Memorandum

Date: November 12, 2015

Refer to File: C.1- 0215644 (Wetland Classification Expanded LSA_TL Access Roads).docx

To: Ryan Todd (New Gold)

From: Wade Brunham and Ben Andrew

Cc: Anne Currie and Nicole Bishop

Subject: Blackwater Gold Project - Wetland Classification and Mapping in the

Transmission Line Access Roads Expanded LSA

1. INTRODUCTION

This memo details the methods and results of wetland surveys, classification, and mapping completed within the transmission line access roads expanded Local Study Area (the expanded LSA). The memo provides wetland classifications to the site association level (MacKenzie and Moran 2004) for all wetland in the expanded LSA. A list, from the BC Conservation Data Centre records, of rare and sensitive wetland ecosystems site associations was produced based on the forest district and biogeoclimatic zones overlapping the expanded LSA. This list was compared to the mapped wetlands to identify rare and sensitive wetlands in the expanded LSA.

2. METHODOLOGY

The following assumptions informed the work described in this memo:

- Where wetlands in the first decile were greater than 50%, the polygon area was assumed to be wetlands. For example, where a one hectare Predictive Ecosystem Mapping (PEM) polygon was mapped as 70% Ws07 swamp and 30% associated riparian or wet forest, the area used to generate wetland size for this memo was one hectare as opposed to 0.7 ha. This assumption yields a conservative wetland area.
- Photo documentation and notes from the aerial survey was used to identify cases where polygon boundaries were not reflective of ecological site differences (i.e. only one wetland polygon exists in reality). Where both polygons represented the same site association, they were attributed with the same label. For example, where the PEM identified two wetland polygons adjacent to one another and one was classified as Ws07 and the other was classified as Ws, the photo documentation and notes were used to confirm similar site and structural characteristics, and the assumption was made that the Ws was an extension of the Ws07.
- Where species lists were similar for two wetland associations and one was a listed wetland, the listed wetland association was selected to be conservative.

 Listed wetlands were identified by cross referencing red- and blue-listed wetlands in the Engelmann Spruce - Subalpine Fir (ESSF) and Sub-boreal Spruce (SBS) Biogeoclimatic (BEC) zones of the Vanderhoof Forest District using Conservation Data Centre (CDC) records (BC MOE 2015). To be conservative, rather than relying on BEC subzone differentiation, BEC zones were used to ensure all potentially red- or blue-listed wetlands that could occur in the LSA were identified.

The following methods were used to complete wetland classification and mapping:

- A base mapping layer was prepared using the modified predictive ecosystem mapping (PEM) completed for the Blackwater Gold Project (Project). These data were queried to identify ecosystem polygons containing only wetland class information and not site association classification. These polygons were targeted for visual inspections and field survey inspections.
- A visual inspection of all wetlands within the expanded LSA by helicopter was conducted on October 22, 2015. Wetlands were located using a GPS, and information for each wetland was recorded in a laminated map book. Each wetland was photo documented from the air and pertinent site attributes and wetland site associations were recorded.
- Wetland field plots were established in select wetlands. Wetland forms were completed
 for each plot (Appendix 1) and data were collected in accordance with ERM's wetland
 survey standard operating procedures (Appendix 2). Wetland Habitat Information forms
 were also completed at each wetland. Wetland classifications to site association level
 communities, consistent with MacKenzie and Moran (2004), were recorded at each plot.
 This information, along with adjacent TEM plot information, was used to update wetland
 mapping so all wetland polygons were attributed to site associations.
- A wetland polygon layer was refined using the modified PEM polygons, aerial wetland delineations, and TRIM wetlands. The refined polygons were attributed with federal wetland class and provincial site associations based on the visual inspections and plot results and informed by the original classifications. The resultant mapping contains provincial wetland site association classifications (MacKenzie and Moran 2004) for all wetlands in the expanded LSA.

3. RESULTS

3.1 Wetland Site Association Mapping

A total of 57 wetlands were visually inspected from the air and photo documented using the base mapping layer. Following the visual inspection, 11 wetland field plots were completed. In total there were 96 polygons inspected in 128 plots from previous surveys and this survey (*Appendix 5.1.3.3A - Vegetation 2011 – 2013 Baseline Report* (AMEC 2015) of the Application for an Environmental Assessment Certificate). This resulted in a TEM Resource Inventory Standard (RIC 1998) survey intensity level (SIL) of 5 for the expanded LSA for the modified PEM mapping (8% of polygons inspected). The SIL for wetland polygons in the expanded LSA is level 4 (25% of all polygons inspected). The Application Information Requirements identify a SIL of 5 for linear project components, with an inspection rate of 5 to 14%.

The total wetland area in the expanded LSA (including previously mapped and revised wetland mapping) is 425.5 ha¹ (Table 3.1-1) and has 11 site associations. All five federal wetland classes were observed (Warner and Rubec 1997). However, shallow open water wetlands were not included as a standalone wetland polygon; they were incorporated into larger wetland complexes as deciled components.

Table 3.1-1. Wetland Associations and Area in the Transmission Line Access Road Expanded LSA

Federal Wetland Class	Wetland Site Association	Number	Area (ha)
Bog	Wb01	1	5.4
Bog	Wb05	8	13.0
Bog	Wb08	3	4.2
Fen	Wf01	16	25.0
Fen	Wf04	1	1.0
Swamp	Willow-Sedge	1	0.2
Marsh	Wm01	4	1.7
Swamp	Ws03	1	2.5
Swamp	Ws04	3	11.8
Swamp	Ws07	201	359.0
Swamp	Ws08	1	1.7
Total		240	425.5

Wetland locations, classes, and associations within the expanded LSA are presented in Figures 3.1-1 through 3.1-17 (Appendix 3). Photographs at wetland plots are presented in Appendix 4.

3.2 Listed Wetlands

A summary of listed wetlands, their conservation status, and area that could be affected by construction or operation of the transmission line or access road right-of-way (ROWs) and that occur in the expanded LSA is presented in Table 3.2-1. To identify listed wetland ecosystems in the expanded LSA, a list was generated by the BC Conservation Data Centre (BC MOE 2015) of listed wetland associations in the ESSF and SBS BEC Zones within the Vanderhoof Forest District.

¹ Based on the conservative assumption that the entire polygon area was wetland when the first decile was greater than 50% of the polygon area, the total wetland area reported in this memo is greater than the 386 ha area reported in the Supplemental Report on the Transmission Line Access Roads (September 2015).

In total, 5.4 ha of blue-listed Black spruce – Creeping – snowberry – Peat-moss (Wb01) and 2.5 ha of blue-listed Bebb's willow – Bluejoint (Ws03) occur in the expanded LSA. Less than 0.1 ha of Wb01 and 0.2 ha of Ws03 intersect the access road ROW.

Although Table 3.2-1 shows that some blue-listed wetlands exist in the expanded LSA, it is important to recognize that subtle differences in sedge and willow composition can result in changes to the Wb01 and Ws04 classifications. Notably, no red-listed wetland communities were identified in the expanded LSA. These communities contain easily identifiable and unique plant assemblages.

Table 3.2-1. BC Conservation Data Centre Listed Wetlands Potentially Occurring in the Transmission Line Access Road ROWs and Expanded LSA

		Transmissio	on Line Ao ROW (ha)	ccess Roads		Expanded Transmission Line Access Roads LSA
Listed Wetland Association	Conservation Status	Upgraded Roads	New Roads	Combined	Transmission Line ROW (ha)	Total Area (ha)
Wf02	Blue	0	0	0	0	0
Wf05	Blue	0	0	0	0	0
Wf06	Blue	0	0	0	0	0
Wf08	Blue	0	0	0	0	0
Wf09	Red	0	0	0	0	0
Wf10	Red	0	0	0	0	0
Wf11	Blue	0	0	0	0	0
Northern Mannagras Fen	Blue	0	0	0	0	0
Wb01	Blue	0	< 0.1	<0.1	1.6	5.4
Wb09	Blue	0	0	0	0	0
Wb10	Blue	0	0	0	0	0
Wb11	Blue	0	0	0	0	0
Wb12	Blue	0	0	0	0	0
Wb13	Blue	0	0	0	0	0
Tamarack, Low birch, blue joint	Red	0	0	0	0	0
Wm02	Blue	0	0	0	0	0
Wm04	Blue	0	0	0	0	0
Wm06	Blue	0	0	0	0	0
Ws03	Blue	0	0.2	0.2	0.6	2.5
Ws05	Blue	0	0	0	0	0
Total Listed Wetlands			0.2	0.2	1.2	7.9

Note: Red-listed wetlands are bolded.

Prepared by:

Wade Brunham M.Sc. PWS, EP

Principal Consultant, Branch Manager

ERM

REFERENCES

- AMEC. 2015. *Appendix 5.1.3.3A Vegetation 2011 2013 Baseline Report* Prepared for New Gold by AMEC:
- BC MOE. 2015. *BC Conservation Data Centre Home Page*. http://www.env.gov.bc.ca/cdc/index.html (accessed November 2015).
- MacKenzie, W. H. and J. R. Moran. 2004. *Wetlands of British Columbia: A Guide to Identification*. Land Management Handbook 52. BC Ministry of Forests Research Branch: Victoria, BC.
- RIC. 1998. Standard for Terrestrial Ecosystem Mapping in British Columbia. Terrestrial Ecosystems Taskforce, Ecosystems Working Group, Resources Inventory Committee: Victoria, BC.
- Warner, B. G. and C. D. A. Rubec. 1997. *The Canadian Wetland Classification System*. 2nd ed. n.p.: National Wetlands Working Group, Wetlands Research Centre, University of Waterloo.

- Appendix 1 -

Wetland Field Data Cards

(Rescan)	WETLA	ND HABI	ΓΑΤ ΙΝ	IÉORMA	TION FORM			
W 🗆 T 🗆	**	91-109	X:	Y:	DATE OG 2			
PROJECT ID.	B	11-109	SURV.		· · · · · · · · · · · · · · · · · · ·			
MAPSHEET	DUACKW	aten.	1		ET (F			
		T	PLOT#		DOI			
UTM ZONE	9_	•	824).		5908644			
ASPECT		<u> </u>	ELEVAT	rion 9	52"			
SLOPE	Q %	SMR VIO	Н	us/	SNR 🤇			
MESO SLOPE POSITION		rest Ipper slope	☐ Mid ☐ Low ☐ Toe	er slope	☐ Depression ?			
HYDROGEO- MORPHIC POSITION		stuarine luvial	Lecu	istrine ds & Potholes	☐ Basins & Hollon			
DRAINAGE - MINERAL SOI		ery rapidly apidly	☐ Well		☐ Poorly ☐ Very poorly			
MINERAL SOIL TEXTURE		andy (LS,S) oamy (SL,L,S(CL,FSL)	☐ Silty (S	iL,Si) (SiCL,CL,SC,SiC,0			
MOISTURE SUBCLASSES ORGANIC SOI		queous eraquic	☐ Aqu		☐ Perhumid ☐ Humid			
ORGANIC SOII	TEXTURE		SURF. 0	ORGANIC HO	RIZON THICKNESS			
☐ Fibric	☐ Mesic	☑ Humic	<u></u>					
HUMUS FORM			ROOTING DEPTH					
☐ Mor	Moder	☐ Mull	Depth Cm Type					
VON F	OST							
1 2	ß	4 5	6	7 8	3 9 10			
COARSE FRAC	SMENT CONT	FNT						
	/	□ 20-35%	□ 35	-70% F	□ > 70%			
FCOSY	STEM	COMPONE	T: 🗆		WL2 WL3			
BGC UNIT		1		_				
SITE SERIES	Wino	d'03)	ASSOCI		SUMAR			
STRUCTURAL			MODIFIE	1	end :			
STAGE	2 (25)	* • • • · · · · · · · · · · · · · · · ·	1		· · · ソ			
	WET	LAND POLY	GON S	UMMARY				
	%	CLAS	S	A:	SSOCIATION			
WL4				١.,				
WL2		3-1						
WL3	3.5			1				

	DOM	INA	NT:/II	NDICA	TOR PL	ANT	SPE	CIES		12A 22 123 24	
	_	LL TR			SHRUB	Ī	FORB		BRYOP		
TOTAL %		0)	3	2	,	100	>	Ô		
TREE / SHR	JB	%		FORE	3	%	Ţ .	FORB or	ontid	%	C
SHUR DR	· I I				65 T						,
				LOBION			<u> </u>				
,		-		GRUS		 					
				14- 1111			<u> </u>	BRYO	D	%	7
		\vdash	1 2 1/2	OH PH	. L. (Bitto	-	76	1
									/	$ \cdot $	
								1	***************************************		
											1
		ļ	<u> </u>								(
		ᄂ					<u> </u>			Щ	
		Ц	COMPL	EIE		ARTIAL	ī				
WATER				oured			3		rown Turk	bid	
COLOUR				Deep Bri Brown Ci	own Turb	oid	BI	ue-Gre	en Clear		
		ILY G	reen-r	STOWN C	lear						
pН			IDUCT	IVITY	% OPE	N WA	TER		H TO WAT	ER	
7.87		2	02					4.	56		
2212											
a, a sanga sa Assag		0511.0	. 155 1	. N. N. N. A.	15111111				<u>. 11</u> 1 121 131	15-537	
- 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 199 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995	OIL PR	OFILE						SERVAT	-	ya ta Nij	. (
Delwork					SF	ECIE	S	P	EATURE		(
	160	, · · ·									
(LAY	1-0	•									. •
1											,
b		*									(
1				-							
	}										
	\									İ	,
	}										()
	Į	-									
	1										
Adapted from Groui	nd Inspe	ction F	orm: F	S FS212-2	(1) HRE 9	V5-76	1000069	4		_	
					2001.6					- *	

					Wi	ΞT	LA	ND	M	۱P					
17	20		w.	1 h	F_		ηė	>	Þ	n	9 10	ا -'د			
													-	1 :	
ARM	1 '	i	1		1 : 1			1			<u> </u>			<u> </u>	
Four					#11	งเก	*†	- 17 W	Ĭ	4	0)	= 5.	1	115	
Mod	1 !		50	1	**	4-3	-	,	112	mi				ļ	
	1 1 - 4				1 1 1			1 1	1 : :	1					
9055 -CO		ν) V	or){ 	10 04	/	50	1	٦٠,	ı evi	20	D (5)	in i		au
!	1 : 1		3				1 1				1		1		1,31
1000		-				-						3.7			
			· ·					. - 							1
		1					+			 1.T.					
								İ		+			<u> </u>		
			1-1-1-				1 i							! : ;	
			+				+	H							
	Ц			-			1.		- -			11			
								- I							
							1		1 1			-	<i>:</i>	L	-
		: -							- <u>:</u>			: : : : :	:		
			T.								:	-	1		
			<u></u>	_											
								: :	11		- 1 - 1				

vegetation communities, wetland boundary, direction of water flow, soil core locations.

19**4**5

FUNCTION INDICATORS
LOGICAL
Potential Flood Mitigation
☐ Evidence of Flooding
Fluvial or Lacustrine HGMP
☐ Downstream Infrastructure UK
Erosion Mitigation
☐ No Exposed Soils
☐ Sediment Deposition Observed
[2 Floodplain
EMICAL
Water Quality
☑ Emergent Vegetation
Upstream of Drinking Water Intake
Carbon Sequestration
Ū Von Post < 4
☐ Organic Soils > 1 m
GICAL
Wetland Ecosystem > 5 ha
☐ Connected to SOW
☐ Isolated Wetland Complex
Connected Wetland Complex
ITAT
☐ Importance to Migration
☐ Structural Diversity
TES

()

(

(i

()

()

	Water 10 10 10 10 10 10 10 10 10 10 10 10 10	20 244. See Co						
	Research WE	TLAND HABI	TAT INFORMA	TION FORM				
	W□ T□	РНОТО	X: Y:	DATE DCT 27				
	PROJECTIO BL	ACKWINTIST	SURV. Wis Peru					
* *** * * *	MAPSHEET		PLOT # BWOO					
	UTM ZONE	NORTH 2		5-910097				
	ASPECT	-1		998				
	SLOPE	(2% SMR W		SNR				
\mathcal{F}	MESO	☐ Crest	☐ Mjd slope	Depression				
. \	SLOPE POSITION	☐ Upper slope	□ Lower slope □ Toe	Level				
Gooth Signi	HYDROGEO- MORPHIC POSITION	☐ Estuarine ☐ Fluvial .	☐ Lacustrine ☐ Ponds & Potholes	☐ Basins & Hollows ☐ Seepage Slopes				
Som	DRAINAGE - MINERAL SOILS	☐ Very rapidly ☐ Rapidly	Well ☐ Mod. well ☐ Imperfectly	☐ Poorly ☐ Very poorly				
	MINERAL SOIL TEXTURE	Sandy (LS,S) Loamy (SL,L,S	CL,FSL) Silty (Si	L,Si) (SiCL,CL,SC,SiC,C)				
	MOISTURE SUBCLASSES ORGANIC SOIL	☐ Aqueous ☐ Peraquic	☐ Aguic ☐ Subaquic	☐ Perhumid ☐ Humid				
	ORGANIC SOIL TEX	/	SURF. ORGANIC HOR	RIZONATRICKNESS				
•		Mesic Humic	- CMT					
}	HUMUS FORM	The second secon	ROOTING DEPTH					
		Øloder ☐ Muil	Depthcm	Туре				
ļ	VON POST							
{ :	1 2	3 4	6 7 8	9 10				
,	COARSE FRAGMEN	IT CONTENT		· · · · · · · · · · · · · · · · · · ·				
	. □ < 20%	6 ☐ 20-35%	35-70%] > 70%				
ſ	ECOSYSTE	M COMPONE	NT: 🗆 WL1 🗆	WL2 🗆 WL3				
	BGC UNIT (C)	PHALLAN	WETLAND CLASS					
`	SITE SERIES		ASSOCIATION					
	STRUCTURAL STAGE		MODIFIER					
		WETLAND POLY	GON SUMMARY					
()	%	CLAS	S AS	SOCIATION				
` '	WL1							
Ĺ	WL2							
L	WL3							
1	WB-RES13-01	:		250413				

{ :

<u> </u>	OMINAN				ANI		IES:	137 (40,0)4444	jajes.
TOTAL %	TALL TRE	E	TREE /	SHRUB		FORB	_	BRYOP	'.
TREE / SHRUB	%		FORE	3	%	F	ORB c	ont'd	%
PILEM		ERO	MM	v					
LEDO GAV		Con	∕v'`>			<u> </u>			
GANI HIS		KWI	475	PLUMP					
EMAT NIM	1					,	BRYC)P	%
Rosn sp Snux sp						Ø		123- Su-	10
						PLI	2 5 h	197- 33- 197	
							(
		٠							<u> </u>
		COMPLET	ΓE	P/	RTIAL	<u></u>			<u> </u>
WATER COLOUR	_ Y	ea Colo ellow-Do reen-Br	eep Bro	own Turb ear	id	l -		rown Turi een Glear	bid
рΉ	CON	DUCTIV	ITY	% OPEN WATER			DEPI	TH TO WAT	ER
									-
SOIL				14.54.	VILDI	IFE OB:	SERVA	TIONS	¥\$.
WONTH]	outh	+	SP	ECIE	S		FEATURE	
Deep WOODY PEGT VP6/7	5	outh My							
VP6/7									
	}								

