Appendix C

Site C ARD/ML Management Plan – 2022 Water Quality Annual Report

Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, BC Hydro Left Bank Debris Boom and L2 Powerhouse 2022 Annual Report

PRESENTED TO **BC Hydro**

MARCH 28, 2023 ISSUED FOR USE FILE: 704-ENG.VMIN03021-05

> Tetra Tech Canada Inc. 150, 1715 Dickson Avenue Kelowna, BC V1Y 9G6 CANADA Tel 250.862.4832 Fax 250.862.2941

This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at midstream and discharge locations along River Road ditch near Blind Corner and below Howe Pit, in proximity to the South Bank Initial Access Road (SBIAR), and along the L3 Creek catchment. The River Road and SBIAR locations have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area, for evaluation of effectiveness of mitigations, effectively making the slope non-PAG, and the BC Hydro Left Bank Debris Boom (LBDB). Sampling at L3 Creek was terminated in April 2021 after a sufficient dataset of trends over time had been collected. Details of the 2022 sampling locations, objectives, and requirements for testing at each location are presented in Section 5 of this report.

This water quality sampling program is conducted in accordance with BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP), Rev. 10, Appendix E (Rev. 6.0) Acid Rock Drainage and Metal Leachate Management Plan - Section 5.2.1.7 (BC Hydro, 2022), which specifies requirements for road cut monitoring. This water quality program is one component of numerous water quality monitoring programs, including regular monitoring in the Peace River receiving environment, reported under separate cover (Ecofish, 2023a).

The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources. Throughout the report the "RB" and "LB" nomenclature refers to right and left riverbanks (when facing downstream), respectively.

In accordance with the CEMP, results for the monitoring program locations are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG).

Water quality measurements collected at discharge locations along River Road and downstream locations at SBIAR that exceed the BCAWQG-FST values are reported to BC Hydro within 24 hours of receiving the results, and subsequently to the provincial Emergency Management BC hotline, the Independent Environmental Monitor, and the office of the Comptroller of Water Rights. The complete results of sampling at all locations are presented in a monthly routine memo to BC Hydro.

The results of monthly monitoring are compiled and tracked for changes over time with special interest in metals associated with ARD-ML drainage, e.g., iron, aluminum, arsenic, cadmium, cobalt, copper, manganese, silver, and zinc. The trend charts are updated quarterly and included with the routine memo for that month's sampling event. The results of time series trend analysis are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater long-term (FLT) chronic values for sulphate since no short-term (FST) exceedance value is applicable.

River Road

Access road construction in 2016-2017, on the north/left bank, between Howe Pit and the Peace River along River Road cut through bedrock. Current mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage. The limestone in the ditch was replaced in July 2021 to provide fresh surfaces for acid buffering.

A total of ten (10) monitoring locations were monitored in the River Road catchment near Blind Corner to monitor the effectiveness of the limestone rip-rap in the ditch line and on the rock slope, and to observe longer term

influences from the Potentially Acid Generating (PAG) outcrop at Blind Corner and potential run-off/seepage from Howe Pit (non-Site C impacted area) on the water collected in the River Road ditch. Water quality sampling was attempted on a routine monthly basis from six of the River Road catchment locations, 1) in the lower chimney drain (LBRR-LC), 2) the upper chimney drain (LBRR-UC); 3) upstream of the lower chimney drain within the River Road ditch (LBRR-12+500), which in 2022 was sometimes sampled slightly downstream at LBRR-12+450 due to rip-rap at the location, 4) at the discharge of culvert RR-11 (LBRR-DD), 5) RR-9 culvert (LBRR-RR9) and 6) RR-8 culvert (LBRR-8). The LBRR-EDP location previously sampled was discontinued in 2022 due to overlap in sampling purpose and location with LBRR-12+500. In situ testing, without lab sampling, is conducted at four additional locations within the River Road ditch at LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920. Occasionally, discharge from the outlet of culverts LBRR-DD, LBRR-RR9 and/or LBRR-RR8 is observed, which potentially reaches the Peace River and is documented in field notes and each of the routine monthly memos.

During 2022, outside of dry or frozen conditions, lab samples were collected from River Road during seven (7) sampling events in months resulting in a sum of thirteen (13) samples. Two samples were collected from LBRR-DD (January, March), two samples from LBRR-UC (March, June), six samples from LBRR-12+500 (March, May, June, August, September, October), and three samples from LBRR-RR9 (January, March, May). No in situ or lab samples were collected from RR8 or LBRR-LC in 2022 due to dry or frozen conditions.

Of the total thirteen (13) water quality samples collected from River Road locations in 2022, exceedances to the BCAWQG-FST were measured for total arsenic (2), total iron (7), total manganese (1), total zinc (2), dissolved aluminum (3) and dissolved iron (1). Of the three discharge locations, one exceedance was measured at LBRR-DD for dissolved aluminum and seven exceedances were measured at RR9 for total arsenic (1), total iron (3), total manganese (1), total zinc (1) and dissolved aluminum (1) during the months of January, March, and May 2022. The RR8 culvert was not sampled in 2022, or previously in 2021, due to water not reaching this point in the ditch

Water quality measurements along River Road have indicated that run-off water quality is influenced by active acid rock drainage and metal leaching (ARD-ML) processes within the River Road ditch catchment, however neutral drainage conditions prevail and the elevated metals concentrations are generally attributed to sediment loading from the roadway or from sediment in the ditchline. Elevated metal levels at River Road have also been correlated in the past with periods of naturally elevated metals concentrations in the Peace River during freshet and after high precipitation events. As per CEMP Appendix E Section 5.2.1.7, it is recommended that water quality monitoring is continued on a monthly basis at the established locations within the River Road catchment.

SBIAR

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between Relocated Surplus Excavation Material (RSEM) R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes. Management and mitigation measures include reduction of surface contact water through capture of up-gradient flow and diversion through a pipe to limit flow along the exposed shale slope, and collection of any remaining PAG contact water in ditches. It is noted that the water flowing in the ditches do not have a direct downstream receptor; the water from the east ditch passes under the road via culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch which conveys to the PRHP RSEM R6 pond (permitted for PAG contact water and subject to monitoring before discharge). The effectiveness of the mitigation is evaluated through monthly monitoring of water quality stations along the road.

In 2022, four (4) monitoring locations were sampled at SBIAR, which included two stations in each of the east and wet ditch at the toe of the PAG slope exposure. The west upstream and downstream SBIAR ditches (RBSBIAR-DS, RBSBIAR-US) and east upstream and downstream SBIAR ditches (RBSBIAR-EDS and RBSBIAR-EUS). The sample stations are to monitor for potential long-term influence on water quality from construction of the SBIAR

facility. Sampling at the SBIAR monitoring locations was conducted monthly in 2017, 2019, 2020, 2021 and 2022 and quarterly in 2018.

During 2022, outside of dry or frozen conditions, lab samples were collected from SBIAR during nine (9) sampling events (January, March through October) resulting in a sum of twenty-four (24) samples. Six (6) samples were collected from RBSBIAR-US (May through October), nine (9) samples from RBSBIAR-DS (January, March through October), seven (7) samples from both RBSBIAR-EUS (January, May through October) and two (2) samples from RBSBIAR-EDS (May, June).

In situ testing was completed on a monthly basis, with sufficient water available at some, but not all, SBIAR locations for eleven (11) months between January to December 2022. Frozen conditions in February 2022 prevented any sampling or in situ measurements.

During 2022, BCAWQG-FST exceedances were measured at the RBSBIAR-DS location for total iron (2), total zinc (1) and dissolved aluminum (1). No exceedances were measured at RBSBIAR-US. At the RBSBIAR-EUS location, exceedances were measured for total arsenic (1), total iron (2) and total zinc (1). At the RBSBIAR-EDS location, BCAWQG-FST exceedances were measured for total arsenic (1), total iron (1) and dissolved aluminum (1).

L2 Powerhouse Area

Two sample locations were established at the L2 Powerhouse area adjacent to the powerhouse on the Right Bank in October 2020. The L2 area was identified for sampling due to the exposure of a shale slope during excavation for the Powerhouse and continues to evaluate the water quality for potential impact from shale exposures in the area.

The lower L2 Area PAG slope is mitigated by covering of the slope that effectively makes it a non-PAG contact surface. The water quality monitoring program has been put in place to verify that the mitigation applied is working and that non-PAG contact water is observed in this area. The L2 Powerhouse is an area of active construction which may influence the sampling stations. The water management at this area is difficult to follow as there is active construction throughout the area and multiple sources of water input and discharges. Water is tested and pumped to treatment as needed.

The L2-US location was sampled ten (10) times between January and December 2022, resulting in BCAWQG-FST exceedances measured above the guidelines for total iron (1) and dissolved aluminum (1).

The L2-DS location was sampled seven (7) times between May and December 2022, resulting in BCAWQG-FST exceedances measured above the guidelines for ammonia (1), total arsenic (2), total iron (4), total lead (1), total silver (1), total zinc (2), dissolved aluminum (5), and pH (1).

BC Hydro Left Bank Debris Boom

Shale was exposed during construction of the BC Hydro Left Bank Debris Boom (LBDB) anchor area in approximately March 2020. The LBDB PAG slope exposures will eventually be completely inundated with the reservoir formation. Water quality sampling at LBDB provides data to apply to understanding of water discharge and flooding in subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels. Sample locations were established and first sampled on October 8, 2020, to characterize water quality in the LBDB area for ARD-ML monitoring.

LBP Pond is the only location within the area that has been consistently available for sampling. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LBP Pond location, is immediately following a significant rainfall event. In 2022, the Armor ditch locations were

sampled in two months, March (LBDB-WDS only) and May. Sampling was possible in May 2022 due to the heavy rainfall event occurring in the seven days prior to the sampling event. These ditches are otherwise generally dry.

During 2022, the LBP Pond was sampled eight (8) times from March through October. In March 2022, the west downstream Armor Ditch (LBDB-WDS) was sampled. In May 2022, the west and east downstream Armor Ditches (LBDB-WDS, LBDB-EDS) and laydown drainage ditches (LBDB-LD-MS, LBDB-LD-DS) were sampled. Frozen or dry conditions prevailed in the Armor Ditch upstream ditches (LBDB-EUS, LBDB-WUS) and upstream laydown drainage (LBDB-LD-US) locations throughout all of 2022 and were not sampled.

The LBP Pond samples reported BCAWQG-FST exceedances above the guidelines in total iron (5), total manganese (2), total zinc (1) and dissolved iron (2) between April and October 2022. Water is not commonly observed to discharge from the LBP Pond, but if it does it passes through a limestone lined water management ditch system to the downstream monitoring station.

As a result of one sample event on May 31, 2022, that included the armor ditches and laydown drainage, BCAWQG-FST exceedances were measured in the midstream laydown drainage (LBDB-LD-MS) for total cobalt, total iron, total manganese, dissolved aluminum, and dissolved iron. No exceedances were measured at the sampled LBDB-LD-DS, LBDB-EDS or LBDB-WDS locations on May 31, 2022. Field samplers confirmed that there was no direct connectivity to the Peace River during this sampling event.

TABLE OF CONTENTS

EXE	CUTIV	/E SUM	MARY	I
1.0	INTR		ΓΙΟΝ	. 1
2.0	MON 2.1 2.2 2.3	Monitor Analytic	IG PROGRAM SET-UP AND PURPOSE ing Program Requirements and Comparison Criteria cal Program Parameters ary of Parameters of Interest	2 2
3.0	SAM	PLE LC	DCATIONS	. 5
	3.1 Description of River Road Sample Locations			
		3.1.1	Limestone Ditch Status and Maintenance	6
	3.2	Descrip	tion of South Bank Initial Access Road Locations	6
	3.3	Descrip	tion of L2 Powerhouse Area Sampling Locations	7
	3.4	Descrip	tion of BC Hydro Left Bank Debris Boom Sampling Locations	8
4.0			NDITIONS	٥
4.0	4.1		er Conditions - Temperature and Precipitation	
	4.1		cation of Seasonal Flows in Ditch	
	4.3		River Turbidity and TSS	
	4.0	1 cube		10
5.0	WAT		ALITY MONITORING PROGRAM RESULTS	
	5.1	Sample	Events in 2022	12
	5.2	Quality	Control and Quality Assurance Program	
		5.2.1	Overview of QA/QC Program	
		5.2.2	Laboratory QA/QC	
		5.2.3	Tetra Tech QA/QC	
	, , ,		oad Water Quality Monitoring	
		5.3.1	In Situ Measurements and Field Observations	
		5.3.2	Freshwater Short-Term Maximum Exceedances	
	F 4	5.3.3	Trend Monitoring and Details of 2022 Sample Results	
	5.4		Water Quality Monitoring	
			In Situ Measurements and Field Observations	
		5.4.2	Freshwater Short-Term Maximum Exceedances	
	E	5.4.3	Trend Monitoring and Details of 2022 Sample Results	
	5.5	5.5.1	erhouse Field Observations and In Situ Measurements	
		5.5.1	Freshwater Short-Term Maximum Exceedance	
		5.5.2 5.5.3	Trend Monitoring and Details of 2022 Sample Results	
	5.6		Iro Left Bank Debris Boom	
	0.0	5.6.1	Field Observations and In Situ Measurements	
		5.6.2	Freshwater Short-Term Maximum Exceedances	
		5.6.3	Trend Monitoring and Details of 2022 Sample Results	

6.0	CONCLUSIONS AND RECOMMENDATIONS		
	6.1	River Road Water Quality Monitoring	.21
	6.2	SBIAR Water Quality Monitoring	.24
	6.3	L2 Powerhouse Water Quality Monitoring	.25
	6.4	BC Hydro Left Bank Debris Boom Monitoring	.26
7.0	0 CLOSURE		
REFI	EREN	ICES	28

APPENDIX SECTIONS

TABLES

- Table 1
 Water Sampling Locations and In Situ and Lab Events
- Table 2 Temperature and Precipitation Daily and 7-Day Average
- Table 3 Classification of Flows in Ditch
- Table 4 Turbidity and TSS of the Peace River for Water Sampling Events
- Table 5a QAQC Travel and Field Blanks
- Table 5b QAQC Field Replicate Samples
- Table 6 River Road In Situ Water Quality Sampling
- Table 7
 River Road Water Quality Exceedances Summary (BCAWQG-FST)
- Table 8 RBSBIAR In Situ Water Quality Measurements
- Table 9
 RBSBIAR Water Quality Exceedances Summary (BCAWQG-FST)
- Table 10 L2 Powerhouse In Situ Water Quality Sampling
- Table 11 L2 Powerhouse Water Quality Exceedances Summary (BCAWQG-FST)
- Table 12 LBDB In Situ Water Measurements
- Table 13 LBDB Water Quality Exceedances Summary (BCAWQG-FST)
- Table 14 Discharge and Downstream Locations Minimum, Maximum and Mean Values

FIGURES

- Figure 1 River Road Monitoring Locations (LB)
- Figure 2 SBIAR and L2 Powerhouse Monitoring Locations (RB)
- Figure 3 LBDB Monitoring Locations (LB)
- Figure 4 BC Hydro Site C Meteorological and Air Quality Stations
- Figure 5 Turbidity and TSS Measured in the Peace River

RIVER ROAD (Fig 6-17)

- Figure 6 pH at RR Locations
- Figure 7 Total Alkalinity at RR Locations
- Figure 8 Acidity at RR Locations
- Figure 9 Sulphate at RR Locations
- Figure 10 a) TDS and b) TSS at RR Locations
- Figure 11 a) Total and b) Dissolved Aluminum at RR Locations
- Figure 12 b) Total and b) Dissolved Iron at RR Locations
- Figure 13 Total Arsenic at RR Locations
- Figure 14 Dissolved Cadmium at RR Locations
- Figure 15 Total Cobalt at RR Locations
- Figure 16 Dissolved Copper at RR Locations
- Figure 17 Total Zinc at RR Locations

RBSBIAR (Fig 18-30)

- Figure 18 pH at RBSBIAR Locations
- Figure 19 Total Alkalinity at RBSBIAR Locations
- Figure 20 Acidity at RBSBIAR Locations
- Figure 21 Sulphate at RBSBIAR Locations
- Figure 22 a) TDS and b) TSS at RBSBIAR Locations
- Figure 23 a) Total and b) Dissolved Aluminum at RBSBIAR Locations
- Figure 24 a) Total and b) Dissolved Iron at RBSBIAR Locations
- Figure 25 Total Arsenic at RBSBIAR Locations
- Figure 26 Dissolved Cadmium at RBSBIAR Locations
- Figure 27 Total Cobalt at RBSBIAR Locations
- Figure 28 Dissolved Copper at RBSBIAR Locations
- Figure 29 Total Zinc at RBSBIAR Locations
- Figure 30 a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc

L2 Powerhouse (Fig 31-44)

- Figure 31 pH at L2 Powerhouse Locations
- Figure 32 Total Alkalinity at L2 Powerhouse Locations
- Figure 33 Acidity at L2 Powerhouse Locations
- Figure 34 Sulphate at L2 Powerhouse Locations
- Figure 35 a) TDS and b) TSS at L2 Powerhouse Locations
- Figure 36 a) Total and b) Dissolved Aluminum at L2 Powerhouse Locations
- Figure 37 a) Total and b) Dissolved Iron at L2 Powerhouse Locations
- Figure 38 Total Arsenic at L2 Powerhouse Locations
- Figure 39 Dissolved Cadmium at L2 Powerhouse Locations
- Figure 40 Total Cobalt at L2 Powerhouse Locations

- Figure 41 Dissolved Copper at L2 Powerhouse Locations
- Figure 42 Total Zinc at L2 Powerhouse Locations
- Figure 43 Total Selenium at L2 Powerhouse Locations
- Figure 44 Dissolved Selenium at L2 Powerhouse Locations
- BC Hydro Left Bank Debris Boom (Fig 45-56)
- Figure 45 pH at LBDB Locations
- Figure 46 Total Alkalinity at LBDB Locations
- Figure 47 Acidity at LBDB Locations
- Figure 48 Sulphate at LBDB Locations
- Figure 49 a) TDS and b) TSS at LBDB Locations
- Figure 50 a) Total and b) Dissolved Aluminum at LBDB Locations
- Figure 51 a) Total and b) Dissolved Iron at LBDB Locations
- Figure 52 Total Arsenic at LBDB Locations
- Figure 53 Dissolved Cadmium at LBDB Locations
- Figure 54 Total Cobalt at LBDB Locations
- Figure 55 Dissolved Copper at LBDB Locations
- Figure 56 Total Zinc at LBDB Locations

PHOTOGRAPHS

- Photo 1 River Road LBRR-US location, September 29, 2022
- Photo 2 River Road LBRR-LC location, September 29, 2022
- Photo 3 River Road LBRR-920 location, October 31, 2022
- Photo 4 River Road LBRR-810 location, September 29, 2022
- Photo 5 River Road LBRR-700 location, September 29, 2022
- Photo 6 River Road LBRR-600 location, September 29, 2022
- Photo 7 River Road LBRR-12+500 location, September 29, 2022
- Photo 8 River Road LBRR-12+450 location sampled as proxy for LBRR-12+500, September 29, 2022
- Photo 9 River Road LBRR-12+DD location, September 29, 2022
- Photo 10 River Road LBRR-12+DD location, September 29, 2022
- Photo 11 River Road RR9 inlet location, September 29, 2022
- Photo 12 River Road RR8 outlet location, September 29, 2022
- Photo 13 RBSBIAR-US upstream west ditch, September 28, 2022
- Photo 14: RBSBIAR-US upstream west ditch, September 28, 2022
- Photo 15 RBSBIAR-DS downstream west ditch looking upstream, September 28, 2022
- Photo 16 RBSBIAR-DS downstream west ditch looking downstream, September 28, 2022
- Photo 17 RBSBIAR-EUS upstream east ditch, September 28, 2022er 2022.
- Photo 18 RBSBIAR-EUS upstream east ditch, September 28, 2022
- Photo 19 RBSBIAR-EDS downstream east ditch, September 28, 2022
- Photo 20 RBSBIAR-EDS downstream east ditch, September 28, 2022
- Photo 21 L2-US location, September 28, 2022
- Photo 22 L2-US location, September 28, 2022
- Photo 23 L2-DS location, September 28, 2022
- Photo 24 LBP Pond location, September 28, 2022

Photo 25 LBDB-EDS location, September 28, 2022
Photo 26 LBDB-EDS location, September 28, 2022
Photo 27 LBDB-EUS location, September 28, 2022
Photo 28 LBDB-LD-US location, September 28, 2022
Photo 30 LBDB-LD-DS location, September 28, 2022
Photo 31 LBDB-WUS location, September 28, 2022
Photo 32 LBDB-WUS location, September 28, 2022
Photo 34 LBDB-WUS location, September 28, 2022

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B Surface Water Analytical Laboratory Result Tables

ACRONYMS & ABBREVIATIONS

Acronyms/Abbreviations	Definition
ARD	Acid Rock Drainage
ARD-ML	Acid Rock Drainage and Metal Leaching
BC MoE	BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch
BCAWQG	British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture
°C	Degrees Celsius
CEMP	Construction Environmental Management Plan
DOC	Dissolved Organic Carbon
FB	Field Blank
FST	Freshwater Short-Term Maximum
FLT	Long-term Maximum
L/s	Litres per second
LBDB	Left Bank Debris Boom
LBRR	Left Bank River Road (referring to Sample ID)
Lorax	Lorax Environmental Services Ltd.
mg/L	milligrams per litre
ML	Metal Leaching
PAG	Potentially Acid Generating
PRHP	Peace River Hydro Partners
ppm	parts per million
RBSIBAR	Right bank South Bank Initial Access Road (referring to Sample ID)
RPD	Relative Percent Difference
RSEM	Relocated Surplus Excavation Material
SBIAR	South Bank Initial Access Road
ТВ	Travel Blank
μg/L	micrograms per litre
WQG	Water Quality Guideline

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of BC Hydro and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than BC Hydro, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by BC Hydro (the client) to develop and implement a surface water quality monitoring program at locations around the Site C project site where bedrock shale exposures, classified as potentially acid generating (PAG), may have the potential to contribute to water quality changes due to acid rock drainage and metal leaching (ARD-ML) potential of the shale bedrock.

We acknowledge this work is being conducted on the traditional territory of Treaty 8 First Nations of Dunne Zaa, Cree and Tse'khene cultural descent.

Monitoring locations were established by Tetra Tech in conjunction with BC Hydro personnel. Where possible (and applicable), they are coincident with the locations and station names used in 2016 by Lorax Environmental Services Ltd. (Lorax) for water quality monitoring on behalf of Peace River Hydro Partners (PRHP) prior to BC Hydro taking over sampling of these stations. Water sampling locations with UTM coordinates are shown in the attached maps in Figures 1 through 3. Photos of the water sampling locations during 2022 are included in the Photographs (1 through 32) section of the Appendix.

Locations along River Road ditch near Blind Corner and below Howe Pit, and in proximity to the South Bank Initial Access Road (SBIAR) have been sampled monthly, except when frozen or dry conditions exist, since initiation of the program in 2017. Additional monitoring locations were added in October 2020 at the L2 Powerhouse Area and the BC Hydro Left Bank Debris Boom (LBDB). These locations are also sampled monthly, outside of frozen or dry conditions. The monitoring program includes locations at the discharge points and at midstream locations as well as locations upstream from the discharge to characterize variation to water chemistry within the catchment due to mixing and inflow of water from multiple sources.

This report documents the sampling events conducted monthly between January and December of 2022 and the results of water quality monitoring. Results are discussed in the context of ARD-ML management and mitigation.

The water conveyance facilities at River Road ditch near Blind Corner and SBIAR are identified as having potential for direct ARD-ML impacts due to exposure of shale bedrock during construction related activities. River Road and SIBAR are downstream of the dam.

The LBDB area has an exposed PAG slope in the central part of the area. Water quality sampling at LBDB provides information on the water quality at locations upstream and downstream of the PAG slope exposure. Ultimately, this area will be flooded by reservoir flooding.

The L2 Powerhouse area is sampled to establish upstream and downstream water quality characterization and for ARD-ML PAG slope monitoring in the L2 Powerhouse area and adjacent to the powerhouse on the Right Bank.

2.0 MONITORING PROGRAM SET-UP AND PURPOSE

Water quality sampling has been scheduled during approximately the third week of each month during from 2017 to 2022 to support a continuous monitoring record for reportable water quality compliance. The monitoring locations are visited monthly, and samples are collected except under frozen or dry conditions. The 2022 monitoring period commenced with the first sample event on January 25-26, 2022 and was completed with the twelfth and final sample event of the year on December 11, 2022. Each sampling event was completed by BC Hydro personnel and was documented by field notes and photographs, including during dry and frozen conditions.

2.1 Monitoring Program Requirements and Comparison Criteria

Requirements for the development and implementation of the water quality monitoring programs are mandated under the Environmental Assessment Certificate – Condition 3, and the Federal Decision Statement – Condition 7. Reporting of the program results are required on an annual basis. These requirements were carried forward and presented in the BC Hydro Site C Clean Energy Project Construction Environmental Management Plan (CEMP), Revision 10 (March 9, 2022), Appendix E (Rev 6.0) Acid Rock Drainage and Metal Leachate Management Plan.

In accordance with the CEMP Appendix E Section 5.2.1.7, analytical results for all monitoring locations are evaluated against the British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture (BCAWQG) freshwater short-term maximum (FST) values¹(BC MOE, 2021). Water quality measurements recorded at the sampling stations are reported to BC Hydro within 24 hours of receiving lab results, and a routine memo is prepared on a monthly basis to summarize field in situ and analytical lab results. The monthly results are compiled for long-term trend analysis in trend charts. The long-term trends data is evaluated against the BCAWQG freshwater long-term (BCAWQG-FLT) chronic values in Appendix B, Table B1 to B4 and trend charts in Figure 6 to 56.

Water quality measurements collected at discharge locations along River Road and downstream locations at SBIAR that exceed the BCAWQG-FST values are reported to BC Hydro within 24 hours of receiving the results, and subsequently to the provincial Emergency Management BC hotline, the Independent Environmental Monitor, and the office of the Comptroller of Water Rights. The complete results of sampling at all locations are presented in a monthly routine memo to BC Hydro.

Under BCAWQG, the intention of freshwater long-term (FLT; "chronic") WQG's are for the protection of the most sensitive species and life stage against sub-lethal and lethal effects for indefinite explores, and uses an averaging period, whereas the freshwater short-term (FST; "acute") WQG's are intended to protect against severe effects, e.g., lethality, to the most sensitive species and life stage over a defined short-term exposure period approach (BC MOE, 2021).

2.2 Analytical Program Parameters

An off-site laboratory analytical program was designed to measure a suite of parameters suitable for screening the water quality against the BCAWQG-FST for surface water. The sampling and analytical procedures implemented during 2022 were commensurate with Tetra Tech's monitoring programs from 2017 to 2021, and the program previously implemented in 2016 by Lorax for parameters, analytical methods, and detection limits. Samples were collected in a set of clean bottles provided by the lab and were submitted for analysis.

Analysis was conducted for the following parameters:

- Total Metals, Low Level (including Hg);
- Dissolved Metals, Low Level (including Hg);
- Hardness;

¹ The British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture document has been updated frequently during the course of the monitoring program, and has undergone revisions in March 2016, January 2017, March 2018, and August 2019. Screening of the monthly water quality results are performed against the contemporary guideline values. During the 2021 monitoring program, water quality results were evaluated against the August 2019 guidelines. The Total Molybdenum guideline was updated in September 2021 and this updated criteria is being used as of 2022 reporting. The BCAWQ-FST Total Molybdenum value increased by an order of magnitude. This change does not affect 2022 reporting.

- pH;
- Alkalinity: Total/Species (CO₃²⁻, HCO₃⁻, OH⁻);
- Acidity;
- Solids: Total Suspended (TSS) and Total Dissolved (TDS);
- Anions: Nitrogen species (nitrite, nitrate, ammonia), Sulphate, Chloride; and
- Dissolved Organic Carbon (DOC).

2.3 Summary of Parameters of Interest

Some of the key parameters that were monitored during this program are described below. Although some of these parameters do not have BCAWQG-FST guidelines, they can be useful indicators to potential changes in water chemistry related to ARD-ML processes.

Alkalinity and pH are important water quality parameters to indicate the ratio between residual alkalinity and acidity in solution and are key indicators for onset of acidic conditions within neutral to alkaline waters when monitored over time. Neutralization of acidity by carbonate, and to a lesser degree silicate, minerals can temporarily increase alkalinity through release of the bicarbonate ion into solution, thereby buffering pH at a near constant value. Bicarbonate will continue to react with, and deplete, any residual acidity. Once all carbonate and bicarbonate sources are depleted, alkalinity no longer is available to neutralize acidity and pH will drop. An indicator for accelerating acid generating processes is when increasing alkalinity is observed without proportional change to pH. The BCAWQG-FST guideline for pH ranges from 6.5-9.0. There is no BCAWQG-FST guideline for alkalinity or acidity.

Water clarity is measured as turbidity (nephelometric turbidity units, NTU) or as total suspended solids (TSS), which is an indicator of the amount of sediment (generally accepted as silt sized particles and coarser, or >0.45 µm in diameter), contained within the water column. TSS can increase if sediment loading occurs due to erosion, or due to rapid precipitation of secondary minerals from chemical reactions such as neutralization of acidic water. The bulk chemistry of water with high TSS tends to mimic the chemical composition of the source sediment being eroded, or in the case of mineral precipitation tends to be high in iron as iron-oxide minerals are the most common secondary mineral to form. Rapid temporal changes to TSS measurements within a catchment due to formation of secondary minerals can indicate presence of active ARD-ML reactions. The BCAWQG-FST guideline is based on deviations relative to background TSS.

Measurements such as total dissolved solids (TDS), electrical conductivity (EC) and salinity are indicators for the concentration of dissolved components and/or ions in solution. Sudden or gradual increases in these parameters can indicate changes in water chemistry such as an increase in reactive ions or dissolved metals as a result of potential metal leaching processes. Changes to these parameters in association with changes to pH or alkalinity may also indicate active metal leaching processes. BCAWQG-FST guidelines are not defined for these parameters.

Dissolved sulphate can originate from anthropogenic sources, microbial processes and through chemical processes related to degradation of rock forming minerals in environments with potential for acid generation through the oxidation of primary sulphide (e.g., pyrite) or dissolution of sulphate minerals (e.g., gypsum). Elevated sulphate concentrations may indicate oxidation, or weathering, of PAG materials in proximity to sample collection locations, however, it may also indicate influence from regional groundwater sources. Water quality with elevated sulphate and pH > 7.0 may indicate ARD-ML processes with sufficient acid neutralizing materials, whereas sulphate with decreasing pH may indicate a shortage of acid neutralizing materials. Sulphate is commonly reactive with several

cations and metal ions under ambient environmental conditions forming both soluble and non-soluble mineral precipitates.

Marine shales such as the local Shaftsbury Formation commonly contain sulphide minerals (mainly pyrite, FeS₂) and may also have primary sulphate minerals such as anhydrite (CaSO₄), gypsum (CaSO₄·2H₂O), or barite (BaSO₄), and/or other sulphate minerals. Preliminary characterization determined that the primary sulfur species in the shale was sulphide with some detectable sulphate (Klohn Crippen Berger, 2015). Based on this mineral association and site observations, it is possible that groundwater contacting fractured bedrock could contain naturally elevated sulphate concentrations. Only one well from the Main Civil Works (MCW) Site was reported in the baseline groundwater sampling conducted as part of the project's Environmental Impact Statement (Hemmera Envirochem Inc. and BGC Engineering Inc., 2012) which did indicate groundwater contained elevated sulphate.

Groundwater monitoring from 2016-2020 up-gradient and down-gradient of RSEM R5a and R5b measured elevated sulphate concentrations below the BCAWQG-FLT guideline, as reported in the Site C Clean Energy Project, 2020 Q4 Groundwater Quality, Monitoring Report for RSEM R5a and R5b (Lorax, 2020). These results indicate the presence of sulphate in the groundwater systems. It is noted that the down-gradient monitoring wells at RSEM R5b were screened in overburden materials above the bedrock contact. The guideline value for sulphate is not stated in the short-term BCAWQG-FST guideline, however, a long-term average guideline value is stated (variable with hardness) and is referenced in this report.

Water hardness is derived from the total concentration of calcium and magnesium ions in solution, and often reported as mg/L of dissolved CaCO₃) is known to mitigate the effect of certain metals on aquatic organisms, and the guidelines are presented with equations derived from experimental data for sulphate and numerous metals (cadmium, copper, fluoride, lead, manganese, silver and zinc that tests a range of hardness specific to each metal or sulphate). Water hardness classification on-site is Hard to Very Hard (180 to >250mg/L, and up to 1,000 mg/L, dependent on location) and is often measured above the guideline threshold used to calculate BCAWQG-FST guideline values. Where the ambient hardness values exceed the guideline limited listed for BCAWQG, the exceedance criteria have been calculated using the upper limit "capped" hardness value instead of the measured ambient hardness.

Water quality screening efforts have focused on elements with BCAWQG-FST guidelines, which include pH, ammonia, chloride, nitrite, total concentrations of arsenic, boron, cobalt, iron, lead, manganese, molybdenum, silver, and zinc, and dissolved concentrations of aluminum, cadmium, and iron. Changes in concentrations of some elements or metals, reported as both total and dissolved, can have various implications for water quality under ARD-ML conditions. The solubility of individual elements can vary with pH. Geochemical modelling completed by Klohn Crippen Berger (2015) identified copper, cobalt, cadmium, and zinc as having high probability of leaching into solution of site water during oxidation of the local shale bedrock under oxic acid rock generating and metal leaching conditions.

Formation of iron-oxide precipitate is a widely recognized indicator of active ARD-ML processes. Total iron concentrations are associated with ARD-ML due to liberation of ferric iron from the oxidation of primary iron bearing sulphides. Subsequent formation of iron-oxide or iron hydroxide minerals can precipitate when acidic waters are neutralized and may be present as suspended solids or can form scaling on reactive surfaces such as limestone.

Aluminum is abundant in rock forming minerals and can be released as part of oxidation and degradation of rocks during ARD-ML processes. Aluminum is soluble in acidic water and is typically not soluble in neutral and alkaline waters. Aluminum, as Al³⁺, can also contribute to the acidity along with H⁺. When concentrations of aluminum are measured in detectible concentrations in neutral or alkaline water, it is possible that the formation of very fine aluminum hydroxide clays may occur in previously acidic waters that have been neutralized. Aluminum hydroxide mineral species (e.g., polymorphs of gibbsite or hydrargillite) can form on rock surfaces and are indicators of acid

generating conditions. Precipitation of aluminum and iron hydroxide produced by weathering may occur on and reduce the exposure of acid generating and acid neutralizing minerals. (Price, 2009).

Concentrations of aluminum, iron and copper are typically low in neutral pH drainage, however, elements such as antimony, arsenic, cadmium, molybdenum, selenium, and zinc can be present in neutral pH drainage (BC MEM, 1998). Neutral pH metal leaching is an important mechanism to be observed on the Site C project as several of these neutral pH soluble elements are prevalent in the shale bedrock. These elements can be concentrated within secondary mineral formation on shale bedrock during prolonged period of low moisture, then released into run-off water in elevated concentration during high precipitation events.

3.0 SAMPLE LOCATIONS

A list of sample locations is provided in the attached Table 1 and the locations are shown on Figures 1 through 3. A summary of the rock cut locations that are subject to monthly monitoring are presented in the following sections, along with a description of the monthly sampling and in situ testing locations.

3.1 Description of River Road Sample Locations

Access road construction in 2016-2017, on the north/left bank, between Howe Pit and the Peace River along River Road cut through bedrock. ARD-ML management and mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage. The limestone in the ditch was replaced in July 2021 to provide fresh surfaces for acid buffering.

Sample locations are established along the River Road ditch for in situ testing, primarily as a means of monitoring the effectiveness of the limestone rip-rap and to observe longer term trends related to the PAG outcrop at Blind Corner and run-off/seepage from Howe Pit. A total of ten (10) monitoring locations are established in the River Road catchment near Blind Corner, shown in Figure 1. The River Road ditch was refreshed with new limestone in July of 2021. See Section 5.3 for additional discussion of management and mitigation of ARD-ML in this area.

The six sample stations include 1) lower chimney drain (LBRR-LC), 2) upper chimney (LBRR-UC), 3) upstream of the lower chimney drain within the River Road ditch (formerly LBRR-12+500, was sampled at LBRR-12+450 during 2022 due to significant rip-rap over the channel), 4) discharge of culvert RR-11 (LBRR-DD), and downstream drainage culvert outlets at 5) RR8 and 6) RR9. The four stations with in situ monitoring only stations include LBRR-12+600, LBRR-12+700, LBRR-12+810 and LBRR-12+920.

The River Road Ditch Diversion pipe, installed in March 2018, is to address erosion and sediment control by transport of run-off water into an elongated ditchline to reduce flow velocities and to promote settlement of suspended sediment. Inlets to culverts RR9 and RR8 are slightly elevated from the ditch base which will allow water to pond within the ditch and infiltrate or discharge via the culverts only if water levels reach sufficient height. Both culverts are made of HDPE materials. The monitoring program includes sampling of discharge from these LBRR-RR8 and LBRR-RR9 culverts.

The established River Road monitoring locations are shown in Figure 1 and photos of the locations are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B1 and discussed in Section 5.3.

3.1.1 Limestone Ditch Status and Maintenance

Current mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage.

The placed limestone rip-rap is effective at mitigating the pH of the drainage when there are fresh surfaces of limestone available for chemical reactions. Potentially acidic leachate generated from the rock cut-slopes reacts with the alkaline limestone to help neutralize water as it passes through the rip-rap lined ditch. Mineral precipitates can accumulate on rip-rap over time which reduce the effectiveness of the limestone. Periodic refreshing or replacement of limestone has been completed over the life of the project. No maintenance activities were completed in 2022 as the limestone continued to work effectively with minor precipitate coatings noted as well as road sediment encroachment.

With increased use of River Road, sediment and erosion control measures are needed to be addressed to manage the sediment load coming off of the road and into the ditch. The limestone is monitored for accumulation of precipitates and sediment and refreshed either by cleaning or replacement as needed.

Maintenance 2017-2020

In 2017, the collection ditch on the cut-bank (north) side of River Road between approximately 12+340 and 12+960 (Blind Corner) was lined with limestone rip-rap to assist with mitigating the potential effects of ARD-ML from PAG bedrock that was exposed during the initial road construction in 2015 and early 2016. Limestone was also placed between stations LBRR+920 and LBRR-DD to manage the pH of baseline drainage water at the outflow location. Limestone rip-rap within the ditch between road stations 12+600 and 12+900 continued to be maintained in 2018, including completion of a hydroseeding program and a limestone buttress as the tow of the shale slope at blind corner to support long-term erosion control and slope stability in March 2018. The hydroseed appeared to remain in place on the slope, however, germination was not successful at year's end. No maintenance activities were completed in 2020.

Maintenance in 2021

In early July 2021, rip-rap was replaced with fresh limestone from the start of Blind Corner ditch up to but not including under the diversion pipe. During replacement of limestone the contractor removed the previously installed bentonite liner. Placement of new bentonite liner and replacement of limestone was subsequently completed in 2021.

Maintenance in 2022

No maintenance requirements for limestone in 2022.

3.2 Description of South Bank Initial Access Road Locations

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between Relocated Surplus Excavation Material (RSEM) R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes. Management and mitigation measures includes reduction of surface contact water through capture of up-gradient flow and diversion through a pipe to limit flow along the exposed shale slope, and collection of any remaining PAG contact water in ditches which is captured and conveyed to PRHP RSEM R6 Settlement Ponds (permitted for PAG contact water). The

6

effectiveness of the mitigation is evaluated through monthly monitoring of water quality stations along the road, and visual inspection of the slopes and ditches during the ARD/ML audit inspections.

A total of four (4) monitoring locations are established in the SBIAR catchment to monitor water quality flowing in the SBIAR ditches at the toe of the SBIAR road cut. The four sample locations allow for data collection from the east and west SBIAR ditches. This provides long-term characterization of SBIAR water management from the upstream location in the west ditch (RBSBIAR-US) and the downstream location in the west ditch (RBSBIAR-DS), as well as upstream and downstream sampling locations in the east ditch, (RBSBIAR-EUS and RBSBIAR-EDS, respectively).

It is noted that the water flowing from the downstream locations do not have a direct downstream receptor; the water from the east ditch passes under the road via culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch which conveys to the PRHP RSEM R6 pond. There is an intensive water quality monitoring program in the pond (continuous in situ measurements of pH, conductivity; daily lab analysis for all parameters) conducted prior to discharge by Lorax (Lorax, 2023), Ecofish Research Ltd. (Ecofish 2023a) and others, as well as Peace River receiving environment monitoring conducted by Ecofish (Ecofish, 2023a) and others.

The established RBSBIAR monitoring locations are shown in Figure 2 and photos of the locations are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B2 and discussed in Section 5.4.

3.3 Description of L2 Powerhouse Area Sampling Locations

The L2 Powerhouse area is sampled to establish upstream and downstream water quality characterization and for ARD-ML PAG slope monitoring in the L2 Powerhouse area and adjacent to the powerhouse on the Right Bank. The two sample locations were established in October 2020. The L2 area was identified at that time for sampling due to the exposure of a shale slope during excavation for the Powerhouse. The RB Foundation Enhancement work (January 2022) included additional shale excavation. Mitigation and monitoring are addressed as per the site's EPPs. The L2 Powerhouse is an area of active construction which may influence the results of sampling month to month. The water management at this area is complex and there may be multiple sources of water input and discharges.

The water quality monitoring program has been put in place to evaluate if shale excavations are contributing to water quality impacts in the area. Due to the complex construction activities in this area and presence of both AFDE and PRHP construction teams, the water quality monitoring program discussed in this report is only one component of the overall program.

The lower L2 Area PAG slope exposed in 2020 was mitigated by covering of the slope that effectively makes it a non-PAG contact surface. The lower slope was bolted and covered in mesh and shotcrete. The slope treatment was subsequently removed, and the slope was shotcrete to support stability. The L2-DS is established at the base of this slope adjacent to the Powerhouse. Water from the intermediate slope flows in a ditch and down to the L2-DS station area. The water that collects at this location is tested and collected via vac truck for water treatment as needed.

The L2-DS sample location is adjacent to the L2 Powerhouse, specifically collected from the pump tubing on the west side of the culvert and approximately 1-2 m from the south rock ditch wall and 1-2 m from the culvert. Sandbags in the ditching adjacent to the Powerhouse are used to separate AFDE and PRHP water in this area. In 2022, the L2-DS location had variable conditions, for example, excavations occurred on the slope west of sample location (January 2022), a sand bag berm separating concrete contact water from PAG contact water was observed to be

leaking (0.5-1.0 L/s) with water from concrete contact water leaking into PAG contact water (July 2022), and works continued to occur in the L2-DS area with material being placed close to the sample area (August 2022). The end result is that the water management and conveyance in this area is frequently changing due to construction activities and therefore the water quality results may be influenced by changing conditions.

The L2-US station is located upstream from the L2 Powerhouse in a ditch line. Water at this station is pumped to the AFDE treatment plant, as required.

Representative photos of the L2 Area are included in the Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B3 and discussed in Section 5.5. A map showing the locations is in Figure 2.

3.4 Description of BC Hydro Left Bank Debris Boom Sampling Locations

Shale was exposed during construction of the BC Hydro Left Bank Debris Boom (LBDB) anchor area in approximately March 2020. In September 2020, the river at Phase 1 elevation (~410 m) followed by a partial block and diversion of the Peace River to allow construction of the main Site C dam in October 2020, causing the river/reservoir to flood up to stage 2 levels (~417-420 m). The final river/reservoir elevation is ~ 460 m.

The ditches above the 420 m elevation are lined with 3–10-inch size fraction limestone as a management measure to provide additional buffering capacity to leachate entering the ditches. The area below 420 m elevation was flooded by the head pond after construction in early Fall 2020, and therefore that area did not require rip-rap. The area above 420 m elevation will be exposed prior to flooding to the final river/reservoir elevation of around 460 m elevation planned for 2024. Seeding with ESC mix completed on exposed soil areas after they were track packed and loosened.

Water quality sampling at LBDB provides data to apply to understanding of water discharge and flooding in subsequent phases of increased elevation of the Peace River and during water diversion through the Diversion Tunnels. Sample locations were established and first sampled on October 8, 2020, to characterize water quality in the LBDB area for ARD-ML monitoring. The purpose of sampling is to monitor PAG contact water from shale exposed during construction in March 2020, and that drains to the Peace River.

The initial sampling locations included the LBP Pond location and LB Side Channel. The LBP Pond sample location has been sampled regularly since initiation. The LB Side Channel was only sampled in 2020 prior to inundation of the Peace River and this station is now back flooded and no longer considered.

Additional sample locations were added in July 2021 following a review of the area during the Tetra Tech ARD/ML site audits. Water management structures and ditch linings were also amended. The water management structures were improved to manage flow and prevent erosion and ditches were lined with limestone to provide acid buffering capacity. These were proactive measures to manage signs of erosion and initial signs of ARD/ML generation on the exposed shale slopes.

Monitoring locations were added to the west and east armor ditch, which captures water from the shale slopes at upstream and downstream locations. These four stations are named as LBDB-WUS (west ditch upstream), LBDB-WDS, LBDB-EUS, and LBDB-EDS. Three stations were also added along the LBP Pond flow path. Station LBDB-LD-US captures water upstream of and draining into the LBP Pond. Station LBLD-LD-MS is downstream of LBP Pond, and station LDBD-LD-DS is further downstream prior to discharge to the Peace River.

Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LBP Pond location, is immediately following a significant rainfall event. Sample staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

A representative photo of the LBDB locations is included in Photographs section of the Appendix. Water quality lab data results are provided in Appendix B, Table B4 and discussed in Section 5.6. A map showing the locations is in Figure 3.

4.0 LOCAL CONDITIONS

4.1 Weather Conditions - Temperature and Precipitation

The minimum, maximum, and average daily temperature and the seven-day temperature range preceding each sampling event are summarized in the attached Table 2. The total precipitation measured for the seven days preceding each sample event and the precipitation on the day prior to and the day of the sample event are also summarized in Table 2. The temperature and precipitation data were sourced from BC Hydro's Site C Meteorological and Air Quality Station (Figure 4; BC Hydro, 2022), Station 7C Site C North Camp. A summary of mean daily temperature recorded on sampling events, and precipitation recorded prior to and during the sampling event is provided in Table 4-1.

Sampling events in 2022 were primarily conducted on dry days with little to no precipitation, except for minor precipitation of 2.44 mm on morning of June 27 and 1.07 mm on morning of December 11. The precipitation on April 18 and September 29 fell in the evening after the sampling event.

