s) and do not accept liability for any errors or omissions which are a result of email transmission. If you have received this message in error, please notify us immediately by reply email to the sender and confirm that the original message and any attachments and copies have been destroyed and deleted from your system.


If you do not wish to receive future unsolicited commercial electronic messages from us, please forward this email to: <u>unsubscribe@woodplc.com</u> and include "Unsubscribe" in the subject line. If applicable, you will continue to receive invoices, project communications and similar factual, non-commercial electronic communications.

Please click <u>http://www.woodplc.com/email-disclaimer</u> for notices and company information in relation to emails originating in the UK, Italy or France.

As a recipient of an email from a John Wood Group Plc company, your contact information will be on our systems and we may hold other personal data about you such as identification information, CVs, financial information and information contained in correspondence. For more information on our privacy practices and your data protection rights, please see our privacy notice at https://www.woodplc.com/policies/privacy-notice

			Estimated Upper Bound [1]		Estimated from DFO Method [3]		Estimated	Estimated
Name	Description	Distance to Pit Perimeter	PPV	Maximum Charge to Meet Limit [2]	PPV	Maximum Charge to Meet Limit [2]	Blasting Overpressure in Water [4]	Blasting Overpressure in Air [5]
		(m)	(mm/s)	(kg)	(mm/s)	(kg)	(kPa)	(dBL Peak)
Thunder Lake	at the point closest to the pit	938	3.3		0.7		0.9	124
Blackwater Creek	at the point closest to the pit	519	8.2		1.8		2.4	128
BW - Tributary 1	outside of the operations area at the point closest to the pit	111	86	8.3	21	54	28	138

Notes:

Values based on assumed 100 kg charge weight per delay unless otherwise noted

PPV estimated from ISEE Blasting Handbook Table 26.3 upper bound equation for coal mines
 Maximum charge weight per delay to meet 13 mm/s DFO limit for spawning fish habitat

 PPV estimated from DFO document (Appendix II); appears to be based on ISEE Blasting Handbook general curve fit
 Peak water overpressure estimated from DFO document (Appendix II) equations, using PPV from DFO methodology (see Note [3]). When upper bound PPV values are used to derive the water overpressure, some locations may see higher predicted values. For example, Blackwater Creek Tributary 1 (BW - Trib 1) would need to have the charge weight limited to 85 kg to achieve the 100 kPa limit when based on the upper bound values (see Note [1])

[5] Unweighted decibels referenced to 20 microPascals based on metal mines equation from Table 26.7 of ISEE Blasting Handbook