Adapted from Ground Inspection Form: FS FS212-2(1) HRE 98/5-7610000694

WETLAND MAP
NORTH SIDE OF THE ROAD
Cinssio 15 Ds D7. IT IS connect
PHOTO 114-118
SOUTH STOK OF ROHO IS
Prepares to SAVOI SOILS
PHO10 # 118-126

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

)

OBSERVED WETLAND	FUNCTION INDICATORS
HYDROI	OGICAL
Groundwater Discharge	Potential Flood Mitigation
☐ Minerotrophic Species	☐ Eyidence of Flooding
☐ Basin & Hollows HGMP	Fluvial or Lacustrine HGMP
☐ Seepage Slopes HGMP	☐ Downstream Infrastructure
Groundwater Recharge	Erosion Mitigation
☐ Von Post < 6	☐ No Exposed Soits
Ponds & Potholes HGMP	☐ Sediment Deposition Observed
Permafrost Maintenance	[D Floodplain
Depth to Permafrost cm	
	EMICAL
Nutrient Sink	Water Quality
☐ WC - Brown/Turbid	☐ Emergent Vegetation
☐ Basin & Hollows HGMP	Upstream of Drinking Water Intake
☐ Ponds & Potholes HGMP	
Nutrjent Export	Carbon Sequestration
Discharge to Surface Water	☐ Von Post < 4
√ Fluvial or Lacustrine HGMP	☐ Organic Soils > 1 m
ECOLO	OGICAL
☐ Source Wetland	
☐ Unique Wetland	Connected to SOW
☐ High Vegetation Species Diversity	☐ Isolated Wetland Complex
☐ BMI Observed	☐ Connected Wetland Complex
HAB	ITAT
☐ Wildlife Use Observed	☐ Importance to Migration
Listed Wildlife Species Observed	Structural Diversity
NO	TES

(

(

W 🖸 T [DUM	INFC	JRM,	ATION FORM			
PROJECTIO			X;		Y:	DATE OUT 27			
PROJECT ID	LYCHCH	NATIO	SU	RV. LJ	B	Pere			
UTM ZONE	/			OT# 13	SUC	0663			
ASPECT	9	NORTH	3899	703	EAS	591327			
SLOPE	m		ELE	VATION		091			
MESO	<u> </u>	SMR	W	א וסא	5/				
SLOPE	18:	Crest Jpper slope		Mid slope		SNR Depression			
POSITION		opper slope	18:	ower slo	pe	Level			
HYDROGEO- MORPHIC		stuarine							
POSITION		luvial		acustrine onds & Pot	lbata -	Basins & Hollows			
DRAINAGE -	ΠΛ	егу rapidly	10 M			☐ Seepage Slopes			
MINERAL SOILS	□R	apidly	Д□м	od, well	- 1	Poorly			
MINERAL SOIL	TI C		🗆 in	perfectly		Very poorty			
IEXTURE		indy (LS,S) amy (SL,L,S	רו בפיי	□ Sij	y (SiL,	Si)			
MOISTURE			7	uµ.€ïa	yey (S	SiCL,CL,SC,SiC,C)			
SUBCLASSES ORGANIC SOIL	ueous raquic	□ Aq	ціc		☐ Perhumid				
ORGANIC SOIL TE	XTURE		U Subaquic						
☐ Fibric ☐	Mesic	Humic	SURF. ORGANIC HORIZON THICKNESS						
HUMUS FORM		- Tomic	1-00	(m				
□ Mor □	Moder	☐ Mull		NG DEPTH	PROPERTY AND PROPE	THE RESERVE			
VON POS			Depth :	c	m Ty	pe			
1 2	3 4		/		_				
COARSE FRAGMEN		5	6	7	(8)	9 10			
20%									
States and annual to the		20-35%	35-	70%	>	70%			
ECOSYSTE		OMPONENT							
GC UNIT WET	C14 WID		METLAND		J WL				
TRUCTURAL	01	/	SSOCIA		TEN	<u>)</u>			
TAGE		1	ODIFIER)fict				
	WETLAN								
%	(- A D	ID POLYG	ON SU	MARY					
		CLASS		A	SSOCI	ATION			
2									
.3									

		LTRE		IDICATO	RUB		FORB	BRYOF	. [
TOTAL %	l IAL	_ incl	_	7)	/			107	.	
	<u></u>	<u> </u>				1 %	FO.	RB cont'd	%	()
TREE / SHR	UB	%		FORB		 ~				,
		-	Por Pri			┼╶┤				
						1-1				
		} −		AV 19RI		 				
		┼─	-	14 64 N		1-		BRYOP.	%	(
		┼-	Pol	-AVHOUR	01-5	 				
		+-	-			† - -				
		+	1-			1				
* (447		1	777	EC					_ _	Ĉ
* CHNT	13	-	' ''	<u> </u>			l		_ _	f
		十一	1			\mathbb{Z}_{-}	<u></u>		ᆚᆛ	
			COM	PLETE	_ U	PARTIA	L			
							∏ Gr	een-Brown T	urbid	
WATER		iea c	oloured v-Deep Bro	sum Tu	rbid		ue-Green Cle			
COLOUR			Yello	v-Deep or	ear		1		1	
	_		Gree	1-Brown Cl				WATER		
ρН		C	DDDU	CTIVITY	%0	PENV	ATER	DEPTH TO V	VATER	
NIA									_	
 _										
										<u> </u>
	SOIL	ROF	LE			WIL	DLIFE OF	SERVATIONS		6
					1	SPEC	IES	FEATU	RE	1
		ME	ren Pen) BCorner				[
[·		Ì	100							
ļ					1			}		
1.		\						1		
600	m	1								ļ
		1			1					1
1	. •	1			1					}
		· \			1			ŀ		1
Lu	Y	}			l					1
	1	1			ļ					ļ
1		ł			ļ			1		-
Ì		1						1		

	WETL	AND	MAA D			
	**- L	-AIAD	IVIAF			
		 				H
	+-!			1		7
						-
	4:1:1	1 1	-			:
	THE					
	<u>-i-l</u> -l-l:					
		<u> </u>				
						_
				- 77		
						;
			: 			
<u> - </u>	+					
						_
				1		_
		- T				
		- - - -	114			
						_
▋▝┽╌╌┨┆┾╧╌┨┆┶┼╌┨						_
						\dashv
						-1
- - - - -						:
					<u> </u>	1
						-1
		-	_			
						Į

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

Groundwater Discharge Minerotrophic Species	OGICAL
Minerotrophic Species	
	Potential Flood Mitigation
	Evidence of Flooding
Basin & Hollows HGMP	☐ Fluvial or Lacustrine HGMP
☐ Seepage Slopes HGMP	☐ Downstream Infrastructure
Groundwater Recharge	Erosion Mitigation
☐ Von Post < 6	☐ No Exposed Soils
Ponds & Potholes HGMP	☐ Sediment Deposition Observed
Permafrost Maintenance	☐ Floodplain
☐ Depth to Permafrost cm	
вюсн	EMICAL
Nutrient Sink	Water Quality
☐ WC - Brown/Turbid	☐ Emergent Vegetation
Basin & Hollows HGMP	☐ Upstream of Drinking Water Intake
☐ Ponds & Potholes HGMP	
Nutrient Export	Carbon Sequestration
☐ Discharge to Surface Water	☐ Von Post < 4
☐ Fluvial or Lacustrine HGMP	☐ Organic Soils > 1 m
ECOLO	OGICAL
☐ Source Wetland	☐ Wetland Ecosystem > 5 ha
☐ Unique Wetland	☐ Connected to SOW
☐ High Vegetation Species Diversity	☐ Isolated Wetland Complex
☐ BMI Observed	☐ Connected Wetland Complex
HAE	BITAT
☐ Wildlife Use Observed	☐ Importance to Migration
☐ Listed Wildlife Species Observed	Structural Diversity
NO	TES
ISOLATED FEN WETL	and,

agy vista

Ĉ

 \dot{C}

(

(

(·

A	ngg abiyaya	KWESTS!	gangagiga sina	Harrie et	. seed to proceed	a e apara	1. 1.194.1775.4.3				
(Rescun)	WE	TLAN	ID HABIT	AT IN	FORMA	TION I	ORM				
W 🗆	Г 🗆 📗 Р	ното	34-145	X: Y: DATE OLT 2							
PROJECT	ID BUA	Chun	ren.	SURV. WB/Pere							
MAPSHEE	Τ			PLOT#	X53K3WA	(
UTM ZONI	Ę	9	NORTH 39	9/877 EAST 59/6551							
ASPECT			·	ELEVATION 1328							
SLOPE	7	2%	SMR W	HD	51	-	B				
MESO SLOPE POSITION		□ Cr	est oper slope	☐ Mid :	slope	Depression Level					
HYDROGE MORPHIC POSITION	_	☐ Fk			s & Potholes	☐ Seep	s & Hollows age Slopes				
DRAINAGE MINERAL			ry rapidly poidly	Welt ☐ Mod. ☐ Impe		Poor					
MINERAL : TEXTURE	SOIL	□ Sa □ Lo	ndy (LS,S) amy (St,t,SC	L,FSL)	☐ Silty (S ☐ Clayey	îlt",Si) (SiCL,CL,	SC,SiC,C)				
MOISTURE SUBCLASS ORGANIC	SES		ueous raquic	☐ Aquic ☐ Perhumid ☐ Humid							
ORGANIC			-	SURF. ORGANIC HORIZON THICKNESS							
☐ Fibric		esic	Humic	136 cm							
HUMUS FC				ROOTING DEPTH							
☐ Mor		oder -	☐ Mull	Depthcm Type							
vo	N POST										
1	2 3	3	4 5	6	<u></u>	8 9	10				
COARSE F	RAGMENT	CONTE	NT			***					
]	20%		20-35%	35-	70% [□ > 70%					
ECO	SYSTE	Vi	COMPONE	≀ Τ: □ V	VL1	WL2	☐ Mr3				
BGC UNIT		~L19:50	ひ	WETLAN	DCLASS	Form					
SITE SERIE				ASSOCIA	TION 7	7					
STRUCTUR STAGE	KAL			MODIFIEI	R						
		WETL	AND POLY	GON SL	IMMARY						
	%		CLASS	3	Α	SSOCIATIO	N				
Wl.1											
WL2											
WL3 WB-RES13-0	31				<u> </u>						
11D-UC9194	71						250413				

	DOM	INAN	IT / II	NDICA	TOR PL	ANT	SPE	CIES		
		LL TRE			SHRUB		FORB		BRYOP	
TOTAL %		\Diamond		10			8c	>	90	
TREE / SHRU	JB	%	FORB			%		ont'd	%	
Beto Nun			CA	us L	v િ					
SAU B.	147		Fai	· ^	?					
	·	•	=51	NA	276					
			ELE	0	7	-				
								BRY		%
						- 650	·500	11941	المرادي	
										\vdash
						-				
		\vdash								
		₩,	COMPL	ETE	☑ PA	RTIAL				<u></u>
☐ Tea Coloured				nured	ПС			reen.F	Brown Turk	vid.
WATER		☐ Yellow-Deep Bro			own Turb			een Clear	‴	
COLOUR		Green-Brown CI							oon olou:	
	_)		
рН Э ол			DUCT					TH TO WAT	ER	
7.98		19	5_				0 15cm			
			1493.0	1.55.334	18 1 28 4 4 <u>1</u>		12.1114-525,141	Service Sylvey	en ferens tot es	1000
80	OIL PRO	FILE	giden e	Provide the				· · · ·	TIONS	200
	- 1					ECIES	3	 	FEATURE	
					Moos	に		1	roug	
0 -	j									1
Deep Pent	1									
Pent	ļ						:			
	- 1									
	1									
	Ì									
	1									
			_							
		12	•							-
CUA	1	ļ							-	- [

(

Adapted from Ground Inspection Form: FS FS212-2(1) HRE 98/5-7610000694

WETLAND MAP
MUP BOOK 15 GOO

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

Potential Flood Mitigation Evidence of Flooding Fluvial or Lacustrine HGMP Downstream Infrastructure Erosion Mitigation No Exposed Soils Sediment Deposition Observed Floodplain MICAL Water Quality Emergent Vegetation Upstream of Drinking Water Intake
□ Evidence of Flooding □ Fluvial or Lacustrine HGMP □ Downstream Infrastructure Erosion Mitigation □ No Exposed Soils □ Sediment Deposition Observed □ Floodplain MICAL Water Quality □ Emergent Vegetation □ Upstream of Drinking Water Intake
☐ Fluvial or Lacustrine HGMP ☐ Downstream Infrastructure Erosion Mitigation ☐ No Exposed Soils ☐ Sediment Deposition Observed ☐ Floodplain MICAL Water Quality ☐ Emergent Vegetation ☐ Upstream of Drinking Water Intake
□ Downstream Infrastructure Erosion Mitigation □ No Exposed Soils □ Sediment Deposition Observed □ Floodplain MICAL Water Quality □ Emergent Vegetation □ Upstream of Drinking Water Intake
Erosion Mitigation No Exposed Soils Sediment Deposition Observed Floodplain MICAL Water Quality Emergent Vegetation Upstream of Drinking Water Intake
□ No Exposed Soils □ Sediment Deposition Observed □ Floodplain MICAL Water Quality □ Emergent Vegetation □ Upstream of Drinking Water Intake
☐ Sediment Deposition Observed ☐ Floodplain MICAL Water Quality ☐ Emergent Vegetation ☐ Upstream of Drinking Water Intake
☐ Floodplain MICAL Water Quality ☑ Emergent Vegetation ☐ Upstream of Drinking Water Intake
MICAL Water Quality ☑ Emergent Vegetation ☐ Upstream of Drinking Water Intake
Water Quality ☑ Emergent Vegetation ☐ Upstream of Drinking Water Intake
Water Quality ☑ Emergent Vegetation ☐ Upstream of Drinking Water Intake
☐ Emergent Vegetation ☐ Upstream of Drinking Water Intake
☐ Upstream of Drinking Water Intake
Carbon Sequestration
☐ Vori Post < 4
Organic Soils > 1 m
☐ Wetland Ecosystem > 5 ha
Connected to SOW
Isolated Wetland Complex
Connected Wetland Complex
TAT ARAGUM A A A A A A A A A A A A A A A A A A A
Importance to Migration
Structural Diversity
ES TENTRAL PARTICIPATION PROPERTY
PLYINTS THBY
ō No
HONH H NOT
on, usoy, were

(· · ·

479/201-00	10 (10 (10 ()) () ()	saga ji kayaya	margina in the marginal (A), the						
(Reso	<u>s</u> w	ETLA	ND HABI	TAT I	NFOR	MA	TION FORM		
W□	Т	РНОТО	151-159	X:	Y:		DATE OLI CL		
PROJE	CTID (WATEN	SURV.	WB	100			
MAPSH	JEET			PLOT	BUC		w		
UTM Z	ONE		NORTH 3				5920970		
ASPEC	T		4	ELEVA		01	37.0770		
SLOPE		0 %	SMR UW		DI 5/	01	SNR		
MESO SLOPE POSITIO	ON		rest Ipper slope	☐ Mid	l slope ver slope	,	Depression Level		
HYDRO MORPH POSITIO	IC	□ F		Lacu	ustrine ds & Pothe	o!es	Basins & Hollows Seepage Slopes		
DRAINA MINERA	GE - L SOILS		ery rapidly apidly	☐ Wel ☐ Mod ☐ Imp	i. I. weil		☐ Poorly ☑ Very poorly		
MINERA TEXTUR	E	□ Sa	andy (LS,S) Damy (SL,L,SC		☐ Sjity	(SiL	,Si) SiCL,CL,SC,SiC,C)		
MOISTU SUBCLA ORGANI	SSES C SOIL	□/Fe	queous eraquic	☐ Aqui			☐ Perhumid		
	SOIL TEX	/	,				ZON THICKNESS		
HUMUS F		Mesic	☐ Humic	710	<u> </u>	m			
☐ Mor		/		ROOTIN	Ġ DEPTH		MERCA		
		Moder	☐ Mull	DepthCm Type					
	ON POST				_				
1	2	3	$\frac{4}{5}$	6	7	8	9 10		
COARSE	FRAGMEN	T CONTE	TIM	4.	,				
	Q € 20%	6	20-35%	⁻ <u>□</u> 35-	70%		> 70%		
ECC	SYSTE	M	COMPONEN	T: □ V	 VL1		/L2		
BGC UNIT		L		WETLANG			i-fran		
SITE SERI				ASSOCIA		1/6			
STRUCTU STAGE	RAL ·			MODIFIER					
		WETL	AND POLY	GON SU	MMAR	Y			
11.	%		CLASS			ASSO	DCIÁTION		
WL1 WL2									
WL3					£.	4 ,			
WB-RES13-	01			.	L				

TOTAL %	TALL T	ALL TREE TREE/SHRUB 35				FORB	BRYO		?
TREE / SHRUI	3 %	5	1	%	F	ORB c	ont'd	%	
SIACI B41	. }	(v	Л						
	`	180	IMMO	uctow					-
•			mu. P						╁
		<u> </u>	101 1	YM			DDV/0		 . .
		+					BRYO	P.	%
									╄
									+
		+			 				
					\vdash				+
									╁┈
] соми	LETE	Ŋ P.	ARTIAL				
pH 6.46		☐ Yellow-Deep Barrier Green-Brown Conductivity			· ·			DEPTH TO WA	
so	IL PROFI	LE	JAN STAN		WILDI	IFE OB	SERVA	TIONS	
MIX W					PECIE			FEATURE	
UNIFORM		elm.							
	110	>							
CHEYED LINE	1 "			I			1		

Adapted from Ground Inspection Form: FS FS212-2(1) HRE 98/5-7610000694

į.		WETLAND MAP
	Us mup	
•		
Ì		
1		
Ì		
1		
ŀ		
ľ		
1		
İ		
ľ		
ľ		
-		
f		
-		
	(

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, welland boundary, direction of water flow, soil core locations.

	FUNCTION INDICATORS
Groundwater Discharge	· · · · · · · · · · · · · · · · · · ·
Minerotrophic Species	Potential Flood Mitigation Description:
Basin & Hollows HGMP	☐ Fluvial of Lacustrine HGMP
Seepage Slopes HGMP	Downstream Infrastructure .
Groundwater Recharge	Erosion Mitigation
☐ Von Post < 6	☐ No Exposed Soils
Ponds & Potholes HGMP	Sediment Deposition Observed
Permafrost Maintenance	Floodplain
☐ Depth to Permafrost cm	TANIO AL
	EMICAL
Nutrient Sink	Water Quality
☐ WØ - Brown/Turbid	Emergent Vegetation
Basin & Hollows HGMP	Upstream of Drinking Water Intake
Ponds & Potholes HGMP	
Nutrient Export	Carbon Sequestration
☐ Discharge to Surface Water	☐ Von Post < 4
☐ Fluvial or Lacustrine HGMP	Organic Soils > 1 m
ECOLO	OGICAL
☐ Source Wetland	☐ Wetland Ecosystem > 5 ha
Unique Wetland	☐ Connected to SOW
☐ High Vegetation Species Diversity	Solated Wetland Complex
☐ BMI Observed	☐ Connected Wetland Complex
AND CONTRACTOR OF THE PARTY OF THE HAB	ITAT A SAME AND A SAME
☐ Wildlife Use Observed	☐ Importance to Migration
☐ Listed Wildlife Species Observed	Structural Diversity
NO.	TES virginaria in including the
LOW SP DIVERSITY.	
MOSTLY BUNKED SED	56°
• •	
	. .
	• • •
,	
	mere and

٠,

(

(:

()

.