		•	•		
Routine Memo No.	Sample Event No.	Sample Event Date	Mean Daily Temperature (°C)	Precipitation on Sample Event (mm)	Precipitation for 7 Days Prior to Sample Event (mm)
1	1	25-26-Jan-22	2.9	None	None
N/A	2 ¹	17-Feb-22	-7.7	None	None
2	3	30-Mar-22	6.9	None	None
3	4	18-Apr-22	-6.4	4.08	1.32
4	5	30-31-May-22	14.6	None	59.7
5	6	26-27-Jun-22	16.5	2.44	7.41
6	7	24-25-Jul-22	19.2	None	None
7	8	29-30-Aug-22	20.3	0.10	0.59
8	9	28-29-Sep-22	14.1	0.12	0.15
9	10	30-31-Oct-22	4.0	None	7.52
10	11	28-29-Nov-22	-17.6	0.16	4.01
10	12	11-Dec-22	-18.9	1.07	1.85

Table 4-1: Sample Event Temperature and Precipitation

¹ No sampling or in situ measurements due to frozen or no flow conditions.

4.2 Classification of Seasonal Flows in Ditch

Residence time for water is low in the investigated area ditches due to their small catchment size. The climate data was used to evaluate water availability and potential water source for flows that were observed in the ditches.

The flows in ditches are susceptible to seasonal change and flow rate is highly influenced by local precipitation events, thus the classification of flow in ditches can assist to interpret the source and subsequent chemical fluctuations in water sampled (attached Table 3). For example, flows in ditches can be attributed to shallow or regional groundwater, spring freshet or surface run-off, dependant on the season and amount of precipitation recorded in the previous 24-hours and 7-days to the sampling event.

When significant or moderate precipitation has occurred in the previous 7-days, but minimal precipitation within the prior 24-hour period to the sampling event, the flows in ditches can result from shallow groundwater flow, mainly through unconsolidated overburden. The highest amount of precipitation in the preceding seven days to and during the sampling event was documented to occur in May 2022 (59.7 mm). The second highest precipitation occurred in June 2022 (7.41mm). Precipitation data shows limited influence from precipitation and a much stronger correlation with freshet (Table 4). These values in the river are heavily influenced by the freshet and snowmelt during April, May, June as discussed below.

During spring freshet and snow melt, sampling events (e.g., April 18, May 30-31, and June 26-27) can be classified as having a 'dilution' effect to the water chemistry, although increased TSS from turbid high flows can counteract this effect. To the contrary, during more arid seasons with little to no precipitation occurring in the previous 7-days and 24-hours, flows in ditches can be attributed to regional groundwater baseline seepage. In this event, when precipitation and sampling occur following dry periods, the surface chemistry of the rocks will be washed into the ditches and be concentrated.

There was significant rainfall prior to the May 30-31 event and moderate rainfall prior to and during the April 18 and June 26-27 sampling events. The rainfall, along with potential freshet snowmelt, increased turbidity and flow in the ditches resulting in short-term effects on measurements such as TDS, TSS and potentially total metal concentrations from flushing of exposed slopes and ditch fill material.

As outlined in section 2.3, regional bedrock groundwater in locations sampled are suspected to have elevated concentrations of dissolved sulphates due to groundwater interaction with local pyritic-shale bedrock and local bacteria, In previous sampling years from 2017 to 2021, it was observed that elevated sulphate may, to some degree, be related to dry periods following minimal precipitation during the previous 7-day and 24-hours to the sampling event. In 2022, outside of the moderate to high rainfall prior to the April, May and June sampling events, there did not appear to be elevated sulphate related to dry periods in the trend analysis. Sulphate and TDS commonly follow similar trends.

The classification of seasonal flows in ditches, therefore, are important to consider when interpreting fluctuations and exceedances in parameters measured in water quality guidelines over the period of one year.

4.3 Peace River Turbidity and TSS

Turbidity of the Peace River is monitored by BC Hydro through a series of continuous data loggers situated both upstream and downstream of the dam construction area. Time series data is collected from the left and right banks of the Peace River up-gradient of the Moberly River (stations PAM-LB and PAM-RB, respectively) were provided to Tetra Tech by Ecofish to provide a general understanding of influence by precipitation on natural sediment within the Peace River upstream from the construction area surrounding sampling events.

The turbidity data, measured in NTU, is converted to a value representing TSS, in mg/L, using a conversion factor developed by Ecofish using calibration of field measurements with laboratory data (Ecofish, 2023b).

The data considered by Tetra Tech include turbidity measurements for the seven days prior to the sampling event, the day of, during, and the day following the sampling event (Appendix Table 4). The daily mean turbidity and TSS measurements are elevated in May 2022 and June 2022 during freshet and snowmelt. Turbidity and TSS spiked during spring freshet in the months of May and June, then decrease to baseline conditions for the remainder of 2022. The turbidity and TSS measurements outside of May and June report below 15 NTU and 12 mg/L TSS, as summarized in Appendix Table 4. In May 2022, the values are generally higher on the Left bank compared to the Right Bank, and in June 2022 the opposite is observed, and values are higher on the Right bank, as summarized in Table 4-2.

Comuling Data	Turbidity (NTU)		TSS (mg/L)	
Sampling Date	LB	RB	LB	RB
May 30, 2022	1955.4	1407.9	1525.5	1098.3
May 31, 2022	854.3	615.1	874.5	629.6
June 26, 2022	150.5	108.3	176.4	127.0
June 27, 2022	159.4	114.8	179.8	129.4

Table 4-2:Elevated Turbidity and TSS during Water Quality Sample Events in 2022

NTU: Nephelometric Turbidity Units

The highest reported 7-day precipitation to occur prior to a sampling event, recorded on May 23-29, 2022 (59.70 mm), is consistent with the spike in TSS and turbidity values. Figure 4-1 illustrates the variability and trends in turbidity and TSS during 2022 (Ecofish, 2023b) and can be reviewed in conjunction with the precipitation events listed in Appendix Table 2.

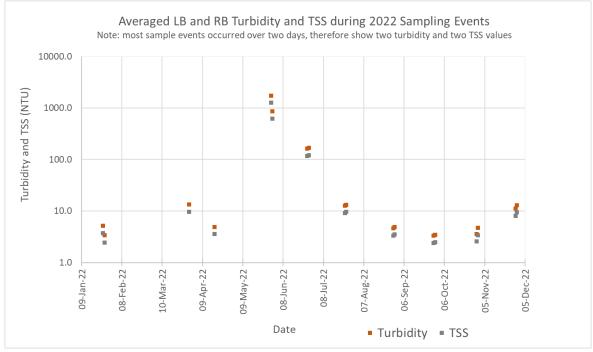


Figure 4-1:Turbidity and TSS during Water Quality Sample Events in 2022

5.0 WATER QUALITY MONITORING PROGRAM RESULTS

5.1 Sample Events in 2022

A summary of each water quality sampling event and corresponding analytical results in ten (10) routine memos summarizing twelve (12) sampling events at the RR, SBIAR, L2 Powerhouse and LBDB catchments reported monthly to BC Hydro between January to December 2022. No sampling or in situ measurements were collected in February 2022 due to frozen no flow conditions.

The attached Table 1 presents a summary of the dates of the sampling events and which locations had in situ or lab testing completed.

Field notes document field observations at each monitoring location including estimated flow rate and water clarity, site conditions and construction activities, if applicable to monitoring. In situ tests are completed with record of measurements for water temperature, hardness, alkalinity, pH, and electrical conductivity collected using a handheld meter. The in situ test data is presented in the Appendix Tables 6, 8, 10 and 12.

Laboratory results for all locations are provided in Appendix B (Tables B1 to B4). A summary of BCAWQG-FST water quality exceedances listed by monitoring location and month are listed in Tables 7, 9, 11 and 13.

Appendix Table 14 presents a summary of minimum, maximum and mean values for measurements at discharge and downstream locations in 2022.

5.2 Quality Control and Quality Assurance Program

5.2.1 Overview of QA/QC Program

The Quality Control and Quality Assurance (QA/QC) program is based first and foremost on experienced field staff familiar with the water quality monitoring program adhering to the British Columbia Field Sampling Manual, Part A and Part E (BC MoE, 2013) for sample collection procedures and QA/QC practises. New sample containers were acquired from the laboratory prior to the sampling event and all handling of the containers, sampling devices and equipment during sample collection was completed wearing new nitrile gloves to minimize potential for contamination of the samples. A new disposable syringe and 0.45 µm filter are used for each sample being submitted for dissolved metals, as per field sampling procedures (BC MoE, 2013). A peristaltic pump and 0.45 µm high capacity inline filter is used when the water is too turbid for the manual syringe filtering, All samples were stored in a cooler filled with ice packs at a temperature between approximately 4°C and 8°C.

The program incorporates the use of a Travel Blank (TB), Field Blank (FB) and replicate sample to test for potential contamination during sample collection, handling, or laboratory preparation, and to evaluate the precision of laboratory analysis. Travel Blanks were prepared by the laboratory and Field Blanks were prepared in the field at sample collection sites by field staff using the same source water as was used for the Travel Blank.

5.2.2 Laboratory QA/QC

Analytical results were received monthly from ALS Laboratories (ALS). The lab implements a detailed QC program into the sample analysis which includes a series of checks and evaluations for consistency in the sample analysis. The QC program includes method blanks, certified reference materials, laboratory control samples and duplicates.

The QC Lot reported on Assay Certificates consistently met internal ALS Data Quality Objectives throughout the year.

5.2.3 Tetra Tech QA/QC

The analytical results of the QA samples (TB, FB, and replicate samples) were reviewed by Tetra Tech, and if potential contamination or concerns with analytical results were identified, they were discussed with the laboratory and/or the field sampler representatives, with reanalysis of samples completed for verification if necessary. Appendix Table 5 provides the results of the field and travel blanks (Table 5a) and replicate samples (Table 5b) in the QA program.

5.2.3.1 Blank Samples

Travel Blanks were prepared by the laboratory and Field Blanks were prepared in the field at sample collection sites by field staff using the same sourced water. If the source distilled water was contaminated, similar elemental anomalies would be expected in both the TB and the FB. Blank samples were considered to 'fail' where any measured value was in concentrations above the reported detection limits for that parameter. Elemental concentrations measured above detection limit can be attributed to field contamination or calibration of analytical instrumentation. During 2022, TB and FB data showed minimal occurrences of any significant concentrations of values above the detection limit. As a result, no reruns were required by the lab during 2022.

Elemental concentrations measuring above the analytical detection limits in TB and FB samples occurred thirteen (13) times during the 2022 monitoring period, as detailed in the attached Table 5a. The above detection limit values were noted for alkalinity (1 sample), ammonia (7 samples), barium (2 samples), magnesium (1 sample), molybdenum (1 sample) and sodium (1 sample).

The pH for the TB and FB samples ranged from 4.96 to 5.85, with an average pH value of 5.38 from the 2022 sampling events. This pH range is typical for distilled water used for the TB and FB samples.

5.2.3.2 Replicate Samples

Replicate samples were evaluated using Relative Percent Difference (RPD). When an RPD value is less than 30% it is considered an acceptable threshold for variation of surface waters.

Field replicate samples with differences of elemental concentrations above the acceptable threshold of RPD > 30% had occurrences for a variable number of parameters measured during all ten sampling events in 2022, including: January 25 (7 events), March 30 (5), April 18 (2), May 18 (6), June 26 (3), July 25 (9), August 29 (19) and September 28 (5), October 30 (3), November 28 (3), and December 11 (14). Discrepancies are attributed to sediment disturbance during the collection of the first sample. The field staff were informed of these issues and were reminded of the importance of QC procedures during replicate sampling.

5.2.3.3 Total vs Dissolved Concentrations

Tetra Tech also reviewed the data for more general anomalies and inconsistencies. The total and dissolved concentrations for the full suite of elements were continued to be compared since there are frequent occurrences of dissolved concentrations exceeding total concentrations. The results were screened for analytical error, then assessed for expected natural variability of surface waters. Most instances were due to measurements at or near the analytical detection limit and could be explained by being within an acceptable range of error up to five times the lower detection limit for the respective element. In this case of reporting within five times of detection limit, the total concentrations are considered equal to the dissolved concentrations.

Dissolved concentrations exceeding total concentrations in samples were calculated within the acceptable threshold of an RPD < 30%, with exception of the following occurrences in three sampling events in 2022: May (antimony, tin, tungsten), August (antimony, molybdenum, silicon), October (selenium, two samples).

5.3 River Road Water Quality Monitoring

Dry, freezing and/or low or no flow conditions prevented consistent sampling at the River Road monitoring locations in 2022. In situ measurements were not collected from each station consistently every month due to dry or frozen conditions. Field observations were documented each month and results for each monthly sampling event were plotted on a quarterly basis on time series charts for trend and qualitative correlation analysis.

Sufficient flowing water permitted samples to be collected during 2022 from the following stations, with the sampled months listed in parentheses:

- LBRR-DD (January, March);
- LBRR-12+500 (March, May, June, August, September, October);
- RR8 (no samples);
- RR9 (January, March, May);
- LBRR-UC (March, June); and
- LBRR-LC (no samples).

A summary of water quality exceedances at River Road relative to BCAWQG-FST listed by monitoring location and month are listed in Table 7, and the screening results based on the laboratory data are tabulated in Appendix B, Table B1.

5.3.1 In Situ Measurements and Field Observations

Values for pH, conductivity, hardness, alkalinity, water temperature, estimated flow and turbidity measured at the River Road monitoring locations are included in Table 6. At River Road during 2022, the range in water temperatures was -0.10 °C to 27.2 °C. Measurements of pH ranged between 7.38 to 9.80, alkalinity ranged between 40 and 240 ppm, hardness ranged between 450 to 800 ppm and conductivity between 654 to 2,560 µS/cm.

Flows within the River Road ditch are ephemeral. During 2022, flow was noted at the LBRR-DD discharge location in January and March 2022, and at RR9 in January, March, and May. No flow was noted at RR8 throughout the year. In 2022, no flow was observed at LBRR-LC (Lower Chimney; Midstream) and in March and June at LBRR-UC (Upper Chimney). Flow was observed at the LBRR-12+500 (alternative LBRR-12+450 location during 2022) in March, May, June, August, September, and October, and further up the LBRR ditch at LBRR-12+600 (4), LBRR-12+700 (7), LBRR-12+810 (7) and LBRR-12+920 (7) during between four to seven months of the 12-month monitoring period. Dry or frozen conditions prevailed for the remainder of 2022.

In the River Road catchment, considering all sampling conditions, TSS measurement ranged from a low of 11.8 mg/L (January; LBRR-DD) to a high of 5,190 mg/L (January; RR9). For all stations, the combined average TSS was 496 mg/L, and each sample location showed variable TSS that was seasonally correlated with highs typically in January (likely due to warming and brief melting period on the sampling date) and March (early freshet), and lowest values in the drier summer months. The source of TSS is primarily attributed to River Road run-off, scouring of sediment deposited within the River Road ditch and washing from the cut-slopes.

5.3.2 Freshwater Short-Term Maximum Exceedances

The summary of exceedances is presented in Table 7 and summarized below. The complete data results from the samples are summarized in Appendix B, Table B1.

Of the total thirteen (13) samples collected from River Road during 2022, sixteen (16) occurrences of elevated total metal concentrations above the BCAWQG-FST were measured, for total arsenic (2), total iron (7), total manganese (1), total zinc (2), dissolved aluminum (3) and dissolved iron (1). Neutral to alkaline laboratory pH values were measured with pH ranging between 6.99 to 8.17.

At the three RR discharge locations, there was one exceedance measured at LBRR-DD (dissolved aluminum, January) and seven exceedances measured at RR9 (total arsenic, total manganese, total zinc, January; total iron, January, March, May; dissolved aluminum, May). No sampling occurred at the RR8 discharge location. Non-discharge locations along River Road measured BCAWQG-FST exceedances in total arsenic (1), total iron (3), total zinc (1), and dissolved aluminum (1) at LBRR-12+500 (in March, May, June) and total and dissolved iron at LBRR-UC (March). The exceedances are attributed to washing, or flushing, of sediment and secondary mineral precipitate during freshet (or precipitation following a dry period), as water contacted accumulated sediment within the ditch in addition to the exposed shale, colluvium, and overburden cut-banks.

5.3.3 Trend Monitoring and Details of 2022 Sample Results

Data results from 2017 to 2022 at River Road monitoring stations have been compiled and plotted for trend analysis. Please refer to Figures 6 to 17 for time series charts.

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and as discussed in Section 3.1 the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water within the River Road ditch. Event data characterizes the influences of seasonal conditions at the site.

Time series charts for pH and alkalinity, TSS and TDS, sulphate, total and dissolved aluminum, and total and dissolved iron at River Road were presented in the 2017 and 2018 annual reports (Tetra Tech 2017 and Tetra Tech 2018), but not in the 2019 annual report due to lack of water quality data in 2019 (Tetra Tech 2019). Water quality sampling has been inconsistent at the River Road locations since 2017 due to frequent low flow or frozen conditions. There is minimal data available from mid-2018 to the end of 2019, and variable amounts of data in 2017 and 2021 from different stations and times. The available data makes it challenging to discern seasonal trends at River Road. Additional data collection and ongoing time series trend analysis is needed to support interpretation of trends.

The measured pH values collected at River Road have remained within an acceptable BCAWQG-FST range (pH 6.5 to 9.0) during 2022 sampling events that show more consistency in 2020-22 relative to more variability in pH during 2017 and 2018 when pH values varied below and above the acceptable BCAWQG-FST. During 2022, alkalinity generally increased from March to October and pH remain relatively consistent whereas acidity is more variable, especially at the LBRR-12+500 and LBRR-UC locations. The collection of acidity data is limited to primarily 2020-22 and will continue to be monitored.

During 2022, TDS and TSS values at River Road sample locations generally remain within range of measurements in 2017 through 2021. Although limited and inconsistent data is available, the LBRR-12+500 location shows the highest TDS values in 2022 relative to the other RR locations sampled. During 2022, TSS values show a general decreasing trend from March to October and measured within range of values in 2017 to 2021. During 2022, sulphate concentrations measure within range of values collected from 2017 to 2021, which continue to straddle

the BCAWQG-FLT guideline value of 429 mg/L (guideline variable based on hardness) and shows a slight increasing trend from March to October yet there is insufficient data to show conclusive trends in 2022.

During 2022, total and dissolved aluminum shows an overall decreasing trend to occur from March to October and remains within range of measurements in 2017 to 2021.

During 2022, total iron varies in concentration that measures below and above the BCAWQG-FST guideline and within range of measurements since 2017. Total iron, similar to total aluminum and TSS values, measure similarly and follow a similar trend at the LBRR-12+500, LBRR-UC and RR9 locations in 2022. During 2022, dissolved iron remains below the BCAWQG-FST guideline with exception to one measurement at LBRR-UC in March 2022.

Metal concentrations for a number of elements, including total aluminum, total iron, total arsenic, total cobalt, total and dissolved copper, and total zinc show a trend from a higher value at freshet, coincident with elevated TSS values) in the spring that gradually decreases through summer and autumn to October 2022. In 2022, metals generally measure within range of concentrations since 2017.

5.4 SBIAR Water Quality Monitoring

The South Bank Initial Access Road (SBIAR) shale slope was initially exposed in 2015 as part of road construction works on the south bank between RSEM R6 and Area A. The total area of the shale slope is approximately 14,000 m², between both the East and West slopes.

At SBIAR, sufficient flowing water permitted samples to be collected during 2022 from:

- RBSBIAR-US (May to October);
- RBSBIAR-DS (January, March to October);
- RBSBIAR-EUS (January, May to October);
- RBSBIAR-EDS (May, June).

In situ measurements were collected in the same months when sampling was possible, and low flow conditions in January and March also allowed in situ measurements when sample collection was not possible. Field observations were documented each month and results for each monthly sampling event were plotted on a quarterly basis on time series charts for trend and qualitative correlation analysis.

A summary of BCAWQG-FST water quality exceedances at SBIAR listed by monitoring location and month are listed in Table 9. The complete set of screening results based on the laboratory data are tabulated in Appendix B, Table B2.

5.4.1 In Situ Measurements and Field Observations

Values for water temperature, pH, total alkalinity, and electrical conductivity measured at the SBIAR monitoring locations are included in Table 8. At the SBIAR locations during 2022, the range in water temperatures was -0.1 °C to 26.4 °C. Measurements of pH ranged between 7.17 to 10.85, alkalinity ranged between 40 and 240 ppm, hardness ranged between 100 to 800 ppm and conductivity between 177 to 1,297 μ S/cm.

Flows in the SBIAR ditch system can vary between increase from the upstream to downstream locations, with flows of approximately 0.01 L/s to 3.0 L/s. Isolated pools with no flow were observed at RBSBIAR-US in March and October 2022.

5.4.2 Freshwater Short-Term Maximum Exceedances

Concentrations of total arsenic, total iron, total zinc, and dissolved aluminum were measured as exceedances to the BCAWQG-FST at various locations in the SBIAR catchment during 2022 (Appendix Table 9). Concentrations typically increase at downstream locations due to the influence of sediment washing in the ditchline and influence of SBIAR cut-slope.

In 2022, at the upstream SBIAR locations, no exceedances were measured at RBSBIAR-US in six sampling events and total arsenic (1), total iron (2) and total zinc (1) were measured at RBSBIAR-EUS in seven sampling events.

In 2022, at the downstream SBIAR locations, total iron (2), total zinc (1) and dissolved aluminum (1) were measured at RBSBIAR-DS in nine sampling events, and total arsenic (1), total iron (1) and dissolved aluminum (1) were measured at RBSBIAR-EDS in two sampling events.

It is noted that the water flowing from the downstream locations do not have a direct downstream receptor; the water from the east ditch passes under the road via culvert to the downstream location in the west ditch where all water flows into a limestone armored spillway into a ditch which conveys to the RSEM R6 pond. Details of water flow and the intensive water quality monitoring program in RSEM R6 is referenced in Section 3.2 above.

5.4.3 Trend Monitoring and Details of 2022 Sample Results

Monthly water quality monitoring measures instantaneous ambient conditions at the time of sampling and, as discussed in Section 4, the measurements are highly susceptible to temporal climate conditions due to the small catchment and short residence time of water in the SBIAR ditch. Recurring trends at SBIAR over the monitoring periods sine 2017 may be preliminary indications of long-term trends and are discussed below and summarized in the attached Figures 18 to 30. In 2018 and 2019 a trend was observed for total metals showing a potential progressive increase in concentrations was occurring, although this appears to have been short-term and temporary and has not been observed in the subsequent monitoring years.

Alkalinity and pH values indicate that waters have remained alkaline from 2017 through 2022. Alkalinity is more variable than pH values. In 2020 and 2021, an overall increase in alkalinity is observed to occur between freshet in the spring towards the fall and winter month, although this is more variable with no trend observed in 2022. Acidity measured during 2022 remains within range of values collected since 2018. Acidity values commonly measure higher in the east ditch (RBSBIAR-EDS and RBSBIAR-EUS) than in the west ditch (RBSBIAR-DS and RBSBIAR-US).

Typically, the SBIAR ditches measure variable TSS and TDS values attributable to the relatively small catchment and short residence time of waters that are subsequently sensitive to flux in surface water inputs from precipitation. In 2022, TDS values have remained relatively constant at the SBIAR locations.

During 2022, sulphate measures within range of values collected since 2017. Sulphate values show more variability during 2020 than in 2021, 2022 and previous years (2017 to 2019). The RBSBIAR-DS location shows a decreasing trend from April to July, then consistent with sulphate values at all sample locations. A seasonal trend in the SBIAR ditches is observed whereby sulphate concentration peaks in spring/early summer followed by an overall decrease.

Ammonia (NH₄ as N) is subject to a temperature and pH-dependent BCAWQG-FST and BCAWQG-FLT guideline. Although no exceedances are measured to the BCAWQG-FST, it is observed that ammonia values measure higher in the downstream SBIAR ditches (RBSBIAR-DS/-EDS) than the upstream ditches from 2017 to 2022.

During 2022, total and dissolved aluminum measure within range of values collected since 2017. The west downstream ditch measures the higher dissolved aluminum values than the other SBIAR locations in 2022, which differs from commonly higher and similar aluminum values in the east ditch sample locations since 2018.

Total and dissolved iron measure within range of values collected since 2017. Total iron shows a more variable trend below and above the BCAWQG-FST guideline, whereas dissolved iron commonly remains below detection limit and the BCAWQG-FST guideline.

During 2022, the concentrations of metals, such as arsenic, cadmium, cobalt, copper, and zinc measure within range of values in previous years from 2018 to 2021.

Monthly sampling in the SBIAR catchment occurred from 2017 to 2022 and will need to continue to be monitored going forward into 2023 for effective observations of trends.

5.5 L2 Powerhouse

Water quality sampling commenced at the BC Hydro L2 Powerhouse area in October 2020 and continued sampling through the 2022 monitoring period.

The L2 Powerhouse L2 DS location was sampled seven times from May to August and from October to December. The L2 US location was sampled ten times, January, and April to December. The other months noted dry or frozen conditions and sampling could not be completed. In situ measurements were collected in each month where a sample for lab testing was collected.

A summary of in situ measurements are provided in Table 10 and water quality BCAWQG-FST exceedances measured at the L2 Powerhouse location are listed in Table 11. Screened lab data results are tabulated in Appendix B, Table B3.

Water from the L2 Powerhouse area is conveyed to AFDE RSEM R6 pond as needed or water treatment facility that discharges to the sediment pond. Water from the AFDE RSEM R6 pond is monitored prior to discharge.

5.5.1 Field Observations and In Situ Measurements

In situ measurements collected from May to December 2022 at L2 DS recorded a range of pH 8.30 to 11.09 with mean pH value of 9.25, electrical conductivity 397 to 1,491 μ s/cm, hardness 50 to 450 ppm, alkalinity 80 to 240 ppm, water temperature 5.3 to 20.5 °C and flow 0.5 to 3.0 L/s, with turbidity ranging between clear to turbid.

In situ measurements collected from January to December 2022 at L2 US recorded a range of pH 7.44 to 9.88 with mean pH value of 8.36, electrical conductivity 435 to 1,240 μ s/cm, hardness 250 and 450 ppm, alkalinity 80 to 280 ppm, water temperature -0.1 to 20.9 °C, flow from stagnant to 6.0 L/s, and turbidity of clear to slightly turbid.

5.5.2 Freshwater Short-Term Maximum Exceedance

In the seven sampling events during 2022 at the L2 DS location, there were seventeen BCAWQG-FST exceedances measured, including for ammonia (1), total arsenic (2), total iron (4), total lead (1), total silver (1), total zinc (2), dissolved aluminum (5) and pH > 9.0 (1).

In the ten sampling events during 2022 at the L2 US location, there were two BCAWQG-FST exceedances measured, including for total iron (1) and dissolved aluminum (1) in the month of January.

At L2 DS, the pH is consistently alkaline, and the pH value exceeded the upper limit of the BCAWQG-FST guideline (pH 6.5-9.0) in May 2022. Dissolved aluminum exceeded the BCAWQG-FST guideline (100 μ g/L) value in five of the total seven sample events with concentrations ranging between 41.3 to 207 μ g/L in six samples with a mean value of 120.7 μ g/L, and one significantly higher concentration of 1,960 μ g/L in one sample (May 2022). At L2-DS,

In the same month of May 2022, there were exceedances measured for ammonia, total arsenic, total iron, total lead, total silver, total zinc, dissolved aluminum coincident with an alkaline pH above the acceptable range. At L2-DS, total iron exceeded the BCAWQG-FST guideline four times in May, June, August, and October 2022. Total arsenic and total zinc exceedances were measured in May and August, and dissolved aluminum exceedances were measured in May and December 2022.

5.5.3 Trend Monitoring and Details of 2022 Sample Results

Trend charts for the L2 Powerhouse sampling stations present consistent neutral to alkaline pH values and slightly higher pH values at L2-DS relative to L2-US. Total alkalinity values are highly variable whereas acidity values are commonly at or below detection limit. Trend monitoring is discussed below and summarized in the attached Figures 31 to 44.

Sulphate, TDS and TSS values show variable trend throughout 2022, with a spike in sulphate in May and June, decreasing TDS trend following May, and TSS indicates opposite trends at L2-DS relative to L2-US. Metal concentrations show a spike in the month of May at L2-DS, whereas concentrations are relatively consistent at L2-US. The spike in metal concentrations at L2-DS is observed for total and dissolved aluminum, total and dissolved iron, total arsenic, total cobalt, total zinc, dissolved cadmium (to a lesser degree). At L2-DS, total and dissolved selenium show measure a spike in concentration in July 2022.

The dissolved aluminum concentration is consistently above the BCAWQG-FST guideline with a decreasing trend at L2-DS in 2022, whereas the L2-US location shows a more consistent trend and below the BCAWQG-FST guideline.

Total iron shows differing trends at L2-DS and L2-US with BCAWQG-FST guideline exceedances measured at L2-DS in May and June, with a decreasing trend in 2022, whereas total iron shows a consistent trend at L2-US below the guideline. Dissolved iron concentrations have not exceeded the BCAWQG-FST guideline at L2-DS and L2-US since sampling commenced in October 2020 thru to December 2022. There is a possible 'lag' in a decreasing trend that first occurs at L2-US in April, then occurs at L2-DS in May for dissolved iron.

Total arsenic concentration measured BCAWQG-FST exceedances at L2 DS and not at L2 US in 2022, with a sharp decline in concentration from May to July at L2-DS and a consistent trend at L2-US. Total cobalt shows a similar decreasing trend from May to July at both L2-US and L2-DS, with no BCAWQG-FST exceedances. Total zinc and dissolved cadmium similarly measure higher concentrations at L2-US relative to the L2-DS location, and a decreasing trend from May to September 2022 at both locations.

Total and dissolved selenium do not have a BCAWQG-FST guideline for reporting requirements, although it is noted that both total and dissolved selenium measure above the long-term BCAWQG-FLT guideline value at L2-DS in June and July 2022, and at L2-US in May, July, and September 2022.

5.6 BC Hydro Left Bank Debris Boom

Water quality sampling commenced at the BC Hydro LBDB area in October 2020 and continued sampling through the 2022 monitoring period. The most consistently sampled location is LBP Pond. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LBP Pond location, is immediately following a significant rainfall event. Sample staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

The LBP Pond was sampled eight times from March through October 2022. The downstream location in the west armour ditch (LBDB-WDS) was sampled twice, in March and May 2022. Three additional locations were able to

sampled due to a heavy rain event in May, that include the downstream station in east armour ditch (LBDB-EDS), and the laydown drainage stations downstream from the LBP Pond (LBDB-LD-MS and LBDB-LD-DS). The sample locations are summarized on Figure 3.

A summary of water quality exceedances at LBDB relative to BCAWQG-FST listed by monitoring location and month are listed in Table 13, and the screening results based on the laboratory data are tabulated in Appendix B, Table B4.

5.6.1 Field Observations and In Situ Measurements

In 2022, in situ measurements were collected from LBP Pond (March to October), LBDB-WDS (March, May) and LBDB-EDS (May).

At the LBP Pond, a range of in situ measurements were collected for pH (6.55 to 7.99), electrical conductivity (640 to 5,170 μ s/cm), hardness (150 or 800 ppm), alkalinity (40 to 240 ppm), water temperature (0.3 to 25.6 °C) and flow (0.0 to 0.10 L/min).

At the LBDB-WDS Armor Ditch, in March and May 2022, respectively, in situ measurements for pH (8.13 and 7.89), electrical conductivity (2,520 and 3,550 µs/cm), hardness (800 ppm), alkalinity (120 and 180 ppm), water temperature (1.8 and 20.8 °C) and estimated flow (<5 mL/s to 0.08 L/min).

At the LBDB-EDS Armor Ditch, in May 2022, in situ measurements for pH (8.42), electrical conductivity (4,300 μ s/cm), hardness (800 ppm), alkalinity (240 ppm), water temperature (15.6 °C) and estimated flow (0.15 L/min).

5.6.2 Freshwater Short-Term Maximum Exceedances

In 2022, at the LBP Pond location there BCAWQG-FST exceedances measured for total iron (5), total manganese (2), total zinc (1), dissolved iron (2). This is not a discharge station and water discharging from the LBP Pond area passes through a limestone lined ditch. Water is not commonly observed to discharge from the LBP Pond, but if it does it passes through a limestone lined water management ditch system to the downstream monitoring station.

No BCAWQG-FST exceedances were measured during 2022 at the downstream east and west Armor Ditches, LBDB-EDS and LBDB-WDS. Water flow from the Armor Ditch sample locations is considered discharge locations.

In May 2022, the laydown drainage was sampled at the midstream LBDB-LD-MS location, which measured five BCAWQG-FST exceedances for total cobalt, total iron, total manganese, dissolved aluminum, and dissolved iron. The downstream laydown drainage LBDB-LD-MS location sampled in May 2022 measured no exceedances.

5.6.3 Trend Monitoring and Details of 2022 Sample Results

Sampling at BC Hydro's LBDB area has primarily been limited to sampling at the LBP Pond location, therefore comment on trend observations are limited to this location. Trend monitoring will continue in 2023 with the availability of further monthly sampling data. Trend charts are provided in Figures 45 to 56.

At LBP Pond, pH values have remained neutral to alkaline with pH values at or above 7.0. Total alkalinity values consistently increase through the year from March to October 2022, which is a similar trend observed to occur in the previous year. Acidity values measure within a consistent range through both 2021 and 2022. Sulphate values show a gradual increasing trend through the year from March to October 2022, that measures above the BCAWQG-FLT guideline from April onwards. This differs from a more consistent measurement for sulphate values

above the BCAWQG-FLT during the 2021 monitoring period. TDS values follow a similar trend to sulphate with a relatively consistent trend in 2021 followed by an increasing trend in 2022, although within similar range of values. consistent whereas TSS values are more variable and within a similar range in both 2021 and 2022.

Dissolved aluminum measured at LBP Pond is relatively consistent and well below the guideline in 2022. Total and dissolved iron concentrations follow similar trends in 2022 relative to previous years. At LBP Pond, total iron exceeds the BCAWQG-FST guideline in April, May, July, September, and October, whereas dissolved iron exceeds the BCAWQG-FST in April and October 2022.

6.0 CONCLUSIONS AND RECOMMENDATIONS

A water quality monitoring program was implemented on behalf of BC Hydro to monitor the water quality at PAG exposure locations from River Road at Blind Corner, South Bank Initial Access Road, BC Hydro Left Bank Debris Boom, and L2 Powerhouse. Upstream, midstream, and downstream and discharge monitoring locations were established to characterize water quality and to maintain a continuous monitoring record commensurate with previous sampling completed in 2016 by Lorax on behalf of PRHP (where applicable). The water quality program is conducted in accordance with the CEMP, Appendix E (Rev 6.0) Acid Rock Drainage and Metal Leachate Management Plan, Section 5.2.1.7 (BC Hydro, 2022).

The program has incorporated monthly in situ water quality measurements and observations with laboratory analysis outside of frozen or dry conditions. Field observations were recorded from all areas monthly regardless of weather conditions or ability to collect in situ measurements or take samples for lab testing.

Water chemistry is monitored to identify influence of ARD-ML processes on water quality at River Road from construction related exposed PAG shale at Blind Corner, shale exposed in the east and west ditches within SBIAR, and construction PAG shale exposures at the BC Hydro LBDB and L2 Powerhouse areas.

The sampled locations are generally ephemeral. Residence time for water is low in the investigated area ditches due to their small catchment size. The flows in ditches are susceptible to seasonal change and flow rate is highly influenced by local precipitation events, thus the classification of flow in ditches can assist to interpret the source and subsequent chemical fluctuations in water sampled. For example, flows in ditches can be attributed to shallow or regional groundwater, spring freshet or surface run-off, dependent on the season and amount of precipitation recorded before and during the sampling event. Monthly water quality monitoring measures instantaneous water quality and may not be reflective of long-term baseline conditions.

The water quality program is achieving the purpose of evaluating water quality from dam site areas where construction related PAG exposures and PAG contact surface water is identified. The results of the program demonstrate that ARD/ML processes are occurring, however the management and mitigation measures implemented are working and that water quality remains primarily neutral to alkaline with metal concentrations dominantly below the established water quality criteria. The water quality monitoring program provides a framework for identifying water quality concerns from the exposed rock cuts in a timely manner and implementing the required mitigation measures.

6.1 River Road Water Quality Monitoring

Water quality laboratory data was collected from four locations (LBRR-DD, LBRR-UC, LBRR-12+500 and RR9) and in situ measurements were collected at eight of a total eleven water sample locations along the River Road

catchment in 2022. The LBRR-12+500 location was actually sampled closer to LBRR-12+450 during 2022 due to large rip-rap at LBRR-12+500.

In situ field measurements of pH within the River Road ditch indicated a neutral to alkaline pH throughout the 2022 sampling year. In 2018 and 2019, acidic waters were collected in the upper portions of the ditch underlying the exposed shale cut-bank. However, in these instances the pH values progressively returned to circumneutral levels at the discharge location in part due to contact with limestone rip-rap in the ditch, and potential alkalinity input from groundwater or outflow from the upper cut-off ditch. The observation of consistent neutral to alkaline pH drainage conditions at all locations in River Road area in 2022 are indicative of changes in the exposed PAG slope over time. Visual observations show that the slope has weathered and developed a partial clay capping surface which may be limiting ARD/ML reactions, and sections of the exposed PAG slope have been observed to have naturally revegetated in localized areas.

Exceedances of total arsenic, total iron, total zinc, dissolved iron, total manganese, and dissolved aluminum were noted in sampling events in the first half of the year, dominantly between January and May, with one occurrence of total iron in June. The exceedances are primarily attributed to washing, or flushing, of sediment and secondary mineral precipitate during freshet (or precipitation following a dry period), as water contacted accumulated sediment within the ditch in addition to the exposed shale, colluvium, and overburden cut-banks. It is anticipated that sediment in the ditch will continue to accumulate a small amount of secondary mineral formed by up-gradient ARD-ML processes. These minerals commonly contain an elevated concentration of metals related to ML and mineral precipitation from acid neutralizing reactions. Sediment is also introduced into the ditch from the roadway.

Review, in previous years, of the Peace River monitoring data from Ecofish show that there are seasonal fluctuations in total metals concentrations and concentrations are highest during initial freshet in the Peace River. Ecofish note in their 2021 annual report (Ecofish, 2022) that for the monitoring conducted in 2021, there were natural exceedances in the Peace River of the BCWQG for the protection of aquatic life, including total iron at upstream Peace River location. Natural exceedances occurred predominantly during the freshet period (April to the end of June 2021) and were observed at all sample sites. Exceedances were most often associated with elevated concentrations of suspended solids in the Peace River (Ecofish, 2022).

ARD-ML management and mitigation along River Road adjacent to the PAG slopes includes a cut-off ditch above the slope, which diverts surface flows into limestone rip-rap lined "Chimney ditches" which then feed into the River Road ditch below the slope. The River Road ditch adjacent to the PAG slope includes a bentonite liner and limestone rip-rap to provide neutralization potential and mitigate against acidic drainage.

Chemical efficiency of the limestone to buffer acidic water is decreased when coated in precipitate. The formation of mineral scale can concentrate metals from solution as a result of the aqueous acid-base reactions. The mineral scale and sludge are susceptible to scouring and being washed during heavier rain events which has potential to reduce overall water quality conveyed down-gradient. The limestone rip-rap in the River Road ditch was replaced in July 2021, due to the accumulation of mineral scale onto the limestone, and sample events. in July and August 2021 was limited due to dry or frozen conditions. Visual inspection of the limestone during 2022 showed minimal precipitate formation in the surfaces, although some limestone rip-rap was obscured due to road sediment entering the ditches. The analytical results from 2022, combined with visual inspection, support that the limestone is effective in the maintenance of neutral alkaline drainage conditions and managing metal concentrations. The effectiveness and impact of the limestone rip-rap will continue to be monitored in future sampling events and analyzed for trend analysis over time.

The seasonal flows in ditches are important to consider when interpreting fluctuations and exceedances in parameters measured in water quality guidelines. The source of TSS is primarily from River Road run-off, scouring of sediment deposited within the River Road ditch and washing from the cut-slopes. Seasonally, elevated TSS

levels have been noted to occur during spring melt and freshet season, typically April, when water flow can wash elevated precipitates from rock. The January and April/May 2022 sampling events represents both a warming event with melting and early spring freshet conditions.

TSS measurements at RR9 were very high in January then decreased in March and May 2022, and LBRR-12+500 shows similar elevated TSS in March followed by a decreasing trend. Looking at the March event, TSS is higher at RR9 relative to upstream stations analyzed in the same month. As a result, total arsenic, total iron, total manganese, and total zinc were elevated above the BCAWQG-FST at RR9 in January, and a discharge rate of 2 L/s of turbid flow discharge to the Peace River. The total arsenic and total iron values are significantly higher than the dissolved arsenic and dissolved iron values, suggesting further the suspended sediment loading rather than the dissolved phase of the metals are the source of exceedances. The measured lab pH of 8.04 to 8.07 (LBRR-RR9) and 7.89 to 8.09 (LBRR 12+500) are both within the acceptable range for BCAWQG-FST and indicate neutral to alkaline conditions. Low pH water has capacity to dissolve metals more readily than neutral, or alkaline, water.

The purpose of the diversion pipe is to address erosion and sediment control by transport of run-off water into an elongated ditchline to reduce flow velocities and to promote settlement of suspended sediment prior to discharge at RR8 and RR9. Inlets to culverts RR9 and RR8 are slightly elevated from the ditch base which will allow water to pond within the ditch and infiltrate or discharge via the culverts only if water levels reach sufficient height. In previous years it was noted that the diversion pipe was successfully reducing the amount of direct high TSS discharge into the Peace River by allowing the water to be collected and slowly infiltrate into the River Road ditch.

On May 31, 2022, a discharge of estimated 200 mL/s flow rate from RR9 measured BCAWQG-FST exceedances in total iron and dissolved aluminum that are interpreted to be related to freshet and subsequent increase in turbidity and TSS, as shown in the EcoFish data. Exceedances are often associated with elevated concentrations of suspended solids in the Peace River. In May 2022, parameters such as total aluminum, total arsenic, total cobalt, total iron, and total zinc associate with elevated TSS values. In January 2022, there appears to be an increase in these metals and TSS that may be associated with an early anomalous temporary increase in temperature above 0°C during the sampling event on January 25-26, 2022, followed by sub-zero temperatures. No association with elevated turbidity and TSS in the Peace River were measured on January 25-26, 2022, indicating a very short-term flux in temperature and TSS.

The lower chimney (water quality monitored at LBRR-LC) drains into the River Road ditch down-gradient of LBRR 12+500 and up-gradient of LBRR-RR9. The LBRR-LC location was not measured in 2022. The upper chimney LBRR-UC location sampled in March and June 2022, recorded exceedances of total and dissolved iron in March and none in June 2022. Since there is minimal data available for 2022, there is no to minimal indication that sediment accumulation is occurring on the limestone of the lower chimney ditch.

Recommendations for River Road

The River Road sampling stations demonstrate consistent neutral to alkaline drainage conditions in 2022. Additional slope mitigation is not required, and disturbance of the shale slope is to be avoided as it may re-initiate ARD/ML processes if fresh surfaces are exposed. If erosion or scouring of the shale slope and fresh surface exposures are noted, additional short-term in situ monitoring in the River Road ditch should be evaluated to quantify the effect of fresh shale exposure on water quality, and if required additional mitigation should be considered.

The sediment source for elevated TSS is mainly attributed to scouring of accumulated sediment within the ditch from road grading and run-off from previous events, which includes washing, or flushing, of the exposed shale, colluvium, and overburden cut-banks. Continued management of the drainage system is required to reduce the amount of sediment infilling to the ditch from road grading operations as this sediment encases the limestone which

reduces chemical efficiency for ARD mitigation and prematurely fills the cistern, which limits its performance to supress TSS.

The limestone rip-rap lining was replaced in July 2021 and continues to be monitored to assess needs for maintenance, cleaning, descaling and/or removal and replacement of new limestone. With increased use of River Road, sediment and erosion control measures will be needed to address the management of sediment load coming from the road into the ditch, until such time that River Road is paved. The limestone is monitored for accumulation of precipitates and sediment and refreshed either by cleaning or replacement as needed, which was not determined to be required during 2022.

During the sampling events in 2022, discharge from River Road to the Peace River was noted during January, March, and May, with BCAWQG-FST exceedances measured at RR9 in each of January, March and May 2022, and LBRR-DD in January 2022. No discharge at RR8 was observed from 2020 to 2022. It is recommended that in situ water quality measurements are collected from any discharge observed from culvert RR8 and/or RR9 during high flow events even if outside of regular sampling events.

As per CEMP Appendix E Section 5.2.1.7, it is recommended that water quality monitoring is continued on a monthly basis within the River Road catchment at the downstream stations. Continuous monthly monitoring will evaluate the effectiveness of ARD-ML mitigation strategies. There may be opportunities to reduce in situ sampling analysis at the upstream locations given the consistency of in situ measurements over time. The sampling locations and frequency of monitoring will be reviewed with BC Hydro for the 2023 sampling year.

6.2 SBIAR Water Quality Monitoring

Water quality data was collected from four established sampling locations in 2022 that measure water directly from within the SBIAR ditch locations. The ditch samples provide long-term characterization of SBIAR water management and water quality originating from the SBIAR PAG slope at the upstream and downstream location in the east and west ditches.

Water flowing through the SBIAR ditch has no direct downstream receptor, and all water in the east and west ditches is conveyed directly to the PRHP RSEM R6 pond which is an approved PAG contact water management facility. Downstream water quality is monitored by PRHP within the PRHP RSEM R6 pond for management prior to discharge into the Peace River.

Evidence of active ARD-ML processes are observed on the shale slopes in SBIAR through observation of secondary iron hydroxide mineral formation. Alkalinity and pH indicate that the waters in SBIAR ditches have consistently remained alkaline during the monitoring periods from 2017 through 2022.

During the 2022 sampling period, sulphate values remained below the BCAWQG-FLT long-term guidelines at SBIAR sample locations. From 2017 to 2019, the upstream location in both east and west ditches showed relatively low and consistent sulphate values. In July 2020, sulphate values at the RBSBIAR-US location sharply increased then remained at an elevated level through 2021 and 2022. Sulphate values at the RBSBIAR-EUS location sharply increased in July 2020 followed by a decrease to former levels, then spiked again in May 2021 followed by a gradual decrease and levelling off at a consistently higher sulphate trend from late 2021 through 2022. In 2022, sulphate values remained below BCAWQG-FLT, however, there was some seasonable variability noted.