W□ T□] P	ното	60-	168	X:	Y:		DAT	Е <i>Ос</i>	123	
PROJECT ID		ट्या अस्टिक		•	SURV.	Will	se B			Tini	
MAPSHEET	PLOT /	# B	ผล	06							
UTM ZONE			NOR	RTH 30	1838				721	14.A	
ASPECT					ELEVA			95	Age Torre F	- C.J	
SLOPE		%	SMF	VEZ/	, -	IDI M			NR		
MESO SLOPE POSITION		□ Cı	rest oper s		Mic	d slope wer slo			epres evel	sion	
HYDROGEO- MORPHIC POSITION		☐ Es	stuarine uviat	3	☐ Lac	ustrine ids & Po	tholes	l		Hollows Slopes	
DRAINAGE - MINERAL SOI	L\$		ery rap apidly			d. well berfecti	y		oorly ery po	orly	
MINERAL SOIL	-		indy (amy (CL,FSL)		ilty (Sil layey (CL,SC	;SiC,C)	
MOISTURE SUBCLASSES ORGANIC SOI	L	□ Pe	Aqueous Peraquic			☐ Aquic ☐ Subaquic			☐ Perhumid ☐ Humid		
ORGANIC SOI					SURF.	SURF. ORGANIC HORIZON THICKNESS					
☐ Fibric	[]//	lesic		Humic	<u>>60</u> cm						
HUMUS FORM					ROOTING DEPTH						
☐ Mor	[]M	oder		Mull	Depth Type						
VON F	OST										
1 2	3	1	4)	5	6	7	8		9	10	
COARSE FRAC	3MENT	CONTE	NT		-	vii.					
□ / ·	20%	[20-	35%	□ 35	-70%	Ē] > 70)%		
ECOSY	STER	Л	CON	/PONEI	NIT· □	WL1		WL2		WL3	
BGC UNIT	y	•••		III OILL	WETLA			204		I AALO	
SITE SERIES					ASSOC			65			
STRUCTURAL STAGE					MODIF	· · · · ·			(1.14	ر ۱۵۱۵	
		WETL	ANE	POLY	GON S	UMM	ARY				
	%	$\Box T$		CLAS	S		AS	SOCIA	TĮON		
WL1											
WL2											
WL3 MB-RES13-01						Щ.					
10-616371-uv										250413	

	OMINO	ANT / I	NDICA	FOR PL	ANT	SPEC	IES		
TOTAL 01	TALL 1	TREE		SHRUB		FORB	_	BRYC	₽.
TOTAL %	Č	>		•	75	/Wr		E	
TREE / SHRUI	в 9	V6	FORE	3	%	F	ORB o	ont'd	%
BETO NAV		Cu	ore A	વ υ					
SULI BH	n	_ Co	mm Pl	46					
PILLA MU	4 N								
		-					BRYC	\D	0,
	-	-					DICTO	лг. •	%
		,							
(* -									
•									
									1
		COMP	LETE	☐ PA	RTIAL				
		Tea Co	loured	□G			een-B	rown Tu	ırbid
WATER COLOUR		Yellow-	own Turbid 📗 Bli			lue-Green Clear			
OCEOUN	□□	Green-	Brown C	lear					
рН	С	ONDUCT	Ίνιτγ	% OPEN WATER			DEPTH TO WATER		
7.9		145		25		2.6			
	- ·				7			1,	
so	IL PROFI	LE		γ	VILDL	IFE OBS	ERVA	TIONS	
	1			SP	ECIE	s		FEATURE	=
√.	FIR	ric							
	-								
•						- 1			ĺ
V18616	.					1			•
مراجما ۸						1			
Mosic	1								
	1								
+60	1							•	
+60	- 1								
	}								

(

()

Adapted from Ground Inspection Form: FS FS212-2(1) HRE 98/5-7610000694

	WEI	LAND MA	۱P	
UPPUTE	1 051	v. V	149	
BLENE		Poly	- 1001	0
W605	~ 1 t	et in		
IN M	1 1 1 1 1 1 1	1::::::::::::::::::::::::::::::::::::::		
	- - - - - - - - - -			

Features to include: North arrow, wildlife leatures, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

OBSERVED WETLAND	FUNCTION INDICATORS						
HYDROLOGICAL							
. Groundwater Discharge	Potential Flood Mitigation						
Minerotrophic Species	☐ Eyidence of Flooding						
☐ Basin & Hollows HGMP	☑ Fluvial or Lacustrine HGMP						
☐ Seepage Slopes HGMP	☑ Downstream Infrastructure						
Groundwater Recharge	Erosion Mitigation						
☐ Von Post < 6	☐ No Exposed Soils						
☐ Ponds & Potholes HGMP	☐ Sediment Deposition Observed						
Permafrost Maintenance	☐ Floodplain						
Depth to Permafrost cm							
BIOCHI	EMICAL						
Nutrient Sink	Water_Quality						
☐ WC - Brown/Turbid	Emergent Vegetation						
☐ Basin & Hollows HGMP	☐ Upstream of Drinking Water Intake						
☐ Ponds & Potholes HGMP							
Nutrient Export	Carbon Sequestration						
Discharge to Surface Water	☐ Von Post < 4						
☐ Fluvial or Lacustrine HGMP	☑ Organic Soils > 1 m						
ECOLO	OGICAL						
☑ Source Wetland	☐ Wetland Ecosystem > 5 ha						
☐ Unique Wetland	☐ Connected to SOW						
☐ High Vegetation Species Diversity	☐ Isolated Wetland Complex						
DVBMI Observed KELY	Connected Wetland Complex						
НАВ	ITAT						
☐ Wildlife Use Observed	☐ Importance to Migration						
☐ Listed Wildlife Species Observed	☐ Structural Diversity						
NO.	TES JĀŅIEDDĀĀDAŅDDĀŅAJA GARĀ						

(:

(1

()

(---

J								
(Restat) Engineer & Scientists	WE	TLAN	ID HABIT	AT IN	IFORM	ATION	FORM	
W□ T□] P	ното	85-195	X:	Y: DATE DC123			
PROJECTIO BLACKWAITER				SURV.	WB/	FT		
MAPSHEET				PLOT#	BIX	>(2(C)		
UTM ZONE	,		NORTH 3	890	3 6 EA	st 5 94	2853	
ASPECT			230	ELEVA		52		
SLOPE	2	%	SMR W		DI MO	SNF	1	
MESO SLOPE POSITION	-	□ Cr	est oper slope	☐ Mid	l slope ver slope	∏ Dep ☐ Levi	ression	
HYDROGEO- MORPHIC POSITION		☐ Es ☑ Fi	wial	☐ Lacı	ustrine ds & Pothole	E	ns & Hollows page Slopes	
DRAINAGE - MINERAL SO	ILS	□ V€ □ R€	ery rapidly upidly	☑ Mo	☐ Wefi ☐ Poorly ☐ Mod. well ☐ Very poor			
MINERAL SOI TEXTURE	MINERAL SOIL ☐ Sandy (LS,S) ☐ Loamy (SL,L,S			L,FSL)	Silty Claye	(SiL,Si) ey (SiCL,CL	,SC,SiC,C)	
MOISTURE SUBCLASSES ORGANIC SOIL Aqueous				☐ Aquic ☐ Perhumid ☐ Subaquic ☐ Humid				
ORGANIC SO				SURF. ORGANIC HORIZON THICKNESS				
Fibric		lesic	Humic		Cr	<u>n</u>	*	
HUMUS FORM		loder	(T) (V)		NG DEPTH	· ·		
See April 1987 A Tell			☐ Mull	Depth cm Type				
argust that white the co	POST			THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW	Was a Description			
1 2		3	4	6	7	8 9	10	
COARSE FRA	GMEN	CONT	NT_					
	< 20%	. [☑ 20-35%	□ 35	-70%	□ > 70%		
ECOSY	/STEI	M	COMPONEN	IT: □	WL1	□ WL2	☐ WL3	
BGC UNIT	SBS	,		WETLA	ND CLASS	Sware		
SITE SERIES				ASSOCIATION () S 07				
STRUCTURAL STAGE	•			MODIF	ER / a	LEGK		
		WETI	AND POLY	GON S	100000	and the second		
		CLASS	}		ASSOCIATION	NC		
WL1 WL2								
WL3								
WB-RES13-01							250413	

	ром	INAN	1T/IN	IDICA	TOR PL	ANT	SPE	CIES		gravă.		
			TREE/SHRUB		FORB		BRY	DP.				
TOTAL %	1	5	25)		90		UNK.			
TREE / SHRUI	В	%		FORI	3	%	ı	FORB (ont'd	%	(
Picus		enegaj <u>i</u> j	600	gen 1	MILLE						١.	
LONI INV	,		Her	n. Li	we							
ALOUS 1011		ļ	Epil	- AN	η							
Rogig) I. Hy		<u> </u>					,	
SALIK				19 C			BRYOP.		DP.	%	(
Diwus		con			NET IN	_	.			_ _		
-				v Sr		<u> </u>						
			Puri	<u>)\$1.712</u>	\$	-						
						\vdash					(
						-						
		\vdash	COMPLE	=TE		PTIAL	Ь					
	· · · · ·				U ''	2/11//	Ι					
WATER			ea Colo						Brown Tu	1		
COLOUR		☐ Yellow-Deep Brown ☐ Green-Brown Clear			id	□ Bi	lue-Gr	een Clea	ar I			
		∏J∕G	reen-B	rown C	lear		[.		
pH CONDUCTIVITY		VITY	% OPE	N WA	TER	DEP	TH TO W	ATER				
8.6		139,5		5%		2.	8'	,				
					Vino C		AIWIA					
			•			.,,,						
so	IL PRO	OFILE	450	a today	V	YILDL	IFE OB	SERVA	TIONS			
	1	\			SPECIES			FEATURE			(j
		1			Moose	t.		Во	^			
		1			'-"			-Thm				
• .		l						Sca		1		
Henvily		1						>C@	19-	l	(
MOTTER	× 1										٧.	
•												
معالم الداريو للجاليون	<u>.</u>	•						1				
60 00		1										
		1									()
Guren								1				
		1										
Shub					WALLIOT OF			<u> </u>				

	WETLAND MAP	
LOCATION	Min april Connect	
	SWMP DID CHITHEN SIDO C	r
THE	ENATI	7

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

	FUNCTION INDICATORS
HYDROI	LOGICAL
Groundwater Discharge	Potential Flood Mitigation
☐ Minerotrophic Species	Evidence of Flooding
☐ Basin & Hollows HGMP	Eluvial or Lacustrine HGMP
☐ Seepage Stopes HGMP	Downstream Infrastructure R210
Groundwater Recharge	Erosion Mitigation
☐ Von Post < 6	☐ No Exposed Soils
☐ Ponds & Potholes HGMP	☐ Sediment Deposition Observed
Permafrost Maintenance	☐ Floodplain
☐ Depth to Permafrost cm	
	EMICAL
Nutrient Sink	Water Quality
☐ WC - Brown/Turbid	☐ Emergent Vegetation
☐ Basin & Hollows HGMP	☐ Upstream of Drinking Water Intake
☐ Ponds & Potholes HGMP	
Nutrjent Export	Carbon Sequestration
Discharge to Surface Water	☐ Von Post < 4
☑ Fluvial or Lacustrine HGMP	☐ Organic Soils > 1 m
ECOLO	OGICAL MANAGEMENT OF THE PROPERTY OF THE PROPE
Source Wetland	☐ Wetland Ecosystem > 5 ha
☐ Unique Wetland	☐ Connected to SOW
☐ High Vegetation Species Diversity	☐ Isolated Wetland Complex
BMI Observed LIKELY	☐ Connected Wetland Complex
HAB	HTAT HEREE WAS A STATE OF
₩idlife Use Observed	☐ Importance to Migration
☐ Listed Wildlife Species Observed	Structural Diversity
NO	TES
4	
DOW V	* • *
•	
·	
	ŧ

()

(

		Ş ·					
	Rescan WE	TLAN	ID HABIT	AT INF	ORMA	TION FO	RM
	.W□ T□ P	ното '	202-211	X:	Y:	DATE DC	12)
a Specific			CMARIA	SURV. \	VB 1F	T	
•	MAPSHEET	PLOT # BLOOD ()					
	UTM ZONE	h	NORTH 39	2442	EAST	59471	 Br
	ASPECT	- ,	Cox }	ELEVATIO			
,	SLOPE (>%	SMR W	HQI	Mo	SNR	$\overline{\mathcal{S}}$
•	MESO SLOPE POSITION	O nt	est oper slope	Mid sk ☐ Lower ☐ Toe	ope slope	☐ Depress	ion
	HYDROGEO- MORPHIC POSITION	☐ Es	vial	☐ Lacustri		D Basins & □ Seepage	
	DRAINAGE - MINERAL SOILS	□ Ve	ery rapidly apidly	☐ Well ☐ Mod_v ☐ Imperf		☐ Poorly - ☑-Very poo	эпу
	MINERAL SOIL TEXTURE		indy (LS,S) amy (SL,L,SG] Silty (Sil	L,Si) (SICL,CL,SC	,SiC,C)
•	MOISTURE SUBCLASSES ORGANIC SOIL	☑Pe	raquic	☐ Aquic ☐ Subaq	uic	☐ Perhumi ☐ Humid	d
	ORGANIC SOIL TEXT				RIZON THICK	IESS	
	☐ Fibric ☐ M	₩Humic	+100	····			
		toder	[7] M	ROOTING	-1955	A STATE OF THE PARTY OF THE PAR	
		logei	☐ Mull	Depth	cm	Туре	
	VON POST						*
()		<u> </u>	4 5	6 (7) 8	9	10
	COARSE FRAGMEN	T CONTE	NT				
	20%	. [20-35%	35-70	0% □] > 70%	
	ECOSYSTE	Mi	COMPONEN	IT: 🗆 WL	.1 🗆	WL2	WL3
(BGC UNIT			WETLAND	CLASS S	WAND	
	SITE SERIES			ASSOCIAT		(D) Z	
	STRUCTURAL STAGE			MODIFIER	4066	112	
		WETL	AND POLY	GON SU	NOTE: NOT		
()	%		CLASS		AS	SOCIATION	
	WL1						
	WL2					′	
Į, Į	WL3						
	WB-RES13-01						250/12

DO	ANIMO	NT/I	NDICA	TOR PL	ANT	SPE	CIES		A NE		
			TREE /	SHRUB		FORB		8RY0P			
TOTAL %	25	45		> ``	,	95 INF		lnr			
TREE / SHRUB	2, %		FORE	3	%	. [-ORB o	ont'd	%	(
HINUS (IN)	ν) <u></u>		· PAL		ļ <u>.</u>			e***			
PIWU YOU	<u> </u>		400 (_/_		ļ		
Picer	-	160	bus t	446	/	_	_				
LOW INC.		-		_/			BRY)P	%	(
	7	+		/			D.C.		/*		
			7			**	مسهما	,			
		<u> </u>								(
/		<u> </u>									
					_			.,	L		
	<u> </u>	COMP	LETE	<u> </u>	ARTIAL						
WATER			loured			□G	reen-E	Brown Turb	bic		
COLOUR		_		own Turb	id	□ВІ	ue-Gr	een Clear	l		
	□V	Green-I	Brown Cl	lear							
pН	co	NDUCT	IVITY	% OPE	N WA	TER	DEP.	TH TO WAT	ER		
7.13	14	7.2		45			4,	26			
.,											
SOIL	PROFIL	E		V	VILDL	IFE OB	SERVA	TIONS		(ν.
	-			SP	ECIE	3		FEATURE		(
	1			Moo	χi		5	194-			
Doll Unifor Homic							6.5				
witon										ſ	1
Oblin										γ.	
Homic											
Dist											
*\rangle 2.	.									1	
										(:
	}										
			İ								
Adapted from Ground In	nspection	Form: F	S FS212-2	(1) HRE 98	V5-761	000069	4				

	WETLAND MAP
Location M	AMM ISGODD
PhoBN BUE	1.03 BOT 1 CANT
	willow Acrost Her
PLNUS IN	
	nucu Roger

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

. .

	FUNCTION INDICATORS
HYDROI	LOGICÁL
Groyńdwater Discharge	Potential Flood Mitigation
Minerotrophic Species	☐ Evidence of Flooding
Basin & Hollows HGMP	☐ Fluvial or Lacustrine HGMP
☐ Seepage Slopes HGMP	☑ Downstream Infrastructure Ross
Groundwater Recharge	Erosion Mitigation
☐ Von Post < 6	☐ No Exposed Soils
☐ Ponds & Potholes HGMP	☐ Sediment Deposition Observed
Permafrost Maintenance	☐ Floodplain
☐ Depth to Permafrost cm	
ВІОСН	EMICAL
Nutrient Sink	Water Quality
☐ WC - Brown/Turbid	Emergent Vegetation
☐ Basin & Hollows HGMP	Upstream of Drinking Water Intake
☐ Ponds & Potholes HGMP	
Nutrient Export	Carbon Sequestration
Discharge to Surface Water	☐ Von Post < 4
☐ Fluvial or Lacustrine HGMP	
ECOLO	OGICAL
Source Wetland	☐ Wetland Ecosystem > 5 ha
☐ Unique Wetland	☐ Connected to SOW
☐ High Vegetation Species Diversity	☐ Isolated Wetland Complex
☐ BMI Observed	☐ Connected Wetland Complex
HAB	ITAT
Wildlife Use Observed	☐ Importance to Migration
☐ Listed Wildlife Species Observed	Structural Diversity
NO	TES
Down	

(·

(.