Screening of analytical data during 2022 for the downstream ditch locations resulted in BCAWQG-FST guideline exceedances at RBSBIAR-DS for total iron (2), total zinc (1) and dissolved aluminum (1) in two of nine total samples analyzed in 2022. Exceedances at RBSBIAR-EDS were measured for total arsenic (1), total iron (1) and dissolved aluminum (1) in one sample from May 2022 of two total samples analyzed in 2022.

Recommendations for SBIAR Water Quality Monitoring

The collection of one up-gradient and one down-gradient water sample from both the western and eastern SBIAR ditch is suggested to continue through 2023 for comparative purposes.

Downstream water is collected within the PRHP RSEM R6 pond for management prior to discharge into the Peace River. As per CEMP Appendix E, Section 5.2.1.7, since there is low to moderate risk of negative downstream effects on water quality, monitoring of water quality within SBIAR is recommended to be continued on a monthly basis in 2023. It is recommended that BC Hydro implement a long-term solution for the Site C operations phase for the exposed shale slope due to potential for ongoing ARD/ML processes.

6.3 L2 Powerhouse Water Quality Monitoring

Water conveyed to AFDE RSEM R6 pond from this area is non-PAG contact. Water that is acidic or elevated in metals from the L2 Powerhouse area is pumped to the water treatment facility which discharges treated water to the RSEM R6 pond. Water is monitored by PRHP prior to discharge from the RSEM R6 pond.

During 2022 ongoing construction of the Powerhouse adjacent to the L2 slope included concrete works which may have mixed with drainage at the base of the L2 slope. Several exceedances of BCAWQG-FST were observed throughout 2022 as described in Section 5.3. Due to the complex construction activities and water management that diverts water around the site, the sample stations may be influenced by factors outside of the shale excavations.

Tetra Tech infers that the elevated dissolved aluminum, elevated pH, and ammonia are inter-related, and the concentrations are not representative of a PAG leachate issue and are possibly related to the construction activities/concrete in the Powerhouse area.

The ammonia BCAWQG-FST guideline value is dependent on pH value, and, since pH is above the upper limit of the guideline it is a capped value that calculates one exceedance in ammonia in May 2022 due to the high pH. The source of ammonia is thought to be from the construction activities at the L2 Powerhouse and is inferred to be structure material and admixtures in concrete cement at the sample location (Bai et al., 2005).

Aluminum is primarily in the solid phase than in the dissolved phase at both L2 DS and L2 US. Total concentrations of aluminum are higher than dissolved concentrations at L2-US, but total and dissolved aluminum measure relatively similar concentrations at L2-DS. The source of the elevated dissolved aluminum at L2 DS sample location is not thought to be related to ARD-ML processes given the maintenance of neutral/alkaline pH and low overall iron and sulphate. The source of the continued elevated dissolved aluminum at the L2-DS sample location could be related to construction activities including concrete pouring, which is known to contain components high in aluminum concentration. The identification of ammonia supports this.

It is noted that water quality in the L2-DS area as well as the adjacent area for the AFDE foundation enhancement trial drilling program, both contained an excess of dissolved aluminum. This was investigated and determined that the most likely source of the dissolved aluminum to be originating from the RCC concrete which contains fly-ash (21.2% aluminum oxide) and General use (GU) cement (5% aluminum oxide).

Recommendations for L2 Powerhouse Water Quality Monitoring

Due to the evolving nature of this area and significant construction activity, it is important to evaluate the potential for changing flow patterns and confirm that the established sampling locations are appropriate for the purpose and collecting the intended waters. The water quality monitoring program will be modified as needed in relation to construction changes associated with this work. Focus on aluminum monitoring and tracking construction activities

that may be contributing aluminum and, occasionally, associated with elevated metals or pH that may be related to ARD-ML processes.

The recommendation to field staff is to maintain a consistent single sample location as often as possible at L2-DS and to continue to note observations of change in location in metres when necessary and other observations noted in construction activities. The recommendation applies more generally to the complete water quality monitoring program to allow for consistent interpretation of changes at a monitoring location.

6.4 BC Hydro Left Bank Debris Boom Monitoring

Sampling at BC Hydro's LBDB area commenced in 2020 and initially included sampling at LBP Pond and a Peace River side channel location, which is now flooded. Additional sample locations were added in July 2021 following a review of the area to monitor construction contact water. The added monitoring locations are located in the armor ditches at the toe of the exposed construction PAG faces and laydown drainages downstream of the LBP Pond. All locations were monitored in 2022 and sampled monthly outside of dry or frozen conditions.

Water management structures and ditch linings were amended in 2021 to improve flow management, prevent erosion and provide acid buffering capacity with limestone lining of ditches. These were proactive measures to manage signs of erosion and initial signs of ARD/ML generation on the exposed shale slopes. Mitigation and management controls were implemented in the LBDB area as discussed in Section 3.4. The exposed PAG slopes are temporary and PAG exposures will be fully inundated by the reservoir inundation, forecast in late 2023.

The LBP Pond station is the only station that has had consistent sample collection monthly. The other sampling stations are generally dry except after heavy rainfall events. Sampling of the armor ditches and laydown drainage in May and March was possible due to significant precipitation the previous seven days prior to the sampling event.

At LBP Pond, in eight sampling events between March to October 2022 there were BCAWQG-FST exceedances measured for total iron, total manganese, total zinc and dissolved iron. Water is not commonly observed to discharge from the LBP Pond, but if it does it passes through a limestone lined water management ditch system.

In 2022, the east downstream LBDB-EDS ditch location, the west downstream LBDB-WDS ditch location, the midstream laydown drainage LBDB-LD-MS and the downstream laydown drainage LBDB-LD-DS were sampled in May 2022 (LBDB-WDS sampled in March and May). The LBDB-LD-MS sampling in May 2022, had five BCAWQG-FST exceedances including total cobalt, total iron, total manganese, dissolved aluminum, and dissolved iron.

Field samplers confirmed that there was no direct discharge to the Peace River, and that the sampled ditches drain to sufficiently sized sumps to retain water from the ditches.

Recommendations for LBDB Water Quality Monitoring

BC Hydro should continue to monitor water quality on a monthly frequency to monitor future construction related activities in and around the catchment area. The exposed PAG slopes should continue to be monitored for evidence of ARD-ML processes including precipitate formation and oxidation staining.

LBP Pond is the only location within the area that has been consistently available for sampling. Limited surface flow is observed in this area, and the only time that the sample stations in the LBDB area can be sampled, except for the LBP Pond location, is immediately following significant precipitation. Field sampling staff are instructed to sample these locations outside of regular monitoring events, if possible, when high rainfall is observed.

7.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

PERMIT TO PRACTICE TETRA TECH CANADA INC. PERMIT NUMBER: 1001972

	FILE: 704-ENG.VMIN	03021-05
	FILE <original signed<="" th=""><th>ed by>ን5</th></original>	ed by>ን5
)5
)5
	here a function for the second)5
	han b han)5
	FILE: 704-ENG.VMIN	03021-05
	FILE: 704-ENG.VMIN	03021-05
Revi	ewed by:	

Scott Kingston, P.Geo.

Senior Geoscientist

Direct Line: sonal information re

<personal information removed>

Mining Practice

Prepared by. Erica Massey, M.Sc., P.Geo. Geoscientist Mining Practice Direct Line: series.org // P.Geo. // Series. //

RPT-Annual_WQ_Report_2022_IFU.docx

REFERENCES

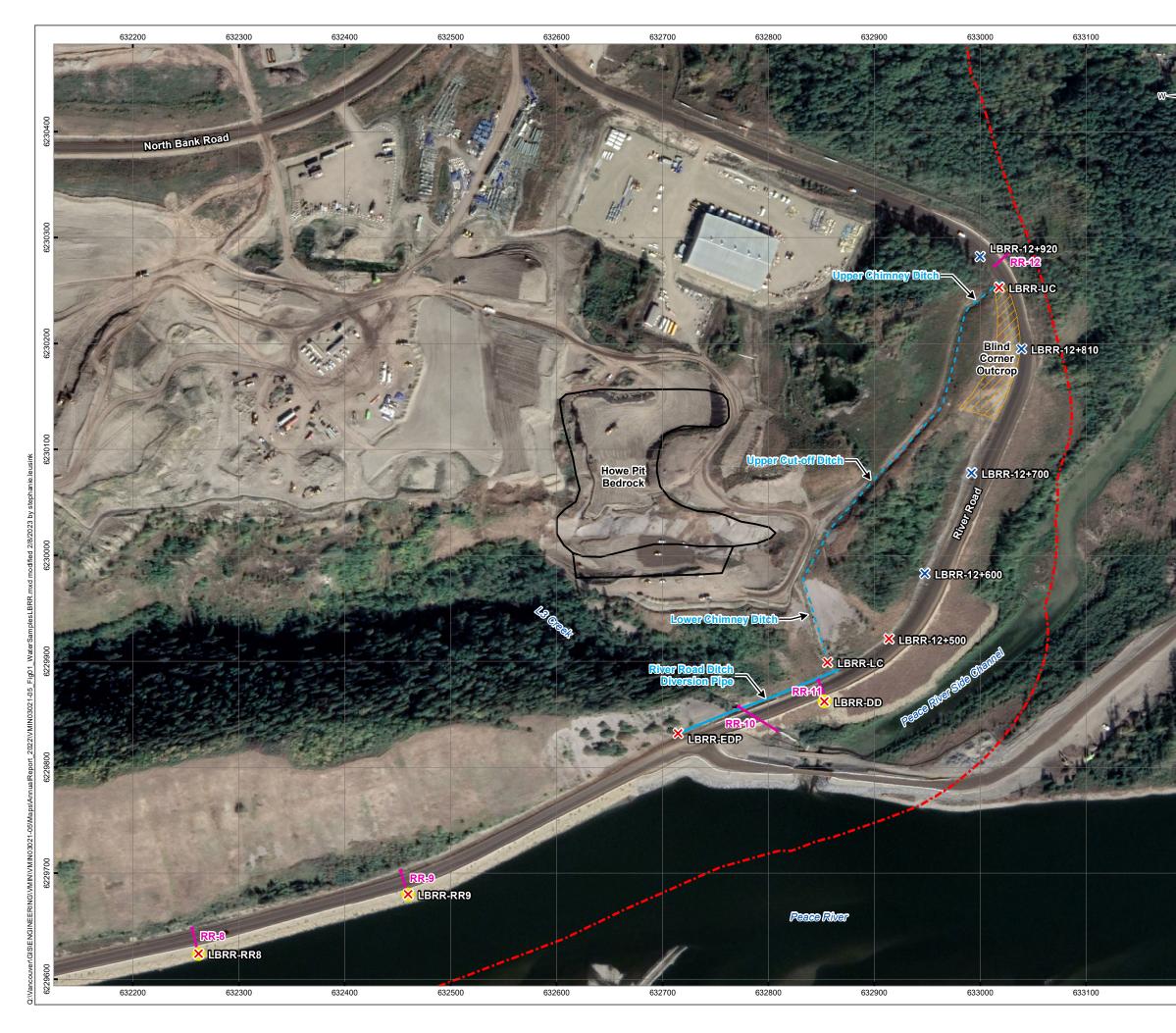
- Bai, Z., Dong, Y., Wang, Z and Zhu, T. (2006). Emission of ammonia from indoor concrete wall and assessment of human exposure. *Environment International*. 32(3):303-11. DOI: 10.1016/j.envint.2005.06.002.
- BC Hydro (2022). Construction Environmental Management Plan, Site C Clean Energy Project, Revision 5.0 (February 19, 2019), Revision 5.1 (April 19, 2019), Revision 6.0 (July 15, 2019), and Revision 6.1 (December 12, 2019), Revision 7 (September 4, 2020), Revision 8 (June 21, 2021), Revision 10 (March 9, 2022).
- BC Hydro (2022). Site C Meteorological and Air Quality Stations. Retrieved: https://envistaweb.env.gov.bc.ca
- BC Ministry of Energy and Mines (1998). Policy for Metal Leaching and Acid Rock Drainage at Mine sites in British Columbia. July 1998.
- BC Ministry of Environment, BC MoE (2013). British Columbia Field Sampling Manual: 2013 For Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment and Biological Samples.
- BC Ministry of Environment, BC MoE (2013). B.C. Field Sampling Manual, Part E Water and Wastewater Sampling. Accessed: https://www2.gov.bc.ca/gov/content/environment/research-monitoringreporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual
- BC Ministry of Environment, BC MoE (2021) BC Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Water Protection & Sustainability Branch. Clark, M.J.R., editor (2003) British Columbia Field Sampling Manual. Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Victoria, BC, Canada. 312pp.
- BC Biotic Ligand Model software provided by the BC Ministry of Environment and Climate Change Strategy Water Protection & Sustainability Branch (BC MoE).
- Ecofish Research Ltd. (2022). PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2021 Annual Report. March 10, 2022.
- EcoFish Research Ltd. (2023a). PAG Contact RSEM Pond Monitoring: Peace River Surface Water Quality and Pond Toxicity 2022 Annual Report.
- EcoFish (2023b) PAM 2022 Data for Tetra Tech. Reviewed January 30, 2023.
- Hemmera Envirochem Inc. and BGC Engineering Inc. (2012) Environmental Impact Statement, Site C Clean Energy Project, Volume 2, Appendix F, Groundwater Regime Technical Data Report, document number 06-105, December 2012.
- Klohn Crippen Berger Ltd. and SNC-Lavalin Inc. (2015) Site C Clean Energy Project: Implementation design geochemical characterization status at the end of 2014.
- Lorax Environmental Services (2023). Site C Clean Energy Project Acid Rock Drainage and Metal Leachate Management 2022 Annual Report.
- Price, W.A. 2009. MEND Report 1.20.1: Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials.
- Tetra Tech (2018) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road and L3 Creek 2017 Annual Report. IFU March 15, 2018.
- Tetra Tech (2019) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2018 Annual Report. IFU March 15, 2019.
- Tetra Tech (2020) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2019 Annual Report. IFU March 31, 2020.
- Tetra Tech (2021) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2020 Annual Report. IFU March 31, 2021.

Tetra Tech (2022) Site C Clean Energy Project Water Quality Monitoring for River Road, South Bank Initial Access Road, and L3 Creek 2021 Annual Report. IFU March 30, 2022.

FIGURES

Figure 1	River Road Monitoring Locations (LB)			
Figure 2	SBIAR and L2 Powerhouse Monitoring Locations (RB)			
Figure 3	LBDB Monitoring Locations (LB)			
Figure 4	BC Hydro – Site C Meteorological and Air Quality Stations			
Figure 5	Turbidity and TSS Measured in the Peace River			
RIVER ROA	D (Fig 6-17)			
Figure 6	pH at RR Locations			
Figure 7	Total Alkalinity at RR Locations			
Figure 8	Acidity at RR Locations			
Figure 9	Sulphate at RR Locations			
Figure 10	a) TDS and b) TSS at RR Locations			
Figure 11	a) Total and b) Dissolved Aluminum at RR Locations			
Figure 12	b) Total and b) Dissolved Iron at RR Locations			
Figure 13	Total Arsenic at RR Locations			
Figure 14	Dissolved Cadmium at RR Locations			
Figure 15	Total Cobalt at RR Locations			
Figure 16	Dissolved Copper at RR Locations			
Figure 17	Total Zinc at RR Locations			
<u>RBSBIAR (F</u>	<u>ig 18-30)</u>			
Figure 18	pH at RBSBIAR Locations			
Figure 19	Total Alkalinity at RBSBIAR Locations			
Figure 20	Acidity at RBSBIAR Locations			
Figure 21	Sulphate at RBSBIAR Locations			
Figure 22	a) TDS and b) TSS at RBSBIAR Locations			
Figure 23	a) Total and b) Dissolved Aluminum at RBSBIAR Locations			
Figure 24	a) Total and b) Dissolved Iron at RBSBIAR Locations			
Figure 25	Total Arsenic at RBSBIAR Locations			
Figure 26	Dissolved Cadmium at RBSBIAR Locations			
Figure 27	Total Cobalt at RBSBIAR Locations			
Figure 28	Dissolved Copper at RBSBIAR Locations			
Figure 29	Total Zinc at RBSBIAR Locations			
Figure 30	a) RBSBIAR West Ditch and b) RBSBIAR East Ditch Upstream vs. Downstream Total Zinc			
L2 Powerho	use (Fig 31-44)			

Figure 31 pH at L2 Powerhouse Locations



- Figure 32 Total Alkalinity at L2 Powerhouse Locations
- Figure 33 Acidity at L2 Powerhouse Locations
- Figure 34 Sulphate at L2 Powerhouse Locations
- Figure 35 a) TDS and b) TSS at L2 Powerhouse Locations
- Figure 36 a) Total and b) Dissolved Aluminum at L2 Powerhouse Locations
- Figure 37 a) Total and b) Dissolved Iron at L2 Powerhouse Locations
- Figure 38 Total Arsenic at L2 Powerhouse Locations
- Figure 39 Dissolved Cadmium at L2 Powerhouse Locations
- Figure 40 Total Cobalt at L2 Powerhouse Locations
- Figure 41 Dissolved Copper at L2 Powerhouse Locations
- Figure 42 Total Zinc at L2 Powerhouse Locations
- Figure 43 Total Selenium at L2 Powerhouse Locations
- Figure 44 Dissolved Selenium at L2 Powerhouse Locations

BC Hydro Left Bank Debris Boom (Fig 45-56)

- Figure 45 pH at LBDB Locations
- Figure 46 Total Alkalinity at LBDB Locations
- Figure 47 Acidity at LBDB Locations
- Figure 48 Sulphate at LBDB Locations
- Figure 49 a) TDS and b) TSS at LBDB Locations
- Figure 50 a) Total and b) Dissolved Aluminum at LBDB Locations
- Figure 51 a) Total and b) Dissolved Iron at LBDB Locations
- Figure 52 Total Arsenic at LBDB Locations
- Figure 53 Dissolved Cadmium at LBDB Locations
- Figure 54 Total Cobalt at LBDB Locations
- Figure 55 Dissolved Copper at LBDB Locations
- Figure 56 Total Zinc at LBDB Locations



LEGEND

- X Water Sample (Insitu Testing Only)
- Water Sample (Insitu Testing & External Lab Testing)
- Discharge Location
- Culvert
- - Ditch
- Ditch Diversion
- Howe Pit
- Blind Corner Outcrop
- Site C Project Boundary

Sam ple ID	Easting	Northing
LBRR-RR8	632262	6229624
LBRR-RR9	632460	6229680
LBRR-EDP	632715	6229832
LBRR-DD	632853	6229862
LBRR-LC	632856	6229899
LBRR-12+500	632914	6229921
LBRR-12+600	632948	6229983
LBRR-12+700	632992	6230078
LBRR-12+810	633039	6230195
LBRR-12+920	633000	6230282
LBRR-UC	633018	6230253

NOTES Base data source: Imagery provided by Google; Maxar (2022).

STATUS ISSUED FOR USE

SITE C WATER QUALITY MONITORING 2022 ANNUAL REPORT

River Road Monitoring Locations (LB)

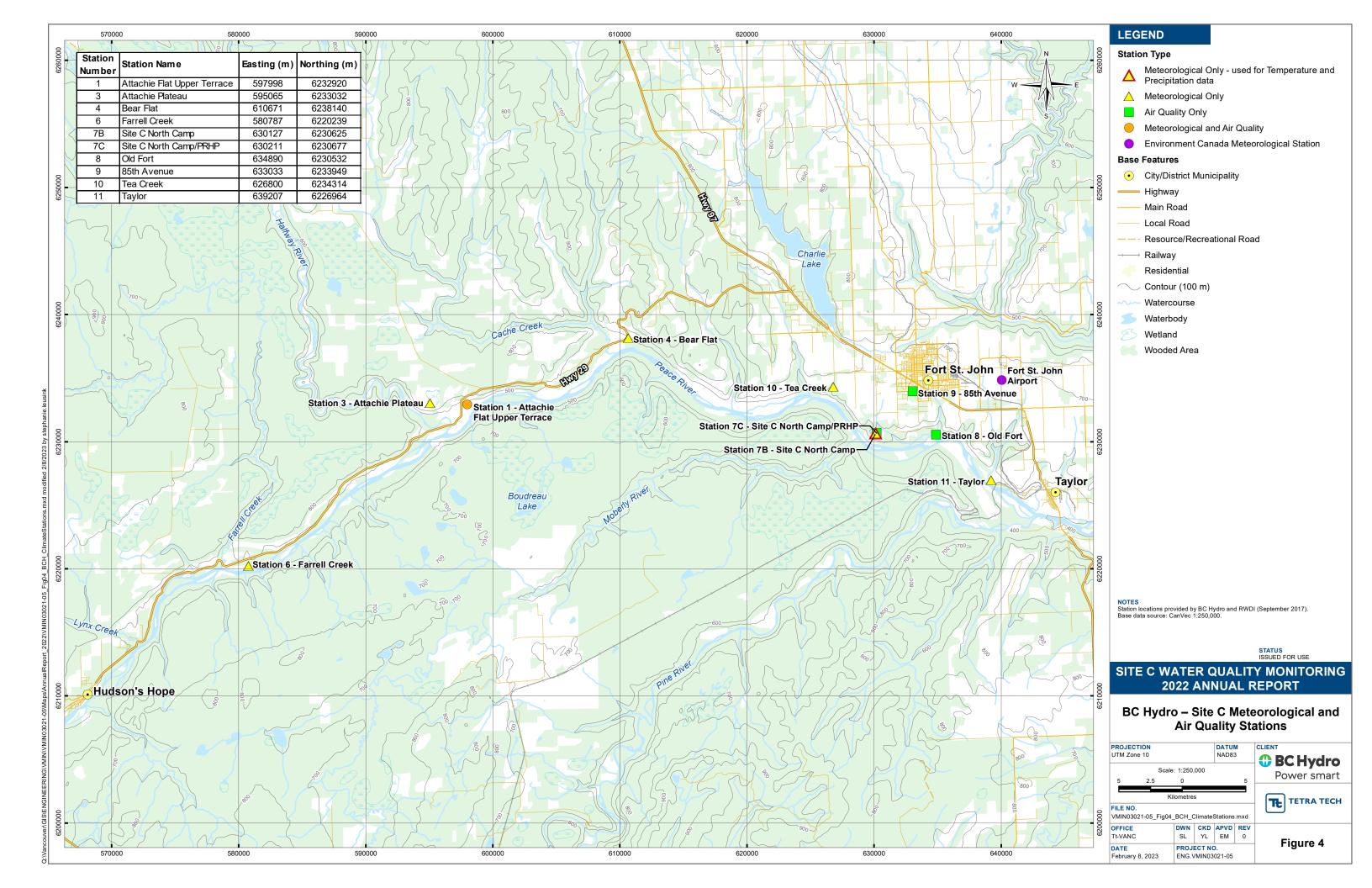
30300

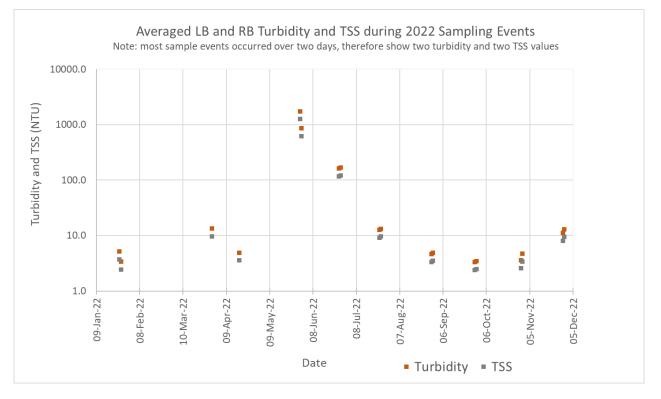
3230100

3230000

006

62299


\$229800



Sampe ID	Easting	Northing
LBDB-EDS	627994	6231856
LBDB-EUS	628202	6231908
LBDB-LD-DS	628093	6231766
LBDB-LD-MS	628147	6231844
LBDB-LD-US	628257	6231876
LBDB-WDS	627969	6231883
LBDB-WUS	628189	6231933
LBP-Pond	628227	6231885
LBDB Side Channel E	628311	6231511

PROJECTION			DATU	M	CLIENT		
UTM Zone 10			NAD83		😗 BC Hydro		
	: 1:4,00	0			Power smart		
80 40	0			80			
Metres			TETRA TECH				
FILE NO. VMIN03021-05_Fig03_	WaterS	Sample	sLBDB.	mxd			
OFFICE	DWN	CKD	APVD	REV			
Tt-VANC	SL	BB	EM	0	Eigure 2		
DATE PROJECT NO. February 8, 2023 ENG.VMIN03021-05			Figure 3				

Figure 5: Turbidity and TSS Measured in the Peace River

*Average turbidity and TSS across the Peace River include both left bank and right bank.

EcoFish Disclaimer: TSS:turbidity relationship used was the same all year. Note, these relationships are specific to a particular make/model of sensor. Please exercise caution if relationship applied to any data collected.

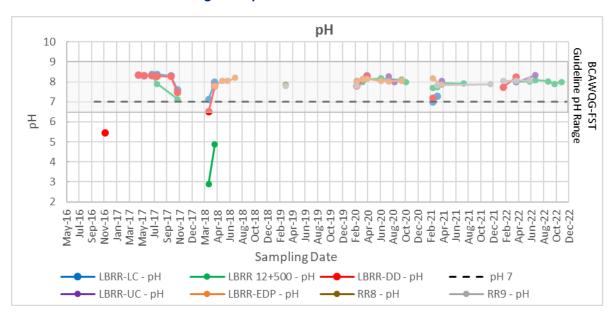
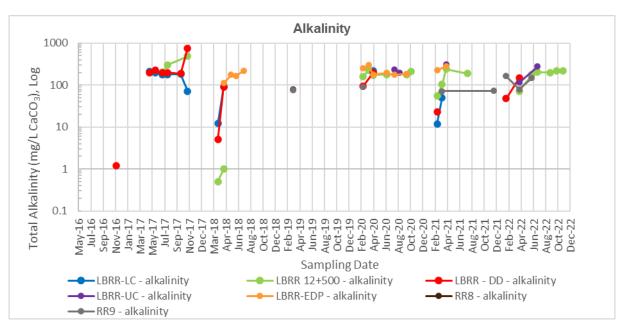
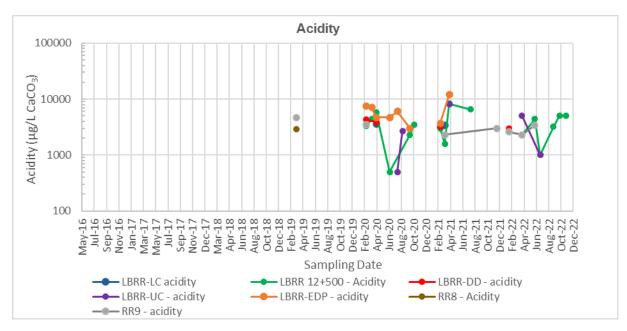




Figure 6: pH at River Road Locations

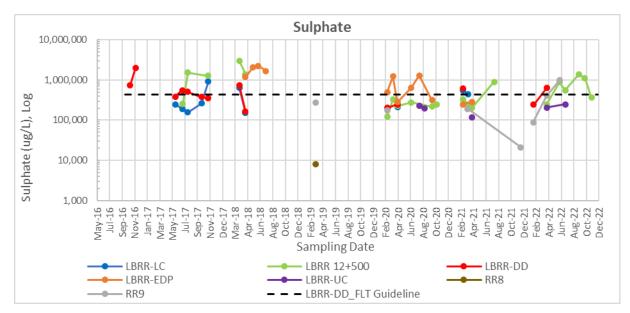

Figure 7: Total Alkalinity at River Road Locations

Figure 8: Acidity at River Road Locations

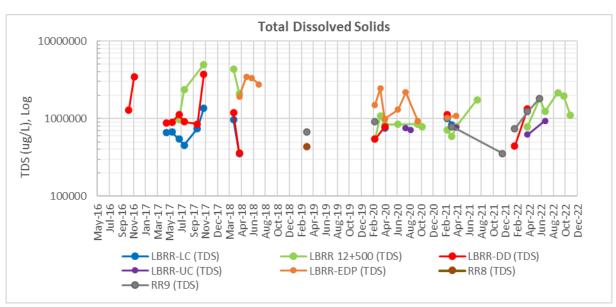
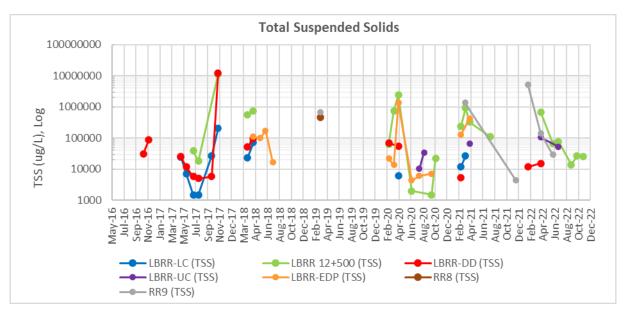
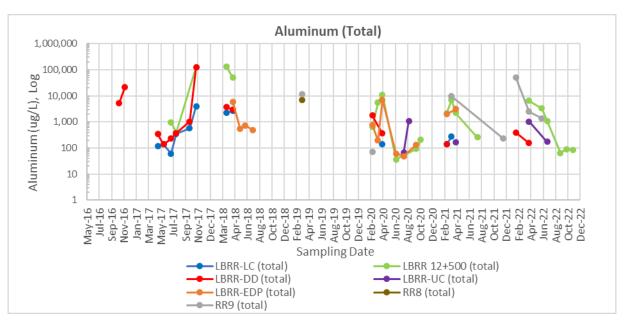




Figure 10a: Total Dissolved Solids (TDS) at River Road Locations

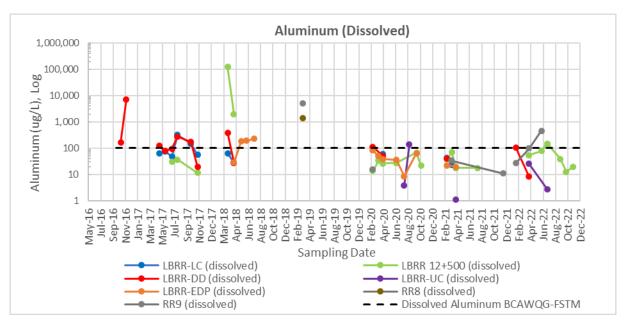

Figure 10b: Total Suspended Solids (TSS) at River Road Locations

Figure 12a: Total Iron at River Road Locations

Figure 12b: Dissolved Iron at River Road Locations

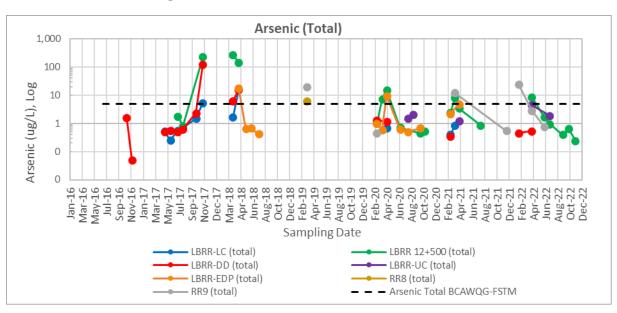
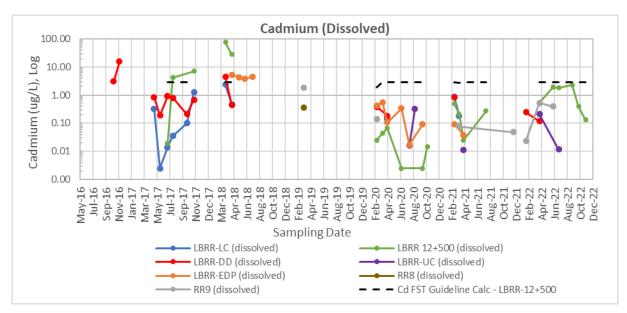
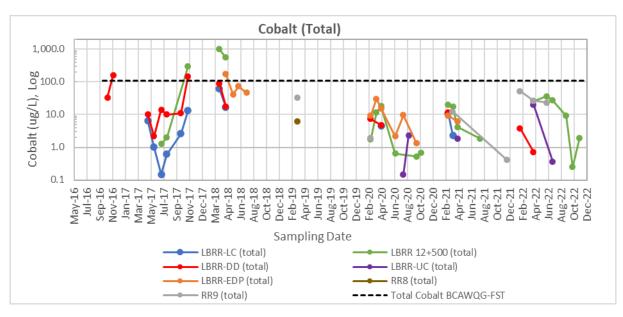
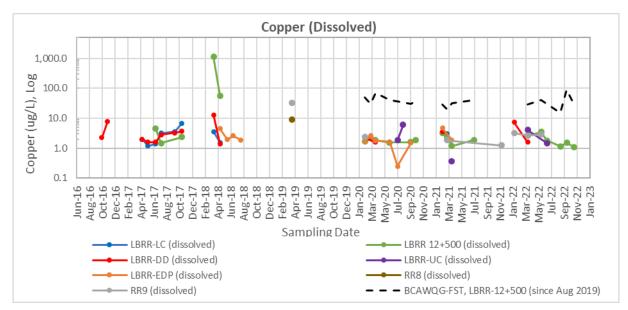
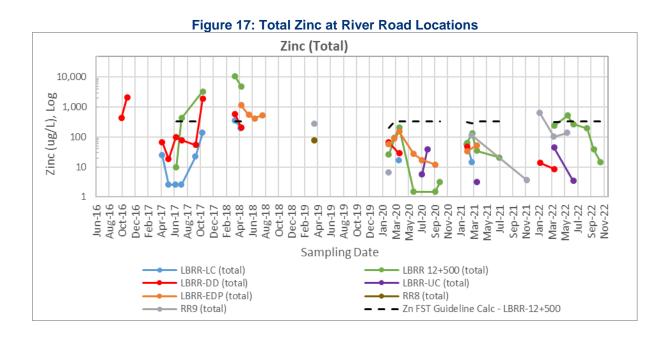
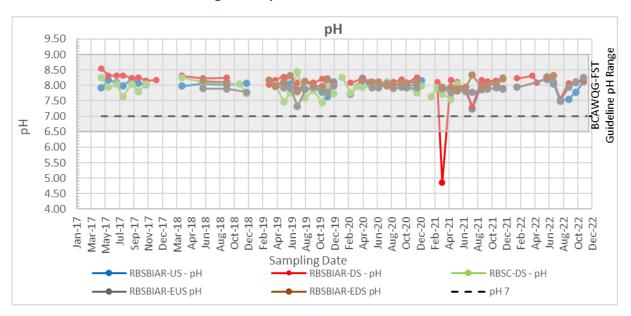
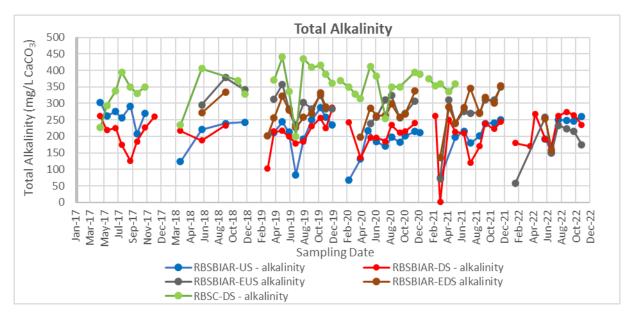



Figure 13: Total Arsenic at River Road Locations

Figure 14: Dissolved Cadmium at River Road Locations


Figure 15: Total Cobalt at River Road Locations



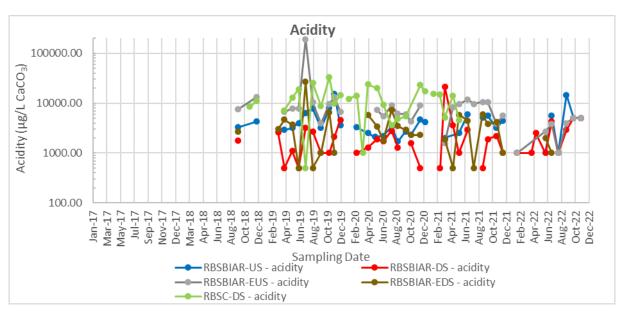
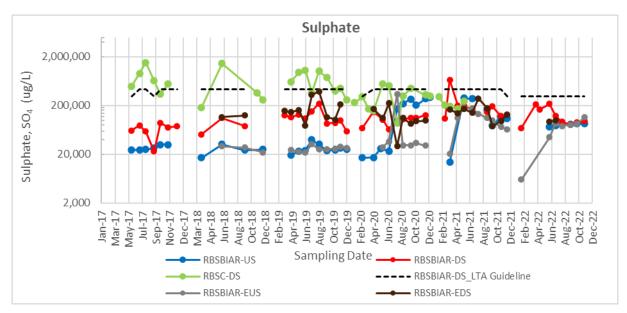


Figure 18: pH at RBSBIAR Locations


Figure 19: Total Alkalinity at RBSBIAR Locations

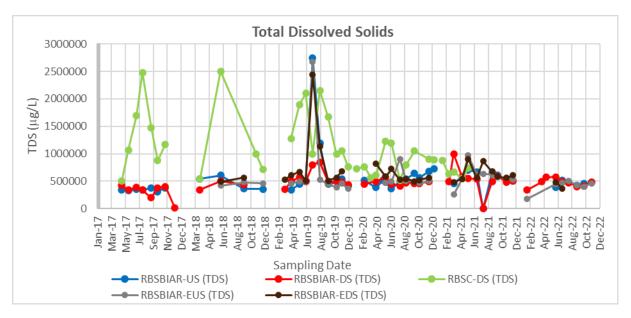


Figure 20: Acidity at RBSBIAR Locations

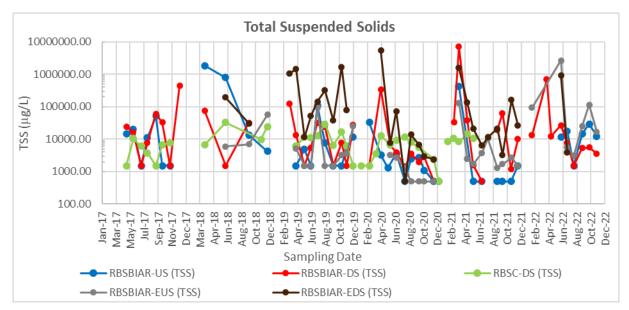

Figure 21: Sulphate at RBSBIAR Locations

Figure 22a: Total Dissolved Solids (TDS) at RBSBIAR Locations

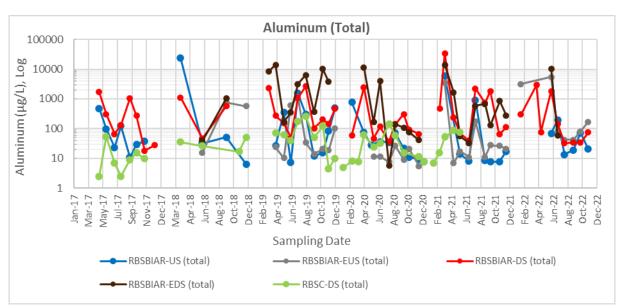
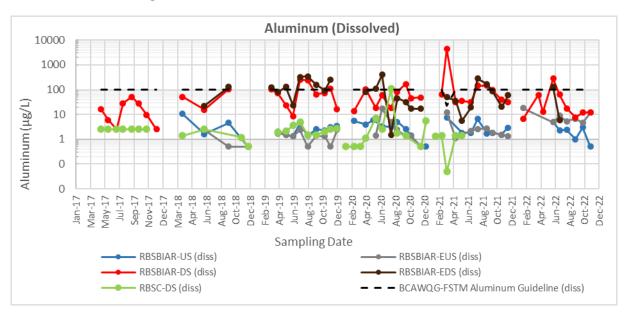
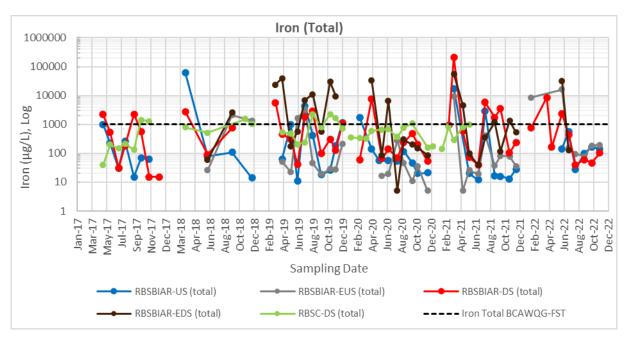
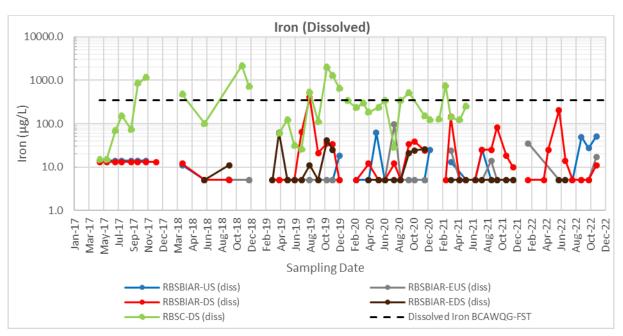




Figure 23a: Total Aluminum at RBSBIAR Locations


Figure 23b: Dissolved Aluminum at RBSBIAR Locations

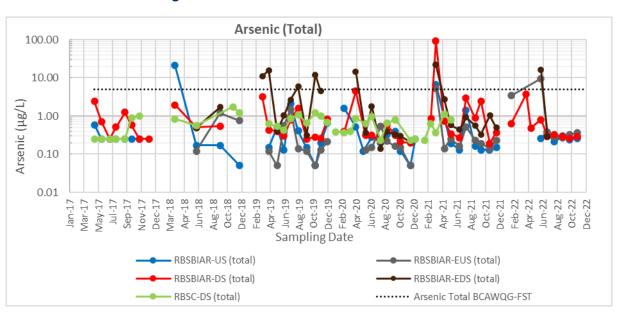
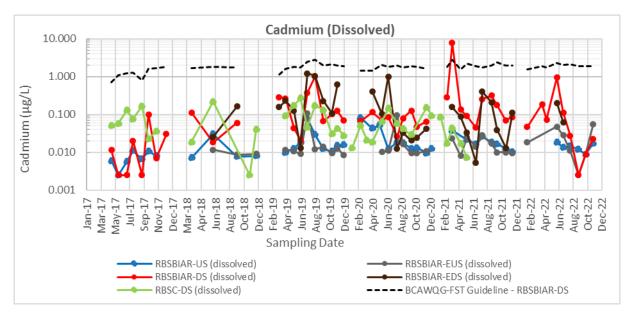


Figure 24a: Total Iron at RBSBIAR Locations

Figure 24b: Dissolved Iron at RBSBIAR Locations



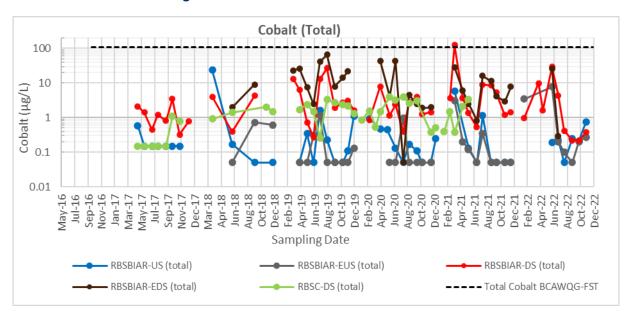
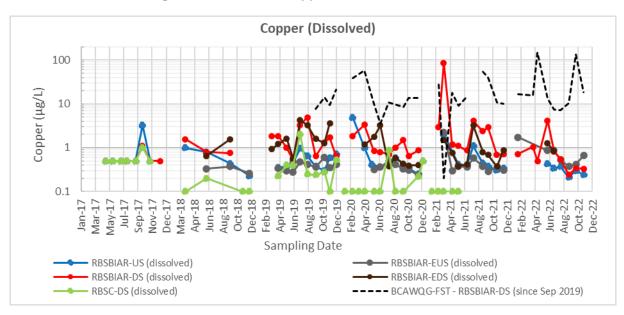


Figure 25: Total Arsenic at RBSBIAR Locations


Figure 26: Dissolved Cadmium at RBSBIAR Locations

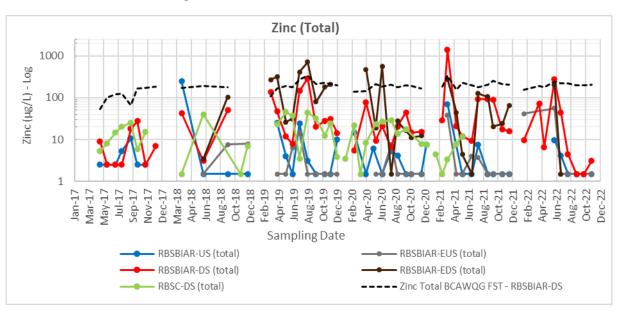
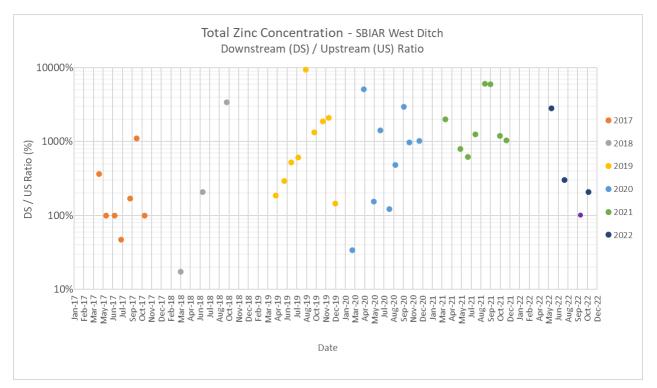


Figure 27: Total Cobalt at RBSBIAR Locations


Figure 28: Dissolved Copper at RBSBIAR Locations

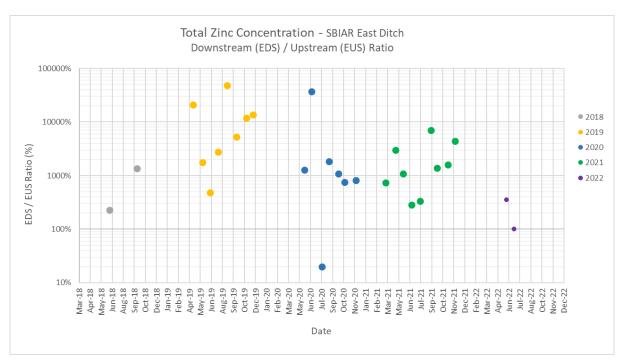
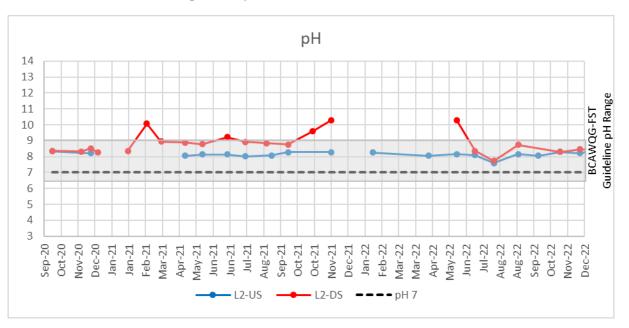
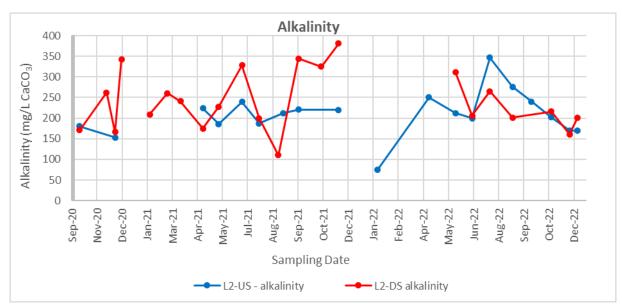


Figure 29: Total Zinc at RBSBIAR Locations


Figure 30a: RBSBIAR West Ditch Downstream (DS) / Upstream (US) Ratio - Total Zinc


Figure 30b: RBSBIAR East Ditch Downstream (EDS), Upstream (EUS) Ratio - Total Zinc

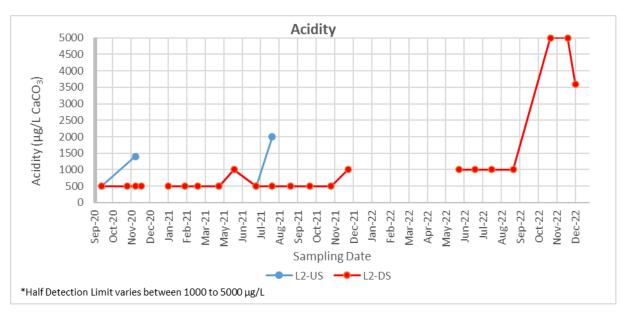
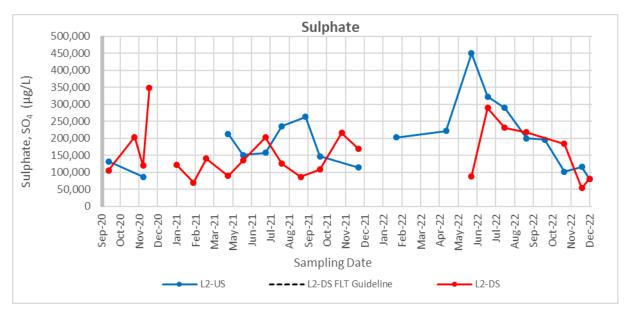
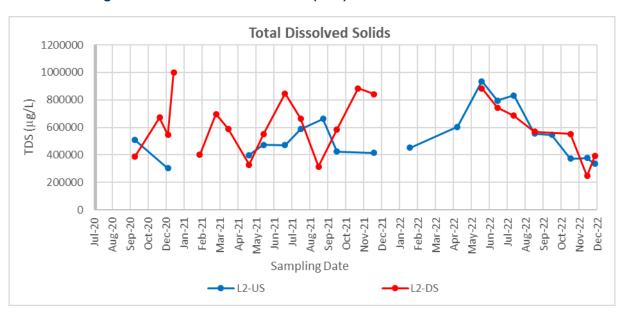


Figure 31: pH at L2 Powerhouse Locations





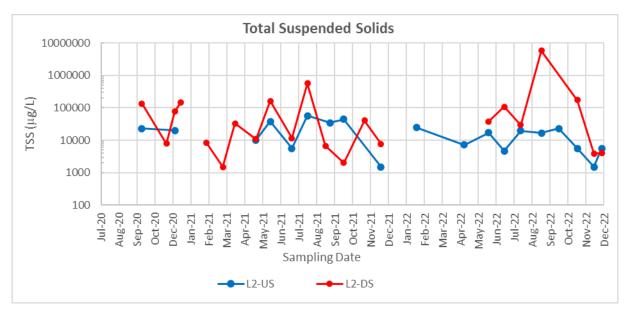


Figure 35a: Total Dissolved Solids (TDS) at L2 Powerhouse Locations

Figure 35b: Total Suspended Solids (TSS) at L2 Powerhouse Locations

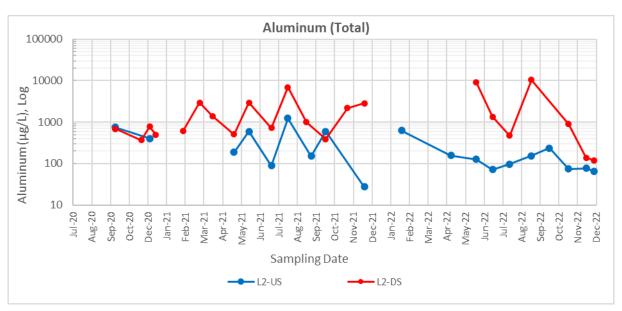


Figure 36a: Total Aluminum at L2 Powerhouse Locations

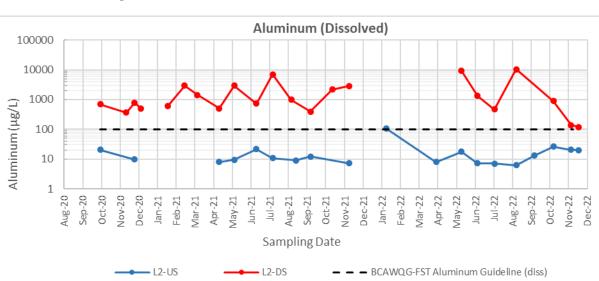


Figure 36b: Dissolved Aluminum at L2 Powerhouse Locations

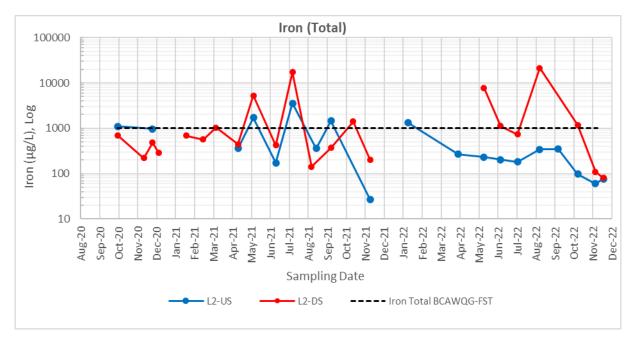



Figure 37a: Total Iron at L2 Powerhouse Locations

Figure 37b: Dissolved Iron at L2 Powerhouse Locations

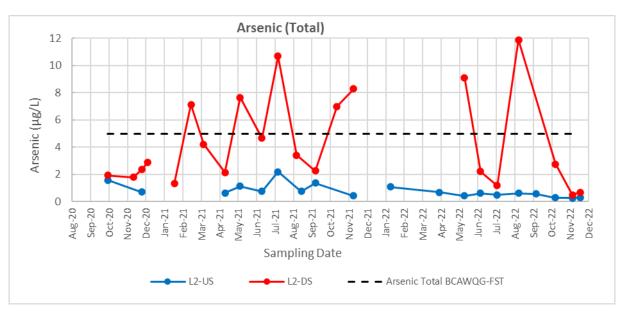
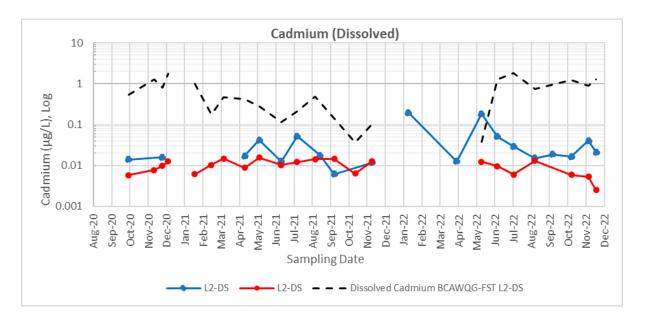



Figure 38: Total Arsenic at L2 Powerhouse Locations

Figure 39: Dissolved Cadmium at L2 Powerhouse Locations

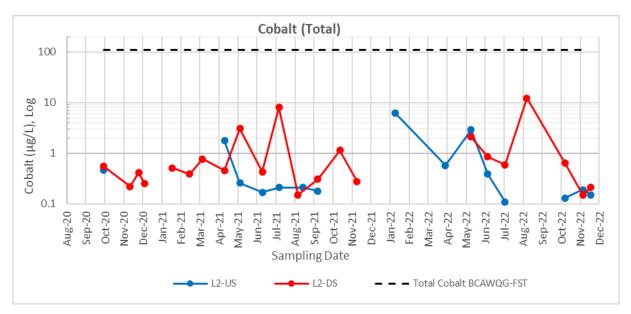
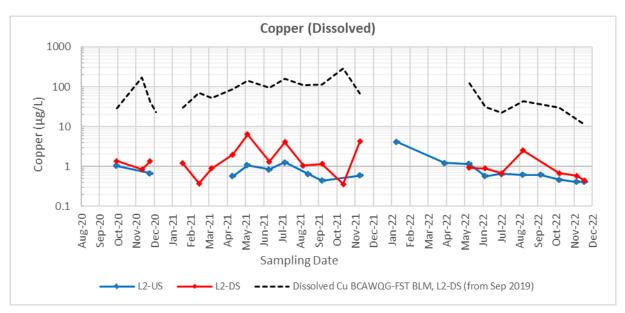



Figure 40: Total Cobalt at L2 Powerhouse Locations

Figure 41: Dissolved Copper at L2 Powerhouse Locations

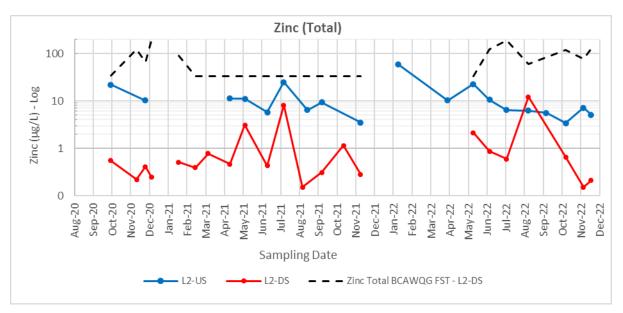
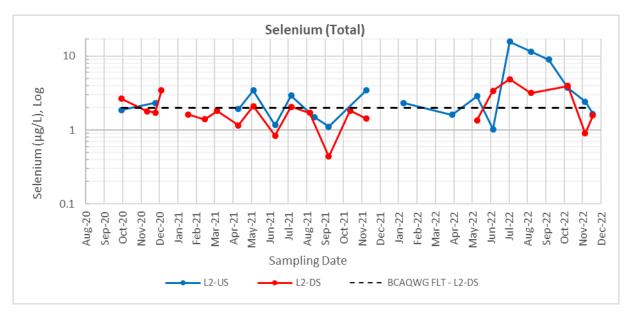
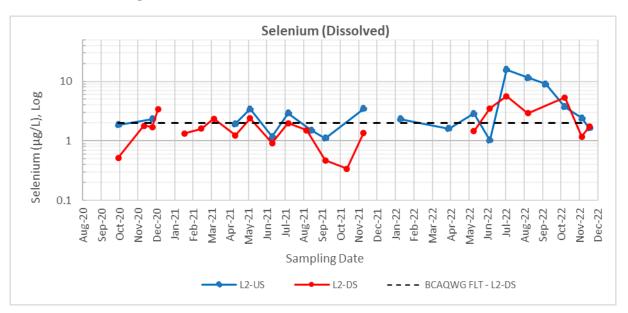




Figure 42: Total Zinc at L2 Powerhouse Locations

Figure 43: Total Selenium at L2 Powerhouse Locations

Figure 44: Dissolved Selenium at L2 Powerhouse Locations

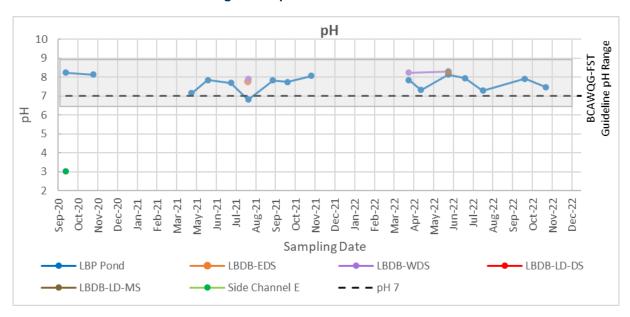
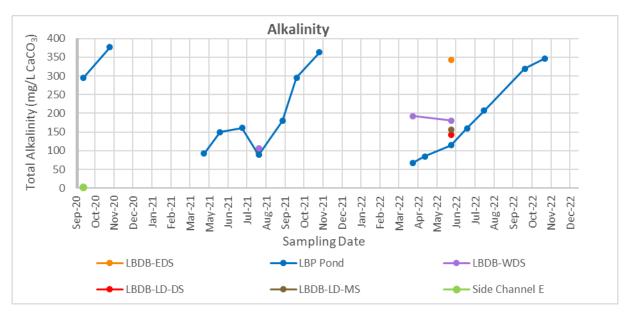



Figure 45: pH at LBDB Locations

Figure 46: Total Alkalinity at LBDB Locations

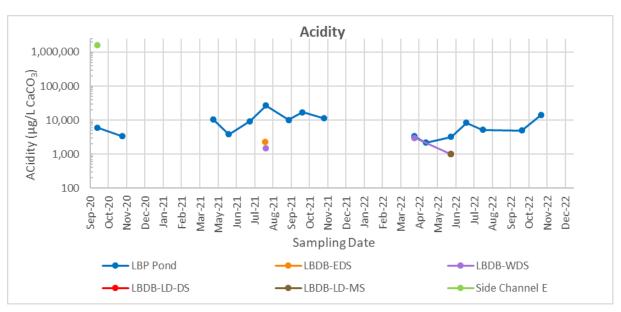
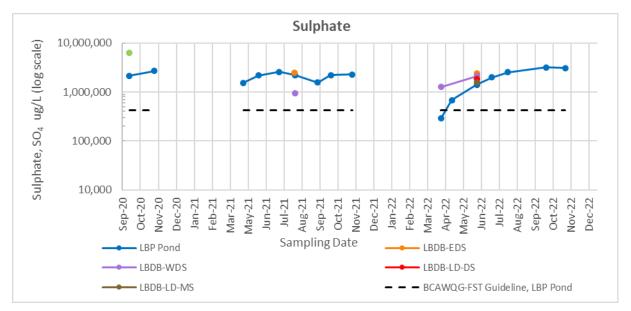
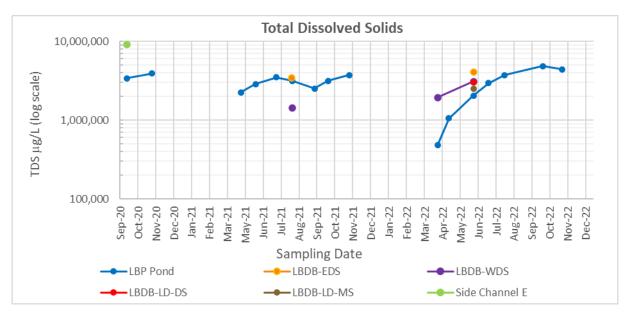
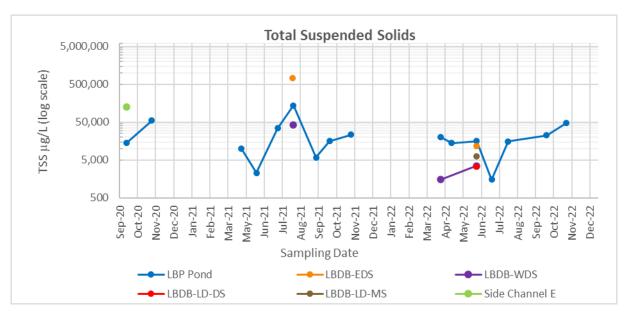
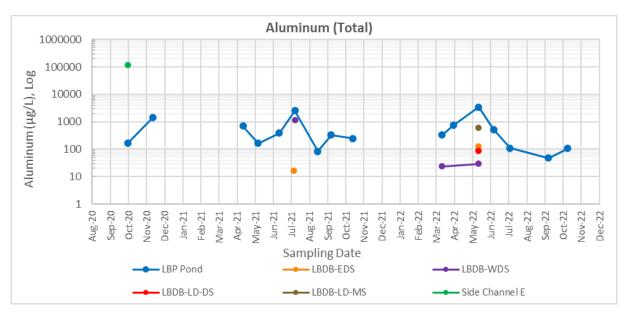
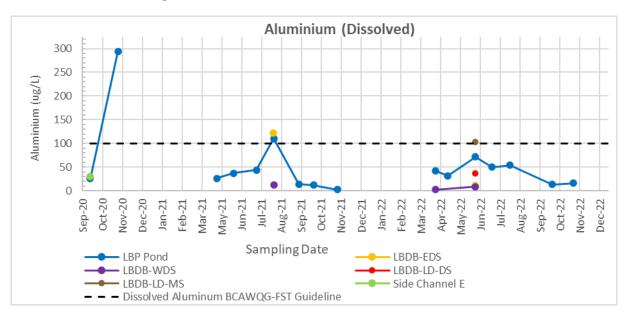
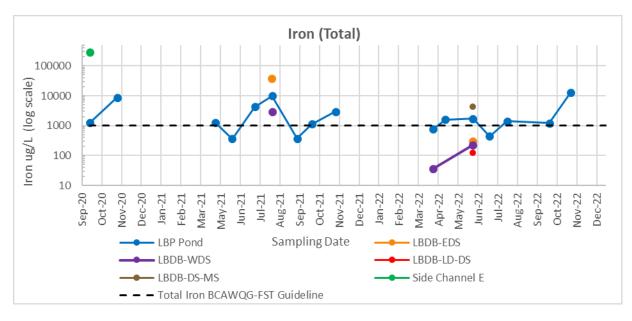




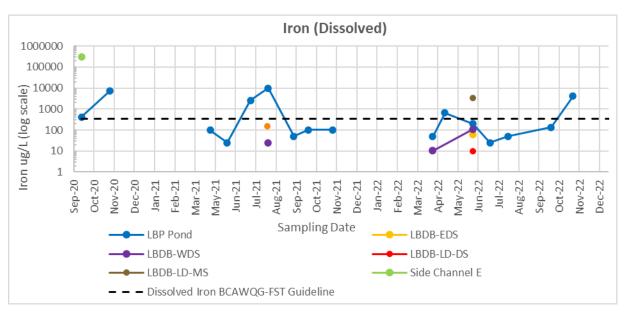
Figure 47: Acidity at LBDB Locations






Figure 49b: Total Suspended Solids (TSS) at LBDB Locations




Figure 50b: Dissolved Aluminum at LBDB Locations

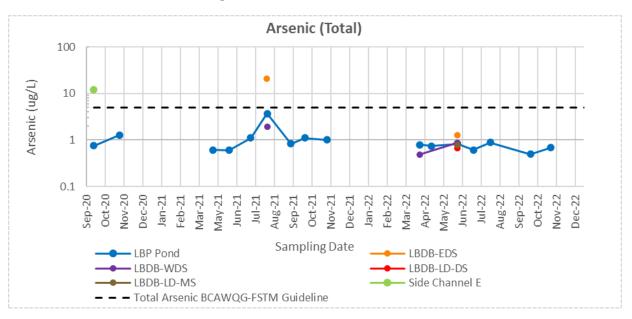


Figure 51a: Total Iron at LBDB Locations

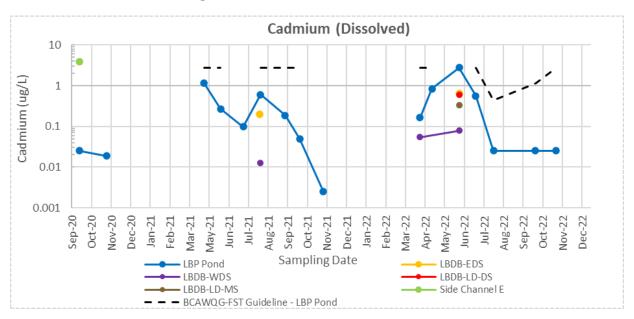
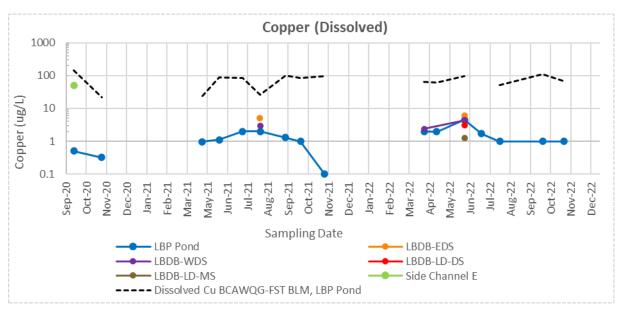

Figure 51b: Dissolved Iron at LBDB Locations

Figure 52: Total Arsenic at LBDB Locations


Figure 53: Dissolved Cadmium at LBDB Locations

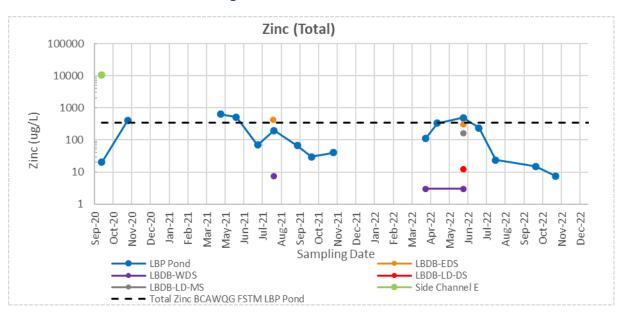


Figure 54: Total Cobalt at LBDB Locations

Figure 56: Total Zinc at LBDB Locations

TABLES

- Table 1
 Water Sampling Locations and In Situ and Lab Events
- Table 2
 Temperature and Precipitation Daily and 7-Day Average
- Table 3 Classification of Flows in Ditch
- Table 4
 Turbidity and TSS of the Peace River for Water Sampling Events
- Table 5a QAQC Travel and Field Blanks
- Table 5bQAQC Field Replicate Samples
- Table 6
 River Road In Situ Water Quality Sampling
- Table 7
 River Road Water Quality Exceedances Summary (BCAWQG-FST)
- Table 8 RBSBIAR In Situ Water Quality Measurements
- Table 9
 RBSBIAR Water Quality Exceedances Summary (BCAWQG-FST)
- Table 10 L2 Powerhouse In Situ Water Quality Sampling
- Table 11L2 Powerhouse Water Quality Exceedances Summary (BCAWQG-FST)
- Table 12 LBDB In Situ Water Measurements
- Table 13 LBDB Water Quality Exceedances Summary (BCAWQG-FST)
- Table 14
 Discharge and Downstream Locations Minimum, Maximum and Mean Values

		1	ne Memo Nu			1	N	/A		2		3		4		5		6		7		8		9		1(0	
		Samp	ling Event N	umber:				2		3		4		5		6		7	1	8		9	1	10	1	1	1	12
Catchment	Sample Site		ordinates) (NAD83)	Elevation	25-26-	Jan-22	17-F	eb-22	30-N	Mar-22	18-A	pr-22	30-31	-May-22	26-27	'-Jun-22	24-25	-Jul-22	29-30-	Aug-22	28-29)-Sep-22	30-31-	-Oct-22	28-29-	Nov-22	11-D)ec-22
		Easting	Northing		In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab	In-Situ	Lab
	RBSBIAR-US	630327	6228397	468	~				✓				~	~	~	✓	~	~	✓	~	~	✓	✓	~				
Right Bank - South Bank Initial Access	RBSBIAR-DS	630320	6228645	445	✓	~			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	✓	✓	✓	~				
Road	RBSBIAR-EUS	630376	6228399	465	✓	~							✓	✓	✓	✓	✓	✓	✓	~	✓	✓	✓	~				
	RBSBIAR-EDS	630370	6228635	437					✓				✓	✓	✓	✓												
	LBRR-DD*	632853	6229862	422	✓	~			✓	✓																		
	LBRR-LC	632856	6229899	427																								
	LBRR-UC	633018	6230253	463					~	~					✓	✓	✓											
	LBRR-12+500	632914	6229921	432					✓	✓			~	✓	✓	✓			✓	~	✓	~	~	✓				
Left Bank	LBRR-12+600	632948	6229983	436					✓				~		✓								✓					
River Road	LBRR-12+700	632992	6230078	443					✓				~		✓		✓		✓		~		✓					
	LBRR-12+810	633039	6230195	454					✓				~		✓		✓		✓		~		✓					
	LBRR-12+920	633000	6230282	463					✓				✓		✓		✓		✓		✓		✓					
	RR8*	632262	6229624	412																								
	RR9*	632460	6229680	413	✓	✓			✓	✓			✓	✓														
	L2 DS	629607	6229185	385									✓	✓	✓	✓	✓	✓	✓	~			✓	✓	✓	✓	✓	 ✓
L2 Powerhouse	L2 US	629701	6229279	414	✓	✓					✓	✓	✓	✓	✓	✓	✓	✓	✓	~	✓	✓	✓	✓	✓	✓	✓	~
	LBP Pond	628227	6231885	458					✓	✓	✓	✓	✓	~	✓	✓	✓	✓	✓	~	✓	✓	✓	✓				
	LBDB-WUS	628189	6231933	-																								
	LBDB-WDS	627969	6231883	-					~	✓			✓	✓														
Left Bank Debris	LBDB-EUS	628202	6231908	-																								
Boom	LBDB-EDS	627994	6231856	-									✓	✓														
	LBDB-LD-US	628257	6231876	-																								
	LBDB-LD-MS	628147	6231844	-									~	~														
	LBDB-LD-DS*	628093	6231766	-									~	~														

Table 1: Water Sampling Locations and In Situ and Lab Events

*Discharge Location.

All elevations are approximate

All sample stations include sample collection for lab testing and in-situ measurements. Except for LBRR+12+600, LBRR+12+700, LBRR+12+810, and LBRR+12+920 which include in-situ measuments only.

Table 2: Temperature and Precipitation - Daily and 7-day Average

Date		Precipitation ¹			Temperatur	e ¹	Summary
Sample Event Date Bolded	Time Period	Precipitation Event	Total (mm)	Mean (°C)	Minimum (°C)	Maximum (°C)	24 Hr and 7 Day Precipitation
January 18-24, 2022	7 days	none	0.00	-6.6	-26.5	9.0	No precipitation
January 24, 2022	24 hrs.	none	0.00	2.8	0.2	4.3	No precipitation
January 25-26, 2022	24 hrs.	none	0.00	2.9	-1.8	7.8	No precipitation
February 10-16, 2022	7 days	none	0.00	-2.6	-13.7	9.7	No precipitation
February 16, 2022	24 hrs.	none	0.00	-10.7	-13.2	-7.6	No precipitation
February 17, 2022	24 hrs.	none	0.00	-7.7	-16.5	0.0	No precipitation
March 23-29, 2022	7 days	none	0.00	1.7	-4.3	12.2	No precipitation
March 29, 2022	24 hrs.	none	0.00	5.9	-2.5	12.2	No precipitation
March 30, 2022	24 hrs.	none	0.00	6.9	1.7	11.3	No precipitation
April 11-17, 2022	7 days	April 11, 12, 17	1.32	-4.9	-11.5	2.9	Minimal (1.32 mm) precipitation in previous 7 days
April 17, 2022	24 hrs.	evening	1.05	0.04	0.0	0.29	minimal (1.05 mm) precipitation
April 18, 2022	24 hrs.	evening	4.08	-6.4	-9.8	-2.9	minimal (4.08 mm) precipitation following the sampling event
May 23-29, 2022	7 days	May 23, 27, 28. 29	59.70	11.7	4.7	21.9	Significant (59.7 mm) precipitation in previous 7 days
May 29, 2022	24 hrs.	none	0.00	12	6.4	16.6	No precipitation
May 30-31, 2022	24 hrs.	none	0.00	14.6	6.1	20.6	No precipitation
June 19-25, 2022	7 days	June 18, 19, 23	7.41	15.7	8.2	26.9	Moderate (7.41 mm) precipitation in previous 7 days
June 25, 2022	24 hrs.	none	0.00	18.8	8.2	26.9	No precipitation
June 26-27, 2022	24 hrs.	June 27, early morning	2.44	16.5	11.9	23.6	Minimal (2.44 mm) precipitation during sampling event
July 17-23, 2022	7 days	none	0.00	19.6	9.9	28.7	No precipitation
July 23, 2022	24 hrs.	none	0.00	20.8	12.4	28.7	No precipitation
July 24-25, 2022	24 hrs.	none	0.00	19.2	11.1	25.8	No precipitation
August 22-28, 2022	7 days	August 24 and 27	0.59	20.2	12.1	31.8	Minimum (0.59 mm) precipitation in previous 7 days
August 28, 2022	24 hrs.	none	0.00	17.1	13	21.5	No precipitation.
August 29-30, 2022	24 hrs.	August 29, early morning	0.10	20.3	14.4	26.3	Minimal (0.10 mm) precipitation prior to sampling (morning)
September 21-27, 2022	7 days	Sept 22 and 25	0.15	14.7	3.9	26	Minimal (0.15 mm) precipitation in previous 7 days
September 27, 2022	24 hrs.	none	0.00	17.4	9.6	26	No precipitation
September 28-29, 2022	24 hrs.	Sept. 29, evening	0.12	14.1	7.8	21.6	Minimal precipitation (0.12 mm) following sampling (evening)
October 23-29, 2022	7 days	October 23, 24, 25	7.52	2.46	-6.4	9.7	Moderate (7.52 mm) precipitation in previous 7 days
October 29, 2022	24 hrs.	none	0.00	5.1	2.7	8.1	No precipitation
October 30-31, 2022	24 hrs.	none	0.00	4.0	-2.0	9.3	No precipitation
November 21-27, 2022	7 days	November 26 and 27	4.01	2.1	-10.3	8.8	Low (4.01 mm) precipitation in previous 7 days
November 27, 2022	24 hrs.	morning	3.57	-9.11	-10.3	-6.8	Moderate (3.57 mm) precipitation
November 28-29, 2022	24 hrs.	Nov 28 and 29	0.16	-17.6	-23.4	-10.8	Minimal (0.16 mm) precipitation during and following (evening) sampling
December 4-10, 2022	7 days	December 4, 5 and 10	1.85	-13.3	-28.1	-0.2	Minimal (1.85 mm) precipitation in previous 7 days
December 10, 2022	24 hrs.	afternoon	0.72	-18.4	-19.8	-11.4	Minimal (0.72 mm) precipitation
December 11, 2022	24 hrs.	early morning	1.07	-18.9	-21.4	-16.8	Minimal (1.07 mm) precipitation prior to sampling (early morning)

¹ BC Ministry of Environment, BC Air quality data: Fort St John North Camp C_Met_60 weather station. https://envistaweb.env.gov.bc.ca/.

WATER QUALITY MONITORING 2022 ANNUAL REPORT FILE: ENG.VMIN03021-05 | MARCH 2023 | ISSUED FOR USE

Table 3: Classification of Flows in Ditch

Sample Event Date Bolded	Time Period	Precipitation Event	Total (mm)	Mean (°C)	24 Hr and 7 Day Precipitation	Classification
January 18-24, 2022	7 days	none	0.00	-6.6	No precipitation	
January 24, 2022	24 hrs.	none	0.00	2.8	No precipitation	Regional groundwater flow; frozen conditions.
January 25-26, 2022	48 hrs.	none	0.00	2.9	No precipitation	
March 23-29, 2022	7 days	none	0.00	1.7	No precipitation	
March 29, 2022	24 hrs.	none	0.00	5.9	No precipitation	Regional groundwater flow; frozen to near frozen an warming conditions.
March 30, 2022	24 hrs.	none	0.00	6.9	No precipitation	
April 11-17, 2022	7 days	April 11, 12, 17	1.32	-4.9	Minimal (1.32 mm) precipitation in previous 7 days	
April 17, 2022	24 hrs.	evening	1.05	0.04	Minimal (1.05 mm) precipitation	Regional groundwater flow; frozen to near frozen conditions.
April 18, 2022	24 hrs.	evening	4.08	-6.4	Minimal (4.08 mm) precipitation following the sampling event	
May 23-29, 2022	7 days	May 23, 27, 28. 29	59.70	11.7	Significant (59.7 mm) precipitation in previous 7 days	
May 29, 2022	24 hrs.	none	0.00	12	No precipitation	Surface runoff and early spring freshet; melting and warming conditions.
May 30-31, 2022	48 hrs.	none	0.00	14.6	No precipitation	
June 19-25, 2022	7 days	June 18, 19, 23	7.41	15.7	Minimal (7.41 mm) precipitation in previous 7 days	
June 25, 2022	24 hrs.	none	0.00	18.8	No precipitation	Surface runoff and spring freshet; melting and warming conditions.
June 26-27, 2022	48 hrs.	June 27, early morning	2.44	16.5	Minimal (2.44 mm) precipitation during sampling event	
July 17-23, 2022	7 days	none	0.00	19.6	No precipitation	
July 23, 2022	24 hrs.	none	0.00	20.8	No precipitation	Late freshet surface runoff, shallow and regional groundwater flow.
July 24-25, 2022	48 hrs.	none	0.00	19.2	No precipitation	
August 22-28, 2022	7 days	August 24 and 27	0.59	20.2	Minimum (0.59 mm) precipitation in previous 7 days	
August 28, 2022	24 hrs.	none	0.00	17.1	No precipitation.	Shallow or regional groundwater flow; warm temperatures.
August 29-30, 2022	48 hrs.	August 29, early morning	0.10	20.3	Minimal (0.10 mm) precipitation prior to sampling (morning)	
September 21-27, 2022	7 days	Sept 22 and 25	0.15	14.7	Minimal (0.15 mm) precipitation in previous 7 days	
September 27, 2022	24 hrs.	none	0.00	17.4	No precipitation	Shallow or regional groundwater flow; warm temperatures.
September 28-29, 2022	48 hrs.	Sept. 29, evening	0.12	14.1	Minimal precipitation (0.12 mm) following sampling (evening)	
October 23-29, 2022	7 days	October 23, 24, 25	7.52	2.5	Minimal (7.52 mm) precipitation in previous 7 days	
October 29, 2022	24 hrs.	none	0.00	5.1	No precipitation	Shallow or regional groundwater flow and surface runoff; cooling temperatures.
October 30-31, 2022	48 hrs.	none	0.00	4.0	No precipitation	
November 21-27, 2022	7 days	November 26 and 27	4.01	2.1	Minimal (4.01 mm) precipitation in previous 7 days	
November 27, 2022	24 hrs.	morning	3.57	-9.11	Moderate (3.57 mm) precipitation	Shallow or regional groundwater flow; near to frozen conditions.
November 28-29, 2022	48 hrs.	Nov 28 and 29	0.16	-17.6	Minimal (0.16 mm) precipitation during and following (evening) sampling	
December 4-10, 2022	7 days	December 4, 5 and 10	1.85	-13.3	Minimal (1.85 mm) precipitation in previous 7 days	
December 10, 2022	24 hrs.	afternoon	0.72	-18.4	Minimal (0.72 mm) precipitation	Regional groundwater flow; frozen conditions.
December 11, 2022	24 hrs.	early morning	1.07	-18.9	Minimal (1.07 mm) precipitation prior to sampling (early morning)	

Date	Turbidity (Daily Mea	n) and TSS Measurements and	d Calculations Peace Riv	er above Moberly River
Sampling Event Date Bolded	Lef	t Bank	Righ	nt Bank
	NTU ¹	TSS ¹ (mg/L)	NTU ¹	TSS ¹ (mg/L)
January 18-24, 2022	2.7	2.0	4.1	2.9
January 24, 2022	3.0	2.1	4.1	3.0
January 25, 2022	4.2	3.1	6.0	4.3
January 26, 2022	2.7	2.0	4.1	2.9
January 27, 2022	2.7	2.0	4.2	3.1
March 23-29, 2022	13.8	9.9	5.5	4.0
March 29, 2022	10.6	7.6	4.2	3.0
March 30, 2022	20.2	14.5	6.5	4.7
March 31, 2022	19.6	14.1	5.3	3.8
April 11-17, 2022	7.1	5.1	5.3	3.8
April 17, 2022	4.3	3.1	3.6	2.6
April 18, 2022	4.8	3.5	5.0	3.6
April 19, 2022	5.9	4.2	8.5	6.1
May 23-29, 2022	1213.6	873.8	963.1	693.5
May 29, 2022	4842.8	3486.8	3771.8	2715.7
May 30, 2022	1955.4	1407.9	1525.5	1098.3
May 31, 2022	854.3	615.1	874.5	629.6
June 1, 2022	513.6	369.8	610.9	439.9
June 19-25, 2022	459.4	330.7	507.4	365.3
June 25, 2022	175.9	126.6	203.4	146.5
June 26, 2022	150.5	108.3	176.4	127.0
June 27, 2022	159.4	114.8	179.8	129.4
June 28, 2022	168.5	121.3	149.5	107.7
July 17-23, 2022	16.4	11.8	16.8	12.1
July 23, 2022	11.2	8.1	10.3	7.4
July 24, 2022	13.3	9.6	11.9	8.6
July 25, 2022	14.2	10.2	12.3	8.9
July 26, 2022	26.7	19.2	24.4	17.5
August 22-28, 2022	4.9	3.6	3.2	2.3
August 28, 2022	4.4	3.2	2.8	2.0
August 29, 2022	4.7	3.4	4.6	3.3
August 30, 2022	4.7	3.4	5.1	3.7
August 31, 2022	7.2	5.2	9.2	6.6
September 21-27, 2022	4.3	3.1	2.7	2.0
September 27, 2022	3.7	2.6	2.6	1.9
September 28, 2022	3.8	2.7	2.8	2.0
September 29, 2022	3.9	2.8	3.1	2.2
September 30, 2022	3.5	2.5	2.8	2.0
October 23-29, 2022	5.9	4.3	4.1	2.9
October 29, 2022	5.7	4.1	2.8	2.0
October 30, 2022	3.2	2.3	4.0	2.9
October 31, 2022	3.9	2.8	5.4	3.9
November 1, 2022	4.3	3.1	3.7	2.7
November 21-27, 2022	6.4	4.6	9.0	6.5
November 27, 2022	6.4	4.6	8.3	6.0
November 28, 2022	9.2	6.6	13.1	9.5
November 29, 2022	10.7	7.7	15.3	11.0
November 30, 2022	10.8	7.6	14.5	10.3
December 4-10, 2022	11.1	7.9	10.7	7.6
December 10, 2022	11.0	7.8	9.3	6.6
December 11, 2022	10.0	7.1	8.0	5.7
December 12, 2022	10.4	7.4	8.2	5.8

Table 4: Turbidity and TSS of the Peace River for Water Sampling Events

¹ NTU (Nephelometric Turbidity Unit) and TSS (total suspended sediment) data provided by Ecofish Ltd., January 23, 2023.

NTU: to some extent, measures (scattered light at 90 degrees from the incident light beam) how much light reflects for a given amount of particulates dependent upon properties of the particles, e.g. their shape, color, and reflectivity.

Note: 7-day average turbidity values are calculated as the average turbidity measured during the prior seven days to the sampling event.

Table 5a: QAQC - Travel and Field Blanks

Table 5a: QAQC - Travel a			Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank
Parameter	Unit	RDL	25-Jan-22	26-Jan-22	30-Mar-22	30-Mar-22	18-Apr-22	18-Apr-22	30-May-22	31-May-22	26-Jun-22	27-Jun-22	25-Jul-22	25-Jul-22	30-Aug-22	30-Aug-22	29-Sep-22	29-Sep-22	31-Oct-22	30-Oct-22	28-Nov-22	28-Nov-22	11-Dec-22	11-Dec-22
Physical Parameters							-																	
Acidity (as CaCO ₃)	µg/L	1000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000
Alkalinity (Total as CaCO ₃)	mg/L	1.0	<1000	<1000	<1000	<1000	<1000	<1000	1800	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Electrical Conductivity (EC)	µS/cm	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Hardness as $CaCO_3$, dissolved	µg/L	500														<600							<600	0
Hardness as CaCO ₃ , from total Ca/Mg	µg/L		<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600	<600
pH	pH Units	0.1	5.52	5.35	5.63	5.64	5.29	5.12	5.36	5.85	5.17	5.72	5.15	5.40	5.27	5.50	5.59	5.06	5.20	5.43	4.96	5.37	5.73	5.12
Total Dissolved Solids (TDS)	µg/L	10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000	<10000
Total Suspended Solids (TSS)	µg/L	3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000	<3000
Alkalinity (Hydroxide as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	<1000	<1000	<1000	<1000	<1000	<1000	1800	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Anions and Nutrients	/1	5.0		-			-	-				-		-				-	-	= 0			-	-
Ammonia (NH₄ as N)	µg/L	5.0	<5	<5	30.6	<5	<5	<5	<5	<5	5.5	<5	<5	<5	7.8	8.5	<5	<5	<5	5.8	6.1 1500	5.1	<5	<5
Chloride (Cl ⁻)	µg/L	500 5.0		<500	<500	<500	<500 <5	<500	<500	<500	<500 <5	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Nitrate (NO ₃ ⁻ as N) Nitrite (NO ₂ ⁻ as N)	μg/L μg/L	1.0	<5	<5 <1	-	-	<1	<5 <1	<5 <1	<5 <1	<1	<5 <1												
Sulphate (SO ₄)	μg/L	300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300
Dissolved Organic Carbon (DOC)	μg/L	500	-300	<300	<300	<300	<300		-300	-300	<300		-300	<300	<300	<500	-300	<300	-300	<300		<300	<500	- 300
Metals, Total	µy/L	500	-	-	-	-	-	-	-	-	-	-	-	-	-	<500	-	-	-	-	-	-	~300	-
Aluminum	µg/L	3.0	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Antimony	μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	μg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.31	<0.1	<0.1
Beryllium	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bismuth	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Boron	µg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	µg/L	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005
Calcium	µg/L	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cesium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	µg/L	0.10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Copper	µg/L	0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Iron	µg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lead	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	µg/L	1.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Magnesium	µg/L	5.0	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	5.5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Manganese	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury	µg/L	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005
Molybdenum	µg/L	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.239	<0.05	< 0.05	< 0.05	<0.05	0.058	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	µg/L	0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
Phosphorus	µg/L	50.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0 0.2	<50	<50	<50 <0.2	<50 <0.2	<50 <0.2	<50	<50	<50	<50	<50	<50	<50 <0.2	<50 <0.2	<50 <0.2	<50	<50	<50	<50	<50	<50 <0.2	<50 <0.2	<50
Rubidium Selenium	µg/L	0.2	<0.2	< 0.2		••=	0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2	<0.2	0.2	•.=	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	•••=		<0.2
Silicon	µg/L	100	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
Silver	μg/L μg/L	0.01	<100	<100 <0.01																				
Sodium	μg/L μg/L	50.0	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 77	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sulfur	μg/L	500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500	<500
Tellurium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thorium	μg/L	0.10	<0.1	<0.01	<0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.1
Tin	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.30	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	µg/L	0.50	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	3.0	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Zirconium	µg/L	0.06	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Metals, Dissolved			-									-								-				
Aluminum	µg/L	1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<1	-
Antimony	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Arsenic	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Barium	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Beryllium	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Bismuth	µg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	<0.05	-
	1.0-		1	1									1		1			1				1		1

_			Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank	Travel Blank	Field Blank
Parameter	Unit	RDL	25-Jan-22	26-Jan-22	30-Mar-22	30-Mar-22	18-Apr-22	18-Apr-22	30-May-22	31-May-22	26-Jun-22	27-Jun-22	25-Jul-22	25-Jul-22	30-Aug-22	30-Aug-22	29-Sep-22	29-Sep-22	31-Oct-22	30-Oct-22	28-Nov-22	28-Nov-22	11-Dec-22	11-Dec-22
Boron	µg/L	10.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	<10	-
Cadmium	µg/L	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.005	-	-	-	-	-	-	<0.005	-
Calcium	µg/L	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<50	-	-	-	-	-	-	<50	-
Cesium	μg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	<0.01	-
Chromium	μg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-
Cobalt	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Copper	µg/L	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	<0.2	-
Iron	μg/L	10.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-	<10	-
Lead	µg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	<0.05	-
Lithium	µg/L	1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<1	-
Magnesium	µg/L	5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<5	-	-	-	-	-	-	<5	-
Manganese	μg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Mercury	µg/L	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.005	-	-	-	-	-	-	< 0.005	-
Molybdenum	µg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	< 0.05	-
Nickel	µg/L	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-
Phosphorus	µg/L	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<50	-	-	-	-	-	-	<50	-
Potassium	µg/L	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<50	-	-	-	-	-	-	<50	-
Rubidium	μg/L	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	<0.2	-
Selenium	µg/L	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	<0.05	-
Silicon	µg/L	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<50	-	-	-	-	-	-	<50	-
Silver	µg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	<0.01	-
Sodium	µg/L	50.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<50	-	-	-	-	-	-	<50	-
Strontium	µg/L	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	<0.2	-
Sulfur	µg/L	500	-	-	-	-	-	-	-	-	-	-	-	-	-	<500	-	-	-	-	-	-	<500	-
Tellurium	µg/L	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	<0.2	-
Thallium	µg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	<0.01	-
Thorium	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Tin	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Titanium	μg/L	0.30	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.3	-	-	-	-	-	-	<0.3	-
Tungsten	µg/L	0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	<0.1	-
Uranium	µg/L	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.01	-	-	-	-	-	-	<0.01	-
Vanadium	µg/L	0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-
Zinc	µg/L	1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-	<1	-
Zirconium	μg/L	0.06	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	<0.2	-
Laboratory Work Order Number			FJ2200226	FJ2200232	FJ2200791	FJ2200791	FJ2200923	FJ2200923	FJ2201382	FJ2201370	FJ2201678	FJ2201687	FJ2201959	FJ2201959	FJ2202383	FJ2202383	FJ2202765	FJ2202765	FJ2203077	FJ2203067	FJ2203325	FJ2203325	FJ2203454	FJ2203454
Laboratory Identification Number						9FJ2200791-010															FJ2203325-005			

<u>Notes:</u> RDL - Reportable detection limit

RPD - Relative percent difference calculated as (ABS[(difference between two values)]/((sum of two values/2))*100

Blank indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results is less than detection limits or within 5 times the RDL.