(+

BUND 1 MICHOPLY 100 WUTLER 30425 Blownin CONTRACTO 592 > 394 398182 9894 169 BW0008 FIB. WS 3600 Church CANT IM. NILLOWS Controvero BUNUON 175 - 178 304835 912 8100W2 DUSCALORO p00/0 DN MAR • FIELD

n. ič. ne hamele i i u. imade ih vivikod av en, dimbri DUKSBAK WATERPRODF

	1	l .	I	1	
	·				
					(±
					(
					()
					l
					()
					-
					· · ·
					,
- A Julie Ville					1 112
					()
			<u></u>		
				İ	

- Appendix 2 -

Wetland Habitat Information Management (WHIM) Standard Operating Procedure (SOP)

WHIM-SOP

Wetland Habitat Information Management (WHIM) Standard Operating Procedure (SOP)

June 1, 2015

Brief Description:

Methods of data collection, review, processing and storage for wetland data. **Key Contact:**

Wade Burnham M.Sc. PWS, EP, Wetland Specialist

ERM

PO Box 3669 - 3790 Alfred Avenue Smithers, BC Canada V0J 2N0 T: (250) 877-7838 F: (250) 877-7833

WHIM-SOP

Wetland Habitat Information Management (WHIM) Standard Operating Procedure (SOP)

TABLE OF CONTENTS

Table	e of Con	tents		i
	List o	f Figures	S	i
	List o	f Tables		ii
	List	of Plates		ii
1.	Objec	ctives		1-1
2.	Appl	icable Sta	andards and Guidelines	2-1
3.	Requ	ired Trai	ning and Competency	3-1
4.	Meth	ods		4-1
	4.1	Wetla	nd Survey	4-1
		4.1.1	Equipment Preparation	4-1
		4.1.2	Selecting Wetland Survey Locations	4-1
		4.1.3	Physical Site Properties	4-2
		4.1.4	Adapted from MacKenzie and Moran (2004). Wetland Soil Survey	4-4
		4.1.5	Wetland Vegetation Survey	4-9
		4.1.6	Wetland Water Survey	4-9
		4.1.7	Wetland Classification	4-10
	4.2	Wetla	nd Function Studies	4-10
		4.2.1	Vegetation Sampling	4-10
5.	Data	Recordir	ng, Processing and Storage	5-1
6.	QA/	QC		6-1
	6.1	Data 🤇	Quality Program	6-1
	6.2	Qualit	ty Indicators	6-1
	6.3	Conti	nual Improvement	6-1
			LIST OF FIGURES	
Figu	re 4.1-1.	Wetland	l Habitat Information Form (WHIF)	4-3

LIST OF TABLES

Table 4.1-1. Meso-Slope Position Descriptions	4-2
Table 4.1-2. Hydrogeomorphic Position Descriptions	4-4
Table 4.1-3. Soil Moisture Regime Descriptions	4-5
Table 4.1-4. Hydrodynamic Index Descriptions	4-5
Table 4.1-5. Soil Nutrient Regime Descriptions	4-5
Table 4.1-6. Drainage Class for Mineral Soils	4-6
Table 4.1-7. Moisture Sub-Class of Organic Soils	4-7
Table 4.1-8. Organic Soil Texture	4-7
Table 4.1-9. Descriptions of Humus Form	4-8
Table 4.1-10. Von Post Description	4-8
Table 4.1-11. Description of Federal Wetland Classes	4-10
Table 4.2-1. Wetland Functions and Supporting Data	4-11
Table 4.2-2. Metal Analysis and Associated Detection Limits for Plant Tissue Samples	4-11
LIST OF PLATES	
Plate 4.1-1. Application of Virkon prior to and between wetland sites	4-1
Plate 4.1-2. EDELMAN Dutch Auger	4-4
Plate 4.1-3. Soil core example.	4-4
Plate 4.1-4. Soil texture triangle (BC MOF 1998)	4-7
Plate 4.1-5. Oakton Instruments pH Testr 10 measuring pH of shallow groundwater in a soil	4.0

1. OBJECTIVES

The objectives for wetland studies are to map the distribution and class of wetlands, conduct wetland surveys to ground-truth existing remote mapping, and describe wetlands according to their biophysical properties, landscape position, structure, and inferred function for the purpose of classification and assessment.

2. APPLICABLE STANDARDS AND GUIDELINES

The standards and guidelines for wetland field inventories are based upon a variety of federal, provincial and international published standards for wetland identification, classification, and assessment.

Wetlands Class:

Warner, B. G. and C. D. A. Rubec, eds. 1997. The Canadian wetland classification system: The national wetlands working group. Waterloo, ON: Wetlands Research Centre. University of Waterloo.

Wetland Association:

MacKenzie, W. H., and J. R. Moran. 2004. Wetlands of British Columbia: a guide to identification. Res. Br., B.C. Min. For., Victoria, B.C. Land Manage. Handb. No. 52.

Soil moisture regime (SMR), soil nutrient regime (SNR) and wetland hydrodynamic index (HDI):

- MacKenzie, W.H. 1999. Field Description of Wetlands and Related Ecosystems in British Columbia. Ministry of Forest Research Program. Victoria, B.C.
- MacKenzie, W. H., and J. R. Moran. 2004. Wetlands of British Columbia: a guide to identification. Res. Br., B.C. Min. For., Victoria, B.C. Land Manage. Handb. No. 52.
- RISC (1998). Standard for Digital Terrestrial Ecosystem Mapping (TEM) Data Capture in British Columbia Ecosystem Technical Standards and Database Manual. R. I. S. Commitee, Province of British Columbia.

Mineral soil drainage classes, mineral soil texture, and soil moisture subclass for organic soils adapted from:

- MacKenzie, W.H. 1999. Field Description of Wetlands and Related Ecosystems in British Columbia. Ministry of Forest Research Program. Victoria, B.C.
- Ministry of Forests (MOF). 1998. Field Manual for Describing Terrestrial Ecosystems. B.C. Min. Env., Lands and Parks and B.C. Min. of For., Land Manage. Handb. No. 25.. Victoria, B.C.

<u>Descriptor for Litter, Fiber, and Humic layers on the soil surface adapted from:</u>

- Ministry of Forests (MOF). 1998. Field Manual for Describing Terrestrial Ecosystems. B.C. Min. Env., Lands and Parks and B.C. Min. of For., Land Manage. Handb. No. 25.. Victoria, B.C.
- UBC. 2004 Soilweb: Soil Classification. 3.2 Forest Humus forms. Access from: http://www.landfood.ubc.ca/soil200/classification/soil_horizon.htm#3.2humus.

Von Post description of organic soils adapted from:

Ekono. 1981. Report on energy use of peat. Contribution to U.N. Conference on New and Renewable Sources of Energy, Nairobi.

Wetland Function:

- Almas, A. R. and B. R. Singh. 2001. Plant Uptake of Cadmium-109 and Zinc-65 at Different Temperature and Organic Matter Levels. J. Environ. Qual. 30: 869-877
- Brunham, W.G., L. Bendell. 2010. The Effect of Temperature on the Accumulation of Cadmium, Copper, Zinc, and Lead by *Scirpus acutus* and *Typha latifolia*: A Comparative Analysis. Water Air Soil Pollut (2011) 219: 417-428.
- Hanson, A., L. Swanson, D. Ewing, G. Graba, S. Meyer, L. Ross, W. M., and J. Kirby. 2008. *Wetland Ecological Functions Assessment and Overview of Approaches*. Environment Canada Technical Report Series No. 497: Atlantic Region.
- Lausen, C. (2006). Bat Survey of Nahanni National Park Reserve and Surrounding Areas, Northwest Territories. N.p., Prepared for Parks Canada and Canadian Parks and Wilderness Society.
- Milko, R. 1998. *Wetlands environmental assessment guideline*. Minister of Public Works and Government Services Canada: n.p.

Wetlands Habitat Form modified from:

BC Forestry Ground Inspection Form: FS FS212-2(1) HRE 98/5-7610000694.

Version 0.2 (June 1, 2015) 2-2

3. REQUIRED TRAINING AND COMPETENCY

Field Leader: Requires a minimum of a BSc in Biology, Ecology or a related study, and a combination of course work and field experience in biology, ecology, botany, hydrology, conservation, soil science, wetland identification, wetland delineation, wetland functional assessment, forestry, chemistry, demonstrating ability to identify and assess wetland habitats.

Field assistant: Not required to have specific educational training; the Rescan field leader will provide on-the-job training to the field assistant for required tasks. However, it is desirable that the field assistant have experience in wetland identification, vegetation identification or wetland delineation *or* suitable educational background to support knowledge in plant identification, soil, hydrology, geographic field surveys or habitat inventories.

All field workers are required to have certified First Aid training and receive in-house training for other field safety related topics including driving, use of helicopters and bear awareness.

4. METHODS

4.1 WETLAND SURVEY

4.1.1 Equipment Preparation

Prior to field surveys, all equipment and field clothing are cleaned using a 1% Virkon solution to prevent the spread of *Batrachochytrium dendrobatidis* between wetland sites (Plate 4.1-1). *B. dendrobatidis* is a pathogen for amphibians.

Plate 4.1-1. *Application of Virkon prior to and between wetland sites.*

4.1.2 Selecting Wetland Survey Locations

Potential survey locations are selected by first examining in the office all data available from remote sensing techniques such as satellite imagery and Light Detection and Ranging (LIDAR) surveys, and by examining ecosystem classification maps. These preselected sites are then examined in the field to ensure they contain hydrophytic vegetation and/or water. If the site has either appropriate vegetation or water then a wetland survey is conducted.

Survey plots are established in areas of uniform vegetation in large wetlands (>400 m²) or at the centre of wetlands smaller than 400 m². The edges of small wetlands are used as the survey plot boundary. The survey plot may include different levels of vegetation complexity and open water; however, each individual vegetation community within the wetland is described.

4.1.3 Physical Site Properties

Once a survey location has been selected a Wetland Habitat Information Form (WHIF) is completed (Figure 4.1-1). Two levels of survey intensity are used: complete and partial. A completed WHIF is required for a complete survey because this form contains fields for the vegetation, soil, and water properties of wetlands at the level necessary for classification. The partial survey intensity is only used to record the locations of continuously occurring ecosystems previously recorded during multiple complete wetland surveys.

At a minimum, the project ID, names of survey personnel, plot number, survey date, GPS coordinates, elevation, photograph numbers, dominant vegetation, and permanence class are recorded. The photograph numbers are the unique identification number used by a camera after a digital image is saved. A minimum of eight photographs must be taken at every survey location. The first photograph is taken facing true north and then again by turning clockwise and taking a picture every 45° . Photographs of significant features such as soil, water, vegetation, and wildlife are also taken.

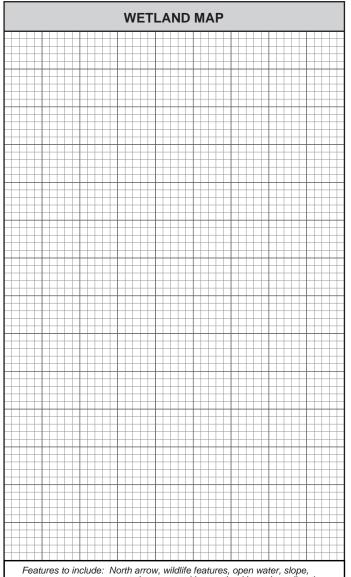
A clinometer and a compass adjusted to the appropriate declination are used to measure the slope and aspect of a survey location. An aspect of 0 and slope of -1 indicates level ground. Next, the meso-slope position is recorded. The meso-slope position is the position of the plot relative to the local catchment area (Table 4.1-1).

Table 4.1-1. Meso-Slope Position Descriptions

Meso-slope Position	Definition
Crest	Uppermost portion of a hill, convex in all directions, no distinct aspect.
Upper Slope	Generally the convex upper portion of the slope immediately below the crest of a hill; has a specific aspect.
Middle Slope	Area between the upper and lower slope has a straight or somewhat sigmoid surface profile with a specific aspect.
Lower Slope	The area toward the base of a slope; generally has a concave surface profile with a specific aspect.
Toe	The area demarcated from the lower slope by an abrupt decrease in slope gradient; seepage is typically present.
Depression	Any area, concave in all directions; may be at the base of a meso-scale slope or in a generally level area.
Level	Any level meso-scale area.

Adapted from BC MOF (1998).

The hydrogeomorphic position, which describes the topographic position and hydrology of a site, is then recorded (Table 4.1-2).


The previously described data represent the physical properties of each site and are used to support wetland classification and identification of wetland function.

Version 0.2 (June 1, 2015) 4-2

Figure 4.1-1. Wetland Habitat Information Form (WHIF)

Rescan Engineers & Scientist	Wi	ETLAN	ID HABIT	AT INI	FORMA	TION F	DRM
w 🗆 -	Т 🗌 РНОТО			X:	Y:	DATE	
PROJECT ID				SURV.			
MAPSHEE	ΞT			PLOT#			
UTM ZON	E		NORTH		EAST		
ASPECT				ELEVATI	ON		
SLOPE		%	SMR	HD	I	SNR	
MESO SLOPE POSITION	ı	□ Cr	est oper slope	☐ Mid s		☐ Depres	sion
HYDROGI MORPHIC POSITION	;	☐ Es	tuarine uvial	☐ Lacus	strine s & Potholes	☐ Basins a	
DRAINAG MINERAL		□ Ve	ery rapidly apidly	☐ Well ☐ Mod. ☐ Impe		☐ Poorly ☐ Very poorly	
			andy (LS,S) amy (SL,L,SC	☐ Silty (Sil		L,Si) (SiCL,CL,SC,SiC,C)	
SUBCLAS	SUBCLASSES		queous eraquic	☐ Aquic ☐ Subaquic		☐ Perhumid ☐ Humid	
ORGANIC SOIL TEXTURE				SURF. O	RGANIC HO	RIZON THICK	NESS
☐ Fibric ☐ Mesic			☐ Humic		cm		
HUMUS FORM			T	ROOTING DEPTH			
☐ Mor ☐ Moder		☐ Mull	Depth _	cm	Туре		
	ON POS	-					
1	2	3	4 5	6	7 8	9	10
COARSE	FRAGME	NT CONT	ENT				
	□ < 20)% [20-35%	□ 35-	70% [□ > 70%	
ECC	DSYST	EM	COMPONE	NT: 🗆 \	NL1 🗌	WL2	☐ WL3
BGC UNIT				WETLAND CLASS			
SITE SERIES				ASSOCIATION			
STRUCTURAL STAGE				MODIFIER			
	WETLAND POLYGON SUMMARY						
	9	%	CLAS	S	A	SSOCIATION	
WL1							
WL2 WL3							
	1	I					

WB-RES13-01 250413

Features to include: North arrow, wildlife features, open water, slope, vegetation communities, wetland boundary, direction of water flow, soil core locations.

Table 4.1-2. Hydrogeomorphic Position Descriptions

Hydrogeomorphic Position	Definition
Estuarine	Sites at the confluence of fluvial and marine environments.
Fluvial	Sites associated with flowing water, subject to flooding, erosion, and sedimentation.
Lacustrine	Sites at lakeside.
Basins and Hollows	Sites in depressions or topographic low points, receive water from groundwater or precipitation.
Ponds and Potholes	Sites associated with small water-bodies.
Seepage slopes	Sloping sites with near surface groundwater seepage.

4.1.4 Adapted from MacKenzie and Moran (2004). Wetland Soil Survey

No less than three soil test pits or holes are established within a survey plot. The preferred method is to use an EDELMAN Dutch Auger (Plate 4.1-2). The soil test holes are established to a minimum depth of 40 cm or where significant contact with lithic, parent material, an impermeable layer, or water is made. As the test hole is established, lengths of soil collected in the auger barrel are pulled from the hole and arranged such that the profile of the soil can be examined (Plate 4.1-3).

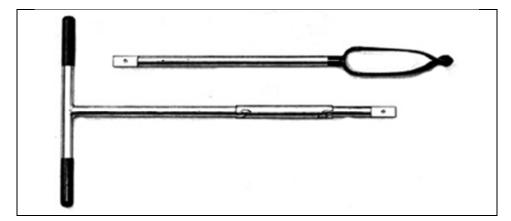


Plate 4.1-2. EDELMAN Dutch Auger

Plate 4.1-3. Soil core example.

Once the soil test holes have been established and the multiple cores have been examined, a representative core is selected for data collection. The soil moisture regime (SMR) is determined (Table 4.1-3).

Table 4.1-3. Soil Moisture Regime Descriptions

Soil Moisture Regime	Code	Definition
Moist	M	No water deficit (demand doesn't exceed supply), temporary groundwater table may be present. Generally supports forest.
Very Moist	VM	Rooting zone groundwater present during growing season. Groundwater table greater than 30 cm below ground surface. Can support limited forest.
Wet	W	Rooting zone groundwater present throughout the year. Groundwater table less than 30 cm below ground surface. Supports forest only on elevated micro-sites.
Very Wet	VW	Sites in depressions or topographic low points, receive water from groundwater or precipitation.

Adapted from MacKenzie and Moran (2004).

The Hydrodynamic Index (HDI) is then determined (Table 4.1-4).

Table 4.1-4. Hydrodynamic Index Descriptions

Hydrodynamic Index	Code	Definition/Indicators
Stagnant	St	Stagnant to very slow moving soil water, vertical fluctuations minimal, no evidence of flooding; lots of organic matter and high bryophyte cover.
Sluggish	Sl	Gradual groundwater movement; patterned fens; brief periods of surface aeration.
Mobile	Mo	Distinct flooding; open water tracks such as rivulets/ponds/potholes; well decomposed peat; patchy bryophyte cover.
Dynamic	Dy	Significant lateral flow and/or strong vertical fluctuations; pothole wetlands in arid climates; riparian/oxbow sites; little organic accumulation.
Very Dynamic	VD	Highly dynamic surface water; exposed tidal sites; shallow potholes that dry completely; no organic matter accumulation or bryophytes.

Adapted from MacKenzie and Moran (2004).

The soil nutrient regime (SNR) is determined (Table 4.1-5).

Table 4.1-5. Soil Nutrient Regime Descriptions

Soil Nutrient Regime	Code	Indicators
Very Poor	A	HDI St, von post 1-3, tea coloured or yellowish water, pH < 5
Poor	В	HDI St-Sl, von post 3-6, tea coloured or yellowish water, possibly green-brown or clear, pH 4.5 - 6
Medium	C	HDI St-Mo, von post 4-7, tea coloured, yellowish, green-brown, or clear water, pH 5-6.5
Rich	D	HDI SI-Dy, von post 7-10, green-brown and turbid water, pH 6-7.4
Very Rich	E	HDI Mo-Dy, von post 8-10, green-brown and turbid water, pH 6.5-8
Hyper	F	Excess salt accumulation, pH > 8, high conductivity

Adapted from MacKenzie and Moran (2004).

Version 0.2 (June 1, 2015) 4-5

The presence of mineral soils is determined by identifying indicators of mineralization such as gleying, mottling, oxidization, or mineral soil texture (silt, sand, or clay). The mineral soil drainage class is identified (Table 4.1-6).

Table 4.1-6. Drainage Class for Mineral Soils

Drainage	
Class	Description
Very Rapid	Water is removed from the soil very rapidly in relation to supply. Water source is precipitation and available water storage capacity following precipitation is essentially nil. Soils are typically fragmental or skeletal, shallow, or both.
Rapid	Water is removed from the soil rapidly in relation to supply. Excess water flows downward if underlying material is pervious. Sub-surface flow may occur on steep gradients during heavy rainfall. Water source is precipitation. Soils are generally coarse textured.
Well	Water is removed from the soil readily, but not rapidly. Excess water flows downward readily into underlying pervious material or laterally as sub-surface flow. Water source is precipitation. On slopes, sub-surface flow may occur for short durations, but additions are equalled by losses. Soils are generally intermediate in texture and lack restricting layers.
Mod. Well	Water is removed from the soil somewhat slowly in relation to supply because of imperviousness or lack of gradient. Precipitation is the dominant water source in medium- to fine-textured soils; precipitation and significant additions by sub-surface flow are necessary in coarse-textured soils.
Imperfectly	Water is removed from the soil sufficiently slowly in relation to supply to keep the soil wet for a significant part of the growing season. Excess water moves slowly downward if precipitation is the major source. If sub-surface water or groundwater (or both) is the main source, the flow rate may vary but the soil remains wet for a significant part of the growing season. Precipitation is the main source if available water storage capacity is high; contribution by sub-surface or groundwater flow (or both) increases as available water storage capacity decreases. Soils generally have a wide range of texture, and some mottling is common.
Poorly	Water is removed so slowly in relation to supply that the soil remains wet for much of the time that it is not frozen. Excess water is evident in the soil for a large part of the time. Sub-surface or groundwater flow (or both), in addition to precipitation, are the main water sources. A perched water table may be present. Soils are generally mottled and/or gleyed.
Level	Water is removed from the soil so slowly that the water table remains at or near the surface for most of the time the soil is not frozen. Groundwater flow and sub-surface flow are the major water sources. Precipitation is less important, except where there is a perched water table with precipitation exceeding evapotranspiration. Typically associated with wetlands.