Shaded gray only - exceeds BCAWQG-FSTM guideline.

Blank - not analyzed.

Table 5b: QAQC - Field Rep	plicate S	amples																																
· · · · · · · · · · · · · · · · · · ·			RBSBIAR-DS	RBSBIAR-DS-F		RBSBIAR-DS	RBSBIAR-DS-	R	LBP-Pond	LBP-Pond-R	555 M	L2-US	L2-US-R		RBSBIAR-DS	RBSBIAR-DS-R		LBP-Pond	LBP-Pond-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R		RBSBIAR-DS	RBSBIAR-DS-R	555.4/	L2-US	L2-US-R	555.4	L2-DS L	L2-DS-R
Parameter	Unit	RDL	25-J	Jan-22	RPD %	30-N	Mar-22	RPD %	18-A	.p-22	RPD %	30-M	ay-22	RPD %	26-	Jun-22	RPD %	25	-Jul-22	RPD %	29-A	Aug-22	RPD %	28-5	Sep-22	RPD %	30-C	Oct-22	RPD %	28-Nov	v-22	RPD %	11-Dec-	-22 RPD %
Physical Parameters																																		
Acidity (as CaCO ₃) Alkalinity (Total as CaCO ₃)	µg/L	1000	<2000 180000	<2000 191000	0.0	<2000 170000	<2000	0.0	2200 84700	2200 94400	0.0	2800 212000	<2000	33.3	4300 171000	4200 166000	2.4	5200 207000	3500 201000	39.1	2900	<2000 266000	36.7	<10000 264000	<10000	0.0	<10000 235000	<10000 263000	0	<10000 170000	<10000 178000	0.0		3600 0.0 201000 0.0
Electrical Conductivity (EC)	mg/L uS/cm	2.0	583	590	5.9	793	789	0.5	1370	1380	0.7	1240	1290	0.9	729	718	3.0	3870	3890	2.9	274000 668	670	3.0	665	262000 669	0.8	717	726	11.2 1.2	524	534	4.0		201000 0.0 530 0.9
Hardness as CaCO ₃ , dissolved	µg/L	500	253000	253000	0.0	305000	302000	1.0	555000	540000	2.7	498000	488000	2.0	339000	340000	0.3	2160000	2180000	0.9	314000	96400	106.0	312000	312000	0.0	315000	314000	0.3	264000	270000	2.2	214000	
Hardness as CaCO ₃ , from total Ca/Mg	µg/L	500	262000	264000	0.8	383000	385000	0.5	593000	601000	1.3	502000	498000	0.8	343000	340000	0.9	2010000	2030000	1.0	371000	328000	12.3	346000	346000	0.0	352000	350000	0.6	272000	268000	1.5	211000	226000 6.9
pH	pH Units		8.23	8.22	0.1	8.31	8.31	0.0	7.32	7.33	0.1	8.16	8.18	0.2	8.13	8.15	0.2	7.28	7.3	0.3	8.06	8.13	0.9	8.14	8.11	0.4	8.15	8.15	0.0	8.22	8.21	0.1	8.46	8.47 0.1
Total Dissolved Solids (TDS)	µg/L	10000	339000	337000	0.6	487000	475000	2.5	1050000	1050000	0.0	934000	892000	4.6	494000	516000	4.4	3720000	3850000	3.4	402000	412000	2.5	409000	396000	3.2	486000	486000	0.0	377000	383000	1.6		360000 8.5
Total Suspended Solids (TSS) Alkalinity (Hydroxide as CaCO ₂)	μg/L μg/L	3000	13300	15100	12.7 0.0	698000 <1000	618000 <1000	12.2 0.0	14000 <1000	12600 <1000	10.5 0.0	17300 <1000	18500	6.7 0.0	7700 <1000	8300 <1000	7.5	15500 <1000	9300 <1000	50.0 0.0	5300 <1000	4300 <1000	20.8 0.0	5600 <1000	5200 <1000	7.4	3600 <1000	5200 <1000	36.4 0.0	<3000 <1000	<3000 <1000	0.0		4400 9.5 <1000 0.0
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	<1000	<1000	0.0	5400	3800	34.8	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	<1000	<1000	0.0	15200	15200 0.0
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	180000	191000	5.9	165000	164000	0.6	84700	94400	10.8	212000	214000	0.9	171000	166000	3.0	207000	201000	2.9	274000	266000	3.0	264000	262000	0.8	235000	263000	11.2	170000	178000	4.6	186000	186000 0.0
Anions and Nutrients																																		
Ammonia (NH ₄ as N)	µg/L	5.0	116	121	4.2	220	244	10.3	<5	<5	0.0	10.1	46.3	128.4	283	283	0.0	_	5.4	0.0	118	122	3.3	104	110	5.6	208	210	1.0	<5	8.7	54.0		49.2 28.0
Chloride (Cl ⁻) Nitrate (NO ₃ ⁻ as N)	μg/L μg/L	500 5.0	27800 746	28000 770	0.7	25800	26000	0.8	6260 25.8	5100 <25	20.4 3.1	18900 607	19400 582	2.6 4.2	52900 849	53000 851	0.2	4690 <25	4480 <25	4.6	26600 652	26500 654	0.4	28200 491	28400 496	0.7	35100 835	34700 824	1.1 1.3	4160 530	4290 541	3.1 2.1	10700 445	10700 0.0 443 0.5
Nitrate (NO ₃ as N) Nitrite (NO ₂ as N)	µg/L µg/L	1.0	10.7	10.8	0.9	-	-	-	25.8	<20	73.4	5.3	10.6	4.2 66.7	8.7	10	13.9		<20	0.0	11.3	10.9	3.6	491	490	3.6	7.8	6.8	1.3	530 <1	54 I 1.1	9.5	445 5.5	443 0.5 5.6 1.8
Sulphate (SO ₄)	µg/L	300	69800	69100	1.0	210000	212000	0.9	681000	686000	0.7	450000	448000	0.4	124000	122000	1.6	2530000	2570000	1.6	82500	81600	1.1	90500	91800	1.4	95800	94900	0.9	116000	117000			81000 0.2
Dissolved Organic Carbon (DOC)	µg/L		2440	2920	17.9	1980	2950	39.4	9340	9680	3.6	2680	2200	19.7	1020	1110	8.5	21400	24800	14.7	1540	1630	5.7	790	1640	70.0	2610	2640	1.1	1430	1630	13.1	1360	1470 7.8
Metals, Total																																		
Aluminum	µg/L	3.0	296	373	23.0	2940	3870	27.3	740	769	3.8	126	170	29.7	144	163	12.4		299	91.7	34.7	32.1	7.8	33.2	31.5	5.3	74.7	67	10.9	76.6	58.4	27.0	119	123 3.3
Antimony Arsenic	μg/L μg/L	0.10	0.3	0.31	3.3 10.7	0.5	0.58	14.8	0.14	0.14	0.0 7.8	0.6	0.61	1.7 15.4	0.31	0.32	3.2 3.4	0.14	0.16	13.3	0.13	0.12	8.0 3.5	0.14	0.16	13.3 21.3	0.15	0.15	0.0 9.8	0.37 0.25	0.27	31.3 12.8	0.64	0.55 15.1
Arsenic Barium	µg/L µg/L	0.10	0.62	0.69	10.7	206	263	24.3	0.74 41.8	0.8 44.7	6.7	74.9	78.2	15.4	73.7	73.8	0.1	0.89	36.2	3.1	208	203	3.5	0.26	0.21	21.3	0.29	0.32	9.8	0.25	62.8	3.7		0.55 21.1 64.5 1.5
Beryllium	μg/L	0.10	<0.1	<0.1	0.0	0.257	0.326	24.3	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0		<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1		0.176	<0.1 55.1
Bismuth	µg/L	0.05	<0.05	<0.05	0.0	<0.05	0.056	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05	0.0	<0.05	<0.05 0.0
Boron	µg/L	10	36	35	2.8	83	83	0.0	71	71	0.0	268	269	0.4	121	121	0.0	269	269	0.0	100	97	3.0	90	90	0.0	102	100	2.0	27	27	0.0	55	60 8.7
Cadmium Calcium	µg/L	0.005	0.0806	0.0858	6.3 0.3	0.505	0.61	18.8	0.953	0.964	1.1 0.7	0.21	0.209	0.5	0.149	0.145	2.7	0.0475	0.0524	9.8	0.0122	0.0118	3.3 16.9	0.0065	0.0066	1.5	0.0305	0.0185	49.0 0.5	0.0357	0.0326			0.0109 76.5
Cesium	μg/L μg/L	0.01	0.092	0.113	20.5	0.687	0.917	28.7	0.034	0.035	2.9	0.029		1.4 24.2	0.039	0.044	12.0	100000	0.024	1.6	0.023	0.021	9.1	0.02	0.018	0.0	0.019	99500	0.5	0.01	<0.01	0.0	00100	0.02 107.0
Chromium	µg/L	0.01	0.93	1.12	18.5	6.45	8.35	25.7	0.52	0.51	1.9	0.74	0.75	1.3	<0.5	< 0.5	0.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0	<0.5	< 0.5	0.0	<0.5	<0.5	0.0	0.72	0.85	16.6		1.13 0.9
Cobalt	µg/L	0.10	0.98	1.31	28.8	9.81	10.7	8.7	18.1	18.8	3.8	3.18	3.1	2.5	4.32	4.16	3.8	5.09	4.52	11.9	0.22	0.19	14.6	0.22	0.19	14.6	0.37	0.39	5.3	0.27	0.27	0.0	0.21	<0.1 71.0
Copper	µg/L	0.50	1.74	2.18	22.4	11.5	14.5	23.1	1.95	1.96	0.5	1.66	1.73	4.1	1.82	1.83	0.5	0.57	0.82	36.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0	<0.5	0.53	5.8	0.55	0.52	5.6	0.83	0.68 19.9
Iron	µg/L	10	764	934	20.0	8480	11400	29.4	1590	1760	10.1	233	372	46.0	436	477	9.0	1410	1350	4.3	60	54	10.5	47	47	0.0	104	105	1.0	60	41	37.6	80	59 30.2
Lead Lithium	µg/L	0.05	0.348	0.421	19.0	3.85	5.09 35.5	27.7	0.191 33.2	0.182	4.8	0.136	0.197	36.6 1.6	0.05	0.073 30.7	<u>37.4</u> 0.3	0.053	0.12	77.5 3.3	<0.05	<0.05	0.0	< 0.05	<0.05 39.5	0.0	0.054	0.056 23.5	3.6	0.05	< 0.05	0.0		0.069 76.8
Magnesium	μg/L μg/L	5.0	12.6	13.3	5.4 2.2	36.3 27000	35.5	2.2 3.0	33.2 57400	32.6 59800	1.8	74.4	73.2	0.8	24200	23800	0.3	87.5 228000	90.4 229000	0.4	25800	32.8 25500	0.6	38.8 27500	39.5 27600	0.4	24.6 24800	23.5	4.6 0.8	8.1	8.4	3.6	9.8	10.4 5.9 15500 0.0
Manganese	µg/L	0.10	27.2	34.5	23.7	267	318	17.4	2080	2160	3.8	114	118	3.4	70.6	70.6	0.0	1780	1690	5.2	9.3	8.28	11.6	8.58	8.23	4.2	17	17.1	0.6	8.64	8.37	3.2	10000	3.59 1.9
Mercury	µg/L	0.005	< 0.005	<0.005	0.0	0.0181	0.0055	106.8	< 0.005	< 0.005	0.0	0.0066		22.8	< 0.005	< 0.005	0.0	< 0.005	< 0.005	0.0	< 0.005	<0.005	0.0	< 0.005	< 0.005	0.0	<0.005	<0.005	0.0	< 0.005	< 0.005	0.0		<0.005 0.0
Molybdenum	µg/L	0.05	3.8	3.83	0.8	4.37	5.65	25.5	1.25	1.29	3.1	3.64	3.58	1.7	3.84	3.86	0.5	0.688	0.77	11.2	1.89	1.71	10.0	2.03	2.12	4.3	3.15	2.99	5.2	2.1	2.14	1.9	5.07	5.34 5.2
Nickel	µg/L	0.5	7.05	8.07	13.5	35.2	37.9	7.4	45.4	47.1	3.7	23.5		1.3	20	19.5	2.5	36.4	33.2	9.2	2.49	2.36	5.4	2.64	2.76	4.4	2.7	2.5	7.7	3.61	3.49	3.4		0.62 30.1
Phosphorus Potassium	μg/L μg/L	50.0 50.0	54 2900	55 2940	1.8 1.4	373 3910	502 4170	29.5 6.4	53 10000	63 10500	17.2 4.9	<50 3490	<50 3480	0.0	<50 4250	<50 4120	0.0	<50 12400	<50 12700	0.0	<50 2800	<50 2680	0.0	<50 3380	<50 3440	0.0	<50 2890	<50 2850	0.0	<50 1970	57 2000	13.1 1.5	101 3760	<50 67.5 3830 1.8
Rubidium	μg/L μg/L	0.2	1.82	1.83	0.5	8.11	9.92	20.1	2.11	2.32	9.5	1.45	1.66	13.5	4230	1.84	5.8		5.94	7.1	1.12	1.14	4.4	1.07	1.03	3.8	0.87	0.9	3.4	0.85	1.04	20.1		2.28 6.0
Selenium	µg/L	0.05	0.962	1.01	4.9	1.75	1.6	9.0	0.498	0.541	8.3	2.86	2.81	1.8	0.797	0.654	19.7	0.396	0.348	12.9	1	0.835	18.0	0.904	0.9	0.4	0.959	0.884	8.1	2.43	2.4	1.2	1.58	1.43 10.0
Silicon	µg/L	100	3580	3620	1.1	6940	8320	18.1	2650	2800	5.5	4500	4640	3.1	4780	4770	0.2	3550	3510	1.1	5400	5230	3.2	5030	5130	2.0	4500	4460	0.9	4080	4160	1.9	5870	5840 0.5
Silver	µg/L	0.01	<0.01	<0.01	0.0	0.064	0.08	22.2	0.014	0.014	0.0	0.038	0.036	5.4	<0.01	<0.01	0.0		<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0		<0.01 66.7
Sodium	µg/L	50.0	28100	27300	2.9	50100	44600	11.6	95200	98900	3.8	99700	101000	1.3	52200	51400	1.5	350000	352000	0.6	44600	43100	3.4	41500	43200	4.0	45500	45900	0.9	12600	14400	13.3		35700 2.2
Strontium Sulfur	μg/L μg/L	0.2	321 29600	322 30700	0.3	578 77600	614 73700	6.0 5.2	350 216000	353 221000	0.9 2.3	815 167000	827 167000	1.5 0.0	528 46900	527 45500	0.2	1000 796000	1020 810000	2.0	422 29300	402 27200	4.9 7.4	360 32300	362 31900	0.6	385 33300	387 32600	0.5	227 41700	229 43600	0.9	134 28900	147 9.3 29400 1.7
Tellurium	µg/L	0.2	<0.2	0.23	14.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	0.24	0.22	8.7	<0.2	<0.2	0.0	<0.2	< 0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	0.2	<0.2 0.0
Thallium	µg/L	0.01	0.017	0.018	5.7	0.101	0.127	22.8	0.012	0.013	8.0	0.018	0.02	10.5	0.016	0.017	6.1	0.012	0.014	15.4	<0.01	<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0	0.013	<0.01	26.1	0.025	<0.01 85.7
Thorium	µg/L	0.10	0.11	0.15	30.8	1.76	2.35	28.7	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1 0.0
Tin	µg/L	0.10	<0.1	<0.1	0.0	0.15	0.16	6.5	<0.1	<0.1	0.0	0.16	0.15	6.5	<0.1	<0.1	0.0	<0.1	<0.1	0.0	0.23	0.22	4.4	0.68	0.7	2.9	0.16	0.16	0.0	<0.1	<0.1	0.0	0.18	<0.1 57.1
Titanium Tungsten	μg/L μg/L	0.30	5.84 <0.1	6.64 <0.1	12.8 0.0	42.4 <0.1	54.2 <0.1	24.4 0.0	8.03 <0.1	8.03 <0.1	0.0	2.26	3.88 <0.1	52.8 0.0	0.97	1.82	0.0	1.11	1.8 <0.1	47.4 0.0	0.58 <0.1	0.44 <0.1	27.5 0.0	0.76	<0.3 <0.1	<u>86.8</u> 0.0	1.71 <0.1	1.72 <0.1	0.6	1.36 <0.1	1.08	23.0 0.0	1.16 0.24	1.22 5.0 0.16 40.0
Uranium	µg/L µg/L	0.10	1.12	1.13	0.0	1.98	2.04	3.0		1.32	0.0		2.77			1.26	0.0		2.73	6.8	1.34	1.28	4.6	1.29	1.28	0.0	2.03	<0.1 1.96	3.5					1.72 3.6
Vanadium	µg/L	0.50	1.2	1.43	17.5	10.3	13.9	29.8		-			0.84	14.0	-	0.53	5.8		0.74	14.5		0.63	4.7	<0.5	<0.5	0.0	<0.5	<0.5		0.57				1.22 33.4
Zinc	µg/L	3.0	9.6	11.8	20.6	72.4	85.7	16.8	330		4.2		23.8	5.2	44.6	43.9	1.6		20.8	13.5	<3	<3	0.0	<3	<3	0.0	3.1	<3	3.3					<3 6.5
Zirconium	µg/L	0.06	<0.2	<0.2	0.0	0.66	0.84	24.0	0.3	0.28	6.9	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	0.22	<0.2 9.5
Metals, Dissolved Aluminum	µg/L	1.0	6.6	13.7	70.0	61.2	60.4	1.3	31.4	34.4	9.1	17 0	19.2	7.6	62.8	63.4	1.0	53.9	126	80.2	7.7	7.8	1.3	11.8	8.7	30.2	12.2	11.3	77	20.2	19.0	6.6	66.6	68.4 2.7
Antimony	μg/L μg/L	0.10	0.28	0.28	0.0	0.28	0.29	3.5	31.4 <0.5	-	9.1	0.62		3.3		0.26	0.0		126	0.0		<0.1	1.3 26.1	0.12	0.12	0.0	0.13	0.13		0.28				0.53 0.0
Arsenic	μg/L	_		0.25	3.9		0.25						0.31			0.18	5.4		<1	0.0		0.21	17.4		0.12	46.2	0.13	0.23		0.18				0.57 11.1
Barium	µg/L	0.10	112	115	2.6		34.2	7.0		38.9			78.1			70.6	1.3		36.6	0.5	173	<0.1	199.8	166	166	0.0		119		59	62.4	5.6	59.8	60.1 0.5
Beryllium	µg/L	0.10	<0.1	<0.1	0.0	<0.1	<0.1				0.0		<0.1			<0.1	0.0		<0.2	0.0		<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0					<0.1 0.0
Bismuth	µg/L	0.05	< 0.05	< 0.05	0.0	<0.05	< 0.05	0.0	<0.25		0.0		< 0.05	0.0		< 0.05	0.0		< 0.5	0.0		<0.05	0.0	< 0.05	< 0.05	0.0	<0.05	< 0.05		< 0.05				<0.05 0.0
Boron Cadmium	µg/L	10.0 0.005	32 0.0465	31 0.0726	3.2 43.8	69 0.187	67 0.192	2.9 2.6	66 0.836	64 0.864			250 0.18	0.8		127 0.113	2.4 0.9		277	1.1		<10	<u>170.1</u>	94 0.0089	95 <0.005	1.1	98 0.0226	100 0.0122	2.0	27 0.0407			60 <0.005	61 1.7 0.0069 31.9
Cadmium Calcium	μg/L μg/L	50.0		72100	43.8 0.6	0.187 86700	0.192 86000	0.8	0.836				0.18			0.113 95100	0.9		<0.05 454000	0.0		<0.005 <50	0.0	0.0089 84600	<0.005 85400	56.1 0.9	0.0226 86700	0.0122 86400		0.0407 77200				0.0069 31.9 60700 0.8
Cesium	µg/L	0.01	<0.01	<0.01	0.0	0.022	0.023				0.0		<0.01	0.0		0.034	9.2		<0.1	0.0		<0.01	62.1	0.012	0.016	28.6	0.011	0.011		<0.01				<0.01 0.0
Chromium	µg/L	0.10		<0.5	0.0	<0.5	<0.5	0.0		<0.5	0.0	<0.5	<0.5	0.0		<0.5	0.0		<1	0.0		<0.5	0.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0	0.61	0.6	1.7	0.85	0.86 1.2
Cobalt	µg/L			1.22	75.7	5.69	5.72						2.78			3.94	1.5		4.5	11.3		<0.1	46.2	0.2	0.19	5.1		0.33		0.19				<0.1 0.0
Copper	µg/L	0.20	0.72	1.08	40.0	1.04	2.9	94.4					1.12			0.77	6.3		<2	0.0		<0.2	18.2	0.34	0.36	5.7		0.33		0.41				0.43 4.5
Iron Lead	µg/L	10.0	<10	<10	0.0	<10	<10	0.0		764						20	35.3		<100	0.0		<10	0.0	<10	<10	0.0	11	11	0.0					<10 0.0
Lead Lithium	μg/L μg/L	0.05	<0.05 12.5	<0.05 13.6	0.0	<0.05 30.9	<0.05 29.6	0.0 4.3		<0.25 29.4			<0.05 72.8			<0.05 30.7	0.0		<0.5 87.2	0.0		<0.05 <1	0.0	<0.05 38.9	<0.05 39.7	0.0		<0.05 25.4	0.0	<0.05 8.1				<0.05 0.0 10.6 0.0
Magnesium	μg/L μg/L	5.0	12.5	17800	0.4		29.6	4.3					36100	3.3		25000	0.0		255000	1.6		23400	190.5	24400	24000	2.0	24.9	23.4	0.8					15800 2.6
Manganese	μg/L	0.10	12.7	24.3	62.7	118	125	5.8		1990			106	3.7		62.6	1.9		1790	3.8		<0.1	193.9	7.2	6.83	5.3	15	14.6	2.7					1.65 17.8
Mercury	µg/L	_		<0.005	0.0		<0.005	0.0	<0.005	<0.005	0.0	<0.005	<0.005	0.0		<0.005		< 0.005			<0.005	<0.005	0.0		<0.005	0.0	<0.005	<0.005	0.0	<0.005	<0.005	0.0	<0.005	<0.005 0.0
Molybdenum	µg/L			3.69	0.8		5.59		1.21	1.15						3.54	0.8		0.763	6.6			191.3	2.08	2.06	1.0		2.85		2.16				5.04 0.8
Nickel	µg/L	0.50	5.94	7.85	27.7		23.3						21.5			17.3	2.3		35.3	8.9		<0.5	127.5	2.3	2.21	4.0		2.41		3.47				<0.5 0.0
Phosphorus Potassium	µg/L	50.0	<50	<50	0.0	<50	<50	0.0	<250		0.0		<50	0.0		<50	0.0		<500	0.0		<50	0.0	<50	<50	0.0	<50	<50	0.0			0.0		<50 0.0 3810 2.1
Rubidium	μg/L μg/L	50.0 0.20	2810 1.06	2820 1.13	0.4 6.4	3020 2.08	3220 2.3	6.4 10.0	9050 1.75		0.6		3720 1.41	2.9 0.7	4060 1.78	4020 1.75	1.0 1.7		12200 5.77	1.7		<50 <0.2	194.8 113.0	3270 1.2	3240 1.08	0.9 10.5	2950 0.89	2940 0.73	0.3	1930 0.77				3810 2.1 2.18 7.1
Selenium	µg/L			1.08	8.3		1.45			0.385						0.828	1.7		0.358	16.0		<0.2	183.6	1.2	1.00	5.8		1.15						1.69 1.8

Parameter Unit RDL Silicon μg/L 50.0 Silver μg/L 0.01 Sodium μg/L 50.0 Strontium μg/L 0.20 Strontium μg/L 0.20 Thallium μg/L 0.20 Thorium μg/L 0.01 Thorium μg/L 0.01 Tin μg/L 0.10 Tianum μg/L 0.30	0.0 .01 0.0 0.2 .20 .01	25-Jan 3040 <0.01 28100 315 29700 <0.2 <0.01	n-22 2970 <0.01 27300 305 33000 <0.2	RPD % 2.3 0.0 2.9 3.2 10.5	30-M 2680 <0.01 43900 481 69400	ar-22 2560 <0.01 40800 483	RPD % 4.6 0.0 7.3	18-/ 2050 <0.05 89000	Ap-22 2010 <0.05 87300	RPD %	30-1 4510 <0.01	May-22 4420 <0.01	RPD % 2.0 0.0	4740	Jun-22 4780	8PD %	25- 2950	ul-22 2840	RPD %	29-A	ug-22	RPD %		ep-22	RPD %	30-Oct-22 4550			28-Nov-2	2	.2 5	11-Dec-22 90 5690	RPD %
jyg/L 0.01 iodium µg/L 0.01 strontium µg/L 0.2 stufur µg/L 0.20 leilurium µg/L 0.20 hallium µg/L 0.20 hallium µg/L 0.20 namme µg/L 0.01 jorium µg/L 0.01 jorium µg/L 0.10	.01 0.0 0.2 00 .20 .01	<0.01 28100 315 29700 <0.2	<0.01 27300 305 33000	0.0 2.9 3.2 10.5	<0.01 43900 481	<0.01 40800	0.0 7.3	<0.05	<0.05	0.0					4780	0.8	2950	2040					1000		0.0	4550	4460	2.0 4	30 4	4080 ⁻	.2 5	90 5690	0.0
iodium μg/L 50.0 strontium μg/L 0.2 suffur μg/L 0.2 iellurium μg/L 0.20 hallium μg/L 0.20 ronium μg/L 0.01 'norium μg/L 0.10 'in μg/L 0.10	0.0 0.2 000 .20 .01	28100 315 29700 <0.2	27300 305 33000	2.9 3.2 10.5	43900 481	40800	7.3	-0.00	0.00	0.0	<0.01	< 0.01	0.0	1				2840	3.8	5260	<50	196.2	4920	5050	2.6	4000							. 0.0
λ μg/L 0.2 Suffur μg/L 500 Fellurium μg/L 0.20 hallium μg/L 0.20 hallium μg/L 0.01 Torium μg/L 0.10 Tin μg/L 0.10	0.2 00 .20 .01	315 29700 <0.2	305 33000	3.2 10.5	481			89000	87300				0.0	< 0.01	< 0.01	0.0	<0.1	<0.1	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0 <0	.01 <	<0.01 ().0 <(.01 <0.0	1 0.0
μg/L 500 ellurium μg/L 0.20 hallium μg/L 0.21 horium μg/L 0.01 n μg/L 0.10	.20 .01	29700 <0.2	33000	10.5	101	483			07300	1.9	108000	105000	2.8	49300	49600	0.6	369000	372000	0.8	46400	<50	199.6	41700	41000	1.7	47100	47500	0.8 11	500 1	2300 5	5.9 33	600 3400	0 1.2
μg/L 0.20 hallium μg/L 0.21 horium μg/L 0.01 in μg/L 0.10	.20 .01	<0.2			69400		0.4	338	335	0.9	743	747	0.5	494	487	1.4	1020	1010	1.0	351	<0.2	199.8	373	379	1.6	385	385	0.0 2	15	223 3	3.7 1	41 139	1.4
nallium μg/L 0.01 norium μg/L 0.10 n μg/L 0.10	.01		<0.2	0.0	00400	66000	5.0	247000	240000	2.9	169000	165000	2.4	41800	42200	1.0	985000	991000	0.6	36100	30800	15.8	35500	36200	2.0	35400	35100	0.9 41	300 4	1000 *	.9 32	700 3270	0.0 0.0
horium μg/L 0.10 n μg/L 0.10		< 0.01		0.0	<0.2	<0.2	0.0	<1	<1	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<2	<2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0 <).2	<0.2 ().0 <	0.2 <0.2	2 0.0
in μg/L 0.10	.10		<0.01	0.0	0.011	0.013	16.7	< 0.05	< 0.05	0.0	0.015	0.014	6.9	0.015	0.016	6.5	<0.1	<0.1	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0	<0.01	<0.01	0.0 <0	.01 <	<0.01 (0.0 0.	012 <0.0 ⁻	1 18.2
		<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.5	<0.5	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<1	<1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0 <	0.1	<0.1 ().0 <).1 <0.1	1 0.0
iterations	.10	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.5	<0.5	0.0	0.11	0.1	9.5	<0.1	<0.1	0.0	<1	<1	0.0	0.24	<0.1	82.4	0.56	0.6	6.9	0.12	0.13	8.0 <).1	<0.1 ().0 <).1 <0.1	1 0.0
tanium µg/L 0.30	.30	<0.3	<0.3	0.0	<0.3	<0.3	0.0	<1.5	<1.5	0.0	<0.3	< 0.3	0.0	<0.3	< 0.3	0.0	<3	<3	0.0	<0.3	<0.3	0.0	<0.3	<0.3	0.0	<0.3	<0.3	0.0 <).3	<0.3 ().0 <	0.3 <0.3	3 0.0
ungsten μg/L 0.10	.10	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.5	<0.5	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<1	<1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0	<0.1	<0.1	0.0 <).1	<0.1 (0.0 0.0	15 0.15	5 0.0
ranium µg/L 0.01	.01	1.02	1.05	2.9	1.5	1.43	4.8	1.1	1.07	2.8	2.55	2.54	0.4	1.17	1.16	0.9	2.74	2.77	1.1	1.22	<0.01	196.7	1.26	1.27	0.8	1.74	1.7	2.3 1	54	1.59 3	3.2 1	56 1.6	2.5
anadium µg/L 0.50	.50	<0.5	<0.5	0.0	<0.5	<0.5	0.0	<2.5	<2.5	0.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0	<5	<5	0.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0	<0.5	<0.5	0.0 <).5	<0.5 (0.0 0.0	92 0.97	7 5.3
nc μg/L 1.0	1.0	5.8	8	31.9	17.5	18	2.8	308	308	0.0	21.3	20.2	5.3	29.1	28.4	2.4	20.5	12.5	48.5	1	1.2	18.2	1.1	<1	9.5	2.1	2.3	9.1	7	7.2 2	2.8	:1 <1	0.0
rconium µg/L 0.06	.06	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<1	<1	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<2	<2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0.0	<0.2	<0.2	0 <).2	<0.2	0 <	0.2 <0.2	2 0.0
boratory Work Order Number		FJ2200226	FJ2200226		FJ2200791	FJ2200791		FJ2200923	FJ2200923		FJ220138	2 FJ2201382	2	FJ2201678	FJ2201678		FJ2201959	FJ2201959		FJ2202362	FJ2202362		FJ2202748	FJ2202748		FJ2203067 FJ2	2203067	FJ22	03325 FJ2	203325	FJ22	03454 FJ2203	454
boratory Identification Number	F.	J2200226-001 F	FJ2200226-003		FJ2200791-003	FJ2200791-004	L F	FJ2200923-00	FJ2200923-00	16 I	FJ2201382-	002201382-0	03	FJ2201678-00	3 FJ2201678-004	L.	FJ2201959-00	FJ2201959-007		FJ2202362-001	FJ2202362-007		FJ2202748-002	FJ2202748-003	F	J2203067-003 FJ220	03067-004	FJ2203	325-00220	3325-002	FJ2203	454-00220345	4-003
otes: DL - Reportable detection limit PD - Relative percent difference calculated as (ABS[(differenc	ence betw	reen two values)]/	/((sum of two valu	ues/2))*100	1																					•	·						
lank indicates RPD not calculated. RPD cannot be calculated i	ed if one o	or more of the ana	alytical results is	less than de	etection limits or	within 5 times the	e RDL.																										
PD greater than 30%																																	
lank - not analyzed.																																	

In-Situ Tests - 2022 Sample Site Date Hardness Alkalinity Water Temp **Estimated Flow** рΗ EC (µS/cm) Turbidity (ppm) (°C) (L/sec) (ppm) 8.38 654 450 40 0 0.1 clear 26-Jan-22 LBRR-DD¹ 8.46 1886 800 120 1.6 0.02 clear 30-Mar-22 LBRR-LC No Measurements 600 80 7.48 1069 -0.1 0.1 clear 30-Mar-22 8.10 1424 450 180 14.4 0.08 clear 27-Jun-22 8.04 1274 450 240 18.3 0.05 24-Jul-22 clear LBRR-UC 0.02 n/a - not recorded 30-Aug-22 clear n/a - not recorded 0.01 clear 29-Sep-22 n/a - not recorded 0.02 clear 31-Oct-22 7.57 1250 600 40 0.2 0.25 turbid 30-Mar-22 7.38 2,090 800 180 11.1 0.3 31-May-22 clear 7.62 800 0.2 1790 180 14.7 clear 27-Jun-22 LBRR-12+500 7.48 2560 800 180 19.6 0.05 clear 30-Aug-22 7.56 2410 800 180 13.6 0.01 29-Sep-22 clear 8.69 1673 800 120 3.4 0.1 clear 31-Oct-22 7.86 1255 600 40 0.25 slightly turbid 0.1 30-Mar-22 8.34 1,601 450 180 15.2 0.3 clear 31-May-22 LBRR-12+600 1465 450 8.34 180 16.2 0.2 clear 27-Jun-22 800 9.07 1625 120 2 0.1 clear 31-Oct-22 7.58 1332 600 80 0 0.2 slightly turbid 30-Mar-22 8.17 1,630 800 240 15.1 0.3 clear 31-May-22 1498 450 8.28 180 16.2 0.2 clear 27-Jun-22 LBRR-12+700 8.24 1635 450 180 19.9 0.1 clear 24-Jul-22 8.28 450 1576 180 18.6 0.08 clear 30-Aug-22 8.75 1673 450 180 13 0.08 clear 29-Sep-22 9.80 1602 800 120 1.9 0.1 31-Oct-22 clear 7.43 1302 600 80 0 0.2 slightly turbid 30-Mar-22 7.47 450 1,583 240 15.6 0.2 clear 31-May-22 8.28 1430 450 240 17.5 0.2 clear 27-Jun-22 LBRR-12+810 7.44 1624 450 180 20.2 0.1 clear 24-Jul-22 7.44 1556 450 180 18.4 0.06 clear 30-Aug-22 1622 0.08 7.80 450 180 13.1 clear 29-Sep-22 8.85 1541 800 120 1.8 0.1 clear 31-Oct-22 7.99 1451 600 80 -0.1 0.08 slightly turbid 30-Mar-22 8.14 1,518 450 240 11.8 0.2 clear 31-May-22 1453 450 240 8.19 16.3 0.15 27-Jun-22 clear LBRR-12+920 8.11 1621 450 240 21.4 0.15 clear 24-Jul-22 8.23 1485 450 180 23.3 0.1 clear 30-Aug-22 8.38 1585 450 180 12.8 0.06 clear 29-Sep-22 8.93 1599 800 120 2.1 0.1 clear 31-Oct-22

Table 6: River Road - In Situ Water Quality Sampling

RR8 ¹				No N	leasurements			
	25-Jan-22	8.47	789	450	120	1.6	2	high turbidity
RR9 ¹	30-Mar-22	8.18	1730	600	80	8.9	0.3	slightly turbid
	31-May-22	8.30	2230	800	180	27.2	0.2	clear
LBRR-EDP				No N	leasurements			

¹ Discharge station

Table 7: River Road - Water Quality Exceedances Summary (BCAWQG-FST)

Sampling Location	Sampling Dates	Total Arsenic (As)	Total Iron (Fe)	Total Manganese (Mn) ²	Total Zinc (Zn) ²	Dissolved Aluminum (Al) ¹	Dissolved Iron (Fe)
LBRR-DD *	26-Jan-22					✓	
	30-Mar-22	✓	✓				
LBRR-12+500	31-May-22		✓		✓		
	27-Jun-22		✓			√	
LBRR-UC	30-Mar-22		✓				\checkmark
	26-Jan-22	~	✓	✓	✓		
RR9 *	30-Mar-22		✓				
	31-May-22		~			✓	

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life water use and Short Term Maximum (FST) WQG. Exceedances denoted by a check mark.

¹Calculated guideline is pH dependent for dissolved Aluminum.

 $^2\mbox{Hardness-dependent}$ parameters (Mn, Zn) use capped hardness values in guideline calculations.

* Discharge Station

Table 8: RBSBIAR - In Situ Water Quality Measurements

				I	n-Situ Tests - 20)22		
Sample Site	Date	рН	EC (μS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity
	25-Jan-22	10.85	194	199	80	0.1	0.1	turbid
	30-Mar-22	7.85	940	450	120	3.1	isolated pools	clear
	30-May-22	7.86	668	250	240	12.7	0.4	clear
RBSBIAR-US	26-Jun-22	7.50	813	250	240	11	0.25	clear
RDSDIAR-US	24-Jul-22	7.43	822	250	240	14.9	0.15	clear
	29-Aug-22	7.25	749	250	240	17.5	0.03	clear
	28-Sep-22	7.17	783	375	240	13.9	0.01	clear
	30-Oct-22	7.95	730	450	120	6.2	isolated pools	clear
	25-Jan-22	8.44	631	250	120	-0.1	1	clear
	30-Mar-22	8.50	760	450	120	2.2	0.3	slightly turbid
	18-Apr-22	9.14	1,001	450	80	0.1	0.3	clear
	30-May-22	7.81	935	450	240	14.1	1	clear
RBSBIAR-DS	26-Jun-22	8.30	857	450	240	17.8	2	clear
	24-Jul-22	8.22	838	250	240	18.8	3	clear
	29-Aug-22	8.26	731	450	240	16.68	1.5	clear
	28-Sep-22	8.16	750	450	240	13.5	1.5	clear
	30-Oct-22	8.71	798	450	120	5.4	1	clear
	25-Jan-22	8.82	177	100	40	0.1	0.1	slightly turbid
	30-May-22	7.68	727	450	240	15.5	2.5	highly turbid
	26-Jun-22	7.82	703	250	240	26.4	0.2	clear
RBSBIAR-EUS	24-Jul-22	7.82	820	250	240	25.6	0.2	clear
	29-Aug-22	8.00	772	250	240	19.6	0.1	clear
	28-Sep-22	8.04	711	375	200	16.3	0.07	clear
	30-Oct-22	9.05	719	450	120	4.3	0.1	clear
	30-Mar-22	8.35	1297	800	120	1.7	0.08	slightly turbid
RBSBIAR-EDS	30-May-22	7.89	785	450	240	15.3	2	highly turbid
	26-Jun-22	8.12	587	250	240	25.2	2	clear

	Sampling Dates	Total Arsenic (As)	Total Iron (Fe)	Total Zinc (Zn) ²	Dissolved Aluminum (Al) ³
	30-May-22				
	26-Jun-22				
RBSBIAR-US	24-Jul-22				
(West ditch; upstream)	29-Aug-22				
	28-Sep-22				
	30-Oct-22				
	25-Jan-22				
	30-Mar-22		\checkmark		
	18-Apr-22				
	30-May-22		\checkmark	\checkmark	\checkmark
RBSBIAR-DS	26-Jun-22				
(West ditch; downstream)	24-Jul-22				
	29-Aug-22				
	28-Sep-22				
	30-Oct-22				
	25-Jan-22		✓	\checkmark	
	30-May-22	\checkmark	\checkmark		
	26-Jun-22				
RBSBIAR-EUS	24-Jul-22				
(East ditch; upstream)	29-Aug-22				
	28-Sep-22				
	30-Oct-22				
RBSBIAR-EDS	30-May-22	\checkmark	\checkmark		✓
(East ditch; downstream)	26-Jun-22				

Table 9: RBSBIAR - Water Quality Exceedances Summary (BCAWQG-FST)

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

¹Copper-dissolved guideline is dependent on pH, hardness and Dissolved Organic Carbon

²Hardness-dependent parameters (Zn, Cd) use capped hardness values in guideline calculations.

³Calculated guideline is pH dependent for dissolved Aluminum.

		In-Situ Tests - 2022												
Sample Site	Date	рН	EC (µS/cm)	Hardness (ppm)	Alkalinity (ppm)	Water Temp (°C)	Estimated Flow (L/sec)	Turbidity						
	26-Jan-22	9.88	575	450	80	-0.1	0.0	clear						
	18-Apr-22	9.83	822	450	120	0.2	none	clear						
	30-May-22	7.44	1174	450	240	18.1	none	clear slightly turb clear clear clear clear clear clear clear clear clear clear clear clear clear						
	26-Jun-22	7.45	1209	450	240	20.7	stagnant	clear						
L2 US	24-Jul-22	7.65	1240	450	240	20.9	0.2	clear						
	29-Aug-22	8.10	915	450	240	16.7	1.0	clear						
	28-Sep-22	7.90	885	450	240	10.8	10.8 1.5	clear						
	30-Oct-22	8.27	565	450	280	7.3	3.0	clear						
	28-Nov-22	8.6	570	450	120	5.2	3.0	clear						
	11-Dec-22	8.45	435	250	120	6.8	6.0	clear						
	30-May-22	11.09	1080	50	240	12.4	0.5	turbid						
	26-Jun-22	pH 26-Jan-22 9.88 18-Apr-22 9.83 30-May-22 7.44 26-Jun-22 7.45 24-Jul-22 7.65 29-Aug-22 8.10 28-Sep-22 7.90 30-Oct-22 8.27 28-Nov-22 8.6 11-Dec-22 8.45 30-May-22 11.09	1282	250	240	15	1.5	clear						
	24-Jul-22	8.30	1491	250	240	13.3	2.0	slightly turbio clear clear clear clear clear clear clear clear clear clear clear clear turbid clear clear clear						
L2 DS	29-Aug-22	8.96	966	100	180	20.5	1.0							
	30-Oct-22	9.62	903	450	180	9	1.5	slightly turbi						
	28-Nov-22	9.01	397	250	80	5.3	3.0	clear						
	11-Dec-22	8.90	561	250	120	6.7	2.0	clear						

Table 10: L2 Powerhouse - In Situ Water Quality Sampling

	Sampling Dates	pH > 9.0	Ammonia (NH4 as N) ³	Total Arsenic (As)	Total Iron (Fe)	Total Lead (Pb)	Total Silver (Ag)	Total Zinc (Zn) ²	Dissolved Aluminum (Al) ¹
	26-Jan-22				\checkmark				\checkmark
	18-Apr-22								
	30-May-22								
	26-Jun-22								
L2 US	24-Jul-22								
L2 03	29-Aug-22								
	28-Sep-22								
	30-Oct-22								
	28-Nov-22								
	11-Dec-22								
	30-May-22	✓	✓	✓	\checkmark	✓	✓	✓	✓
	26-Jun-22				✓				✓
	24-Jul-22								✓
L2 DS	29-Aug-22			\checkmark	\checkmark			\checkmark	\checkmark
	30-Oct-22				\checkmark				✓
	28-Nov-22								
	11-Dec-22								

Table 11: L2 Powerhouse - Water Quality Exceedances Summary (BCAWQG-FST)

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) WQG. Exceedances denoted by a check mark.

¹Calculated guideline is pH dependent for dissolved Aluminum.

²Hardness-dependent parameters (Zn) use capped hardness values in guideline calculations.

³Ammonia guideline is based on temperature and pH

In-Situ Tests - 2022 Sample Site Date EC Alkalinity Water **Estimated Flow** Hardness pН Turbidity (µS/cm) Temp (°C) (L/min) (ppm) (ppm) LBDB-LD-US N/A -------30-Mar-22 7.99 640 150 40 1.7 no flow slightly turbid 18-Apr-22 7.65 1,500 800 60 0.3 no flow slightly turbid 31-May-22 6.55 2,630 800 120 19.4 0.10 slightly turbid 26-Jun-22 7.00 3.350 800 180 25.6 0.02 clear (algae on surface) LBP Pond Laydown 25-Jul-22 7.25 slightly turbid 4,220 800 180 21.3 no flow Drainage 7.23 29-Aug-22 4,830 800 240 20.4 no flow clear 5,140 28-Sep-22 7.36 800 240 15.5 no flow clear 5,170 31-Oct-22 7.74 800 180 0.5 no flow orange tinge; bio sheen LBDB-LD-MS 6.94 2,890 450 180 18.6 0.10 31-May-22 clear 31-May-22 LBDB-LD-DS 8.24 3,260 800 240 22.7 0.10 clear N/A LBDB-EUS -------**Upstream Armor** Ditch LBDB-WUS N/A -------LBDB-EDS 31-May-22 8.42 4,300 800 240 15.6 0.15 clear **Downstream** <5 mL/s from small 2520 30-Mar-22 8.13 800 120 1.8 -**Armor Ditch** 'sump' LBDB-WDS 31-May-22 7.89 3,550 800 180 20.8 0.08 clear

Table 12: LBDB - In Situ Water Quality Sampling

	npling Location	Sampling Dates	Total Cobalt (Co)	Total Iron (Fe)	Total Manganese (Mn) ²	Total Zinc (Zn) ²	Dissolved Aluminum (Al) ¹	Dissolved Iron (Fe)	
	LBDB-LD-US	N/A							
-		30-Mar-22							
		18-Apr-22		~				\checkmark	
		31-May-22		~		~			
	LBP Pond	26-Jun-22							
Laydown Drainage		25-Jul-22		~					
		29-Aug-22			~				
		28-Sep-22		~					
		31-Oct-22		~	~			\checkmark	
	LBDB-LD-MS	31-May-22	✓	~	~		~	✓	
	LBDB-LD-DS	31-May-22							
Downstream Armor Ditch	LBDB-EDS	31-May-22							
		30-Mar-22							
	LBDB-WDS	31-May-22							

Table 13: LBDB - Water Quality Exceedances Summary (BCAWQG-FST)

British Columbia Ministry of Environment, Water Protection & Sustainability Branch. 2019. British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. Referenced Guidelines are for Freshwater Aquatic Life water use and Short Term Maximum (FST) WQG. Exceedances denoted by a check mark.

¹Calculated guideline is pH dependent for dissolved Aluminum.

²Hardness-dependent parameters (Mn, Zn) use capped hardness values in guideline calculations.

	Unit	LBRR-DD			RR9			RBSBIAR-DS			RBSBIAR-EDS				LBDB WDS		LBDB EDS	L2-DS		
Discharge/Downstream Locations		2 Sample Events		3 Sample Events		9	9 Sample Events			2 Sample Events			2 Sample Events			Eleven Sample Events				
		Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Minimum	Maximum	Mean	Event	Minimum	Maximum	Mean
Hardness as CaCO3	µg/L	292000	903000	597500	210000	1180000	707000	253000	376000	315555.556	274000	357000	315500	1020000	1790000	1405000	1540000	6920	297000	172560
рН	pH Units	7.74	8.24	7.99	8.04	8.07	8.05	7.56	8.31	8.10	8.25	8.32	8.29	8.23	8.31	8.27	8.53	7.73	10.30	8.79
Acidity (Total as CaCO3)	µg/L	3000	2600	3000	2300	3400	2767	1000	5000	2633	159000	255000	207000	181000	193000	187000	343000	1000	5000	2514
Alkalinity (Total as CaCO3)	mg/L	48	79.3	73.5	163	146	75.1	180	274	203	1000	2000	1500	1000	3000	2000	1000	161	312	223
Total Dissolved Solids (TDS)	µg/L	440000	1230000	890000	735000	1820000	1261667	339000	578000	471000	362000	484000	423000	1940000	3100000	2520000	4060000	246000	884000	581714
Total Suspended Solids (TSS)	µg/L	11800	5190000	13450	29300	5190000	1787100	1500	698000	85967	3900	910000	456950	1500	3500	2500	11500	3900	5830000	884071
Anions and Nutrients																				
Chloride (Cl-)	µg/L	18100	268000	86050	126000	268000	175000	25800	56400	38056	27200	61100	44150	5000	5000	5000	<10000	6700	88100	46129
Sulphate (SO4)	µg/L	244000	406000	437500	88700	978000	490900	69800	217000	127633	94400	98900	96650	1270000	2120000	1695000	2380000	53600	290000	163757
Metals, Total																				
Aluminum	µg/L	157	51100	278	1360	51100	18303	31.7	2940	607	58.9	10400	5229	24	29.6	26.8	126	119	10500	3227
Iron	µg/L	411	170000	443	2630	170000	59700	40	8480	1384	130	31200	15665	37	223	130	307	80	21200	4599
Arsenic	µg/L	0.46	24.7	0.495	0.78	24.7	9.44	0.26	3.73	0.8	0.3	16.1	8.2	0.5	0.9	0.7	1.26	0.5	11.9	4.0
Cadmium	µg/L	0.126	5.14	0.208	0.91	5.14	2.35	0.0065	1.29	0.24	0.06	1.33	0.695	0.066	0.069	0.067	0.701	0.018	0.472	0.101
Cobalt	µg/L	0.72	53	2.285	23.1	53	34.3	0.22	29.1	5.23	0.29	26.5	13.40	0.34	0.46	0.40	1.58	0.15	12.20	2.40
Copper	µg/L	1.9	156	5.02	7.8	156	57.5	0.56	20.4	6.13	1.02	42.4	21.7	2.7	4.6	3.7	6.85	0.8	52.7	11.4
Zinc	µg/L	8.5	624	11.05	103	624	289.0	3.1	273.0	59.1	1.50	201	101	3	3	3	312	3	213	46
Metals, Dissolved																				
Aluminum	µg/L	8.2	98	57.6	26.70	468	197.6	6.6	284	52.94	5.8	130	67.90	2.90	8.60	5.75	10.9	41.30	1960.00	383.41
Iron	µg/L	12	26	51	26.00	26.00	26.0	5.00	206	59.00	5.00	5.00	5.00	10.00	108.00	59.00	63	10.00	33.00	17.67
Arsenic	µg/L	0.3	0.21	0.335	0.18	0.21	0.2	0.15	0.26	0.23	0.170	0.19	0.18	0.44	0.72	0.58	1.24	0.38	7.99	2.48
Cadmium	µg/L	0.119	0.534	0.1845	0.024	0.534	0.3	0.009	0.94	0.177	0.063	0.203	0.133	0.055	0.079	0.067	0.642	0.005	0.013	0.009
Cobalt	µg/L	0.58	21.9	2.11	0.41	21.9	13.8	0.16	26.6	4.37	0.17	7.54	3.86	0.25	0.41	0.33	1.4	0.11	0.16	0.14
Copper	µg/L	1.6	3.22	4.445	2.66	3.22	2.9	0.24	4.12	1.0	0.84	1.25	1.05	2.40	4.42	3.41	6.01	0.45	2.53	0.96
Zinc	µg/L	6.3	30.2	8.45	3.2	30.2	16.4	1.0	133	24.1	1.3	11.3	6.30	2.50	2.50	2.50	279	1.10	3.00	1.95

Table 14: Discharge and Downstream Locations - Minimum, Maximum and Mean Values

*<Detection Limit values use half the value to calculate mean values.

PHOTOGRAPHS

Photo 1 River Road LBRR-US location, September 29, 2022 Photo 2 River Road LBRR-LC location, September 29, 2022 Photo 3 River Road LBRR-920 location, October 31, 2022 Photo 4 River Road LBRR-810 location, September 29, 2022 Photo 5 River Road LBRR-700 location, September 29, 2022 Photo 6 River Road LBRR-600 location, September 29, 2022 Photo 7 River Road LBRR-12+500 location, September 29, 2022 Photo 8 River Road LBRR-12+450 location sampled as proxy for LBRR-12+500, September 29, 2022 Photo 9 River Road LBRR-12+DD location, September 29, 2022 Photo 10 River Road LBRR-12+DD location, September 29, 2022 Photo 11 River Road RR9 inlet location, September 29, 2022 Photo 12 River Road RR8 outlet location, September 29, 2022 Photo 13 RBSBIAR-US upstream west ditch, September 28, 2022 Photo 14: RBSBIAR-US upstream west ditch, September 28, 2022 Photo 15 RBSBIAR-DS downstream west ditch looking upstream, September 28, 2022 Photo 16 RBSBIAR-DS downstream west ditch looking downstream, September 28, 2022 Photo 17 RBSBIAR-EUS upstream east ditch, September 28, 2022er 2022. Photo 18 RBSBIAR-EUS upstream east ditch, September 28, 2022 Photo 19 RBSBIAR-EDS downstream east ditch, September 28, 2022 Photo 20 RBSBIAR-EDS downstream east ditch, September 28, 2022 L2-US location, September 28, 2022 Photo 21 Photo 22 L2-US location, September 28, 2022 Photo 23 L2-DS location, September 28, 2022 Photo 24 LBP Pond location, September 28, 2022 Photo 25 LBDB-EDS location, September 28, 2022 Photo 26 LBDB-EDS location, September 28, 2022 Photo 27 LBDB-EUS location, September 28, 2022 Photo 28 LBDB-LD-US location, September 28, 2022 Photo 29 LBDB-LD-MS location, September 28, 2022 Photo 30 LBDB-LD-DS location, September 28, 2022 Photo 31 LBDB-WUS location, September 28, 2022 Photo 32 LBDB-WDS location, September 28, 2022

Photo 1: River Road LBRR-UC location, September 2022.

Photo 2: River Road LBRR-LC location, September 2022.

Photo 3: River Road LBRR-12+920 location, October 31, 2022.

Photo 4: River Road LBRR-12+810 location, September 2022.

Photo 5: River Road LBRR-12+700 location, September 2022.

Photo 6: River Road LBRR-12+600 location, September 2022.

Photo 7: River Road LBRR-12+500 location, September 2022.

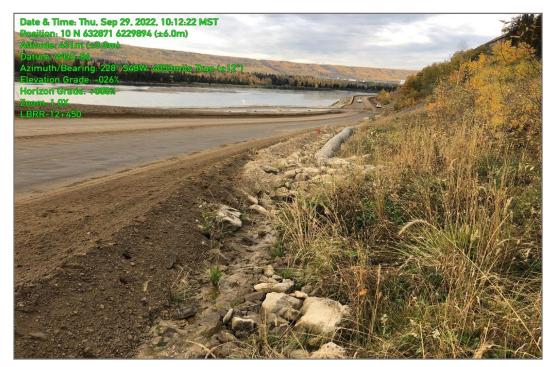


Photo 8: River Road LBRR-12+450 location sampled as proxy for LBRR-12+500, September 2022.

Photo 9: River Road LBRR-DD location, outlet of culvert, September 2022.

Photo 10: River Road LBRR-DD location, discharge area, September 2022.

Photo 11: River Road RR9 inlet location, September 2022. Sample collected at outlet location on opposite side of road.

Photo 12: River Road RR8 outlet location, sample collection location, September 2022.

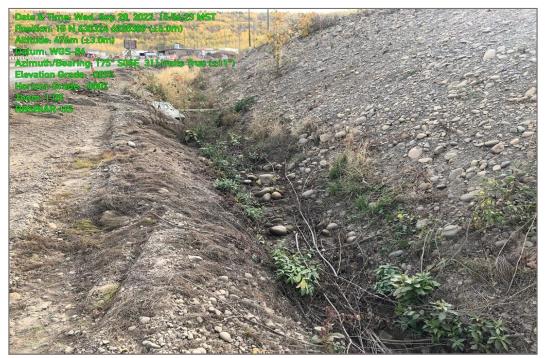


Photo 13: RBSBIAR-US location, looking upstream, September 2022.

Photo 14: RBSBIAR-US location, looking downstream, September 2022.

Photo 15: RBSBIAR-DS location, looking upstream, September 2022.

Photo 16: RBSBIAR-DS location, looking downstream, September 2022.

Photo 17: RBSBIAR-EUS location, looking upstream, September 2022.

Photo 18: RBSBIAR-EUS location, looking downstream, September 2022.

Photo 19: RBSBIAR-EDS location, September 2022.

Photo 20: RBSBIAR-EDS location, looking upstream, September 2022.

Photo 21: L2-US location, looking northwest, September 2022.

Photo 22: L2-US sample location, September 2022.

Photo 23: L2-DS location, September 2022. Sample collected in corner adjacent to powerhouse walls

Photo 24: LBP Pond location, September 2022.

Photo 25: LBDB-EDS location, looking upstream, September 2022.

Photo 26: LBDB-EDS location, looking downstream, September 2022.

Photo 27: LBDB-EUS location, September 2022.

Photo 28: LBDB-LD-US location, September 2022.

Photo 29: LBDB-LD-MS location, September 2022.

Photo 30: LBDB-LD-DS location, September 2022. Discharges to overgrown vegetated area.

Photo 31: LBDB-WUS location, September 2022.

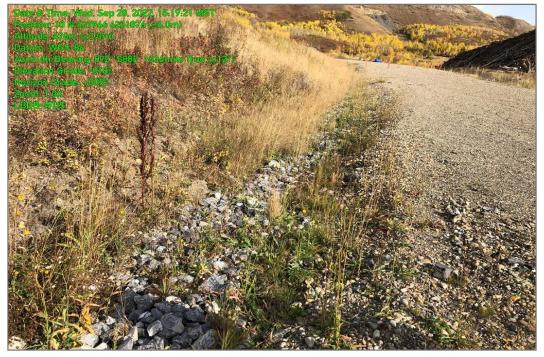


Photo 32: LBDB-WDS location, September 2022.

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOENVIRONMENTAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner

consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by TETRA TECH in its reasonably exercised discretion.

APPENDIX B

SURFACE WATER ANALYTICAL LABORATORY RESULT TABLES

B1 – 2022 Surface Water Laboratory Analytical Results from River Road Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B2 – 2022 Surface Water Laboratory Analytical Results from SBIAR Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B3 – 2022 Surface Water Laboratory Analytical Results from L2 Powerhouse Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

B4 – 2022 Surface Water Laboratory Analytical Results from Left Bank Debris Boom Monitoring Locations Evaluated against the BCAWQG-FST Guidelines

Appendix B1: LBRR Surface Water Analytical Results

Appendix B1: LBRR Surface Water Parameter	Unit	RDL	S BCAWQG - FST ¹	BCAWQG-FLT ²		LBRR-DD 30-Mar-22	LBRR-12+500 30-Mar-22	LBRR-12+500 31-May-22	LBRR-12+500 27-Jun-22	LBRR-12+500 30-Aug-22	LBRR-12+500 29-Sep-22
Physical Parameters					26-Jan-22	30-Mai-22	30-mai-22	31-may-22	27-5011-22	30-Aug-22	23-36p-22
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000 1.0	NG NG	NG NG	3000 48	<2000 147	2300 71.7	4400 174	1000 202	3200 200	5000 218
Electrical Conductivity (EC)	µS/cm	2.0	NG NG	NG NG	646	1770	1170	2190	1670	2490	2150
Hardness as CaCO3, dissolved	µg/L	500	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	292000	903000	463000	1100000	850000	1560000	1410000
Hardness as CaCO3, from total Ca/Mg (New January 2020 pH) µg/L pH Units	500 0.10	6.5 - 9	6.5-9.0	296000 7.74	980000 8.24	599000 8	1180000 8.03	876000 8.09	1510000 8.02	1500000 7.89
Total Dissolved Solids (TDS) Total Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG NG	NG NG	440000 11800	1340000 15100	790000 689000	1810000 65900	1230000 76600	2160000 13800	1960000 26400
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG NG	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	μg/L	1000	NG	NG	48000	147000	71700	174000	202000	200000	218000
Anions and Nutrients (Matrix: Water) Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	14.1	15.8	138	89.6	51.7	6.7	<5
Ammonia FST Guideline Ammonia FLT Guideline	μg/L μg/L		pH dependent (at Temp 4 [°] C or in situ T)	pH dependent (at Temp 4 [°] C or in situ T)	10300 1980	3950 1970	6220 1200	6220 1200	4950 952	6220 1200	7420 1430
Chloride (Cl [°]) Nitrate (NO ₃ [°] as N)	μg/L μg/L	500 5.0-100	600,000 NG	150,000 NG	18100 120	154000	174000	123000 496	164000 236	98100 79.6	111000 45.7
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-20	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	5.2			<10	9.1	<5	<5
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	244000	631000	246000	883000	552000	1360000	1120000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	309000	429000	309000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L	1.0	NG	NG	14.4	4.52	5.36	7.3	4.70	2940	4.03
Aluminum Antimony	μg/L μg/L	3.00 0.1-0.2	NG NG	NG NG	399 <0.1	157 0.19	6420 0.66	3310 0.29	1090 0.25	65.5 <0.2	91.1 <0.5
Arsenic Barium	µg/L	0.10	5.0 NG	5.0 NG	0.46	0.53	8.56	1.7	0.95	0.4	0.64
Beryllium	μg/L μg/L	0.10	NG	NG	42.1 <0.1	42.3 <0.1	275 0.615	57.4 0.844	67.5 0.287	28.8 0.112	29.8 <0.1
Bismuth Boron	μg/L μg/L	0.05-0.10	NG 1200	NG 1200	<0.05 31	<0.05 56	0.066	<0.05 120	<0.05 106	<0.1 178	<0.25 134
Cadmium Calcium	μg/L μg/L	0.005	NG NG	NG NG	0.29	0.126	1.62	3.12	2.03 229000	2.28	0.528
Cesium	µg/L	0.01		NG	89400 0.017	0.019	176000 0.704	319000 0.029	0.057	0.027	<0.05
Chromium ⁴ Cobalt	μg/L μg/L	0.1-0.7 0.10	NG 110	NG 4.0	<0.5 3.85	<0.5 0.72	14.4 26.3	2.81 36.2	1.49 27.6	<0.5 9.33	<0.5 <0.5
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	8.14	1.9	24.7	19.8	4.12	1.35	<2.5
Cu LTA Guideline Calc.	µg/L		Hardness > 400,000 is Capped Value of 400,000	Hardness 50,000 - 250,000: calc.;							
Cu LTA Guideline Calc. Iron	μg/L μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	475	411	19400	9050	3500	120	203
Lead ³	µg/L	0.05-0.1	Calc. based on Hardness Hardness ≤ 8000 is 3:	Calc. based on Hardness	0.088	0.155	5.18	0.26	0.416	<0.1	<0.25
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 μg/L	µg/L		Hardness \$ 0000 is 3; Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of 360,000		319	417	417	417	417	417	417
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000	16	20	20	20	20	20	20
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG	NG	13.3	45.8	34.7	75.1	76.7	128	89.9
Magnese ³	μg/L μg/L	0.10	Calc. based on hardness	Calc. based on Hardness	17800 229	72400 30.3	38700 664	92800 517	74000 402	120000 258	113000 18.9
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394.2	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 37,000 - 450,000: calc.; Hardness > 450,000 is Capped Value of 450,000	1889.8	2585.0	2585.0	2585.0	2585.0	2585.0	2585.0
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	0.0074 3.47	<0.005 3.17	<0.005 4.78	<0.005 2.83	<0.005 2.85	<0.005 0.729	<0.005 1.87
Nickel Phosphorus	μg/L μg/L	0.5 50-100	NG NG	NG	15.8 92	17.4 <50	85.7 804	220 128	189 69	226 <100	51.7 <250
Potassium Rubidium	µg/L	50.0 0.2	NG NG	NG NG	20800	7960	7220	8320	7660	11000	11000
Selenium	μg/L μg/L	0.05	NG	2.0	2.98 1.08	1.47 2.59	7.85 2.05	3.12 2.73	3.18 0.95	4.73 1.4	4.24 1.4
Silicon Silver ³	μg/L μg/L	100 0.01-0.02	0.10 - 3.0	NG 0.05 - 1.5	5320 <0.01	3310 0.011	9870 0.115	6500 <0.01	6390 0.011	6510 <0.02	5470 <0.05
Ag FST Guideline Calc			Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc				Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium Strontium	μg/L μg/L	50.0 0.2	NG NG	NG NG	6110 169	32800 911	33000 1300	56700 1020	53400 798	40100 1280	39500 1620
Sulfur	µg/L	500 0.2-0.4	NG NG	NG NG	97100	233000	89800	316000	210000	497000	380000
Tellerium Thallium	μg/L μg/L	0.01-0.055	NG	NG	<0.2 0.018	0.22 0.012	0.34 0.145	<0.2 0.039	<0.2 0.033	<0.4 0.045	<1 <0.05
Thorium Tin	μg/L μg/L	0.1-0.2	NG NG	NG NG	<0.1 <0.1	0.11	3.45 0.19	1.33 <0.1	0.26	<0.2 <0.2	<0.5 <0.5
Titanium Tungsten	μg/L μg/L	0.3-1.2	NG NG	NG NG	2.7 <0.1	4.54 <0.1	106 0.15	4.2 <0.1	16.2 <0.1	0.91 <0.2	1.72 <0.5
Uranium	µg/L	0.01	NG	NG	1.5	3.84	3.99	6.96	4.14	3.1	4.11
Vanadium Zinc ³	μg/L μg/L	0.5-1.0 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	<0.5 13.6	0.73 8.5	18.1 236	1.51 524	1.87 268	<1 196	<2.5 38.1
Zn FST Guideline Calc.	µg/L		Hardness < 90,000 = 33.0 Hardness 90,000 - 500,000, Calc. Hardness > 500,000, Capped Value		184.5	340.5	312.8	340.5	340.5	340.5	340.5
Zn FLT Guideline Calc.	uo/I		Hardness > 500,000, Capped Value	Hardness < 90,000 = 7.5 Hardness 90,000 - 330,000, Calc.	159.0	187.5	187.5	187.5	187.5	187.5	187.5
Zn FLT Guideline Calc. Zirconium	μg/L μg/L	0.06-0.12	NG	Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value NG							187.5
Metals, Dissolved					<0.2	<0.2	1.14	0.22	0.23	<0.4	
Aluminum ⁵ Al FST Guideline Calc (based on pH)	μg/L μg/L	1.0	100 pH < 6.5 : calc. Al	50	107	8.2	53.9 100	79.1 100	152 100	39.1	12.5 100
Al FLT Guideline Calc (based on median pH)	μg/L		pH ≥ 6.5 : 100.0 Al	median pH < 6.5 : calc. Al	100	50	50	50	50	100	50
Antimony	μg/L	0.1-0.2	NG	median pH ≥ 6.5:50.0 Al NG	50 <0.1	0.16	0.17	0.27	0.2	50 <0.2	<0.5
Arsenic Barium	μg/L μg/L	0.10	NG NG	NG NG	0.3 40.6	0.37 43.6	0.19	0.15 47.3	0.2	<0.2 24.8	<0.5 27.9
Beryllium Bismuth	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	0.104	0.108	<0.1
Bismuth Boron	μg/L μg/L	10.0	NG	NG	<0.05 28	<0.05 48	<0.05 29	<0.05 117	<0.1 105	<0.1 131	<0.25 143
Cadmium ³ Cd FST Guideline Calc.	µg/L	0.005	Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Calc. based on hardness	0.25	0.119	0.542	1.89 2.80	1.81 2.80	2.29	0.399
Cd FST Guideline Calc.	μg/L μg/L		Hardness > 455,000, is Capped Value of 455,000	Hardness 3,400 - 285,000, Calc.	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Calcium	μg/L μg/L	50.0	NG	Hardness > 285,000, is Capped Value of 285,000 NG	88000	251000	135000	294000	220000	412000	380000
Cesium Chromium	μg/L μg/L	0.01	NG NG	NG NG	<0.01 <0.5	<0.01 <0.5	0.012	0.018	<0.02	0.027	<0.05
Cobalt	µg/L	0.10	NG	NG	3.64	0.58	17.9	31.4	27.5	9.57	<0.5
Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L	0.20	Calc. based on BLM Model BLM Ligand Model value	Calc. based on BLM Model	7.29 50.5	1.6 28	2.61 28.8	3.53 41.8	1.83 29.9	1.16 15	1.53 90
Cu FLT Guideline Value (Chronic) Iron	μg/L μg/L	10.0-20.0	350	BLM Ligand Model value NG	8.7 90	5.4 12	5.4 82	6.2 23	4.8 10	2.2 10	13.5 25
Lead	µg/L	0.05-0.1	NG	NG	<0.05	<0.05	<0.05	<0.05	<0.1	<0.1	<0.25
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG NG	14.5 17600	43.5 67000	26.9 30600	75.5 89300	75.5 72900	105 129000	88.6 112000
Manganese Mercury	μg/L μg/L	0.10	NG NG	NG NG	239 0.0154	21.4 <0.005	402 <0.005	488 <0.005	377 <0.005	252 <0.005	14.9 <0.005
Molybdenum	µg/L	0.05	NG	NG	3.61	3.2	2.99	3.23	2.98	0.63	1.8
Nickel Phosphorus	μg/L μg/L	0.50 50.0-100.0	NG NG	NG NG	14.9 <50	16.9 <50	56 <50	188 <50	190 <100	212 <100	53.3 <250
Potassium Rubidium	μg/L μg/L	50.0 0.20	NG NG	NG NG	21200 2.97	8050 1.48	6140 1.46	8300 3.1	8000 2.62	9350 4.36	11500 3.48
	- 8° -				2.31	1.40	1.40	0.1	2.02	4.30	J.40

Appendix B1: LBRR Surface Water Analytical Results

					LBRR-DD	LBRR-DD	LBRR-12+500	LBRR-12+500	LBRR-12+500	LBRR-12+500	LBRR-12+500
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	26-Jan-22	30-Mar-22	30-Mar-22	31-May-22	27-Jun-22	30-Aug-22	29-Sep-22
Selenium	µg/L	0.05	NG	2.0	1.09	2.58	1.61	2.44	1.01	1.26	1.1
Silicon	µg/L	50.0	NG	NG	5220	2840	1950	5330	5630	5720	5380
Silver	µg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.02	<0.02	<0.05
Sodium	µg/L	50.0	NG	NG	5910	31000	29700	54100	54700	44000	42600
Strontium	µg/L	0.20	NG	NG	172	832	1080	968	802	1320	1690
Sulfur	µg/L	500	NG	NG	96700	200000	77200	319000	218000	408000	430000
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<1
Thallium	µg/L	0.01	NG	NG	0.015	<0.01	0.017	0.04	0.032	0.043	<0.05
Thorium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.5
Tin	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.5
Titanium	µg/L	0.3-0.6	NG	NG	0.38	<0.3	<0.9	<0.3	<0.6	<0.6	<1.5
Tungsten	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.5
Uranium	µg/L	0.01	NG	NG	1.43	3.62	2.12	6.22	3.87	3.16	4.35
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	<0.5	<1	<1	<2.5
Zinc	µg/L	1.00	NG	NG	10.6	6.3	44.8	214	243	188	34.3
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<1
Laboratory Work Order Number					FJ2200232	FJ2200791	FJ2200791	FJ2201370	FJ2201687	F2202383	FJ2202765
Laboratory Identification Number				FJ2200232	FJ2200232-002	FJ2200791-006	FJ2200791-007	FJ2201370-008	FJ2201687-001	FJ2202383-001	FJ2202765-001
Notes:	•	•		•	•	•	•	•	•		

Notes:

Notes: Screening completed on BCAWQG-FST¹ and FLT² guideline values. ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) guidelines. ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Long Term Average (LT) guidelines. ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable. ⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted. ⁵ Guideline is ohl dependent.

⁵ Guideline is pH dependant. NG - No Guideline

NG - No Guideline Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline. Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline. RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

Appendix B1: LBRR Surface Water	r Analyti	cal Result	S							
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG-FLT ²	LBRR-12+500 31-Oct-22	LBRR-UC 30-Mar-22	LBRR-UC 27-Jun-22	RR9 25-Jan-22	RR9 30-Mar-22	RR9 31-May-22
Physical Parameters					31-Oct-22	30-iniar-22	27-Jun-22	25-Jan-22	30-mar-22	31-Way-22
Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	5000	5000	1000	2600	2300	3400
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	NG	NG NG	221 1470	115 985	279 1340	163 758	79.3 1700	146 2320
			NG	NG						
Hardness as CaCO3, dissolved	µg/L	500	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	(Acceptable ranges exist when calculating exceedances for Cd, Cu, Pb, Mn, Zn)	738000	398000	641000	210000	731000	1180000
Hardness as CaCO3, from total Ca/Mg (New January 2020	μg/L pH Units	500 0.10	6.5 - 9	6.5-9.0	746000 7.99	445000 7.97	639000 8.33	1290000 8.04	828000 8.05	1280000 8.07
Total Dissolved Solids (TDS)	µg/L	10000	NG	NG	1100000	622000	931000	735000	1230000	1820000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	µg/L	3000 1000	NG NG	NG NG	26000	104000	52400	5190000	142000	29300
Alkalinity (Fydiokide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000	NG	NG	<1000 <1000	<1000 <1000	<1000 12000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	221000	115000	267000	163000	79300	146000
Anions and Nutrients (Matrix: Water) Ammonia (NH ₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	30.7	140	<5	392	151	40.8
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 $^\circ\text{C}$ or in situ T)		6220	6220	3150	6220	4950	4950
Ammonia FLT Guideline Chloride (Cl [°])	μg/L μg/L	500	600,000	pH dependent (at Temp 4 C or in situ T) 150,000	1200 217000	1200 121000	606 172000	1200 131000	952 268000	952 126000
Nitrate (NO ₃ ⁻ as N)	μg/L	5.0-100	NG	NG	240		<25	587		421
Nitrite (NO ₂ ⁻ as N)	μg/L	1.0-20	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	6.2		<5	26.6		<20
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	364000	206000	249000	88700	406000	978000
SO4 FLT Guideline Calc	μg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	309000	309000	309000	429000	429000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	5.08	13.6	6.33	5.88	5.99	7.61
Metals, Total Aluminum	μg/L	3.00	NG	NG	85.6	1020	173	51100	2450	1360
Antimony	μg/L	0.1-0.2	NG	NG	0.15	0.25	0.24	1.48	0.4	0.3
Arsenic	µg/L	0.10	5.0	5.0 NG	0.24	4.52	1.88	24.7	2.85	0.78
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG	41.4 <0.1	96.2 0.146	83.4 <0.1	3570 3.01	116 0.201	55.4 0.207
Bismuth	µg/L	0.05-0.10	NG	NG	<0.05	<0.05	<0.05	0.807	<0.05	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	84 0.133	28 0.288	44 0.0306	62 5.14	56 0.91	124 1
Calcium	μg/L	50	NG	NG	204000	123000	167000	398000	233000	332000
Cesium Chromium ⁴	μg/L μg/L	0.01	NG	NG NG	0.01	0.112	0.114 <0.5	4.32 227	0.246	0.024
Cobalt	µg/L	0.10	110	4.0	<0.5 1.96	20.3	0.37	53	26.7	23.1
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	1.36	21.7	2.32	156	8.78	7.8
Cu STM Guideline Calc.	µg/L		Hardness > 400,000 is Capped Value of 400,000	Hardnoos EC 000 050 000						ļ
Cu LTA Guideline Calc.	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10						
Iron Lead ³	μg/L μg/L	10 0.05-0.1	1000 Calc. based on Hardness	NG Calc. based on Hardness	160 <0.05	10700 0.843	695 0.501	170000 69.7	6470 1.79	2630 0.109
Pb FST Guideline Calc (Based on Hardness as CaCO3),		0.00 0.1	Hardness ≤ 8000 is 3; Hardness 8000-360.000; calc.							
applies to water hardness 8000-360,000 µg/L	µg/L		Hardness 8000-360,000: calc. Hardness>360,000 is Capped Value of 360,000		417	417	417	182	417	417
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness 8000-360,000: calc. Hardness > 360,000 is Capped Value of 360,000	20	20	20	10	20	20
Lithium	µg/L	1.0	NG	NG	37.9	13.8	21.1	79.7	50.2	73.2
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on hardness	NG Calc. based on Hardness	57400 50.6	33600 626	53900 13.3	73000 5270	59900 671	110000 380
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Hardness 25,000 - 259,000 : calc.; Hardness > 259,000 is Capped Value of 259,000		3394.2	3394.2	3394.2	2612	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	μg/L			Hardness 37,000 - 450,000: calc.; Hardness > 450,000 is Capped Value of 450,000	2585.0	2356.2	2585.0		2585.0	2585.0
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	<0.005	<0.005	<0.005	1432 0.278	<0.005	<0.005
Molybdenum	µg/L	0.05	2000	≤ 1000	2.89	3.66	5.94	4.55	4.09	3.35
Nickel Phosphorus	μg/L μg/L	0.5 50-100	NG NG	NG	21.1 <50	43.7 294	3.78 57	174 7320	95.6 244	147 <50
Potassium	µg/L	50.0	NG	NG	6310	5850	6620	17100	9090	9730
Rubidium Selenium	μg/L μg/L	0.2	NG NG	NG 2.0	1.78 0.634	2.36 0.661	3.37 0.472	48.8	4.5 2.17	3.66 2.6
Silicon	µg/L	100		NG	4870	3980	6010	60300	5560	4800
Silver ³	µg/L	0.01-0.02	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.05 - 1.5	<0.01	0.03	0.016	1.23	0.042	<0.01
Ag FST Guideline Calc			Hardness > 100,000 Åg = 3.0	Hardness ≤ 100,000 Ag = 0.05	3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc				Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium Strontium	μg/L μg/L	50.0 0.2	NG NG	NG NG	58700 766	28600 381	48700 529	57800 1360	47800 1900	60300 1160
Sulfur	µg/L	500	NG	NG	130000	75800	93600	40700	151000	398000
Tellerium Thallium	μg/L μg/L	0.2-0.4	NG	NG	<0.2 0.018	<0.2	<0.2	<1 1.12	0.44	0.2
Thorium	μg/L	0.1-0.2	NG	NG	<0.1	1.79	<0.1	18.8	1.15	0.36
Tin Titanium	μg/L μg/L	0.1-0.2	NG NG	NG NG	<0.1	<0.1	<0.1	0.83	<0.1	<0.1
Tungsten	μg/L	0.1-0.2	NG	NG	1.51 <0.1	6.3 <0.1	3.55 <0.1	354 <0.5	51.3 <0.1	2.44 <0.1
Uranium Vanadium	µg/L	0.01 0.5-1.0	NG NG	NG	3.26	6.58	5.63	6.87	3.39	6.82
Vanadium Zinc ³	μg/L μg/L	0.5-1.0 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	<0.5 14.5	2.58 44.8	1.26 3.4	134 624	6.95 103	0.68
Zn FST Guideline Calc.	μg/L		Hardness < 90,000 = 33.0 Hardness 90,000 - 500,000, Calc.		340.5	264.0	340.5	106.5	340.5	340.5
			Hardness > 500,000, Capped Value	Hardness < 90,000 = 7.5						
Zn FLT Guideline Calc.	µg/L			Hardness < 90,000 = 7.5 Hardness 90,000 - 330,000, Calc. Hardness > 330,000, Capped Value	187.5	187.5	187.5	81	187.5	187.5
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	1.64	<1	0.78	<0.2
Metals, Dissolved Aluminum ⁵	μg/L	1.0	100	50	19	25.2	2.8	26.7	98	468
Aluminum - Al FST Guideline Calc (based on pH)	μg/L μg/L	1.0	pH < 6.5 : calc. Al	JU	19 100	25.2	2.8	26.7	98 100	468 100
Al FLT Guideline Calc (based on median pH)	μg/L		pH ≥ 6.5: 100.0 AI	median pH < 6.5 : calc. Al	50	50	50	50	50	50
AI FLT Guideline Calc (based on median pH)	μg/L μg/L	0.1-0.2	NG	median pH ≥ 6.5:50.0 Al NG	0.14	0.18	0.23	0.24	0.18	0.28
Arsenic	µg/L	0.10	NG	NG	0.14	0.18	0.23	0.24	0.18	0.28
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG NG	42	57.4	75.2	142	47.2	54.8
Bismuth	μg/L μg/L	0.1-0.2	NG NG	NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron	µg/L	10.0	NG	NG	82	24	44	23	49	126
Cadmium ³ Cd FST Guideline Calc.	µg/L	0.005	Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Calc. based on hardness	0.132	0.211	0.0118 2.80	0.0242	0.534	0.4
	µg/L		Hardness > 455,000, is Capped Value of 455,000	Hardness 3,400 - 285,000, Calc.						
Cd FLT Guideline Calc.	µg/L	50.0	10	Hardness > 285,000, is Capped Value of 285,000	0.46	0.46	0.46	0.34	0.46	0.46
Calcium Cesium	μg/L μg/L	50.0 0.01	NG NG	NG	200000 <0.01	110000 <0.01	167000 0.02	63000 <0.01	212000 <0.01	317000 0.02
Chromium	μg/L	0.10	NG	NG	<0.5	<0.5	<0.5	0.97	<0.5	<0.5
Cobalt Copper ⁶	μg/L μg/L	0.10	NG Calc. based on BLM Model	NG Calc. based on BLM Model	1.94 1.1	18.4 4.05	<0.1 1.5	0.41	21.9 2.66	19.2 2.92
Cu FST Guideline Value (Acute)	µg/L		BLM Ligand Model value		31.1	69.9	50.2	38.4	34.7	45.5
Cu FLT Guideline Value (Chronic)	μg/L μg/L	10.0-20.0	350	BLM Ligand Model value NG	4.6 5	12.8 4340	5.6 5	6.3 26	6.6 5	7.5
Lead	μg/L	0.05-0.1	NG	NG	5 <0.05	4340 <0.05	5 <0.05	26 <0.05	5 <0.05	5 <0.05
Lithium Magnesium	µg/L	1.0 5.0	NG NG	NG NG	36.1	11.8	22.5	14.3	46.3	78.8
Magnesium Manganese	μg/L μg/L	5.0 0.10	NG NG	NG	57900 48.6	29900 617	54500 0.46	12800 93.2	49000 534	95300 326
Mercury	µg/L	0.005	NG	NG NG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum Nickel	μg/L μg/L	0.05	NG NG	NG	2.92	2.64 39.7	5.7 2.96	5.27 3.75	3.46 81.2	3.39 121
Phosphorus	µg/L	50.0-100.0	NG	NG	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0 0.20	NG NG	NG	6350 1.82	5470 1.17	7140 2.77	9820 2.56	7940	9090
Rubidium	µg/L								1.93	3.71

Appendix B1: LBRR Surface Water Analytical Results

					LBRR-12+500	LBRR-UC	LBRR-UC	RR9	RR9	RR9
Parameter	Unit	RDL	BCAWQG - FST ¹	BCAWQG-FLT ²	31-Oct-22	30-Mar-22	27-Jun-22	25-Jan-22	30-Mar-22	31-May-22
Selenium	µg/L	0.05	NG	2.0	0.779	0.458	0.662	0.618	1.95	2.44
Silicon	µg/L	50.0	NG	NG	5130	3170	6120	1720	2130	3780
Silver	µg/L	0.01-0.02	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	59800	25700	51100	57800	40600	56500
Strontium	µg/L	0.20	NG	NG	795	341	548	529	1660	1060
Sulfur	µg/L	500	NG	NG	137000	66000	98900	38800	129000	348000
Tellerium	µg/L	0.2-0.4	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.018	<0.01	0.025	0.017	0.018	0.044
Thorium	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	µg/L	0.3-0.6	NG	NG	<0.3	0.33	<0.3	0.52	<0.3	<0.3
Tungsten	µg/L	0.1-0.2	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	3.43	4.69	5.21	0.606	2.86	7
Vanadium	µg/L	0.5-1.0	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	11	29.6	<1	3.2	30.2	15.9
Zirconium	µg/L	0.06-0.12	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					FJ2203077	FJ2200791	FJ2201687	FJ2200226	FJ2200791	FJ2201370
Laboratory Identification Number				FJ2200232	FJ2203077-001	FJ2200791-008	FJ2201687-002	FJ2200226-004	FJ2200791-005	FJ2201370-007

Notes:

 Notes:

 Screening completed on BCAWQG-FST¹ and FLT² guideline values.
 1 BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Short Term Maximum (ST) guidelines.

 ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (F) water use and Long Term Average (LT) guidelines.

 ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable.

 ⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

⁵ Guideline is pH dependant. NG - No Guideline

NG - No Guideline Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline. Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline. RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

Appendix B2: SBIAR Surface Water Analytical Results

Appendix B2: SBIAR Surface Water Anal	ytical Re	sults							RBSBIAR-DS		
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	RBSBIAR-DS 25-Jan-22	RBSBIAR-DS 30-Mar-22	RBSBIAR-DS 18-Apr-22	RBSBIAR-DS 30-May-22	26-Jun-22	RBSBIAR-DS 24-Jul-22	RBSBIAR-DS 29-Aug-22
Physical Parameters											
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	µg/L mg/L	1000 1.0	NG NG	NG	1000 180	1000 170	2500 268	1000 192	4300 171	1000 261	2900 274
Electrical Conductivity (EC)	µS/cm	2.0	NG	NG	583	793	905	955	729	741	668
Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	253000 262000	305000 383000	282000 305000	376000 385000	339000 343000	344000 303000	314000 371000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.23	8.31	8.09	8.24	8.13	7.56	8.06
Total Suspended Solids (TSS)	μg/L	3000	NG	NG	339000 13300	487000 698000	569000 12200	578000 26500	494000 7700	475000 1500	402000 5300
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	NG	<1000 <1000	<1000 5400	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	180000	165000	268000	192000	171000	261000	274000
Anions and Nutrients Ammonia (NH₄ as N)	µg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	116	220	335	248	283	204	118
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)		3950	3150	4950	3950	4950	11900	4950
Ammonia FLT Guideline Chloride (Cl ⁻)	µg/L	500	600000	pH dependent (at Temp 4 °C or in situ T) 150,000	759 27800	606 25800	952 37500	759 56400	952 52900	1970 52200	952 26600
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0	NG CI-dependent (> 10,000 µg/L)	NG Cl-dependent (> 10,000 µg/L)	746		1780	1280	849	613	652
Nitrite (NO ₂ ⁻ as N) Sulphate (SO ₄) ³	µg/L	1.0-5.0 300	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000	10.7	210000	11.5	8.40	8.7	19.7	11.3
Sulphate (SO4)	µg/L	300		Hardness 76,000-180,000 = 309,000	69800	210000	167000	217000	124000	92100	82500
	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	309000	309000	309000	309000	309000	309000	309000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L	1.0	NG	NG	2.44	1.98	0.84	1.72	1.02	1.72	1540
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG NG	296	2940	75.4	1830	144	31.7	34.7
Arsenic	μg/L	0.10	5.0	5.0	0.3	0.5 3.73	0.31	0.31	0.31	0.23	0.13 0.29
Barium Beryllium	μg/L μg/L	0.10	NG	NG NG	142 <0.1	206 0.257	33.8 <0.1	80.9 0.544	73.7 <0.1	127 <0.1	208 <0.1
Bismuth	µg/L	0.05	NG	NG	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	36 0.0806	83 0.505	134 0.0794	96 1.29	121 0.149	148 0.0252	100 0.0122
Calcium	µg/L	50	NG	NG	75600	109000	87700	105000	97400	85200	106000
Cesium Chromium ⁴	μg/L μg/L	0.01	NG	NG NG	0.092	0.687 6.45	0.041 <0.5	0.037	0.039 <0.5	0.033 <0.5	0.023 <0.5
Cobalt	µg/L	0.10	110	4.0	0.98	9.81	1.63	29.1	4.32	0.42	0.22
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	1.74	11.5	0.77	20.4	1.82	0.56	0.25
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000								
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10							
Iron Lead ³	μg/L μg/L	10 0.05	1000 101 - 348	NG Calc. based on Hardness	764 0.348	8480 3.85	161 0.093	2360 0.177	436 0.05	40 <0.05	60 <0.05
Pb FST Guideline Calc (Based on Hardness as CaCO3),		0.05	Based on Hardness 8000-360,000	Calc. Dased on Haldness							<0.05
applies to water hardness 8000-360,000 µg/L	µg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.		266.1	337.6	305.6	417.0	386.3	393.5	350.4
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG Hardness > 8000 : calc.	13.7	16.5	15.2	19.6	18.4	18.7	
Lithium	µg/L	1.0	NG	NG	12.6	36.3	43.4	41.4	30.8	26.6	17.0 33
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on Hardness	NG Calc. based on Hardness	17700	27000	20900	29800	24200	22000	25800
Manyanese Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L	0.10	Applies to Hardness 25000-259000 µg/L	Gale, based on marchess	27.2 3328.1	267 3394.2	40.1 3394.18	311 3394.18	70.6 3394.18	14.7 3394.18	9.3
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	μg/L		Mn : calc.	Applies to Hardness 37000-450000 µg/L	1718.2	1947.0	1845.8	1845.8	1845.8	1845.8	3394.18
Mercury (Based on methyl Hg & total mass Hg)	μg/L	0.005	NG	Mn : calc. Calc.	<0.005	0.0181	<0.005	<0.005	<0.005	<0.005	1986.6 <0.005
Molybdenum Nickel	μg/L μg/L	0.05	2000 NG	≤ 1000 NG	3.8 7.05	4.37 35.2	4.56 10.8	4.16 92.8	3.84 20	3.42 4.59	1.89 2.49
Phosphorus	μg/L	50.0	NG	NG	54	35.2	<50	92.8 60	<50	4.59 <50	<50
Potassium Rubidium	μg/L μg/L	50.0 0.2	NG	NG	2900 1.82	3910 8.11	2910 2.24	3940 1.87	4250 1.95	3860 1.61	2800 1.12
Selenium	µg/L	0.05	NG	2.0	0.962	1.75	1.14	1.33	0.797	0.66	1
Silicon Silver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	3580 <0.01	6940 0.064	3290 <0.01	4420 0.042	4780 <0.01	5190 <0.01	5400 <0.01
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.00	3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L		-	Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	1.50	1.5	1.5	1.5	1.5	1.5	1.5
Sodium	µg/L	50.0	NG	NG	28100	50100	94800	47500	52200	45000	44600
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG	NG NG	321 29600	578 77600	551 67600	600 78900	528 46900	455 33500	422 29300
Tellerium	µg/L	0.2	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium Thorium	μg/L μg/L	0.01 0.10	NG	NG NG	0.017	0.101	0.017	0.019	0.016	0.012 <0.1	<0.01
Tin	µg/L	0.10	NG	NG	<0.1	0.15	<0.1	<0.1	<0.1	0.71	0.23
Titanium Tungsten	μg/L μg/L	0.3-4.5	NG NG	NG NG	5.84 <0.1	42.4 <0.1	1.4 <0.1	2.8 <0.1	0.97 <0.1	0.47 <0.1	0.58 <0.1
Uranium Vanadium	μg/L μg/L	0.01	NG NG	NG NG	1.12 1.2	1.98 10.3	1.21 0.82	3.28 0.56	1.26 <0.5	1.05 0.62	1.34 0.66
Zinc ³ (Based on Hardness < or > 90,000)	μg/L	3.0	Calc. based on Hardness	Calc. based on Hardness	9.6	72.4	6.6	273	44.6	4.5	1.5
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of		155.25	194.25	177	247.5	219.75	223.5	
			500,000	Hardness 90,000 - 330,000, Calc.			4=+-	407 -	407 -	/ n= -	201
Zn FLT Guideline Calc.				Hardness > 330,000, is Capped Value of 330,000	130	169	151.5	187.5	187.5	187.5	175.5
Zircronium Metals, Dissolved	µg/L	0.06	NG	NG	<0.2	0.66	<0.2	<0.2	<0.2	<0.2	<0.2
Aluminum ⁵	µg/L	1.0	100	50	6.6	61.2	12.7	284	62.8	17.5	7.7
Al FST Guideline Calc (based on pH)	µg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100	100	100	100	100	100	100
Al FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al	50	50	50	50	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG NG	NG NG	0.28	0.28	<0.5 0.25	0.3	0.26	0.24	0.13
Barium	µg/L	0.10	NG	NG	112	31.9	29	74.6	69.7	135	173
Beryllium Bismuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.25	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron	µg/L	10.0	NG	NG	32	69	125	87	124	126	124
Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L	0.005	Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Calc. based on hardness	0.0465	0.187	0.0724	0.942	0.112	0.0273	0.0025
Cd FST Guideline Calc.	µg/L		Hardness > 455,000, is Capped Value of 455,000		1.530	1.855	1.711	2.301	2.068	2.100	1.911
Cd FLT Guideline Calc.				Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	0.419	0.457	0.454	0.457	0.457	0.457	0.457
Calcium	μg/L	50.0	NG	285,000 NG	72500	86700	80400	102000	94400	94800	79000
Cesium		0.01	NG	NG	<0.01	0.022	<0.05	0.023	0.031	0.031	0.019
Chromium Cobalt	μg/L μg/L	0.10	NG NG	NG NG	<0.5 0.55	<0.5 5.69	<0.5 1.45	<0.5 26.6	<0.5 4	<0.5 0.41	<0.5 0.16
Copper ⁶	µg/L	0.20	Calc. based on BLM Model	Calc. based on BLM Model	0.72	1.04	0.5	4.12	0.82	0.55	0.24
Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L		BLM Ligand Model value	BLM Ligand Model value	16.9 3.2	15.5 3.1	148.1 28.2	13.1 2.6	7.5 1.2	7.1 0.8	10.4 1.8
Iron	µg/L	10.0 0.05	350 NG	NG	5	5	25	206	14	5	5
Lithium	μg/L μg/L	1.0	NG	NG	<0.05 12.5	<0.05 30.9	<0.25 41	<0.05 40.5	<0.05 30.4	<0.05 25.8	<0.05 41.3
Magnesium Manganese	μg/L μg/L	5.0 0.10	NG NG	NG NG	17500 12.7	21400 118	19700 35	29400 298	25000 63.8	26100 15.1	28300 6.44
Mercury	µg/L	0.005	NG	NG	12.7 <0.005	118 <0.005	35 <0.005	298 <0.005	63.8 <0.005	15.1 <0.005	6.44 <0.005
Molybdenum Nickel	μg/L μg/L	0.05	NG NG	NG NG	3.66	4.76 23.2	4.46	3.87 85.4	3.57	3.46	2.26
NONO	μg/L	U.3U	NG	NG	5.94	23.2	10.4	85.4	17.7	4.96	2.26