Adapted from BC MOF (1998).

If mineral soils are present within the top 40 cm of the soil surface, then the mineral soil texture is determined using the soil texture triangle (Plate 4.1-4).

If organic soils are present (i.e., no mineral soil indicators within top 40 cm of soil surface), then the moisture sub-class of organic soils is identified (Table 4.1-7).

The organic soil texture is recorded (Table 4.1-8).

The depth of the surface organic layer is measured and recorded. Where the depth of the organic layer exceeds the test pit a plus sign (+) is used. For example, an organic soil depth of +120 cm indicates that 120 cm of organic soil was measured but the organic layer extends beyond that depth.

The humus form is recorded (Table 4.1-9).

The depth to the bottom of the rooting zone and the von post level of decomposition are measured and recorded (Table 4.1-10).

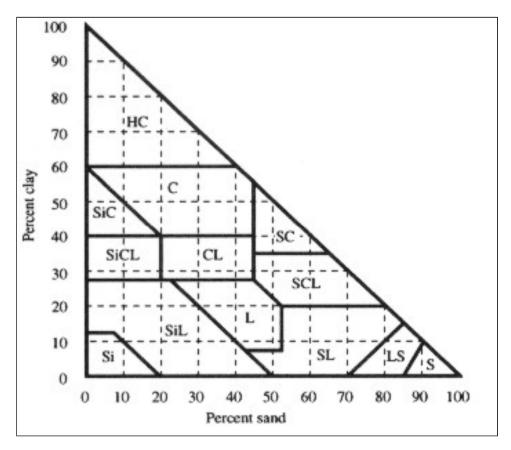


Plate 4.1-4. Soil texture triangle (BC MOF 1998).

Table 4.1-7. Moisture Sub-Class of Organic Soils

Moisture Sub-class	Description	Saturation Period (months)
Aqueous	Free surface water	11.5 to 12
Peraquic	Soils saturated for very long periods	>10
Aquic	Soils saturated for moderately long periods	4-10
Subaquic	Soils saturated for short periods	<4
Perhumid	No significant water deficits in growing season	<2
Humid	Very slight deficit in growing season water availability	<0.5

Adapted from BC MOF (1998).

Table 4.1-8. Organic Soil Texture

Texture	Description	Corresponding Von Post
Fibric	Visible and identifiable plant part, soil water clear	1-3
Mesic	Some visible plant parts, soil water slightly coloured	4-7
Humic	Indiscernible plant parts, dark greasy soil	8-10

Version 0.2 (June 1, 2015) 4-7

Table 4.1-9. Descriptions of Humus Form

	LFH Horizons		
Humus Form	L/F	Н	Transition to Overlying Horizon
Mull	Thin or absent	Absent	Gradual
Moder	Moderate	Moderate	Not abrupt
Mor	Matted and thick	Thin	Very abrupt

LFH is the breakdown of the Litter, Fiber, and Humic layers on the soil surface. Adapted from BC MOF (1998) and UBC (2004).

Table 4.1-10. Von Post Description

Von Post	Description
1	Completely undecomposed peat which, when squeezed, releases almost clear water. Plant remains easily identifiable. No amorphous material present.
2	Almost entirely undecomposed peat which, when squeezed, releases clear or yellowish water. Plant remains still easily identifiable. No amorphous material present.
3	Very slightly decomposed peat which, when squeezed, releases muddy brown water, but from which no peat passes between the fingers. Plant remains still identifiable, and no amorphous material present.
4	Slightly decomposed peat which, when squeezed, releases very muddy dark water. No peat is passed between the fingers but the plant remains are slightly pasty and have lost some of their identifiable features.
5	Moderately decomposed peat which, when squeezed, releases very "muddy" water with a very small amount of amorphous granular peat escaping between the fingers. The structure of the plant remains is quite indistinct although it is still possible to recognize certain features. The residue is very pasty.
6	Moderately highly decomposed peat with a very indistinct plant structure. When squeezed, about one-third of the peat escapes between the fingers. The residue is very pasty but shows the plant structure more distinctly than before squeezing.
7	Highly decomposed peat. Contains a lot of amorphous material with very faintly recognizable plant structure. When squeezed, about one-half of the peat escapes between the fingers. The water, if any is released, is very dark and almost pasty.
8	Very highly decomposed peat with a large quantity of amorphous material and very indistinct plant structure. When squeezed, about two-thirds of the peat escapes between the fingers. A small quantity of pasty water may be released. The plant material remaining in the hand consists of residues such as roots and fibres that resist decomposition.
9	Practically fully decomposed peat in which there is hardly any recognizable plant structure. When squeezed it is a fairly uniform paste.
10	Completely decomposed peat with no discernible plant structure. When squeezed, all the wet peat escapes between the fingers.

Adapted from Ekono (1981).

The soil description is completed by estimating the percentage of coarse fragments, measuring the depth of soil horizons (depth of organic layer, depth of mineral layer, depth to water, and rooting depth). A soil profile is drawn in the appropriate location on the WHIF and depth to all features is indicated.

Version 0.2 (June 1, 2015) 4-8

4.1.5 Wetland Vegetation Survey

Vegetation species within the survey plot are identified and their seven letter acronym is recorded in the appropriate section of the field form. For example, common cattail (*Typha latifolia*) is recorded as TYPHLAT in the forb section.

The percent cover of each individual species and species guilds (Tall Tree, Tree/Shrub, Forb, and Bryophyte) are estimated. A tall tree is a tree standing over 5 m. A tree/shrub is a tree less than 5 m tall or any multiple stemmed woody vegetation. A forb is any herbaceous plant including graminoids, *Equisetum*, and club-mosses. Bryophytes are mosses and lichens. The level of vegetation survey is indicated as complete or partial. A complete vegetation list is not essential; however, it is imperative that the dominant and sub-dominant vegetation (upland, emergent, submerged aquatic, and floating-leaved aquatic) be recorded.

4.1.6 Wetland Water Survey

Measurements and documentation of the optical and chemical characteristics of water within the wetland survey location are made. The WHIF includes space for data from up to three water features. The colour of the water is described as: (1) Tea Coloured, (2) Yellow-Deep Brown Turbid, (3) Green-Brown Clear, (4) Green-brown Turbid, or (5) Blue-green Clear.

The pH of open water is measured using a handheld sonde such as an Oakton Instruments pH Testr 10 (Plate 4.1-5). The conductivity of open water is also measured using a handheld sonde such as an Oakton Instruments TDSTestr Low.

Plate 4.1-5. Oakton Instruments pH Testr 10 measuring pH of shallow groundwater in a soil test hole.

4.1.7 Wetland Classification

The water, soils, and vegetation information collected during the field surveys are used to classify the wetlands to federal class (Warner and Rubec 1997) and association type (Thompson and Hansen 2001). Wetland sites are initially assigned to one of five federal classes (Table 4.1-11), in accordance with the Canadian Wetland Classification System (Warner and Rubec 1997). Wetland class is based on general site characteristics such as soil type and the extent and quality of predominant vegetation cover.

Table 4.1-11. Description of Federal Wetland Classes

Federal Wetland Class	Description
Bog	Nutrient poor peatland, receiving water exclusively from precipitation.
Fen	Nutrient medium peatland, receiving water from groundwater and precipitation.
Marsh	Nutrient rich mineral wetland; vegetation dominated by graminoids, forbs, shrubs and emergent plants.
Swamp	Nutrient rich mineral wetland; vegetation dominated by woody plants > 1 m in height.
Shallow open water	Wetland with free surface water up to 2 m depth; less than 25% of surface area occluded by emergent or woody plants.

Source: Warner and Rubec (1997).

Wetland association classification is based on the specific vegetation composition characteristics of a given site. The environmental conditions at a wetland influence the development of plant communities, thereby affecting species reproduction and the floristic diversity throughout the vegetation layers. Thus, sites with similar environmental conditions develop similar vegetation communities.

The dominant vegetation species recorded during the field surveys are matched to an association type described in the classification system prepared by MacKenzie and Moran (2004). The list of species, identified at some sites, may not always match a particular association type. In such cases, sub-dominant vegetation species are used to aid classification.

4.2 WETLAND FUNCTION STUDIES

The determination of wetland function is central to the process of wetland effects analysis. The primary wetland functions within a study area are determined by comparing wetland classification and hydrogeomorphic position data to a list of functions associated with wetland classes prepared by Hanson et. al (2008). Additionally, specific studies are conducted at a sample of wetlands to establish baseline data on the vegetation tissue metal concentrations and wetland hydrology. Milko (1998) identifies four primary functions, and Table 4.2-1 identifies which data are used to support descriptions of these functions.

4.2.1 Vegetation Sampling

Plant tissue samples are collected in triplicate at select wetlands within the study area to establish baseline metal concentrations. Sample sites are chosen ensuring a variety wetland sizes and permanence are reflected in the sampling.

Version 0.2 (June 1, 2015) 4-10

Table 4.2-1. Wetland Functions and Supporting Data

Wetland Function	Description (Environment Canada 1998)	Supporting Data
Hydrological	Contribution of the wetland to the quantity of surface water and groundwater	Static and continuous hydrology survey; Wetland permanence classification
Biogeochemical	Contribution of the wetland to the quality of surface water and groundwater	Water quality data (pH and Conductivity), Vegetation tissue samples
Habitat	Relative abundance of terrestrial and aquatic habitat and connectivity to surrounding ecosystem	Wildlife observations and Association classification
Ecological	Role of the wetland in the surrounding ecosystem	Association classifications Wetland complex, size, Open water area and permanence

Samples are collected by collecting above ground portions of the plant and placing them in individual 1 L Ziploc bags. The individual collecting the samples must wear latex gloves to reduce potential of contamination from one sample to the next. At each site three bags are filled, each containing multiple individuals from three distinct areas within the wetland site. This method ensures adequate individual and geographic variability in sample collection.

Samples are stored in a cool, dark, environment until shipped to ALS Environment in Vancouver, BC, for analysis. Table 4.2-2 lists the analytical parameters and their detection limits.

Table 4.2-2. Metal Analysis and Associated Detection Limits for Plant Tissue Samples

Metal	Abbreviation	Dry Weight Detection Limit (mg/kg)	Average Wet Weight Detection Limit (mg/Wkg)
Aluminum	Al	10	2.7
Antimony	Sb	0.05	0.0135
Arsenic	As	0.05	0.0135
Barium	Ва	0.05	0.0135
Beryllium	Be	0.3	0.135
Bismuth	Bi	0.3	0.0405
Cadmium	Cd	0.03	0.00675
Calcium	Ca	10	2.7
Chromium	Cr	0.5	0.135
Cobalt	Co	0.1	0.027
Copper	Cu	0.05	0.0135
Lead	Pb	0.1	0.027
Lithium	Li	0.5	0.135
Magnesium	Mg	3	1.35
Manganese	Mn	0.05	0.0135
Mercury	Hg	0.005	0.001
Molybdenum	Mo	0.05	0.0135

(continued)

4-11

Version 0.2 (June 1, 2015)

Table 4.2-2. Metal Analysis and Associated Detection Limits for Plant Tissue Samples (completed)

Metal	Abbreviation	Dry Weight Detection Limit (mg/kg)	Average Wet Weight Detection Limit (mg/Wkg)
Nickel	Ni	0.5	0.135
Selenium	Se	1	0.27
Strontium	Sr	0.05	0.0135
Thallium	Tl	0.03	0.0135
Tin	Sn	0.2	0.0675
Uranium	U	0.01	0.0027
Vanadium	V	0.5	0.135
Zinc	Zn	0.5	0.135

All metals with more than 50% of samples below the method detection limit are excluded from further analysis. For the remaining metals, all values below detection limits are replaced by one-half the detection limit. General descriptive statistics of the remaining metals are calculated. Variability is assessed for each wetland site using the coefficient of variation ($CV = [Standard Deviation/Mean] \times 100$).

Version 0.2 (June 1, 2015) 4-12

5. DATA RECORDING, PROCESSING AND STORAGE

Once field data surveys are complete, data sheets are scanned to a pdf document which is stored on the Rescan intranet and data are then entered into MS Excel spreadsheets. The physical site data, soil information, and classification data are entered into a wetland ecosystem master datasheet. The vegetation species list and relative percent cover are entered into a separate sheet, as are any wildlife observations. The wetland ecosystem master sheet is the base information used to generate GIS maps of wetlands.

Wetlands are delineated in ArcGIS 10.0 using available digital spatial data, wetland survey locations, and high resolution satellite imagery. A point file of the wetland ecosystem master data are added to the data view and wetland polygons are delineated by tracing wetland features visible on the satellite image. The area of delineated wetland polygons are then calculated using the geometry function in ArcGIS 10.0. The spatial database containing the delineated wetland polygon information is joined to the ecosystem database through the spatial join function in ArcGIS 10.0.

The electronic files are regularly uploaded to Rescan's intranet and stored in a dedicated folder which is backed up on a daily basis.

6. QA/QC

6.1 DATA QUALITY PROGRAM

Data are entered into an established Excel data sheet with standardized fields to reduce the possibility of transcription errors. Data are screened using pivot table functions within Excel to determine that parameters such as von post, align with SNR, and vegetation species. Ecosystem data are related and can be used to identify transcription or field identification errors. Whenever clarification is required on specific points, the WHIF will be returned to the field crew for editing and will be accepted after the necessary changes are made.

Regular instrument calibration of the pH and conductivity sondes ensures good data quality collected during field recording of pH and conductivity.

Vegetation tissue samples are collected in triplicate to reduce the likelihood of contaminated samples biasing the data from a single wetland. ALS is an accredited laboratory and provides replicate analysis to ensure consistency during the data analysis stage.

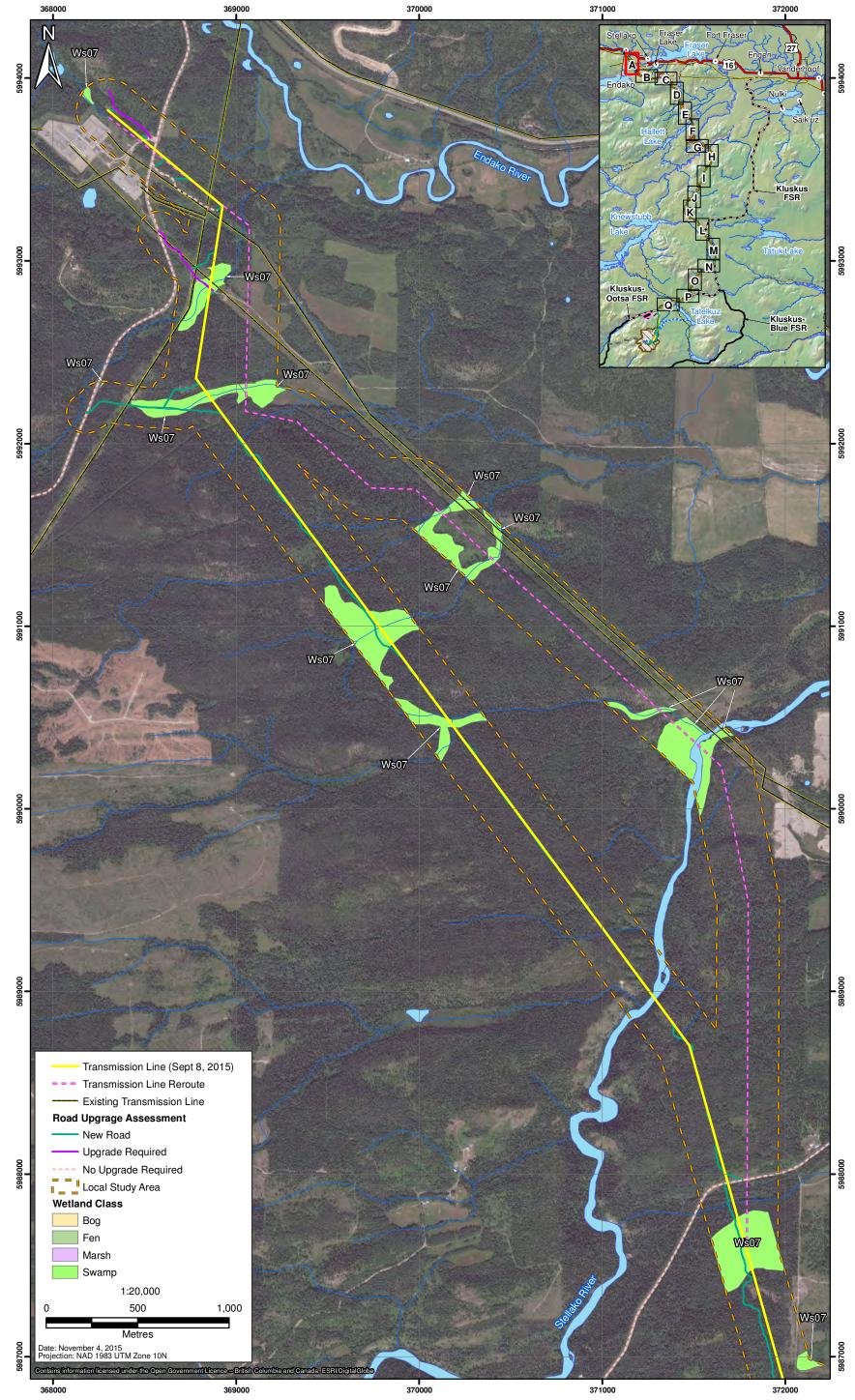
6.2 QUALITY INDICATORS

The following Quality Indicators will be measured to track the overall success of the wetlands program:

• the wetlands surveyed are spatially representative of the study area.