Appendix B2: SBIAR Surface Water Analytical Results

					RBSBIAR-DS						
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	25-Jan-22	30-Mar-22	18-Apr-22	30-May-22	26-Jun-22	24-Jul-22	29-Aug-22
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<250	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	2810	3020	2720	4140	4060	4120	3780
Rubidium	µg/L	0.20	NG	NG	1.06	2.08	1.97	1.82	1.78	1.73	0.72
Selenium	µg/L	0.05	NG	2.0	0.994	1.48	1.1	1.43	0.818	0.669	1.17
Silicon	µg/L	50.0	NG	NG	3040	2680	2910	4040	4740	5180	5260
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.05	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	28100	43900	88100	48900	49300	52100	46400
Strontium	µg/L	0.20	NG	NG	315	481	524	546	494	469	351
Sulfur	µg/L	500	NG	NG	29700	69400	61400	77400	41800	36300	36100
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	0.011	<0.05	0.016	0.015	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	<0.1	<0.1	<0.5	<0.1	<0.1	0.85	0.24
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<1.5	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	NG	1.02	1.5	1.14	2.56	1.17	1.08	1.22
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<2.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	5.8	17.5	2.5	133	29.1	3.3	1
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					FJ2200226	FJ2200791	FJ2200923	FJ2201382	FJ2201678	FJ2201959	F2202362
Laboratory Identification Number					FJ2200226-001	FJ2200791-003	FJ2200923-005	FJ2201382-004	FJ2201678-003	FJ2201959-003	FJ2202362-001

Appendix B2: SBIAR Surface Water Analy	vtical Re	sults							.VMIN03021-		1 -
Parameter	Unit	RDL	BCAWQG - FST 1	RBSBIAR-DS 28-Sep-22	RBSBIAR-DS 30-Oct-22	RBSBIAR-US 30-May-22	RBSBIAR-US 26-Jun-22	RBSBIAR-US 24-Jul-22	RBSBIAR-US 29-Aug-22	RBSBIAR-US 28-Sep-22	RBSBIAR-US 30-Oct-22
Physical Parameters				20-360-22	30-001-22	30-may-22	20-5011-22	24-501-22	23-Aug-22	20-360-22	30-001-22
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000 1.0	NG NG	5000 264	5000 235	1000 192	5700 152	1000 250	14700 249	5000 247	5000 260
Electrical Conductivity (EC) Hardness as CaCO3, dissolved	μS/cm μg/L	2.0 500	NG NG	665 312000	717 315000	678 274000	668 359000	744 356000	714 321000	726 332000	715 308000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L			346000	352000	279000	338000	317000	391000	366000	344000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	8.14 409000	8.15 486000	8.27 383000	8.05 520000	7.5 481000	7.56 424000	7.78 456000	8.14 478000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	μg/L μg/L	3000 1000	NG NG	5600 <1000	3600 <1000	11700 <1000	17500 <1000	1500 <1000	14500 <1000	29400 <1000	12400 <1000
Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Anions and Nutrients				264000	235000	192000	152000	250000	249000	247000	260000
Ammonia (NH₄ as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0) pH dependent (at Temp 4 °C or in situ T)	104 4950	208 3950	<5 3150	<5 4950	<5 13600	<5 13600	11.8 8770	40.2 4950
Ammonia FLT Guideline Chloride (Cl ⁻)	μg/L	500	600000	952 28200	759 35100	606 57300	952 72000	1970 64900	1970 49100	1690 56100	952 44000
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0	NG CI-dependent (> 10,000 μg/L)	491	835	811	888	544	846	926	312
Nitrite (NO2 ⁻ as N) Sulphate (SO4) ³	μg/L μg/L	1.0-5.0 300	Guideline: 600 ug/L NG	8.6 90500	7.8 95800	3.3 72900	<5 78200	4.2 84100	1.5 82800	1.2 84500	1.3 84400
SO4 FLT Guideline Calc	μg/L		NG	309000	309000	309000	309000	309000	309000	309000	309000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	0.79	2.61	1.61	1.14	1.2	1540	1.5	1.61
Metals, Total Aluminum	μg/L	3.00	NG	33.2	74.7	68.2	192	13.5	19	72.3	20.6
Antimony	µg/L	0.10	NG	0.14	0.15	0.3	0.18	0.16	0.13	0.17	<0.1
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	0.26 168	0.29 115	0.26	0.38 84.5	0.21 78.1	0.3 91	0.24 96.3	0.26 74.5
Beryllium Bismuth	μg/L μg/L	0.10	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	90	102	36	28	33	41	34	28
Calcium	µg/L	50	NG	0.0065 93100	0.0305	0.0223 85200	0.0293	0.0164 95000	0.0146	0.0218	0.0295
Cesium Chromium ⁴	μg/L μg/L	0.01	NG NG	0.02 <0.5	0.019 <0.5	0.01 <0.5	0.035	<0.01 <0.5	<0.01 <0.5	<0.01 <0.5	<0.01 <0.5
Cobalt Copper ³	μg/L μg/L	0.10 0.50	110 Calc. based on Hardness	0.22	0.37 0.25	0.19 0.64	0.23	0.05	0.25	0.21	0.74
Cu FST Guideline Calc. (relevant prior to August 2019)	μg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of	0.20	0.20	0.01	0.01	0.20	0.20	0.00	0.20
Cu FLT Guideline Calc. (relevant prior to August 2019)			400,000								
Cu FLT Guideline Calc. (relevant prior to August 2019) Iron	μg/L μg/L	10	1000	47	104	143	563	28	101	169	141
Lead ³	µg/L	0.05	101 - 348 Based on Hardness 8000-360,000	<0.05	0.054	0.088	0.247	<0.05	<0.05	0.127	<0.05
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.	347.5	351.8	294.57	415.5	411.08	360.34	376.13	341.87
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	μg/L			16.9	17.0	14.80	19.5	19.34	17.36	17.98	16.64
Lithium	µg/L	1.0	NG	38.8	24.6	7.5	9.3	10	9.9	10	8.2
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on Hardness	27500 8.58	24800 17	16100 38.7	20200 28.6	19300 34.2	21600 300	22700 139	21700 829
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Applies to Hardness 25000-259000 μg/L Mn : calc.	3394.18	3394.18	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			1845.8	1845.8	1810.6	2184.6	2171.4	2017.4	2065.8	1960.2
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	<0.005 2.03	<0.005 3.15	<0.005 1.94	<0.005	<0.005 1.38	<0.005	<0.005 1.36	<0.005
Nickel	µg/L	0.50	NG	2.64	2.7	1.15	1.3	0.82	1.19	0.84	2.35
Phosphorus Potassium	μg/L μg/L	50.0	NG NG	<50 3380	<50 2890	<50 3500	<50 4050	<50 4200	<50 4500	<50 4620	<50 3750
Rubidium Selenium	μg/L μg/L	0.2	NG NG	1.07 0.904	0.87	0.67	0.84	0.78	0.86	0.85	0.5
Silicon Silver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	5030 <0.01	4500 <0.01	3890 0.038	5090 <0.01	5390 <0.01	6100 <0.01	5760 <0.01	4600 <0.01
Ag FST Guideline Calc	μg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L			1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Sodium Strontium	μg/L μg/L	50.0 0.2	NG NG	41500 360	45500 385	23200 402	29200 253	28600 243	36700 273	30500 252	27700 269
Sulfur Tellerium	μg/L μg/L	500.0 0.2	NG NG	32300	33300	25800	29200	30800	29900	30800	28000
Thallium	µg/L	0.01	NG	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01	<0.2 0.01	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01	<0.2 <0.01
Thorium Tin	μg/L μg/L	0.10	NG NG	<0.1 0.68	<0.1 0.16	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Titanium Tungsten	μg/L μg/L	0.3-4.5	NG NG	0.76 <0.1	1.71 <0.1	1.32 <0.1	5.74 <0.1	0.41 <0.1	0.45	1.74 <0.1	0.35
- Uranium	µg/L	0.01	NG NG	1.29	2.03	1.13	1.11	1.01	0.989	0.986	0.967
Vanadium Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50 3.0	Calc. based on Hardness	<0.5 1.5	<0.5 3.1	<0.5 9.7	1.09 4.2	0.66 1.5	0.62	0.72	<0.5 1.5
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000	199.5	201.75	171	234.75	232.5	206.25	214.5	196.5
Zn FLT Guideline Calc.				174	176.25	145.5	187.5	187.5	180.75	187.5	171
Zircronium	µg/L	0.06	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Metals, Dissolved Aluminum ⁵	μg/L	1.0	100	11.8	12.2	5	2.3	2.4	1	3	0.5
Aluminum *	μg/L μg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al	11.8	12.2	100	2.3	2.4	1	3 100	100
AI FLT Guideline Calc (based on median pH)	µg/L			50	50	50	50	50	50	50	50
Antimony Arsenic	µg/L	0.10	NG	0.12	0.13	0.3	0.15	0.16	0.15	0.11	<0.1
Barium	μg/L μg/L	0.10	NG	0.24	0.22	0.19 127	0.11 78.1	0.12 85.7	0.23 85.6	0.15 87.3	0.13 70
Beryllium Bismuth	µg/L	0.10	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0 0.005	NG Calc. based on Hardness	94 0.0089	98 0.0226	32 0.0188	28 0.0133	30 0.0146	47 0.0119	35 0.0089	28 0.0174
Cd FST Guideline Calc.	μg/L		Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	1.899	1.918	1.661	2.194	2.175	1.955	2.024	1.874
			455,000								
Cd FLT Guideline Calc.				0.457	0.457	0.444	0.457	0.457	0.457	0.457	0.457
Calcium Cesium	µg/L	50.0 0.01	NG NG	84600 0.012	86700 0.011	82700 <0.01	108000 <0.01	105000 <0.01	90600 <0.01	99400 <0.01	91000 <0.01
Chromium Cobalt	μg/L μg/L	0.10	NG NG	<0.5 0.2	<0.5 0.31	<0.5 0.13	<0.5 0.05	<0.5 0.05	<0.5 0.19	<0.5 0.15	<0.5
oopan	μg/L μg/L	0.20	Calc. based on BLM Model	0.34	0.33	0.43	0.34	0.37	0.21	0.3	0.24
Copper ⁶	1 · · ···· ···	1	BLM Ligand Model value	136.2	18.6	11.4	7.1	4.2	6 0.7	92.6	10.4
Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L			26.6	3.6	2.2		0.5		16.8	
Copper ⁶ Cu FST Guideline Value (Acute)		10.0 0.05	350 NG	26.6 5 <0.05	3.6 11 <0.05	2.2 5 <0.05	<0.05	5 <0.05	49 <0.05	16.8 27 <0.05	51 <0.05
Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium	μg/L μg/L μg/L μg/L	0.05 1.0	350 NG NG	5 <0.05 38.9	11 <0.05 24.9	5 <0.05 7	5 <0.05 9.4	5 <0.05 9.6	49 <0.05 9.8	27 <0.05 9.5	51 <0.05 8.8
Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium Magnesium Manganese	μg/L μg/L μg/L μg/L μg/L μg/L	0.05 1.0 5.0 0.10	350 NG NG NG NG NG	5 <0.05 38.9 24400 7.2	11 <0.05 24.9 24000 15	5 <0.05 7 16400 36	5 <0.05 9.4 21600 17.4	5 <0.05 9.6 22800 36.3	49 <0.05 9.8 23100 248	27 <0.05 9.5 20300 153	51 <0.05 8.8 19600 317
Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium Magnesium	μg/L μg/L μg/L μg/L μg/L	0.05 1.0 5.0	350 NG NG NG	5 <0.05 38.9 24400	11 <0.05 24.9 24000	5 <0.05 7 16400	5 <0.05 9.4 21600	5 <0.05 9.6 22800	49 <0.05 9.8 23100	27 <0.05 9.5 20300	51 <0.05 8.8 19600

Appendix B2: SBIAR Surface Water Analytical Results

				RBSBIAR-DS	RBSBIAR-DS	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US	RBSBIAR-US
Parameter	Unit	RDL	BCAWQG - FST 1	28-Sep-22	30-Oct-22	30-May-22	26-Jun-22	24-Jul-22	29-Aug-22	28-Sep-22	30-Oct-22
Phosphorus	µg/L	50.0	NG	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	3270	2950	3800	4380	4470	5340	4540	3710
Rubidium	µg/L	0.20	NG	1.2	0.89	0.55	0.68	0.84	0.69	0.71	0.61
Selenium	µg/L	0.05	NG	1.07	1.21	0.959	0.542	0.634	0.584	0.604	0.657
Silicon	µg/L	50.0	NG	4920	4550	3790	4750	5390	5600	5420	4780
Silver	μg/L	0.01	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	μg/L	50.0	NG	41700	47100	24600	31100	32900	37500	30800	26600
Strontium	μg/L	0.20	NG	373	385	371	265	247	224	258	244
Sulfur	μg/L	500	NG	35500	35400	26300	27800	33400	35600	33600	30800
Tellurium	μg/L	0.20	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/L	0.01	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thorium	μg/L	0.10	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	μg/L	0.10	NG	0.56	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	μg/L	0.30	NG	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	μg/L	0.10	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	μg/L	0.01	NG	1.26	1.74	1.06	1.12	1.03	0.92	0.93	0.93
Vanadium	μg/L	0.50	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	1.1	2.1	2.9	1.4	1	0.5	1.2	0.5
Zircronium	µg/L	0.06	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number				FJ2202748	FJ2203067	FJ2201382	FJ2201678	FJ2201959	F2202362	FJ2202748	FJ2203067
Laboratory Identification Number				FJ2202748-002	FJ2203067-003	FJ2201382-005	FJ2201678-005	FJ2201959-005	FJ2202362-002	FJ2202748-004	FJ2203067-005

Appendix B2: SBIAR Surface Water Analytical Results

Appendix B2: SBIAR Surface Water Analy	tical Re	sults		RBSBIAR-EDS	RBSBIAR-EDS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS	RBSBIAR-EUS
Parameter	Unit	RDL	BCAWQG - FST 1	30-May-22	26-Jun-22	25-Jan-22	30-May-22	26-Jun-22	24-Jul-22	29-Aug-22	28-Sep-22	30-Oct-22
Physical Parameters		1000										
Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃)	μg/L mg/L	1000 1.0	NG NG	2000 255	1000 159	1000 57.7	2700 258	3800 150	1000 233	4000 224	5000 215	5000 175
Electrical Conductivity (EC) Hardness as CaCO3, dissolved	μS/cm μg/L	2.0 500	NG NG	800 357000	555 274000	189 75800	727 335000	609 338000	730 389000	708 363000	668 335000	666 323000
Hardness as CaCO3, from total Ca/Mg (New January 2020)	µg/L			440000	264000	100000	382000	337000	343000	434000	384000	349000
pH Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	8.25 484000	8.32 362000	7.94 176000	8.2 446000	8.11 472000	7.49 510000	7.94 422000	8.09 400000	8.25 459000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	μg/L μg/L	3000 1000	NG NG	910000 <1000	3900 <1000	94100 <1000	2650000 <1000	5700 <1000	3100 <1000	24700 <1000	114000 <1000	16800 <1000
Alkalinity (Carbonate as CaCO ₃)	µg/L	1000	NG	<1000	4200	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	255000	155000	57700	258000	150000	233000	224000	215000	175000
Ammonia (NH₄ as N) Ammonia FST Guideline	μg/L μg/L	5.0	pH dependent (6.5-9.0) pH dependent (at Temp 4 °C or in situ T)	66.9 3150	<5 3150	128 6220	15.6 3950	13.2 4950	18.2 13600	<5 7420	23 4950	6.3 3150
Ammonia FLT Guideline		500		606	606	1430	759	952	1970	1430	952	606
Chloride (Cl ⁻) Nitrate (NO ₃ ⁻ as N)	μg/L μg/L	500 5.0-25.0	600000 NG	61100 1470	27200 721	14600 378	61500 1550	54500 926	69700 909	63300 441	53800 393	45600 1240
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	CI-dependent (> 10,000 µg/L) Guideline: 600 ug/L	6.6	4.8	64.9	4.3	7.3	2.4	2.5	2.7	13.2
Sulphate (SO ₄) ³	µg/L	300	NG	94400	98900	6070	44500	85400	76700	80500	84800	114000
SO4 FLT Guideline Calc	µg/L		NG	309000	309000	309000	309000	309000	309000	309000	309000	309000
Dissolved Organic Carbon (DOC) Metals, Total	mg/L	1.0	NG	2.1	1.74	15.9	2.07	2.68	1.87	1920	2.19	3.89
Aluminum	µg/L	3.00	NG	10400	58.9	3130	5500	83.8	42.3	41.9	80.2	170
Antimony Arsenic	μg/L μg/L	0.10 0.10	NG 5.0	1.47	0.17	0.54 3.44	1.08 9.6	0.24	0.14	0.12	0.12	0.16
Barium	μg/L μg/L	0.10	NG NG	774	163	201	474	225	247	278	230	113
Beryllium Bismuth	μg/L μg/L	0.10	NG	0.847	<0.1 <0.05	<0.5 <0.25	0.373	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	<50 1.33	29 0.0598	<50 0.242	<50 0.461	24 0.0308	28 0.0116	32 0.0078	25 0.0437	25 0.0535
Calcium	µg/L	50	NG	127000	77400	33300	112000	98900	99600	129000	108000	98600
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-1.0	NG NG	1.99 19.3	0.021	0.643	1.11 10.5	0.02	<0.01 <0.5	<0.01 <0.5	0.012	0.023 <0.5
Cobalt Copper ³	μg/L μg/L	0.10	110 Calc. based on Hardness	26.5 42.4	0.29	3.48 10.5	7.72 18	0.2	0.1 0.57	0.05	0.2	0.27
Copper ³		0.00	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of	42.4	1.02	10.5	٦ð	1.03	0.57	0.59	0.77	0.93
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000									
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L											
Iron Lead ³	μg/L μg/L	10 0.05	1000 101 - 348	31200 20.6	130 0.149	8470 4.02	16000 10.6	156 0.121	96 0.063	78 0.055	187 0.114	197 0.158
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3	412.55	294.57	57.4	380.46	384.81	416.97	416.97	380.46	363.20
			Hardness > 8000 : calc.									
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			19.40	14.80	5.5	18.15	18.32	19.57	19.57	18.15	17.47
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	28.4 29900	8.1 17200	5.4 4190	12.4 24900	9.9 21900	11.4 22900	11 27300	10.8 27700	8 25000
Manganese ³	µg/L	0.10	Calc. based on Hardness	926	9.61	230	380	12	6.63	15.3	17.8	17.5
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Applies to Hardness 25000-259000 µg/L Mn : calc.	3394.2	3394.2	1375.3	3394.2	3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			2175.8	1810.6	938.5	2079.0	2092.2	2316.6	2202.2	2079.0	2026.2
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	0.0062	<0.005 3.43	0.017 2.84	<0.005 1.89	0.0056	<0.005 1.13	<0.005 1.18	<0.005 1.14	<0.005 5.64
Nickel	μg/L	0.50 50.0	NG NG	80.8	1.51	10.6	23	1.39	0.66	0.73	0.87	1.68
Phosphorus Potassium	μg/L μg/L	50.0	NG	1240 5300	<50 4330	299 3020	569 4420	<50 4570	<50 4620	<50 4240	<50 4460	<50 4310
Rubidium Selenium	μg/L μg/L	0.2	NG	17.2 1.04	0.77	6.72 0.285	9.14 0.74	0.96	0.91	0.86	0.63	0.82
Silicon	µg/L	100.0	NG	17700	3890	6220	11700	3900	5230	3840	4190	4380
Silver ³ (Based on Hardness < or > 100000) Ag FST Guideline Calc	μg/L μg/L	0.01	0.10 - 3.0 Hardness ≤ 100,000 Ag = 0.10	0.433	<0.01 3.0	0.053	0.241 3.0	<0.01	<0.01 3.0	<0.01	<0.01 3.0	<0.01 3.0
Ag FLT Guideline Calc	µg/L		Hardness > 100,000 Ag = 3.0	1.5	1.5	0.050	1.5	1.5	1.5	1.5	1.5	1.5
Sodium	μg/L	50.0	NG	20000	15100	4460	9890	14300	16600	22100	18200	16200
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG NG	346	207	206	272	263	264	313	260	237
Tellerium	μg/L μg/L	0.2	NG	32900 <1	37800 <0.2	3780 <1	15300 <1	31600 <0.2	28400 <0.2	29900 <0.2	30100 <0.2	39700 <0.2
Thallium Thorium	μg/L μg/L	0.01	NG NG	0.467 3.9	<0.01 <0.1	0.09	0.252	0.018 <0.1	<0.01 <0.1	<0.01 <0.1	<0.01 <0.1	0.01 <0.1
Tin	µg/L	0.10	NG	0.72	0.43	<0.5	0.57	0.4	<0.1	0.18	0.32	<0.1
Titanium Tungsten	μg/L μg/L	0.3-4.5 0.10	NG NG	118 <0.5	1.18 <0.1	50.6 <0.5	109 <0.5	1.97 <0.1	1.12 <0.1	0.86	1.4 <0.1	4.6 <0.1
Uranium Vanadium	μg/L μg/L	0.01	NG NG	3.68 36.4	1.19 <0.5	0.806	2.03 19.4	1.61 0.65	1.12 0.77	1.33 0.68	1.24 0.78	2.46 0.94
Zinc ³ (Based on Hardness < or > 90,000)	μg/L	3.0	Calc. based on Hardness	201	1.5	41.5	56.1	1.5	1.5	1.5	1.5	1.5
Zn FST Guideline Calc.	µg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000	233.25	171.00	33.00	216.75	219.00	257.25	237.75	216.75	207.75
Za El X Ovidaliza Osla			500,000	188	146	7.50	188	188	188	188	188	182
Zn FLT Guideline Calc.		0.00	10									
Zircronium Metals, Dissolved	µg/L	0.06	NG	1	<0.2	<1	1.13	<0.2	<0.2	<0.2	<0.2	<0.2
Aluminum ⁵	µg/L	1.0	100 pH < 6.5 : calc. Al	130	5.8	18.2	4.8	8.9	5.3	6.7	4.6	11.9
Al FST Guideline Calc (based on pH)	µg/L		pH ≥ 6.5 : 100.0 Al	100	100	100	100	100	100	100	100	100
Al FLT Guideline Calc (based on median pH) Antimony	μg/L μg/L	0.10	NG	50	50	50	50	50	50	50	50	50
Arsenic	µg/L	0.10	NG	0.17 0.19	0.16	0.33	0.16	0.18 0.28	0.14 0.18	0.12	0.11 0.13	0.15 0.31
Barium	//	0.10	NG	181	169 <0.1	81.3 <0.1	193 <0.1	224 <0.1	264 <0.1	231 <0.1	201 <0.1	116 <0.1
Beryllium	μg/L μg/L	0.10	NG	<0.1								
Bismuth	μg/L	0.05	NG	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
			NG NG Calc. based on Hardness				<0.05 18 0.0478	<0.05 24 0.0279		<0.05 36 0.0025	<0.05 26 0.0089	<0.05 23 0.0552
Bismuth Boron	μg/L μg/L	0.05	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	<0.05 32	<0.05 25	<0.05 19	18	24	<0.05 27	36	26	23
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L μg/L	0.05	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	<0.05 32 0.203 2.182	<0.05 25 0.063 1.661	<0.05 19 0.0182 0.442	18 0.0478 2.043	24 0.0279 2.062	<0.05 27 0.0109 2.383	36 0.0025 2.219	26 0.0089 2.043	23 0.0552 1.968
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc.	μg/L μg/L μg/L μg/L	0.05 10.0 0.005	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	<0.05 32 0.203 2.182 0.457	<0.05 25 0.063 1.661 0.444	<0.05 19 0.0182 0.442 0.172	18 0.0478 2.043 0.457	24 0.0279 2.062 0.457	<0.05 27 0.0109 2.383 0.457	36 0.0025 2.219 0.457	26 0.0089 2.043 0.457	23 0.0552 1.968 0.457
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L μg/L	0.05	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	<0.05 32 0.203 2.182	<0.05 25 0.063 1.661	<0.05 19 0.0182 0.442	18 0.0478 2.043	24 0.0279 2.062	<0.05 27 0.0109 2.383	36 0.0025 2.219	26 0.0089 2.043	23 0.0552 1.968
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium	μg/L μg/L μg/L μg/L μg/L μg/L	0.05 10.0 0.005 50.0 0.01 0.10	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG	<0.05 32 0.203 2.182 0.457 103000 <0.01 <0.5	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82	<0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75	18 0.0478 2.043 0.457 99200 <0.01 <0.5	24 0.0279 2.062 0.457 97300 <0.01 <0.5	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5	36 0.0025 2.219 0.457 96600 <0.01 <0.5	26 0.0089 2.043 0.457 93600 <0.01 <0.5	23 0.0552 1.968 0.457 90400 <0.01 <0.5
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium	μg/L μg/L μg/L μg/L	0.05 10.0 0.005 50.0 0.01	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG	<0.05 32 0.203 2.182 0.457 103000 <0.01	<0.05 25 0.063 1.661 0.444 80400 <0.01	<0.05 19 0.0182 0.442 0.172 25800 <0.01	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01	<0.05 27 0.0109 2.383 0.457 111000 <0.01	36 0.0025 2.219 0.457 96600 <0.01	26 0.0089 2.043 0.457 93600 <0.01	23 0.0552 1.968 0.457 90400 <0.01
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt	<u>µg/L</u> <u>µg/L</u> µg/L <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> µg/L µg/L	0.05 10.0 0.005 50.0 0.01 0.10	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG	<0.05 32 0.203 2.182 0.457 103000 <0.01 <0.5 7.54 1.25 14.2	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82 0.17 0.84 11.9	<0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75 0.16 1.72 52	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01 <0.5 0.13 0.86 15.5	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5 0.05 0.53 5.9	36 0.0025 2.219 0.457 96600 <0.01 <0.5 0.05 0.37 10.1	26 0.0089 2.043 0.457 93600 <0.01 <0.5 0.05 0.42 112.8	23 0.0552 1.968 0.457 90400 <0.01 <0.5 0.19 0.66 24.9
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁹ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron	<u>µg/L</u> <u>µg/L</u> µg/L µg/L <u>µg/L</u> <u>µg/L</u> µg/L µg/L µg/L µg/L	0.05 10.0 0.005 50.0 0.01 0.10 0.20 10.0	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value 350	<0.05 32 0.203 2.182 0.457 103000 <0.01 <0.5 7.54 1.25 14.2 2.7 5	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82 0.17 0.84 11.9 2.3 5	<0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75 0.16 1.72 52 8.8 35	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01 <0.5 0.13 0.86 15.5 3.5 5	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5 0.05 0.53 5.9 0.8 5	36 0.0025 2.219 0.457 96600 <0.01 <0.5 0.05 0.37 10.1 1.8 5	26 0.0089 2.043 0.457 93600 <0.01 <0.5 0.05 0.42 112.8 20.8 5	23 0.0552 1.968 0.457 90400 <0.01 <0.5 0.19 0.66 24.9 4.7 17
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	<u>µg/L</u> <u>µg/L</u> µg/L µg/L <u>µg/L</u> <u>µg/L</u> µg/L µg/L µg/L	0.05 10.0 0.005 50.0 0.01 0.10 0.20	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value	<0.05 32 0.203 2.182 0.457 103000 <0.01 <0.5 7.54 1.25 14.2 2.7	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82 0.17 0.84 11.9 2.3	<0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75 0.16 1.72 52 8.8	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01 <0.5 0.13 0.86 15.5 3.5	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5 0.05 0.53 5.9 0.8	36 0.0025 2.219 0.457 96600 <0.01 <0.5 0.05 0.37 10.1 1.8	26 0.0089 2.043 0.457 93600 <0.01 <0.5 0.05 0.42 112.8 20.8	23 0.0552 1.968 0.457 90400 <0.01 <0.5 0.19 0.66 24.9 4.7
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cchoalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Acute) Iron Lead Lithium Magnesium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.05 10.0 0.005 50.0 0.01 0.10 0.20 	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG NG NG NG	<0.05 32 0.203 2.182 0.457 103000 <0.01 <0.5 7.54 1.25 14.2 2.7 5 0.059 18.1 24200	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82 0.17 0.84 11.9 2.3 5 0.063 7.7 17700	 <0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75 0.16 1.72 52 8.8 35 <0.05 2.3 2770 	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01 <0.5 0.13 0.86 15.5 3.5 5 <0.05 9.6 23100	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5 0.05 0.53 5.9 0.8 5 <0.05 10.9 27200	36 0.0025 2.219 0.457 96600 <0.01 <0.5 0.05 0.37 10.1 1.8 5 <0.05 10.9 29500	26 0.0089 2.043 0.457 93600 <0.01 <0.5 0.05 0.42 1112.8 20.8 5 <0.05 10.3 24700	23 0.0552 1.968 0.457 90400 <0.01 <0.5 0.19 0.66 24.9 4.7 17 <0.05 8.9 23600
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic) Iron Lead Lithium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.05 10.0 0.005 50.0 0.01 0.10 0.20 10.0 10.0 0.05 1.0	NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model BLM Ligand Model value 350 NG NG	<0.05 32 0.203 2.182 0.457 103000 <0.5 7.54 1.25 14.2 2.7 5 0.059 18.1	<0.05 25 0.063 1.661 0.444 80400 <0.01 0.82 0.17 0.84 11.9 2.3 5 0.063 7.7	<0.05 19 0.0182 0.442 0.172 25800 <0.01 0.75 0.16 1.72 52 8.8 35 <0.05 2.3	18 0.0478 2.043 0.457 99200 <0.01	24 0.0279 2.062 0.457 97300 <0.01 <0.5 0.13 0.86 15.5 3.5 5 <0.05 9.6	<0.05 27 0.0109 2.383 0.457 111000 <0.01 <0.5 0.05 0.53 5.9 0.8 5 <0.05 10.9	36 0.0025 2.219 0.457 96600 <0.01 <0.5 0.05 0.37 10.1 1.8 5 <0.05 10.9	26 0.0089 2.043 0.457 93600 <0.01 <0.5 0.05 0.42 112.8 20.8 5 <0.05 10.3	23 0.0552 1.968 0.457 90400 <0.01 <0.5 0.19 0.66 24.9 4.7 17 <0.05 8.9

Appendix B2: SBIAR Surface Water Analytical Results

				RBSBIAR-EDS	RBSBIAR-EDS	RBSBIAR-EUS						
Parameter	Unit	RDL	BCAWQG - FST 1	30-May-22	26-Jun-22	25-Jan-22	30-May-22	26-Jun-22	24-Jul-22	29-Aug-22	28-Sep-22	30-Oct-22
Phosphorus	µg/L	50.0	NG	<50	<50	<50	<50	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	3810	4420	2440	3970	4860	4930	5210	4270	4330
Rubidium	µg/L	0.20	NG	0.84	0.58	0.71	0.71	0.93	0.92	0.84	0.65	0.51
Selenium	µg/L	0.05	NG	0.864	1.65	0.198	0.603	1.21	0.784	0.824	0.818	0.95
Silicon	µg/L	50.0	NG	4100	3860	1650	4240	3900	5250	3620	4120	4160
Silver	µg/L	0.01	NG	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	21200	13900	4340	10400	15100	19200	22600	17900	16000
Strontium	µg/L	0.20	NG	272	198	184	241	248	274	262	266	243
Sulfur	µg/L	500	NG	34800	33600	3020	17400	31600	30600	34800	34300	41600
Tellurium	µg/L	0.20	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	0.016	0.01	<0.01	0.015	0.012	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	0.42	0.53	<0.1	1.86	0.39	<0.1	0.18	0.25	<0.1
Titanium	µg/L	0.30	NG	<0.3	<0.3	0.73	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Uranium	µg/L	0.01	NG	1.91	1.2	0.527	1.53	1.55	1.15	1.21	1.16	2.16
Vanadium	µg/L	0.50	NG	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	11.3	1.3	3.5	0.5	0.5	0.5	0.5	0.5	1.2
Zircronium	µg/L	0.06	NG	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number				FJ2201382	FJ2201678	FJ2200226	FJ2201382	FJ2201678	FJ2201959	F2202362	FJ2202748	FJ2203067
Laboratory Identification Number				FJ2201382-007	FJ2201678-007	FJ2200226-002	FJ2201382-006	FJ2201678-006	FJ2201959-004	FJ2202362-003	FJ2202748-005	FJ2203067-006

Notes: Screening completed on BC AWQG-FWAL FST 1 and FLT 2 guideline values. ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019), British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture Summary Report. 36 pp. Referenced for Freshwater Aquatic Life (FWAL) water use and Short Term Maximum (FST) guidelines. ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines. ² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines. ³ BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines. ³ BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines. ³ BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines. ³ BC Ministry of Environment, Water Berenced for Freshwater Aquatic Life (FWAL) water use and Long Term Average (FLT) guidelines. ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-specific guideline values are listed in parentheses after the laboratory result, where applicable. ⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

Guideline is Discoved Organic Carbon (DOC) dependent. BML Model assumed 10% DOC and Humic acid 10% of DOC value, due to no DOC in lab analysis. NG - No Guideline

NG - NG Guideline Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is requited due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. BOLD and shaded dark gray: Exceeds BCAWQG-FFST (Short-term Maximum) guideline. Shaded Light Gray: Exceeds BCAWQG-FLT (Long-term Average) guideline. RED - Measured value is below detection limit (DL); value shown is 50% of DL Blank - Not analyzed

Physical Parameters Acidity (Total as CaCO ₃) Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC) Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020) pH Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients Ammonia (NH4 as N)	μg/L mg/L μS/cm μg/L μg/L pH Units μg/L	1000; 2000 1.0 2.0				26 1/ 00	24-Jul-22	20 4	30-Oct-22
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC) Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020) pH Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	mg/L μS/cm μg/L μg/L pH Units	1.0			30-May-22	26-Jun-22	24-Jul-22	29-Aug-22	30-Oct-22
Electrical Conductivity (EC) Hardness as CaCO3, dissolved Hardness as CaCO3, from total Ca/Mg (New January 2020) pH Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	μS/cm μg/L μg/L pH Units		NG NG	NG NG	1000 312	1000 206	1000 265	1000 201	5000 216
Hardness as CaCO3, from total Ca/Mg (New January 2020) pH Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L pH Units		NG	NG	1090	1210	998	899	825
pH Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	pH Units	500	NG	NG	6920 21300	211000 268000	297000 273000	125000 284000	206000 255000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	0.10	6.5 - 9.0	6.5-9.0	10.3	8.35	7.73	8.73	8.3
Alkalinity (Hydroxide) as CaCO ₃ Alkalinity (Carbonate as CaCO ₃) Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	10000 3000	NG NG	NG NG	884000 37900	744000 109000	685000 29700	568000 5830000	553000 174000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	<1000	<1000	<1000	<1000	<1000
Anions and Nutrients	μg/L μg/L	1000 1000	NG NG	NG NG	257000 54500	4400 202000	<1000 265000	20200 181000	3000 213000
Ammonia (NH₄ as N)	P-9-								
	µg/L	5.0	pH dependent (6.5-9.0); GL capped at pH 9.0	pH dependent (6.5-9.0); GL capped at pH 9.0	1230	149	65.6	867	362
Ammonia FST Guideline Ammonia FLT Guideline	µg/L			ull demondent (at Tamp 4°C av in site T)	685 132	2520 484	10300 1980	1300 249	3150 606
Chloride (Cl ⁻)	µg/L	500	600000	pH dependent (at Temp 4 [°]C or in situ T) 150,000	88100	69900	56600	51600	39300
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0	NG	NG	278	1840	786	951	840
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	9.6	39.3	14.3	26.3	52.7
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000	88500	290000	231000	218000	184000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 76,000-180,000 = 309,000; Hardness 181,000-250,000 = 429,000;	309000	429000	309000	309000	309000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	Hardness > 250,000 site-specific NG	8.01	3.56	4.25	3890	3.48
Metals, Total									
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG NG	9130 3.99	1340 1.77	472 0.81	10500 2.7	890 1.93
Arsenic	µg/L	0.10	5.0	5.0	9.11	2.22	1.18	11.9	2.74
Barium Beryllium	μg/L μg/L	0.10 0.10	NG NG	NG NG	526 0.399	174 <0.1	102 <0.1	1440 1.09	137 <0.1
Bismuth	µg/L	0.05	NG	NG	<0.25	<0.05	<0.05	0.292	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	462 0.0768	244 0.0374	161 0.0456	250 0.472	135 0.0345
Calcium	µg/L	50	NG	NG	5420	77800 0.192	76300	87500	74400
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-1.0	NG NG	NG NG	1.4 14.1	0.192 9.45	0.062	2.66 16.9	0.142 2.96
Cobalt	µg/L	0.10	110	4.0	2.12	0.86	0.59	12.2	0.65
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	13.5	5.28	2.5	52.7	3.61
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of						
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L		400,000	Hardness 50,000 - 250,000: calc.;					
Iron	μg/L μg/L	10	1000	Hardness > 250,000, Cu = 10 NG	7770	1120	731	21200	1180
Lead ³	μg/L	0.05	101 - 348	Calc. based on Hardness	4.05	0.842	0.519	10.9	1.02
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3		3.0	211.2	326.4	108.5	204.9
to water hardness 8000-360,000 μg/L	P-37 -	ļ	Hardness > 8000 : calc.						
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	3.4	11.5	16.0	7.5	11.3
Lithium	µg/L	1.0	NG	Hardness > 8000 : calc. NG	48.8	32.7	22.8	44.9	22.6
Magnesium	μg/L	5.0	NG	NG	1890	18000	20000	16000	16800
Manganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	53.3	20.5	30.1	332	34.6
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L	ļ	Mn : calc.		616.3	2865.2	3394.2	1917.5	2810.1
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 μg/L Mn : calc.	635.4	1533.4	1911.8	1155.0	1511.4
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	<0.005 44	0.0076 25.3	<0.005 7.68	<0.005 10.6	<0.005 45.8
Nickel	μg/L μg/L	0.50	NG	3 1000	7.82	2.08	2.39	25.5	2.11
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG NG	310 26800	75 12800	50 5680	1940 7110	132 10300
Rubidium	μg/L	0.2	NG	NG	40.2	9.05	3.92	31.2	10.6
Selenium Silicon	μg/L μg/L	0.05	NG NG	2.0 NG	1.35 21300	3.39 10500	4.86 5670	3.19 23100	3.95 8060
Silver ³ (Based on Hardness < or > 100000)	μg/L	0.01	0.10 - 3.0	0.05 - 1.5	0.208	0.022	0.011	0.142	0.011
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		0.100	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L			Hardness ≤ 100,000 Ag = 0.05	0.050	1.5	1.5	1.5	1.5
Sodium	μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	219000	196000	104000	174000	108000
Strontium Sulfur	μg/L μg/L	0.2 500.0	NG NG	NG NG	99.6 33000	276 111000	316 81300	474 68100	191 61100
Tellerium	μg/L μg/L	0.2	NG	NG	<1	<0.2	<0.2	<1	<0.2
Thallium Thorium	μg/L μg/L	0.01 0.10	NG NG	NG NG	0.07 <0.5	0.027	0.018 <0.1	0.149	0.018 0.4
Tin	µg/L	0.10	NG	NG	1.46	0.66	2.11	0.51	0.46
Titanium Tungsten	μg/L μg/L	0.3-4.5	NG NG	NG NG	10.6 3.78	30.1 0.91	9.37 0.71	51.5 <0.5	15.3 1.95
Uranium	µg/L	0.01	NG	NG	0.66	2.74	2.16	5.68	2.41
Vanadium Zinc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50	NG Calc. based on Hardness	NG Calc. based on Hardness	34.5 41.1	6.45 17.7	2.8 16.6	30.2 213	9.16 24.2
		0.0	Hardness 90,000 - 500,000, Calc.	Caro, pasoa on haraness					
Zn FST Guideline Calc.	µg/L	ĺ	Hardness > 500,000, is Capped Value of 500,000		33.0	123.8	188.3	59.3	120.0
Zn FLT Guideline Calc.	uc/			Hardness 90,000 - 330,000, Calc.	7.5	98.25	162.75	33.75	94.5
	µg/L	 		Hardness > 330,000, is Capped Value of 330,000					
Zircronium Metals, Dissolved	µg/L	0.06	NG	NG	<1	1.52	0.36	2.18	1.38
Aluminum ⁵	µg/L	1.0	100	50	1960	207	112	133	164
AI FST Guideline Calc (based on pH)	μg/L		pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al		100	100	100	100	100
AI FLT Guideline Calc (based on median pH)	µg/L			median pH < 6.5 : calc. Al	50	50	50	50	50
	μg/L	0.10	NG	median pH ≥ 6.5 : 50.0 Al NG	7.1	1.35	0.87	4.73	1.85
Antimony	μg/L μg/L	0.10	NG NG	NG NG	7.99 74.2	1.38 87.9	0.95 92	3.82 614	2.35 92.3
Arsenic	μg/L μg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Arsenic Barium Beryllium	1	0.05	NG NG	NG NG	<0.05 429	<0.05 241	<0.05 131	<0.05 272	<0.05 127
Arsenic Barium Beryllium Bismuth	Uu/I	0.005	Calc. based on Hardness	Calc. based on hardness	0.0124	0.0096	0.006	0.013	0.0059
Arsenic Barium Beryllium	μg/L μg/L		Hardness 7,000 - 455,000, Calc.			1			
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L				0 04	1 97	1 80	0.74	1 9/
Arsenic Barium Beryllium Bismuth Boron			Hardness 7,000 - 435,000, calc. Hardness > 455,000, is Capped Value of 455,000		0.04	1.27	1.80	0.74	1.24
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	µg/L		Hardness > 455,000, is Capped Value of	Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	0.04	0.37	0.46	0.74	0.36
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L μg/L		Hardness > 455,000, is Capped Value of 455,000	Hardness > 285,000, is Capped Value of 285,000	0.03	0.37	0.46	0.25	0.36
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L	50.0 0.01	Hardness > 455,000, is Capped Value of	Hardness > 285,000, is Capped Value of					
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium	μg/L μg/L μg/L μg/L μg/L μg/L	50.0 0.01 0.10	Hardness > 455,000, is Capped Value of 455,000 NG NG NG	Hardness > 285,000, is Capped Value of	0.03 2430 0.023 4.11	0.37 54000 0.044 6.62	0.46 81000 0.014 0.54	0.25 30400 0.044 1.23	0.36 55800 0.024 2.11
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 0.01	Hardness > 455,000, is Capped Value of 455,000 NG NG	Hardness > 285,000, is Capped Value of 285,000 NG NG	0.03 2430 0.023	0.37 54000 0.044	0.46 81000 0.014	0.25 30400 0.044	0.36 55800 0.024
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 0.01 0.10 0.10	Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG	Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model	0.03 2430 0.023 4.11 <0.1 0.93 121.7	0.37 54000 0.044 6.62 0.16 0.9 31.1	0.46 81000 0.014 0.54 0.14 0.68 22	0.25 30400 0.044 1.23 0.11 2.53 43.2	0.36 55800 0.024 2.11 <0.1 0.67 29.7
Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 0.01 0.10 0.10	Hardness > 455,000, is Capped Value of 455,000 NG NG NG Calc. based on BLM Model	Hardness > 285,000, is Capped Value of	0.03 2430 0.023 4.11 <0.1 0.93	0.37 54000 0.044 6.62 0.16 0.9	0.46 81000 0.014 0.54 0.14 0.68	0.25 30400 0.044 1.23 0.11 2.53	0.36 55800 0.024 2.11 <0.1 0.67

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2 DS	L2 DS	L2 DS	L2 DS	L2-DS
					30-May-22	26-Jun-22	24-Jul-22	29-Aug-22	30-Oct-22
Magnesium	μg/L	5.0	NG	NG	208	18400	23000	12000	16300
Manganese	μg/L	0.10	NG	NG	0.41	0.72	9.83	2.85	4.38
Mercury	μg/L	0.005	NG	NG	<0.005	< 0.005	<0.005	<0.005	< 0.005
Molybdenum	μg/L	0.05	NG	NG	50.8	22.1	7.84	14.5	42.2
Nickel	µg/L	0.50	NG	NG	0.99	0.8	1.51	0.83	1.05
Phosphorus	µg/L	50.0	NG	NG	60	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	25200	12000	5480	7530	9680
Rubidium	µg/L	0.20	NG	NG	20.4	7.07	3.46	3.15	7.65
Selenium	µg/L	0.05	NG	2.0	1.46	3.51	5.62	2.91	5.36
Silicon	µg/L	50.0	NG	NG	11200	8740	4840	5420	7440
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	224000	186000	106000	187000	102000
Strontium	µg/L	0.20	NG	NG	40.6	205	329	240	173
Sulfur	μg/L	500	NG	NG	33700	100000	80300	91000	68400
Tellurium	μg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	μg/L	0.01	NG	NG	<0.01	0.012	<0.01	0.02	<0.01
Thorium	μg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	μg/L	0.10	NG	NG	1.16	0.2	2.54	0.16	0.19
Titanium	μg/L	0.30	NG	NG	0.69	0.7	<0.3	<0.3	0.71
Tungsten	μg/L	0.10	NG	NG	10.2	0.89	0.98	0.66	2.02
Uranium	μg/L	0.01	NG	NG	0.292	2.5	2.04	2.94	2.1
Vanadium	μg/L	0.50	NG	NG	16.8	3.72	1.16	5.3	6.53
Zinc	μg/L	1.00	NG	NG	1.6	1.1	3	<1	<1
Zircronium	μg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					FJ2201382	FJ2201678	FJ2201959	F2202362	FJ2203067
Laboratory Identification Number					FJ2201382-001	FJ2201678-001	FJ2201959-001	FJ2202362-004	FJ2203067-002