6.3 CONTINUAL IMPROVEMENT

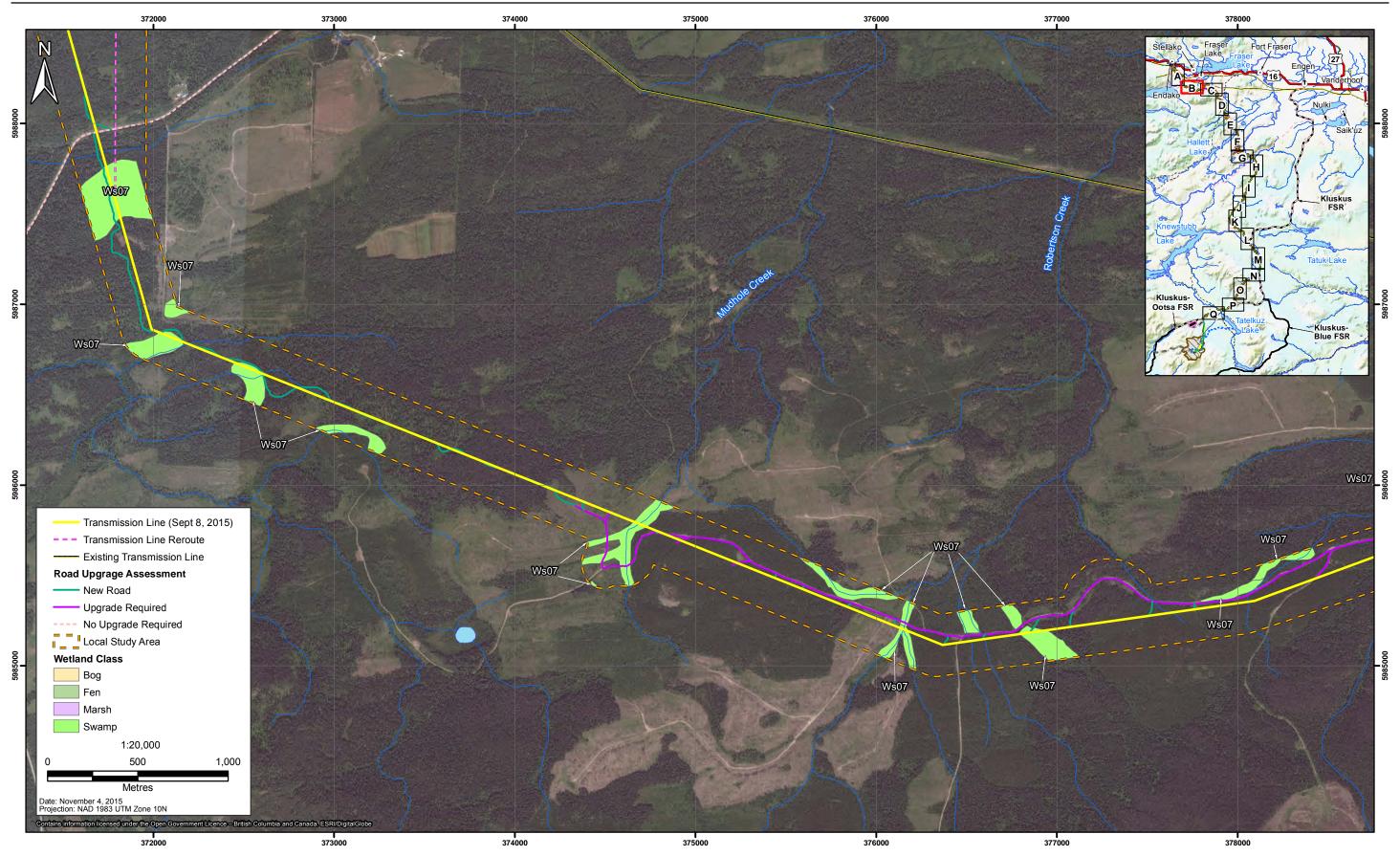
The science of wetlands is continuously evolving, resulting in improvements in the techniques of mapping and field data collection. During these projects, predictive models using LIDAR and basin depth structure will be explored to better classify wetland permanence of sites prior to field investigations.


The procedures outlined in this manual will be reviewed and updated annually to account for changes in regulatory requirements, technological advances, and to adhere to the best current scientific practices.

Appendix 3 –

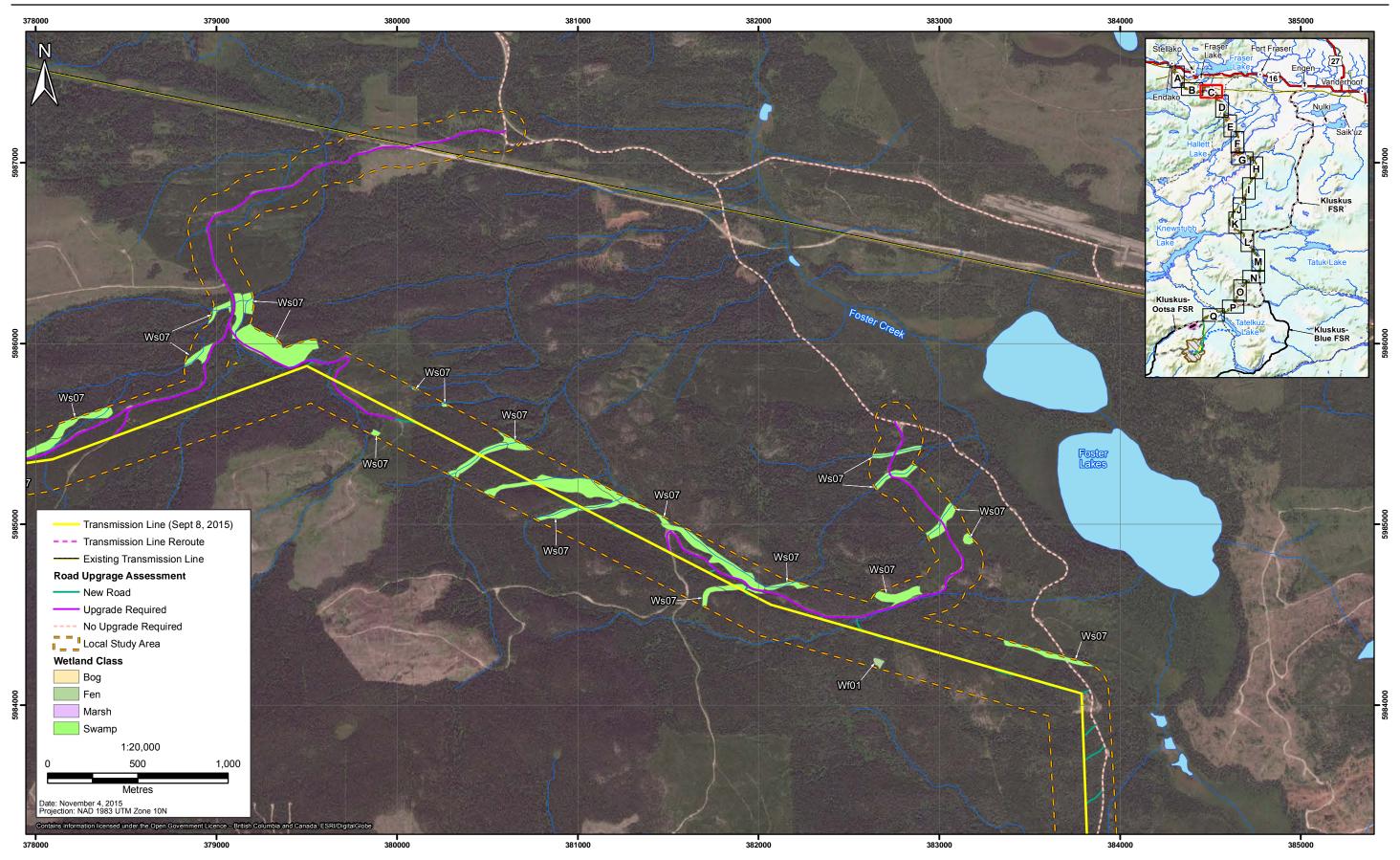
Wetland Mapping

Figure 3.1-1
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 1



NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008a

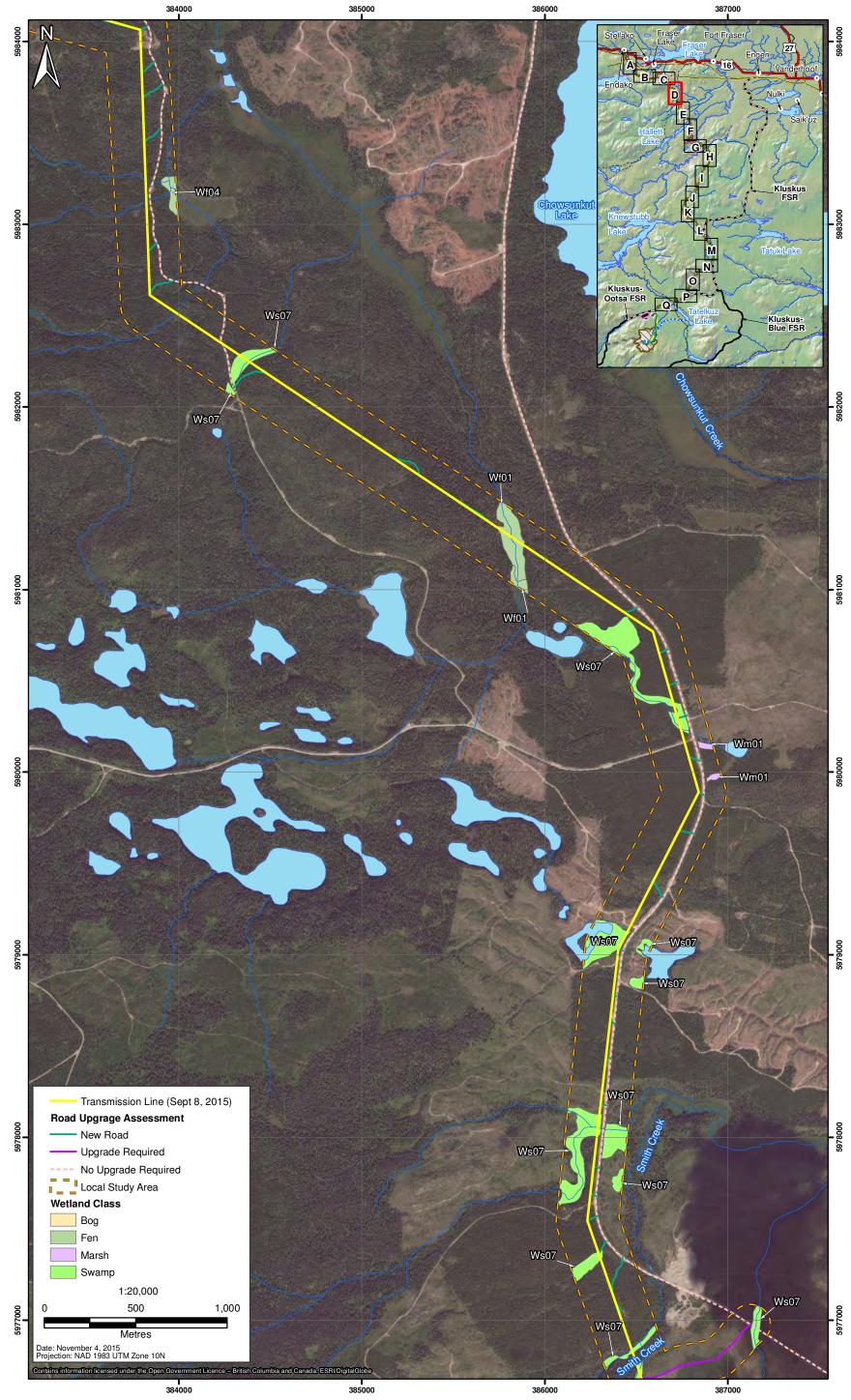
Figure 3.1-2
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 2



NEWGOLD

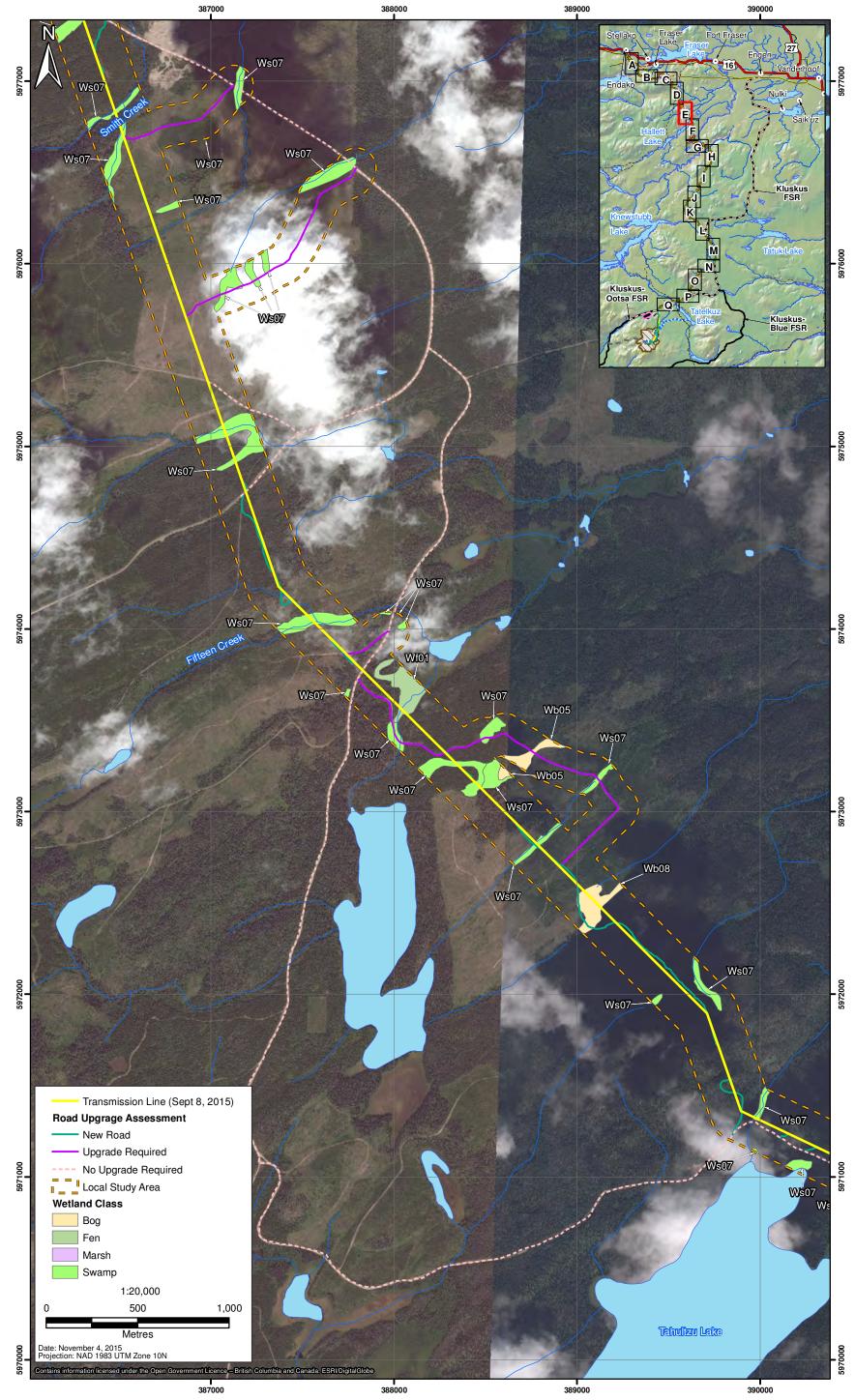
Proj # 0289076-0014 | GIS # BLW-22-008b

Figure 3.1-3
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 3



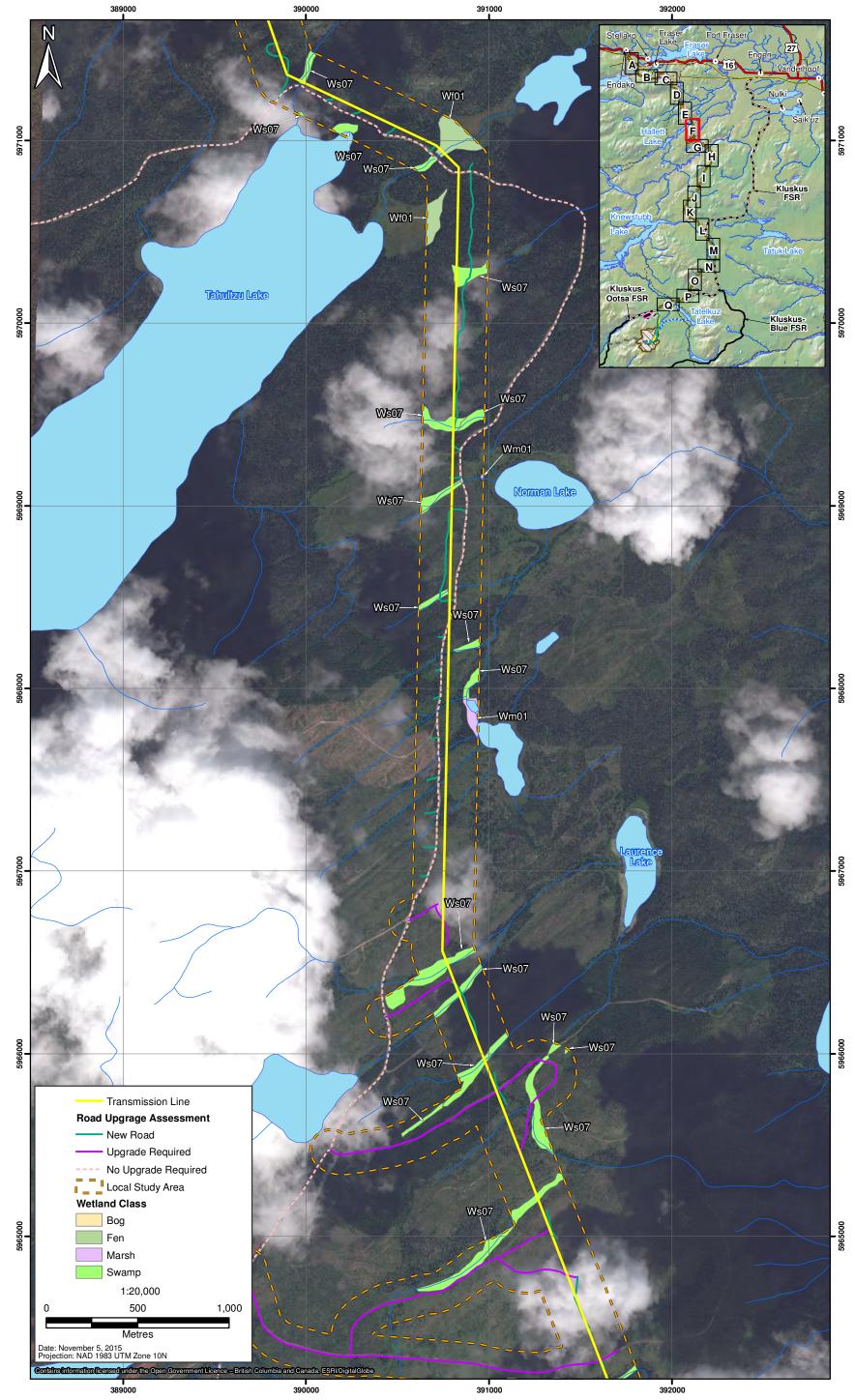
NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008c

Figure 3.1-4
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 4



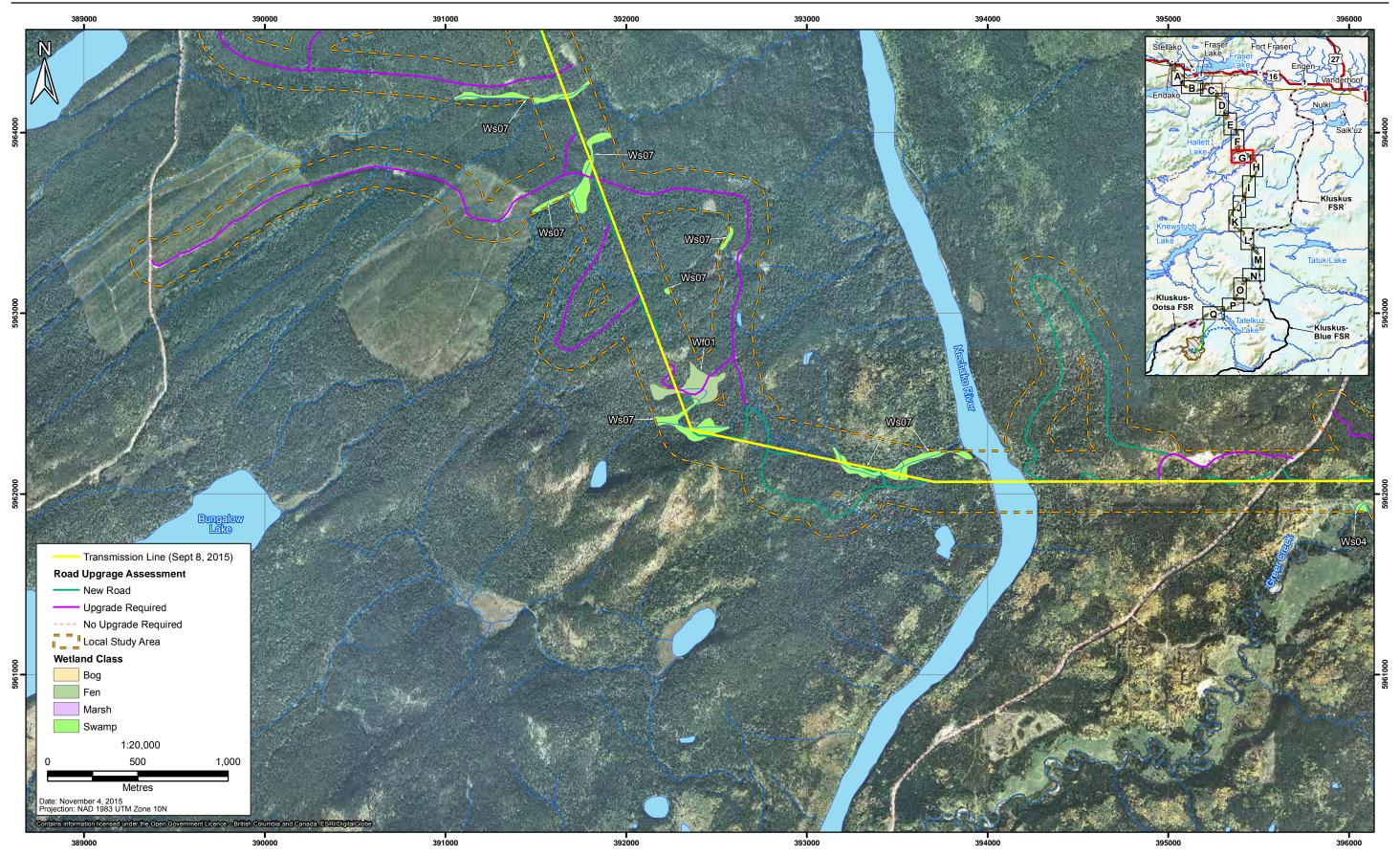
NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008d

Figure 3.1-5
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 5



NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008e

Figure 3.1-6
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 6



NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008f

Figure 3.1-7
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 7

NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008g

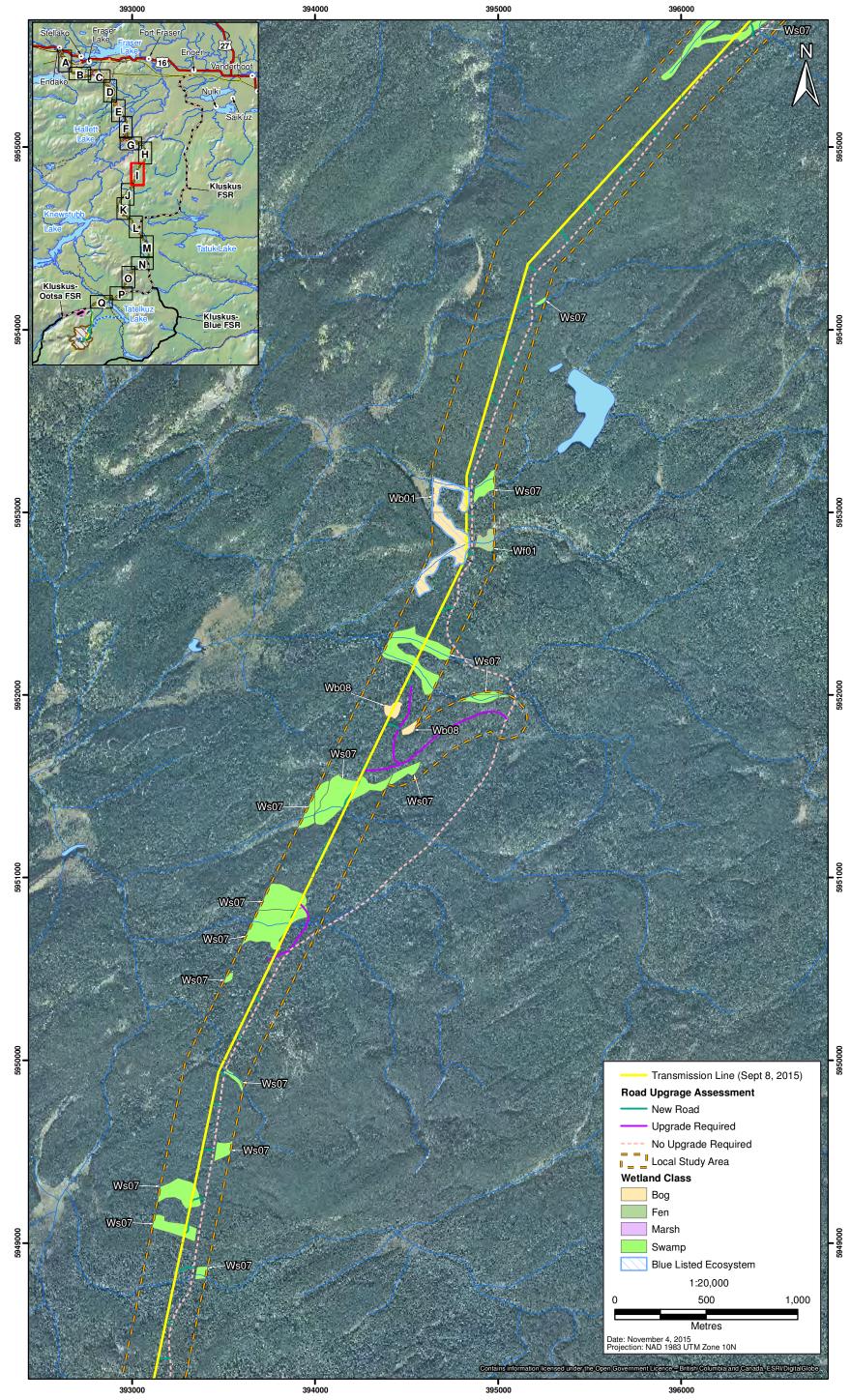

Figure 3.1-8
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 8

Figure 3.1-9
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 9

NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008i

Figure 3.1-10
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 10

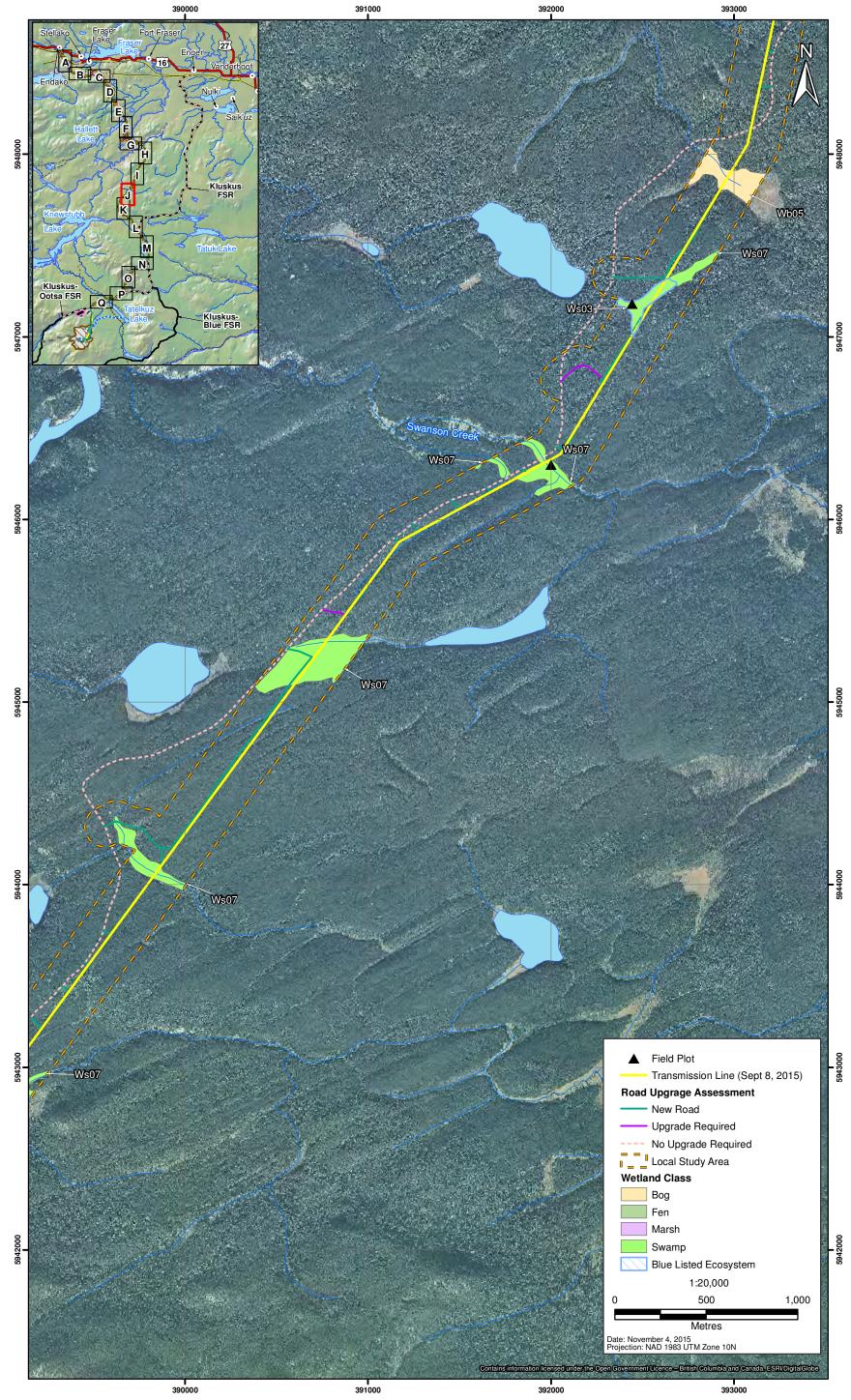
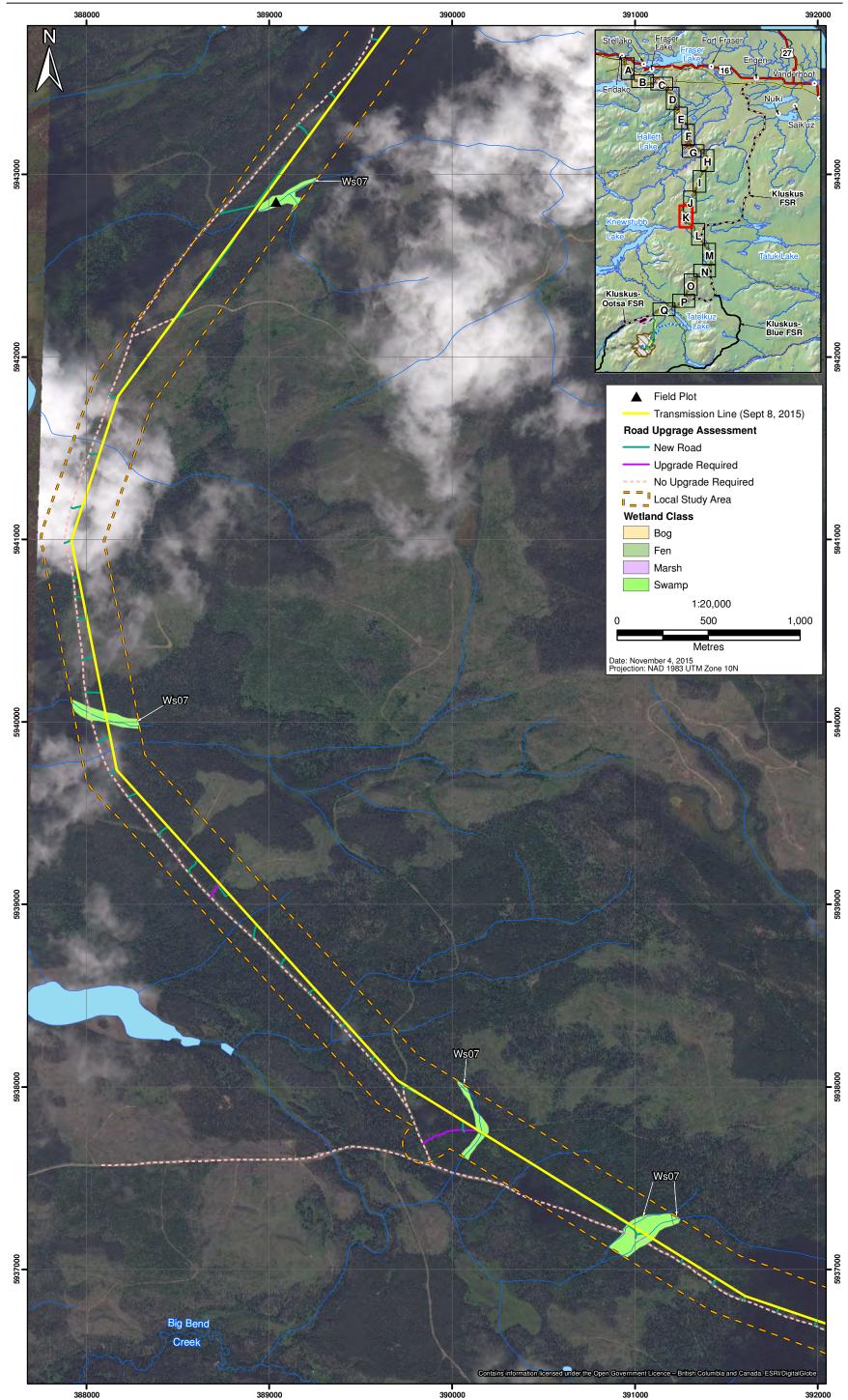
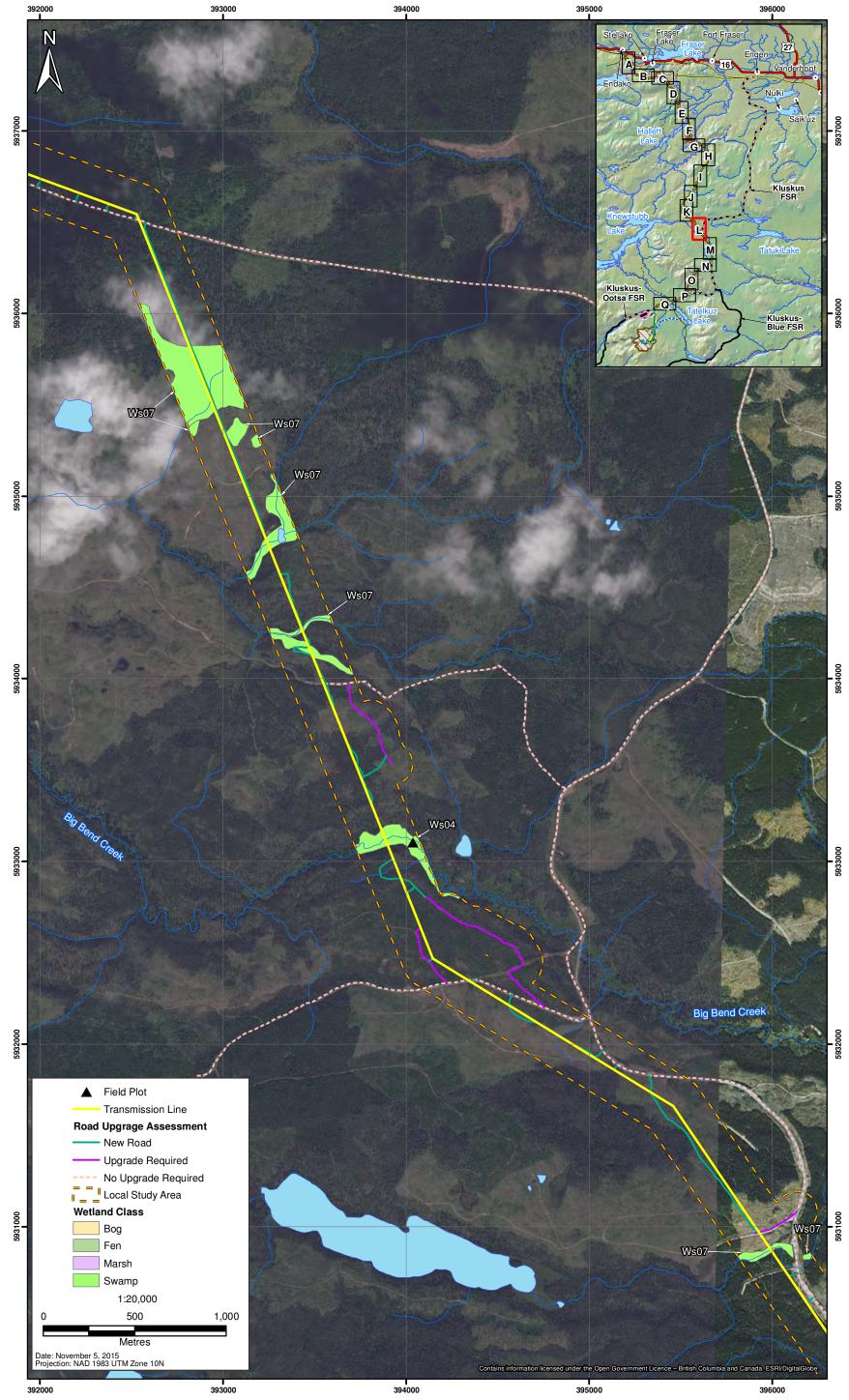
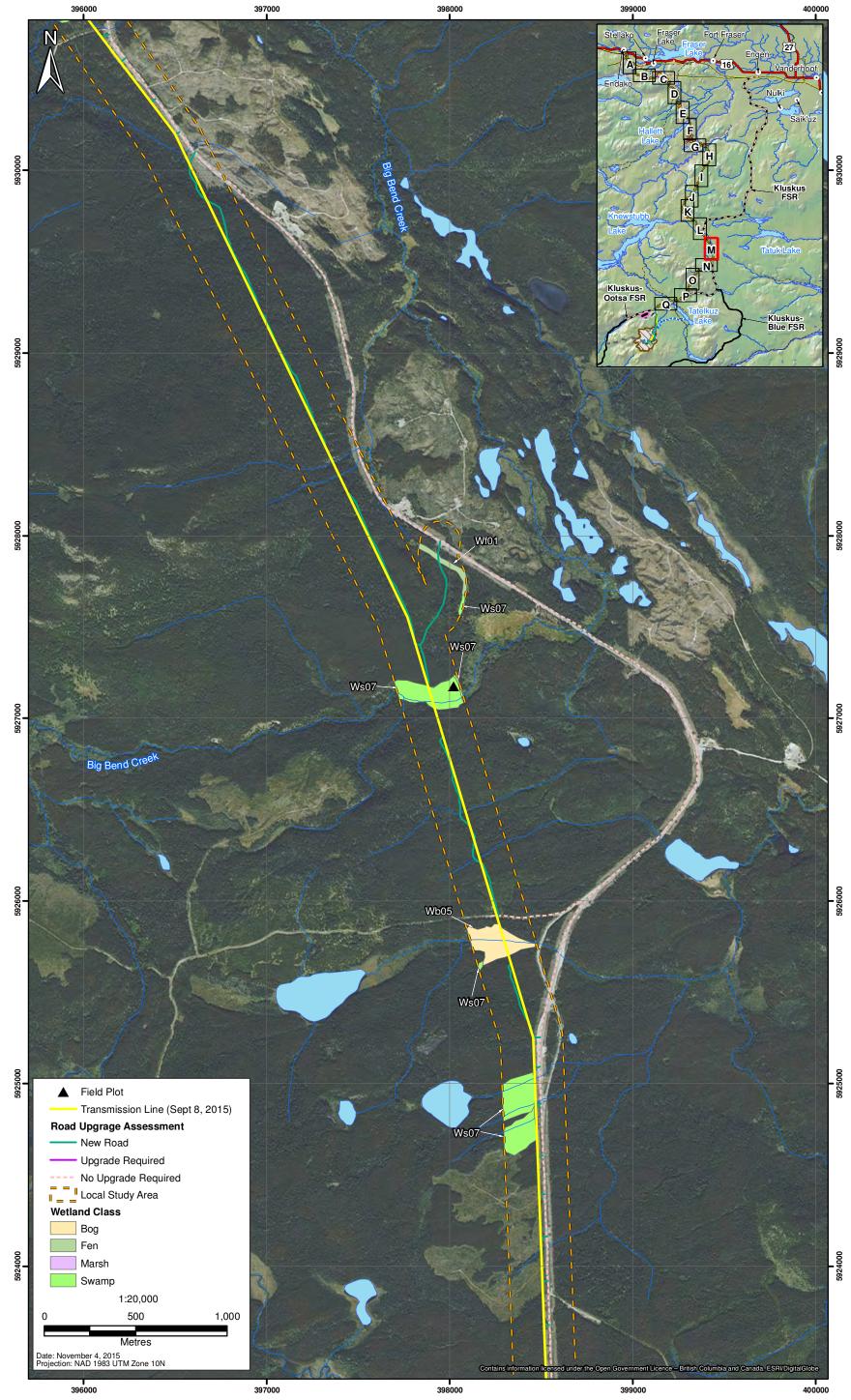



Figure 3.1-11 Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 11



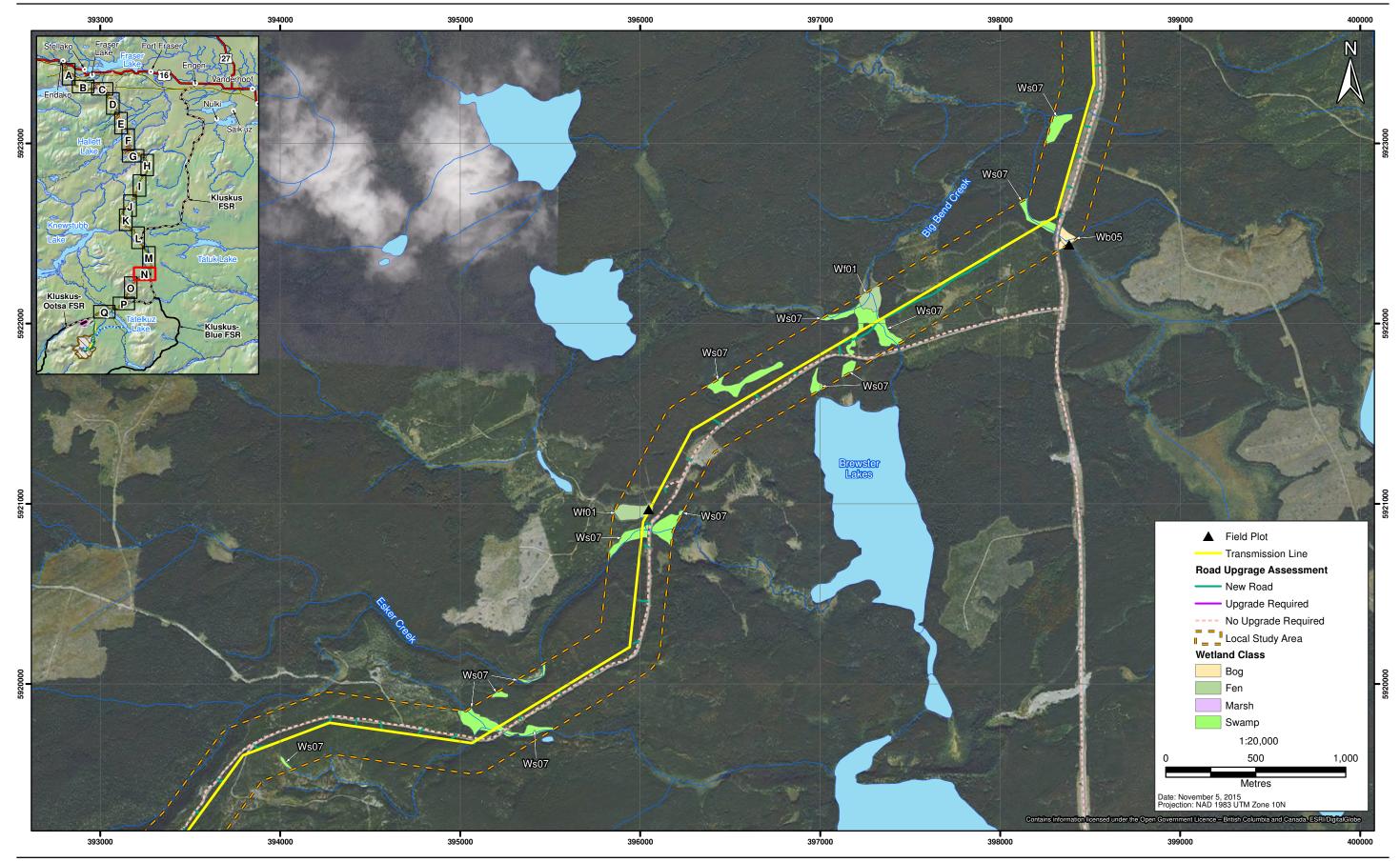
NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008k

Figure 3.1-12
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 12



NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-0081

Figure 3.1-13 Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 13



NEWGOLD Proj # 0289076-0014 | GIS # BLW-22-008m

Figure 3.1-14
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 14

Proj # 0289076-0014 | GIS # BLW-22-008n

Figure 3.1-15
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 15

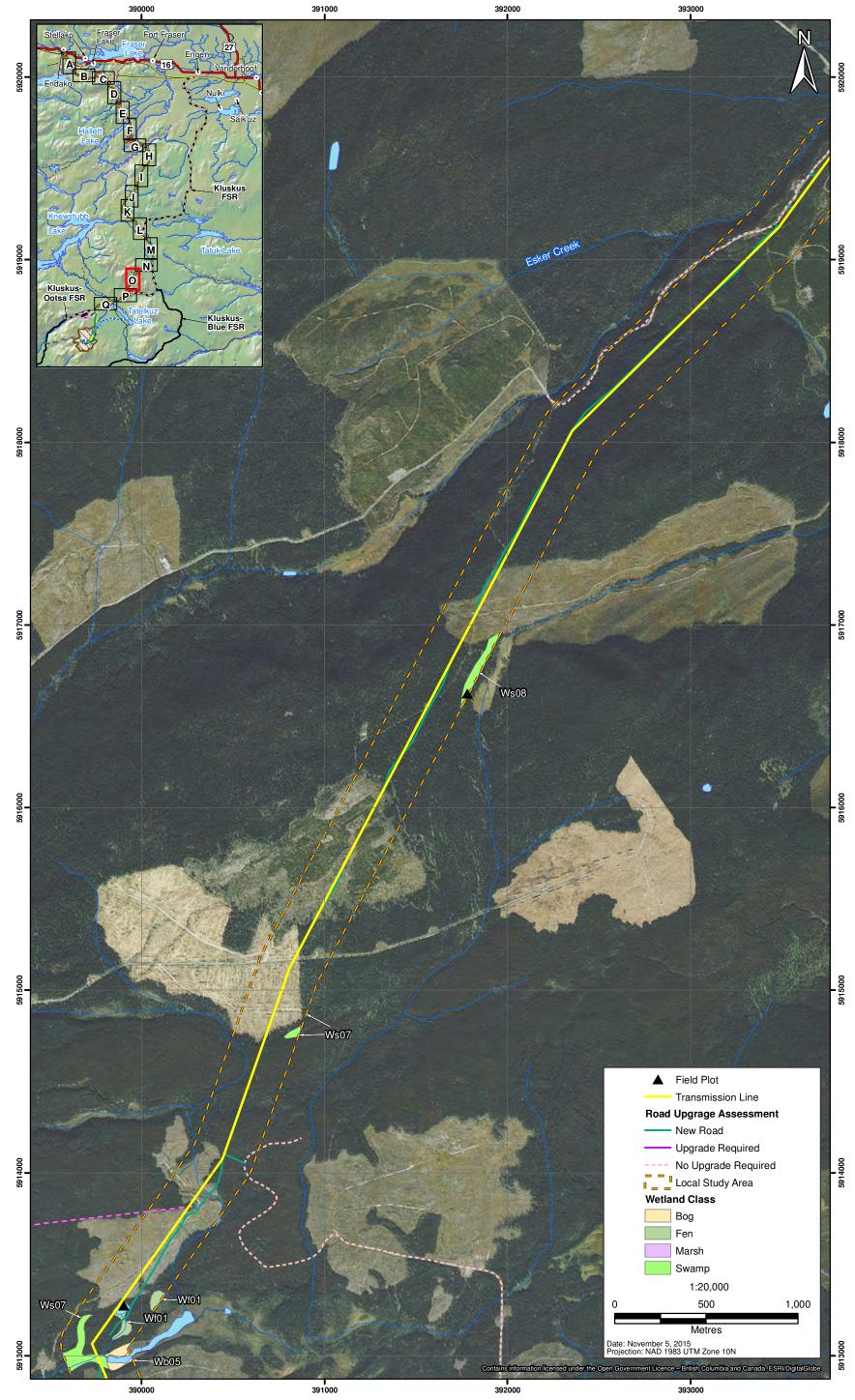
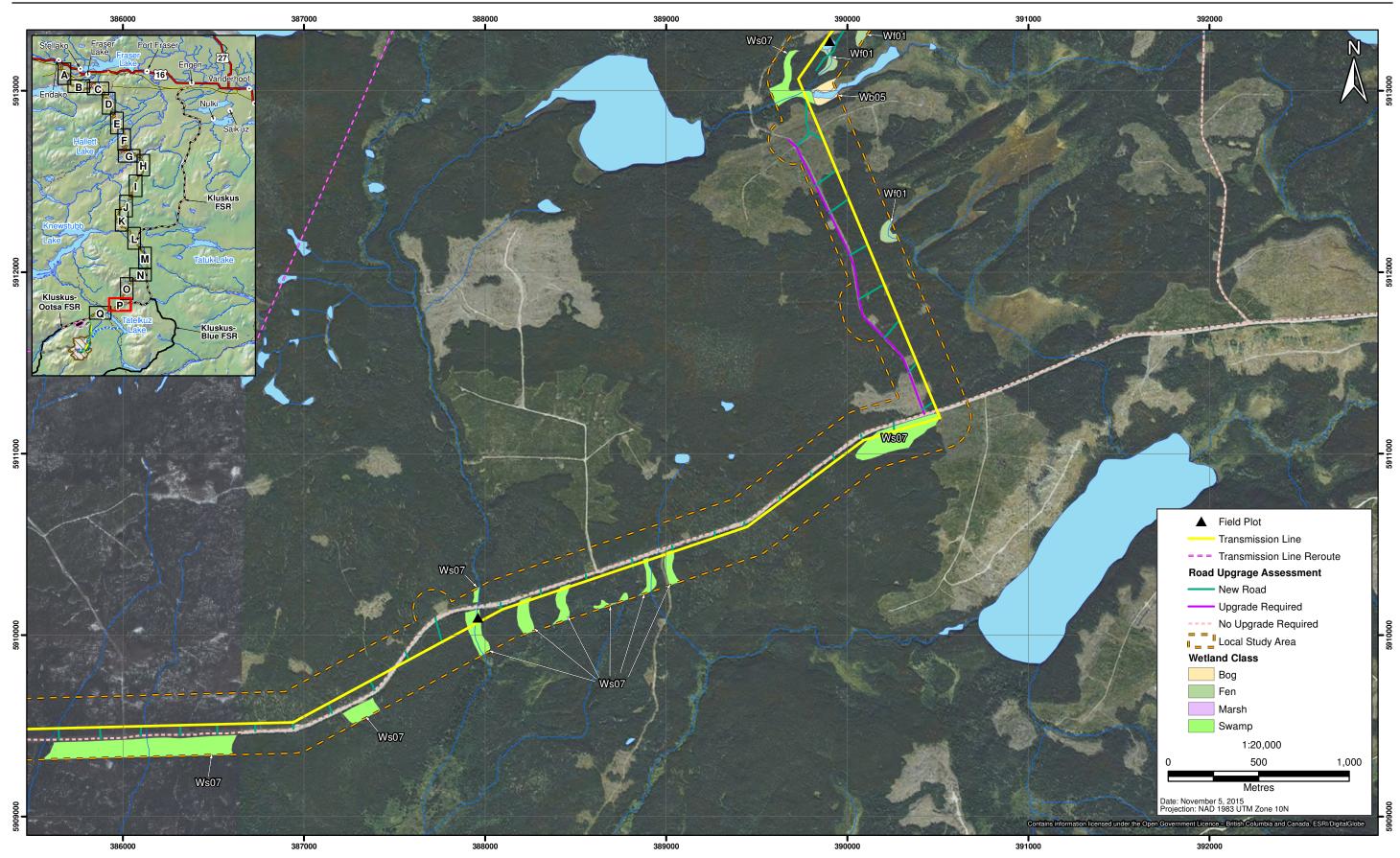
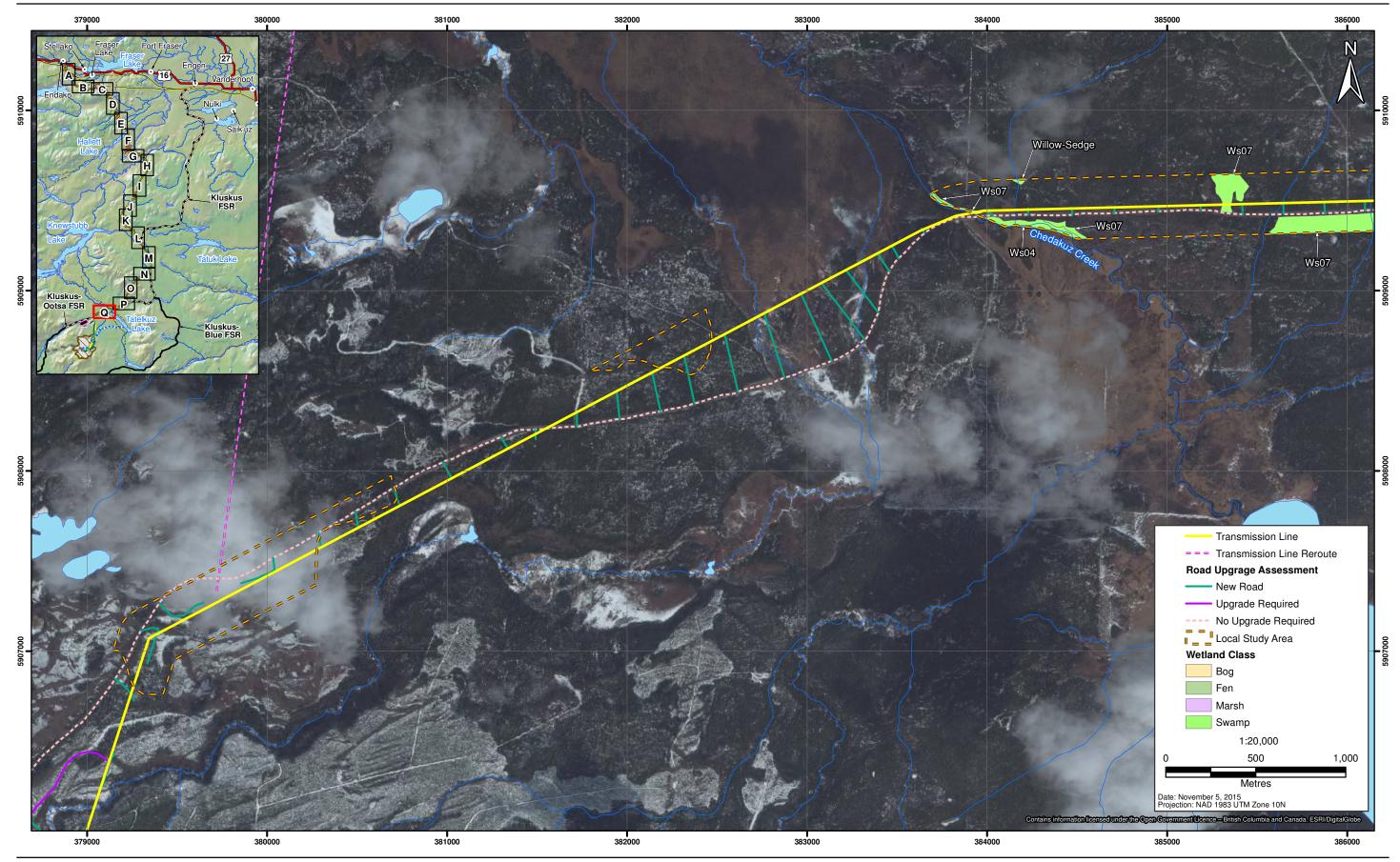




Figure 3.1-16
Blackwater Gold Project: Wetland Classification and Mapping in the Transmission Line Access Roads Expanded LSA Map 16

- Appendix 4 -

Wetland Plates

APPENDIX 4. WETLAND PLATES

Plate 4.1-1. Understory composition of Ws07 at BW002.

Plate 4.1-2. Woody peat orgain Soil in Ws07 at BW002.

Plate 4.1-3. Wf01 Fen at BW003.

Plate 4.1-4. Comarum palusture at BW003 Wf01 fen.

Plate 4.1-5. Eriophorum angustifolium at BW004.

Plate 4.4-6. Wf01 Wetland at BW005.

Plate 4.4-7. Wb05 Wetland at BW006.

Plate 4.4-8. Big Bend Meadow Riparian Area BW007.

Plate 4.4-9. Big Bend Creek Riparian Area and Flood Maintained Ecosystem BW008.

Plate 4.4-10. Ws07 Swamp edge at BW009.

Plate 4.4-11. Riparian Swamp at BW010.

Plate 4.4-12. Ws03 Swamp at BW011 – Salix were difficult to identify but understory dominated by Calamagrostis canadensis.