Appendix B3 L2 Powerhouse Area Water Ar	nalytical	Results			10.50	10.00		10.10	10.10
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2-DS	L2-DS	L2 US	L2 US	L2 US
Physical Parameters					28-Nov-22	11-Dec-22	26-Jan-22	18-Apr-22	30-May-22
Acidity (Total as CaCO ₃)	μg/L	1000; 2000	NG	NG	5000	3600	1000	1000	2800
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	NG NG	NG NG	161 384	201 525	75.4 598	250 948	212 1240
Hardness as CaCO3, dissolved	μg/L	500	NG	NG	148000	214000	244000	234000	498000
Hardness as CaCO3, from total Ca/Mg (New January 2020) pH	µg/L pH Units	0.10	6.5 - 9.0	6.5-9.0	152000 8.45	211000 8.46	259000 8.25	235000 8.06	502000 8.16
Total Dissolved Solids (TDS)	μg/L	10000	NG	NG	246000	392000	451000	604000	934000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	μg/L μg/L	3000 1000	NG NG	NG NG	3900 <1000	4000 <1000	24600 <1000	7200 <1000	17300 <1000
Alkalinity (Carbonate as CaCO ₃)	μg/L	1000	NG	NG	9200	15200	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃) Anions and Nutrients	µg/L	1000	NG	NG	152000	186000	75300	250000	212000
Ammonia (NH₄ as N)	µg/L	5.0		pH dependent (6.5-9.0); GL capped at pH					
Ammonia FST Guideline	μg/L	5.0	9.0	9.0	24 2010	37.1 2010	89.7 3150	71.3 4950	10.1 3950
Ammonia FLT Guideline	-3/-			pH dependent (at Temp 4 °C or in situ T)	387	387	606	952	759
Chloride (Cl ⁻)	µg/L	500 5.0-25.0	600000 NG	150,000 NG	6700	10700	10900	14200	18900
Nitrate (NO ₃ ⁻ as N) Nitrite (NO $_2^-$ as N)	μg/L μg/L	1.0-5.0	CI-dependent (> 10,000 µg/L)	CI-dependent (> 10,000 µg/L)	286 3.9	445 5.5	470 43.7	120 9.7	607 5.3
Sulphate (SO ₄) 3		300	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000	53600	81200	203000	222000	450000
	µg/L	300	NG	Hardness 76,000-180,000 = 309,000;	53000	81200	203000	222000	450000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific	309000	309000	309000	309000	429000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	2.18	1.36	16	0.92	2.68
Metals, Total Aluminum	μg/L	3.00	NG	NG	139	119	624	157	126
Antimony	µg/L	0.10	NG	NG	0.32	0.64	0.53	0.31	0.6
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	0.5 48.8	0.68 65.5	1.08 158	0.67 66.2	0.42
Beryllium	µg/L	0.10	NG	NG	<0.1	0.176	<0.1	<0.1	<0.1
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.05 34	<0.05 55	<0.05 64	<0.05 324	<0.05 268
Cadmium	µg/L	0.005	NG	NG	0.0183	0.0244	0.396	0.0397	0.21
Calcium Cesium	μg/L μg/L	50 0.01	NG NG	NG NG	44900 0.026	59100 0.066	77200 0.15	66500 0.024	142000 0.029
Chromium ⁴	μg/L	0.1-1.0	NG	NG	0.61	1.14	2.96	<0.5	0.74
Cobalt Copper ³	μg/L μg/L	0.10 0.50	110 Calc. based on Hardness	4.0 2 to 10	0.15 1.19	0.21 0.83	8.64 6.56	0.96	3.18 1.66
		0.00	Hardness 13,000 - 400,000 : calc.;	2 10 10	1.13	0.00	0.00	0.90	1.00
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness ≥ 400,000 is Capped Value of 400,000						
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10					
Iron	μg/L	10	1000	NG	109	80	1320	267	233
Lead ³	µg/L	0.05	101 - 348	Calc. based on Hardness	0.101	0.155	0.462	0.215	0.136
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 μg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3		134.5	215.1	254.1	241.0	417.0
to water hardness 6000-360,000 µg/L			Hardness > 8000 : calc.	Applies to Hardness 8000-360,000					
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG	8.6	11.7	13.2	12.7	19.6
Lithium	μg/L	1.0	NG	Hardness > 8000 : calc. NG	6.3	9.8	27.5	76.3	74.4
Magnesium	µg/L	5.0	NG	NG	9710	15500	16200	16800	35700
Manganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	5.29	3.66	169	130	114
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Mn : calc.	Applies to Hardness 37000-450000 µg/L	2171.0	2898.3	3228.88	3118.68	3394.18
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Mn : calc.	1256.2	1546.6	1678.6	1634.6	2585
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	NG 2000	Calc. ≤ 1000	<0.005 3.15	<0.005 5.07	0.006	<0.005 1.82	0.0066 3.64
Nickel	µg/L	0.50	NG		0.76	0.84	28.6	4.25	23.5
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG NG	<50 2170	101 3760	60 3400	<50 1980	<50 3490
Rubidium	µg/L	0.2	NG	NG	1.71	2.42	4	1.06	1.45
Selenium Silicon	μg/L μg/L	0.05 100.0	NG NG	2.0 NG	0.897 3920	1.58 5870	2.32 3580	1.61 3420	2.86 4500
Silver ³ (Based on Hardness < or > 100000)	μg/L	0.01	0.10 - 3.0	0.05 - 1.5	<0.01	0.02	0.013	<0.01	0.038
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	μg/L			Hardness ≤ 100,000 Ag = 0.05	1.5	1.5	1.5	1.5	1.5
Sodium	μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	24800	36500	23000	144000	99700
Strontium Sulfur	μg/L	0.2 500.0	NG NG	NG NG	122 20300	134 28900	352 78000	509 93900	815 167000
Tellerium	μg/L μg/L	0.2	NG	NG	<0.2	0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	0.025	0.021	< 0.01	0.018
Thorium Tin	μg/L μg/L	0.10 0.10	NG NG	NG NG	<0.1 0.3	<0.1 0.18	0.24	<0.1 0.14	<0.1 0.16
Titanium	µg/L	0.3-4.5 0.10	NG NG	NG NG	3.14 <0.1	1.16 0.24	7.7 0.53	3.22 <0.1	2.26 <0.1
Tungsten Uranium	μg/L μg/L	0.01	NG	NG	0.938	1.66	1.57	1.55	2.78
Vanadium Zing ³ (Record on Hardness < or > 00,000)	µg/L	0.50 3.0	NG Calc. based on Hardness	NG Calc. based on Hardness	1.04	1.71 3.2	1.86 59.5	1.22	0.73 22.6
Zinc ³ (Based on Hardness < or > 90,000)	µg/L	3.U	Hardness 90,000 - 500,000, Calc.	Gaid, pased on Hardness	3.7		J9.5	10.2	
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of 500,000		76.5	126.0	148.5	141.0	339.0
			000,000						
				Hardness 90,000 - 330,000, Calc.					187.5
Zn FLT Guideline Calc.	µg/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	51	100.5	123	115.5	
Zircronium	μg/L μg/L	0.06	NG	Hardness > 330,000, is Capped Value of	51 <0.2	100.5 0.22	123 0.3	115.5 <0.2	<0.2
		0.06	NG 100	Hardness > 330,000, is Capped Value of 330,000					<0.2
Zircronium Metals, Dissolved	µg/L		100 pH < 6.5 : calc. Al	Hardness > 330,000, is Capped Value of 330,000 NG	<0.2	0.22	0.3	<0.2	
Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH)	μg/L μg/L μg/L		100	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al	<0.2 41.3 100	0.22 66.6 100	0.3 104 100	<0.2 8 100	17.8 100
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH)	μg/L μg/L μg/L μg/L		100 pH < 6.5 : calc. Al	Hardness > 330,000, is Capped Value of 330,000 NG 50	<0.2 41.3	0.22	0.3	<0.2	17.8
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic	μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG	<0.2 41.3 100 50 0.33 0.38	0.22 666.6 100 50 0.53 0.51	0.3 104 100 50 0.51 0.38	<0.2 8 100 50 <0.5 <0.5	17.8 100 50 0.62 0.32
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic Barium	μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG	<0.2 41.3 100 50 0.33	0.22 666.6 100 50 0.53	0.3 104 100 50 0.51	<0.2 8 100 50 <0.5	17.8 100 50 0.62
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) AI FLT Guideline Calc (based on median pH) Al FLT Guideline Calc (based on median pH) Bismuth	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05	100 pH < 6.5 : caic. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05
Zircronium Metals, Dissolved Aluminum ⁶ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Artsenic Barium Beryllium Bismuth Boron	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48	<0.2 8 100 50 <0.5 <2.6 <0.1 <0.25 336	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Bismuth Bismuth Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25 336 0.0125	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184
Zircronium Metals, Dissolved Aluminum ⁶ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Artsenic Barium Beryllium Bismuth Boron	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48	<0.2 8 100 50 <0.5 <2.6 <0.1 <0.25 336	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252
Zircronium Metals, Dissolved Aluminum ⁶ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) AI FLT Guideline Calc (based on median pH) Artimony Arsenic Barium Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc.	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47	<0.2 8 100 50 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Bismuth Bismuth Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG Calc. based on hardness	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25 336 0.0125	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005 50.0	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG Calc. based on hardness Hardness > 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28 42900	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37 60200	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41 73200	<0.2 8 100 50 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40 65900	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80 0.46 138000
Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al MG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80 0.46
Zircronium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Al FLT Guideline Calc (based on median pH) Al FLT Guideline Calc (based on median pH) Arisenic Barium Barium Beryllium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10 0.10	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28 42900 <0.01 <0.5 <0.1	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37 60200 <0.01 0.85 <0.1	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41 73200 <0.01 2 6.27	<0.2 8 100 50 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40 65900 <0.05 <0.5 0.58	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80 0.46 138000 <0.01 <0.5 2.89
Zircronium Metals, Dissolved Aluminum ⁶ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Al FLT Guideline Calc (based on median pH) Artsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG Calc. based on BLM Model	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28 42900 <0.01 <0.5 <0.1 0.58	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37 60200 <0.01 0.85	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41 73200 <0.01 2 6.27 4.13	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40 65900 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80 0.46 138000 <0.01 <0.5 2.89 1.16
Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FST Guideline Value (Chronic)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10 0.10 0.20	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG Calc. based on BLM Model BLM Ligand Model value	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al MG NG NG NG Calc. based on hardness Calc. based on hardness Hardness > 285,000, Calc. Hardness > 285,000, Calc. Hardness > 285,000 NG NG NG NG NG NG Calc. based on BLM Model NG NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28 42900 <0.01 <0.5 <0.1 0.58 15.2 2.9	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37 60200 <0.01 0.85 <0.1 0.45 11.4 2.2	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41 73200 <0.01 2 6.27 4.13 101.6 19.3	<0.2 8 100 50 <0.5 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40 65900 <0.5 <0.5 0.58 1.23 142.9 25 25	17.8 100 50 0.62 0.32 77.9 <0.1
Zircronium Metals, Dissolved Aluminum ⁵ AI FST Guideline Calc (based on pH) AI FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10 0.10	100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG Calc. based on BLM Model	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG NG NG NG NG NG NG	<0.2 41.3 100 50 0.33 0.38 44 <0.1 <0.05 35 0.0053 0.88 0.28 42900 <0.01 <0.5 <0.01 <0.5 <0.1 0.58 15.2	0.22 66.6 100 50 0.53 0.51 59.8 <0.1 <0.05 60 0.0025 1.29 0.37 60200 <0.01 0.85 <0.1 0.45 11.4	0.3 104 100 50 0.51 0.38 138 <0.1 <0.05 48 0.197 1.47 0.41 73200 <0.01 2 6.27 4.13 101.6	<0.2 8 100 50 <0.5 52.6 <0.1 <0.25 336 0.0125 1.41 0.40 65900 <0.05 <0.5 <0.5 1.23 142.9	17.8 100 50 0.62 0.32 77.9 <0.1 <0.05 252 0.184 2.80 0.46 138000 <0.01 <0.5 2.89 1.16 20.2

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2-DS	L2-DS	L2 US	L2 US	L2 US
					28-Nov-22	11-Dec-22	26-Jan-22	18-Apr-22	30-May-22
Magnesium	µg/L	5.0	NG	NG	9970	15400	14900	16900	37300
Manganese	μg/L	0.10	NG	NG	1.78	1.38	135	89.5	110
Mercury	µg/L	0.005	NG	NG	<0.005	<0.005	<0.005	< 0.005	<0.005
Molybdenum	µg/L	0.05	NG	NG	3.09	5	5.06	1.41	3.63
Nickel	µg/L	0.50	NG	NG	0.66	<0.5	21.9	3.28	21.9
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<250	<50
Potassium	µg/L	50.0	NG	NG	2150	3890	3490	1860	3830
Rubidium	µg/L	0.20	NG	NG	1.48	2.34	3.18	<1	1.4
Selenium	µg/L	0.05	NG	2.0	1.18	1.72	2.48	1.13	3.13
Silicon	µg/L	50.0	NG	NG	3750	5690	2920	2840	4510
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.05	<0.01
Sodium	µg/L	50.0	NG	NG	20700	33600	22200	140000	108000
Strontium	µg/L	0.20	NG	NG	114	141	348	520	743
Sulfur	µg/L	500	NG	NG	18900	32700	74000	97100	169000
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<1	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	0.012	<0.01	<0.05	0.015
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.5	<0.1
Tin	µg/L	0.10	NG	NG	0.26	<0.1	2.02	<0.5	0.11
Titanium	μg/L	0.30	NG	NG	<0.3	<0.3	0.3	<1.5	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	0.15	0.6	<0.5	<0.1
Uranium	µg/L	0.01	NG	NG	1.07	1.56	1.42	1.35	2.55
Vanadium	µg/L	0.50	NG	NG	0.65	0.92	<0.5	<2.5	<0.5
Zinc	µg/L	1.00	NG	NG	2.1	<1	15.6	<5	21.3
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<1	<0.2
Laboratory Work Order Number					FJ2203325	FJ2203454	FJ2200232	FJ2200923	FJ2201382
Laboratory Identification Number					FJ2203325-003	FJ2203454-001	FJ2200232-001	FJ2200923-004	FJ2201382-002

Appendix B3 L2 Powerhouse Area Water An	nalytical	Results							
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2 US	L2 US	L2 US	L2-US	L2-US
Physical Parameters					26-Jun-22	24-Jul-22	29-Aug-22	28-Sep-22	30-Oct-22
Acidity (Total as CaCO ₃)	µg/L	1000; 2000	NG	NG	6400	1000	1000	4200	5000
Alkalinity (Total as CaCO ₃) Electrical Conductivity (EC)	mg/L µS/cm	1.0 2.0	NG NG	NG NG	200 1060	347 1140	276 862	240 793	202 553
Hardness as CaCO3, dissolved	μg/L	500	NG	NG	427000	514000	384000	367000	260000
Hardness as CaCO3, from total Ca/Mg (New January 2020) pH	µg/L pH Units	0.10	6.5 - 9.0	6.5-9.0	431000 8.09	461000 7.58	389000 8.15	417000 8.05	260000 8.29
Total Dissolved Solids (TDS)	µg/L	10000	NG	NG	794000	833000	554000	546000	373000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	µg/L	3000	NG NG	NG NG	4700	19500 <1000	16900 <1000	22800 <1000	5600 <1000
Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG	NG	<1000 <1000	<1000	<1000	<1000	<1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	200000	347000	276000	240000	202000
Anions and Nutrients			pH dependent (6.5-9.0); GL capped at pH	pH dependent (6.5-9.0); GL capped at pH					
Ammonia (NH₄ as N) Ammonia FST Guideline	µg/L	5.0	9.0	9.0	26.4 4950	<5 11900	<5 3950	18.3 4950	7.2 3150
Ammonia FST Guideline Ammonia FLT Guideline	µg/L			pH dependent (at Temp 4 °C or in situ T)	4950 952	1900	759	4950 952	606
Chloride (Cl ⁻)	µg/L	500	600000	150,000	22400	32900	21400	21800	6430
Nitrate (NO ₃ ⁻ as N)	µg/L	5.0-25.0	NG CI-dependent (> 10,000 µg/L)	NG Cl-dependent (> 10,000 µg/L)	330	991	1060	995	849
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Guideline: 600 ug/L	Guideline: 200 ug/L	<5	<5	<5	2.7	1
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000;	323000	290000	200000	196000	102000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000;	429000	429000	309000	309000	309000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	Hardness > 250,000 site-specific NG	1.84	3.17	1830	1830	2.34
Metals, Total									
Aluminum Antimony	μg/L μg/L	3.00 0.10	NG NG	NG NG	71.7 0.57	97.4 0.5	153 0.53	234 0.44	73.6 0.35
Arsenic	µg/L	0.10	5.0	5.0	0.61	0.5	0.6	0.56	0.28
Barium Beryllium	μg/L μg/L	0.10	NG NG	NG NG	76.4 <0.1	79.7 <0.1	71.6 <0.1	85.8 <0.1	77.4 <0.1
Bismuth	µg/L	0.05	NG	NG	<0.05	<0.05	<0.05	<0.05	<0.05
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	356 0.0649	155 0.0427	94 0.0324	61 0.0268	35 0.025
Cadmium Calcium	μg/L μg/L	50	NG	NG	124000	130000	108000	120000	76800
Cesium	µg/L	0.01	NG	NG	0.017	0.019	0.031	0.052	0.012
Chromium ⁴ Cobalt	μg/L μg/L	0.1-1.0 0.10	NG 110	NG 4.0	<0.5 0.35	0.71 0.25	0.88 0.25	1.26 0.36	1.04 0.2
Copper ³	μg/L	0.50	Calc. based on Hardness	2 to 10	0.93	1	1.36	2.13	0.62
Cu FST Guideline Calc. (relevant prior to August 2019)	µg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of						
	13		400,000						
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10					
lron	µg/L	10 0.05	1000 101 - 348	NG Calc. based on Hardness	204	182	343	345	98
Lead ³	µg/L	0.05	101 - 348 Based on Hardness 8000-360,000	Calc. based on Hardness	0.088	0.142	0.174	0.295	0.057
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Hardness ≤ 8000: 3 Hardness > 8000 : calc.		417.0	417.0	417.0	417.0	275.5
				Applies to Hardness 8000-360,000			417.0		
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Hardness ≤ 8000, NG Hardness > 8000 : calc.	19.6	19.6	19.6	19.6	14.1
Lithium	μg/L	1.0	NG	NG	72.5	32.2	18.6	14	8.5
Magnesium Manganese ³	μg/L μg/L	5.0 0.10	NG Calc. based on Hardness	NG Calc. based on Hardness	29400 178	33100 13.4	29000 10.4	28600 11.7	16700 6.78
Mn FST Guideline Calc (Based on Hardness as CaCO3)	μg/L	0.10	Applies to Hardness 25000-259000 µg/L		3394.18	3394.18		3394.18	3394.18
· · · · · · · · · · · · · · · · · · ·			Mn : calc.	Applies to Hardness 37000-450000 µg/L			3394.18		
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L	0.005	NG	Mn : calc. Calc.	2483.8	2585 <0.005	2294.6 <0.005	2219.8	1749
Mercury (Based on methyl Hg & total mass Hg) Molybdenum	μg/L μg/L	0.005	2000	≤ 1000	<0.005	2.03	2.14	<0.005 3.07	0.0135 2.09
Nickel	µg/L	0.50	NG		5.93	2.59	1.89	1.68	1.86
Phosphorus Potassium	μg/L μg/L	50.0 50.0	NG NG	NG NG	<50 3450	<50 3610	<50 3350	51 3360	<50 2500
Rubidium	µg/L	0.2	NG	NG	1.68	1.62	1.65	2	1.03
Selenium Silicon	μg/L μg/L	0.05 100.0	NG NG	2.0 NG	1.03 5270	15.8 5820	11.5 5660	9.01 5840	3.73 4530
Silver ³ (Based on Hardness < or > 100000)	μg/L	0.01	0.10 - 3.0	0.05 - 1.5	<0.01	<0.01	<0.01	<0.01	<0.01
Ag FST Guideline Calc	µg/L		Hardness ≤ 100,000 Ag = 0.10 Hardness > 100,000 Ag = 3.0		3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc	µg/L			Hardness ≤ 100,000 Ag = 0.05 Hardness > 100,000 Ag = 1.5	1.5	1.5	1.5	1.5	1.5
Sodium	µg/L	50.0	NG	NG	116000	83400	64400	55600	16400
Strontium	µg/L	0.2 500.0	NG NG	NG NG	881	521 107000	357	282 70900	219
Sulfur Tellerium	μg/L μg/L	0.2	NG	NG	124000 <0.2	<0.2	83900 <0.2	<0.2	37900 <0.2
Thallium	µg/L	0.01	NG	NG	0.021	0.014	0.01	0.012	<0.01
Thorium Tin	μg/L μg/L	0.10	NG NG	NG NG	<0.1 0.2	<0.1 0.28	0.13 0.14	<0.1 0.29	<0.1 <0.1
Titanium	µg/L	0.3-4.5	NG	NG	1.42	2.49	4.29	5.77	1.38
Tungsten Uranium	μg/L μg/L	0.10	NG NG	NG NG	<0.1 2.28	<0.1 2.6	<0.1 2.37	0.27 2.33	<0.1 1.48
Vanadium	μg/L	0.50	NG	NG	0.75	1.11	1.68	1.28	0.57
Zinc ³ (Based on Hardness < or > 90,000)	µg/L	3.0	Calc. based on Hardness Hardness 90,000 - 500,000, Calc.	Calc. based on Hardness	10.5	6.4	6.2	5.6	3.4
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of		285.8	340.5	252.5	240.8	160.5
		<u> </u>	500,000	Hardness 90,000 - 330,000, Calc.			253.5		
Zn FLT Guideline Calc.	µg/L	Ĩ		Hardness > 330,000, is Capped Value of 330,000	187.5	187.5	187.5	187.5	135
Zircronium	μg/L	0.06	NG	330,000 NG	<0.2	<0.2	<0.2	0.31	<0.2
Metals, Dissolved		1.0	100	50	7.0	7		40.4	26.0
Aluminum ⁵	µg/L	1.0	100 pH < 6.5 : calc. Al	ວບ	7.2		6.2	13.1	26.2
AI FST Guideline Calc (based on pH)	µg/L		pH ≥ 6.5 : 100.0 Al	median pH < 6.5 : calc. Al	100	100	100	100	100
AI FLT Guideline Calc (based on median pH)	µg/L			median pH ≥ 6.5:50.0 AI	50	50	50	50	50
Antimony Arsenic	μg/L μg/L	0.10	NG NG	NG NG	0.49	0.56	0.49	0.39	0.35
Barium	µg/L	0.10	NG	NG	73.2	82.5	63.2	73.5	76.2
Beryllium	μg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05	<0.1 <0.05
	P-9/-	0.055		NG	370	134	89	62	33
Bismuth Boron	µg/L	10.0	NG			134	09	02	
Bismuth			Calc. based on Hardness	Calc. based on hardness	0.0514	0.0295	0.0151	0.0188	0.0165
Bismuth Boron	µg/L	10.0	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of				0.0151		0.0165
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0	Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Calc. based on hardness	0.0514	0.0295		0.0188	
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L	10.0	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	0.0514	0.0295	0.0151 2.35	0.0188	
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc.	μg/L μg/L μg/L μg/L	10.0 0.005	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000	0.0514 2.62 0.46	0.0295	0.0151 2.35 0.46	0.0188 2.24 0.46	1.57 0.43
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG	0.0514 2.62 0.46 120000 <0.01	0.0295 2.80 0.46 142000 <0.01	0.0151 2.35 0.46 107000 <0.01	0.0188 2.24 0.46 104000 <0.01	1.57 0.43 75500 <0.01
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01 0.10	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG	0.0514 2.62 0.46 120000 <0.01 <0.5	0.0295 2.80 0.46 142000 <0.01 0.54	0.0151 2.35 0.46 107000 <0.01 0.6	0.0188 2.24 0.46 104000 <0.01 0.89	1.57 0.43 75500 <0.01 0.95
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG	0.0514 2.62 0.46 120000 <0.01 <0.5 0.39 0.57	0.0295 2.80 0.46 142000 <0.01 0.54 0.11 0.65	0.0151 2.35 0.46 107000 <0.01 0.6 <0.1 0.62	0.0188 2.24 0.46 104000 <0.01 0.89 <0.1 0.62	1.57 0.43 75500 <0.01 0.95 0.13 0.47
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Cchromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01 0.10 0.10	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG Calc. based on BLM Model	0.0514 2.62 0.46 120000 <0.01 <0.5 0.39 0.57 13.4	0.0295 2.80 0.46 142000 <0.01 0.54 0.11 0.65 13.8	0.0151 2.35 0.46 107000 <0.01 0.6 <0.1 0.62 13.9	0.0188 2.24 0.46 104000 <0.01 0.89 <0.1 0.62 131.9	1.57 0.43 75500 <0.01 0.95 0.13 0.47 15.7
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Calcium Ccesium Chromium Cobalt Copper ⁶	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01 0.10 0.10	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG Calc. based on BLM Model	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG NG	0.0514 2.62 0.46 120000 <0.01 <0.5 0.39 0.57	0.0295 2.80 0.46 142000 <0.01 0.54 0.11 0.65	0.0151 2.35 0.46 107000 <0.01 0.6 <0.1 0.62	0.0188 2.24 0.46 104000 <0.01 0.89 <0.1 0.62	1.57 0.43 75500 <0.01 0.95 0.13 0.47
Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶ Cu FST Guideline Value (Acute) Cu FLT Guideline Value (Chronic)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 0.005 50.0 0.01 0.10 0.20	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG Calc. based on BLM Model BLM Ligand Model value	Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG Calc. based on BLM Model BLM Ligand Model value	0.0514 2.62 0.46 120000 <0.01 <0.5 0.39 0.57 13.4 1.9	0.0295 2.80 0.46 142000 <0.01 0.54 0.11 0.65 13.8 1.4	0.0151 2.35 0.46 107000 <0.01 0.6 <0.1 0.62 13.9 2,4	0.0188 2.24 0.46 104000 <0.01 0.89 <0.1 0.62 131.9 25.9	1.57 0.43 75500 <0.01 0.95 0.13 0.47 15.7 3.0

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2 US	L2 US	L2 US	L2-US	L2-US
					26-Jun-22	24-Jul-22	29-Aug-22	28-Sep-22	30-Oct-22
Magnesium	µg/L	5.0	NG	NG	31000	38600	28300	26000	17400
Manganese	µg/L	0.10	NG	NG	223	8.06	2.83	2.56	4.11
Mercury	µg/L	0.005	NG	NG	< 0.005	< 0.005	<0.005	<0.005	<0.005
Molybdenum	µg/L	0.05	NG	NG	2.56	2.36	2.19	3.1	2.09
Nickel	µg/L	0.50	NG	NG	5.27	2.44	1.4	1.04	1.76
Phosphorus	µg/L	50.0	NG	NG	<50	<50	<50	<50	<50
Potassium	µg/L	50.0	NG	NG	3220	3760	3320	3300	2500
Rubidium	µg/L	0.20	NG	NG	1.53	1.62	1.27	1.42	0.99
Selenium	µg/L	0.05	NG	2.0	1.1	18	12.4	12	4.52
Silicon	µg/L	50.0	NG	NG	5340	5590	5400	5460	4330
Silver	µg/L	0.01	NG	NG	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	µg/L	50.0	NG	NG	110000	95600	63200	53900	16400
Strontium	µg/L	0.20	NG	NG	830	537	358	289	216
Sulfur	µg/L	500	NG	NG	113000	115000	84900	80300	35800
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	0.018	<0.01	<0.01	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/L	0.10	NG	NG	0.17	0.29	<0.1	0.17	<0.1
Titanium	µg/L	0.30	NG	NG	<0.3	<0.3	<0.3	<0.3	<0.3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.1	<0.1	0.29	<0.1
Uranium	µg/L	0.01	NG	NG	2.1	2.63	2.27	2.18	1.47
Vanadium	µg/L	0.50	NG	NG	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	µg/L	1.00	NG	NG	8.4	4.4	2	1.8	2.8
Zircronium	µg/L	0.06	NG	NG	<0.2	<0.2	<0.2	<0.2	<0.2
Laboratory Work Order Number					FJ2201678	FJ2201959	F2202362	FJ2202748	FJ2203067
Laboratory Identification Number					FJ2201678-002	FJ2201959-002	FJ2202362-005	FJ2202748-001	FJ2203067-001

Appendix B3 L2 Powerhouse Area Water A					L2-US	L2-US
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	28-Nov-22	11-Dec-2
Physical Parameters		1000; 2000	NG	NG	5000	6900
Ikalinity (Total as CaCO ₃)	µg/L mg/L	1.0	NG	NG	170	169
lectrical Conductivity (EC)	µS/cm	2.0	NG	NG	524	458
ardness as CaCO3, dissolved ardness as CaCO3, from total Ca/Mg (New January 2020)	μg/L μg/L	500	NG	NG	264000 272000	212000 228000
1	pH Units	0.10	6.5 - 9.0	6.5-9.0	8.22	8.34
otal Dissolved Solids (TDS) Dtal Suspended Solids (TSS)	μg/L μg/L	10000 3000	NG NG	NG NG	377000 1500	336000 5600
kalinity (Hydroxide) as CaCO ₃	µg/L	1000	NG	NG	<1000	<1000
kalinity (Carbonate as CaCO ₃)	µg/L	1000	NG	NG	<1000	8600
Ikalinity (Bicarbonate as CaCO ₃) nions and Nutrients	µg/L	1000	NG	NG	170000	161000
mmonia (NH₄ as N)	µg/L	5.0		pH dependent (6.5-9.0); GL capped at pH	<5	7
mmonia FST Guideline	μg/L		9.0	9.0	3950	3150
mmonia FLT Guideline				pH dependent (at Temp 4 °C or in situ T)	759	606
hloride (Cl ⁻) itrate (NO ₃ ⁻ as N)	μg/L μg/L	500 5.0-25.0	600000 NG	150,000 NG	4160 530	4000 416
itrite (NO_2^{-} as N)	μg/L	1.0-5.0	CI-dependent (> 10,000 µg/L)	Cl-dependent (> 10,000 µg/L)	<1	<1
ulphate $(SO_4)^3$		300	Guideline: 600 ug/L NG	Guideline: 200 ug/L 309,000 - 429,000		80900
	µg/L	300	NG	Hardness 76,000-180,000 = 309,000;	116000	80900
O4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000; Hardness > 250,000 site-specific	309000	309000
issolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	1.43	1.36
etals, Total uminum		3.00	NG	NG	76.6	65.4
ntimony	μg/L μg/L	0.10	NG	NG	0.37	0.26
senic	µg/L	0.10	5.0	5.0	0.25	0.28
arium eryllium	μg/L μg/L	0.10 0.10	NG NG	NG NG	65.2 <0.1	70.8 <0.1
smuth	µg/L	0.05	NG	NG	<0.05	<0.05
oron admium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	27 0.0357	23 0.0302
alcium	µg/L	50	NG	NG	77900	66500
esium	µg/L	0.01	NG NG	NG NG	0.01	0.012
hromium ⁴ obalt	μg/L μg/L	0.1-1.0	NG 110	NG 4.0	0.72	0.67
opper ³	µg/L	0.50	Calc. based on Hardness	2 to 10	0.55	0.73
J FST Guideline Calc. (relevant prior to August 2019)	μg/L		Hardness 13,000 - 400,000 : calc.; Hardness ≥ 400,000 is Capped Value of			
	, n		400,000	Hardness 50,000 - 250,000: calc.;		
u FLT Guideline Calc. (relevant prior to August 2019)	µg/L	10	1000	Hardness > 250,000, Cu = 10	00	77
on	μg/L μg/L	10 0.05	1000 101 - 348	NG Calc. based on Hardness	60 0.05	77 0.075
p FST Guideline Calc (Based on Hardness as CaCO3), applies water hardness 8000-360,000 μg/L			Based on Hardness 8000-360,000 Hardness ≤ 8000: 3 Hardness > 8000 : calc.		281.0	212.5
FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L		Haluness > 0000 . Calc.	Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG	14.3	11.6
thium	μg/L	1.0	NG	Hardness > 8000 : calc. NG	8.1	6
agnesium	µg/L	5.0	NG	NG	18800	15100
anganese ³	µg/L	0.10	Calc. based on Hardness Applies to Hardness 25000-259000 µg/L	Calc. based on Hardness	8.64	7.44
n FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Mn : calc.		3394.18	2876.24
n FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 μg/L Mn : calc.	1766.6	1537.8
ercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	< 0.005	< 0.005
olybdenum ickel	μg/L μg/L	0.05	2000 NG	≤ 1000	2.1 3.61	2.35 2.7
hosphorus	µg/L	50.0	NG	NG	<50	54
otassium ubidium	μg/L μg/L	50.0 0.2	NG NG	NG NG	1970 0.85	1940 0.9
elenium	µg/L	0.05	NG	2.0	2.43	1.65
licon iver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	4080 <0.01	4280 <0.01
g FST Guideline Calc	μg/L	0.01	Hardness ≤ 100,000 Ag = 0.10	0.00 1.0	3.0	3.0
-			Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05		
g FLT Guideline Calc	µg/L	50.0		Hardness > 100,000 Ag = 1.5	1.5	1.5
odium rontium	μg/L μg/L	50.0 0.2	NG NG	NG NG	12600 227	13400 173
ulfur	µg/L	500.0	NG	NG	41700	28600
ellerium nallium	μg/L μg/L	0.2	NG NG	NG NG	<0.2 0.013	<0.2 <0.01
norium	µg/L	0.10	NG	NG	<0.1	<0.1
n tanium	μg/L μg/L	0.10	NG NG	NG NG	<0.1 1.36	<0.1 0.86
ingsten	μg/L μg/L	0.3-4.5	NG	NG	<0.1	<0.1
anium anadium	µg/L	0.01 0.50	NG NG	NG NG	1.52 0.57	1.39 0.55
anadium nc ³ (Based on Hardness < or > 90,000)	μg/L μg/L	0.50 3.0	Calc. based on Hardness	NG Calc. based on Hardness	0.57 7.2	0.55 5.1
n FST Guideline Calc.	μg/L		Hardness 90,000 - 500,000, Calc. Hardness > 500,000, is Capped Value of 500,000		163.5	124.5
n FLT Guideline Calc.	µg/L	1		Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of	138	99
rcronium	µg/L	0.06	NG	330,000 NG	<0.2	<0.2
etals, Dissolved	····· #	10	400			
uminum ⁵	µg/L	1.0	100 pH < 6.5 : calc. Al	50	20.2	19.7
FST Guideline Calc (based on pH)	µg/L		pH ≥ 6.5 : 100.0 Al	median pH < 6.5 : calc. Al	100	100
FLT Guideline Calc (based on median pH)	µg/L			median pH ≥ 6.5: 50.0 AI	50	50
ntimony rsenic	μg/L μg/L	0.10	NG NG	NG NG	0.28	0.24 0.21
arium	µg/L	0.10	NG	NG	59	64.7
rryllium smuth	µg/L	0.10	NG NG	NG NG	<0.1 <0.05	<0.1 <0.05
ron	µg/L	10.0	NG	NG	27	<0.05 25
ndmium ³ (Based on Hardness as CaCO ₃)	µg/L	0.005	Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Canned Value of	Calc. based on hardness	0.0407	0.0213
	µg/L		Hardness > 455,000, is Capped Value of 455,000	Hardness 3,400 - 285,000, Calc.	1.60	1.28
d FLT Guideline Calc.	µg/L			Hardness > 285,000, is Capped Value of 285,000	0.43	0.37
	µg/L	50.0	NG	NG	77200	60700
		0.01	NG	NG	<0.01	<0.01 0.56
esium	µg/L			NG	() 61	
esium nromium	μg/L μg/L μg/L	0.10	NG NG	NG NG	0.61 0.19	0.00
esium nromium obalt opper ⁶	μg/L μg/L μg/L	0.10	NG NG Calc. based on BLM Model		0.19 0.41	0.15 0.42
alcium esium hromium obalt opper ⁶ u FST Guideline Value (Acute) u FLT Guideline Value (Chronic)	μg/L μg/L	0.10 0.10	NG NG	NG	0.19	0.15

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	L2-US	L2-US
					28-Nov-22	11-Dec-22
Magnesium	μg/L	5.0	NG	NG	17300	14700
Manganese	μg/L	0.10	NG	NG	6.49	3.82
Mercury	μg/L	0.005	NG	NG	<0.005	<0.005
Molybdenum	μg/L	0.05	NG	NG	2.16	2.43
Nickel	μg/L	0.50	NG	NG	3.47	1.93
Phosphorus	μg/L	50.0	NG	NG	<50	<50
Potassium	μg/L	50.0	NG	NG	1930	2060
Rubidium	μg/L	0.20	NG	NG	0.77	0.98
Selenium	μg/L	0.05	NG	2.0	2.98	1.93
Silicon	μg/L	50.0	NG	NG	4030	4370
Silver	μg/L	0.01	NG	NG	<0.01	<0.01
Sodium	μg/L	50.0	NG	NG	11600	13300
Strontium	μg/L	0.20	NG	NG	215	158
Sulfur	µg/L	500	NG	NG	41800	30300
Tellurium	µg/L	0.20	NG	NG	<0.2	<0.2
Thallium	µg/L	0.01	NG	NG	<0.01	<0.01
Thorium	µg/L	0.10	NG	NG	<0.1	<0.1
Tin	μg/L	0.10	NG	NG	<0.1	<0.1
Titanium	μg/L	0.30	NG	NG	<0.3	<0.3
Tungsten	μg/L	0.10	NG	NG	<0.1	<0.1
Uranium	μg/L	0.01	NG	NG	1.54	1.23
Vanadium	μg/L	0.50	NG	NG	<0.5	<0.5
Zinc	μg/L	1.00	NG	NG	7	3.6
Zircronium	μg/L	0.06	NG	NG	<0.2	<0.2
Laboratory Work Order Number					FJ2203325	FJ2203454
Laboratory Identification Number					FJ2203325-001	FJ2203454-002

Appendix B4 LBDB Area Water Analytical Results

Name Name </th <th>Appendix B4 LBDB Area Water Analytical R</th> <th>Results</th> <th>1</th> <th>Г</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Appendix B4 LBDB Area Water Analytical R	Results	1	Г									
Normatrix ControlNo	Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBP POND	LBP POND	LBP POND	LBP POND	LBP POND	LBP POND	LBP POND	LBP POND
A. J. A. J.	Physical Parameters					30-iiiai -22	10-Apr-22	51-may-22	20-5011-22	23-501-22	23-Aug-22	20-3ep-22	31-001-22
Second pictureAlter <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
math math													
Char App App<			500	NG	NG								
Tank and the set of the set	pH	-	0.10										
Sector		-											
matrixm	Alkalinity (Hydroxide) as CaCO ₃	µg/L		NG	NG	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Name													
mathemmath													
char ()char ()<			5.0		pH dependent (6.5-9.0)								
matrix shore <br< td=""><td></td><td></td><td>500</td><td>00000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>			500	00000									
Annota[1] <t< td=""><td>Nitrate (NO₃⁻ as N)</td><td></td><td></td><td></td><td></td><td>2540</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Nitrate (NO ₃ ⁻ as N)					2540							
Part of the sector Sector of	Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0				10.8	<20	<20	<5	<10	<10	<10
UNDU	Sulphate (SO ₄) ³	µg/L	300	NG		291000	681000	1400000	1990000	2530000	3020000	3190000	3060000
Construction	SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000	429000	429000	429000	429000	429000	429000	429000	429000
SourceSou	Dissolved Organic Carbon (DOC)	mg/L	1.0	NG		13.3	9.34	14.4	16.3	21.4	23.8	30.8	27.1
And	Metals, Total	ua/l	3.00	NG	NG	222	740	2420	F10	111	50.2	49.2	107
bit b				NG	NG								
bitb	Beryllium	µg/L	0.10	NG	NG								
char char bit	Bismuth Boron	-											
Strange <	Cadmium	µg/L				0.216	0.953	2.99	0.62	0.0475	<0.05	<0.05	0.0424
Band Constraint Constraint													
And-	Chromium ⁴	µg/L	0.1-1.0	NG	NG	0.5	0.52	<1	<0.5	<0.5	<0.5	<1	0.55
Carbon Constraint Co		-											
Inductor Induce	Cu FST Guideline Calc. (relevant prior to August 2019)												
Mathematic Mathem					Hardness 50,000 - 250,000, calc.								
out out i <td></td> <td></td> <td>40</td> <td>4000</td> <td>Hardness > 250,000, Cu = 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			40	4000	Hardness > 250,000, Cu = 10								
Part and example of the second of		-											
Number Norman Norma Norma </td <td>Pb FST Guideline Calc (Based on Hardness as CaCO3), applies</td> <td>µg/L</td> <td></td> <td></td> <td></td> <td>301.4</td> <td>417.0</td> <td>417.0</td> <td>417.0</td> <td>417.0</td> <td>417.0</td> <td>417.0</td> <td>417.0</td>	Pb FST Guideline Calc (Based on Hardness as CaCO3), applies	µg/L				301.4	417.0	417.0	417.0	417.0	417.0	417.0	417.0
Non-stand No.	to water hardness 8000-360,000 μg/L			Hardness > 8000 : calc.	Applies to Hardness 8000-360.000								
matrix	Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L				15.1	19.6	19.6	19.6	19.6	19.6	19.6	19.6
"marging Marging		-											
And the sector And the sect	-	-											
Back and any and any	Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L											
decision deci	Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L				1832.6	2585	2585	2585	2585	2585	2585	2585
NoneONE	Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG		0.0065	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ProductionNoise <td></td> <td>-</td> <td></td> <td></td> <td>≤ 1000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-			≤ 1000								
NameNomeN		-		NG									
bandemunde <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-											
Interformation or without Index I		-		NG									
Apple Database of the second of the secon	-	-											
Apt Statestoredefde				Hardness ≤ 100,000 Ag = 0.10									
BahoMAMAMAMAMAA<	Ag FLT Guideline Calc	µg/L		Tididitess - 100,000 Mg - 0.0		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
bitStateS	Sodium		50.0	NG		43600	95200	260000	264000	350000	485000	443000	436000
Training main Taming main Taming main Taming main 													
Thread1000.100.00MG0.010.410.400.	Tellerium	-											
mindind0.00NGNG0.010.010.020.01<													
Turgen 491 0.01 NG NG NG 2.1 4.1 4.2 4.2 4.01 4.01 4.02 4.01 4.02 4.01 4.01 4.02 4.01 <td></td> <td>-</td> <td></td> <td></td> <td>NG</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-			NG								
Universe 940 970 NG NG NG 171 171 174 280 108 286 286 Varabin 940 0.50 NG NG 12 136 41 41 646 423 423 Zn. "Breed Medness 4000store, Consection 13 320 487 226 21.8 41.5		-											
Zna ² (2) and on londenses or a 98,000) Upt. Sol. Chr. Based on Herdones Gate Samed on Herdones Title Sol.	Uranium	µg/L	0.01	NG	NG	2.21	1.31	1.77	2.43	2.55	3.08	3.6	2.48
Construction of control Dot Hammers 90000-00000 cells (handnes 300000 cells) Dot Dot </td <td>Vanadium Zinc ³ (Based on Hardness < or > 90,000)</td> <td>-</td> <td></td>	Vanadium Zinc ³ (Based on Hardness < or > 90,000)	-											
Image: Constraint of the	Zn FST Guideline Calc.		1	Hardness 90,000 - 500,000, Calc.									
Zn HZ Guiden Gale ypl ippl ippl< ippl ippl<					Hardness 90 000 - 330 000 - Calo								
Zimonom hpli 0.90 NG 0.02 0.03 -0.40 0.40 0.40 0.40 0.40 0.40 Matal, Disord 109 1.0 0.00	Zn FLT Guideline Calc.	µg/L			Hardness > 330,000, is Capped Value of	149.3	187.5	187.5	187.5	187.5	187.5	187.5	187.5
Aluminun ³ jupl. 1.0 100 50 41.6 31.4 71.9 50 53.0 16.3 13.3 16 AF RT Guidelin Gale (based on pt) µpl. PA PA (5.5) (a.0)A 100		µg/L	0.06	NG		<0.2	0.3	<0.4	<0.4	<0.2	<1	<2	<1
AFS Guideline Cale (based on pH) upL pH + 6.5 : abc. Al pH + 6.5 : abc. Al median pH +	Metals, Dissolved Aluminum ⁵	µg/L	1.0	100	50	41.6	31.4	71.9	50	53.9	16.3	13.3	16
AF L Guideline Calc (based on median pH ≤ 0.5: calc. All Antimony pgL Image ang H ≤ 55: calc. All median pH ≤ 55: calc. All Maninany for point for	AI FST Guideline Calc (based on pH)			pH < 6.5 : calc. Al									
IndianationImage in the Set sourceImage in the Set source </td <td>AI FLT Guideline Calc (based on median pH)</td> <td>µg/L</td> <td></td> <td></td> <td></td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td></td> <td>50</td> <td>50</td>	AI FLT Guideline Calc (based on median pH)	µg/L				50	50	50	50	50		50	50
Arener µpL 0.10 NG NG NG 0.38 0.38 0.52 0.18 0.11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <11 <	Antimony		0.10	NG		0.16	<0.5	0.2				<1	<1
Beryllum µpl 0.10 NG NG $\sqrt{0.1}$ $\sqrt{0.2}$ $\sqrt{0.1}$ $\sqrt{0.2}$ <	Arsenic					0.38	<0.5	0.38	0.52				<1
Boron µgL 10.0 NG NG NG 38 66 173 227 280 455 328 290 Cadmim ³ (Based on Hardness as CaCO ₃) µgL 0.005 Cadic. based on Hardness 0.163 0.836 2.78 0.558 <0.05	Banum Beryllium	-		NG	NG								
Cadmium ³ (Based on Hardness as CaCO ₃) µg1 0.005 Calc. based on Hardness Calc. based on hardness 0.163 0.836 2.78 0.058 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Bismuth Boron	110/1											
Cd FST Guideline Calc.µg/Lµg/L $Hardness > 455,000, is Capped Value of455,0001.692.802$				Calc. based on Hardness									
Cd FLT Guideline Calc. µg/L ½ ½ ½ 1 Hardness 3,400 - 285,000, fsi Capped Value of 28,000, fsi Capped Value of 29,000, fsi Capped	Cd FST Guideline Calc.	µg/L		Hardness > 455,000, is Capped Value of		1.69	2.80	2.80	2.80	2.80	2.80	2.80	2.80
Cd FLT Guideline Calc. $\mu g/L$ $\nu g/L$ $\nu g/L$ $\nu g/L$ $\nu g/L$ $\nu g/L$ $\delta 0.4$ $\mu g/L$ $\delta 0.4$ 0.46 <td></td> <td></td> <td></td> <td>455,000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>├───┤</td>				455,000									├ ───┤
Lesim upl 0.01 NG NG NG <0.01 <0.05 <0.02 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Cd FLT Guideline Calc.	µg/L			Hardness > 285,000, is Capped Value of	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Image: Normal method Image: No	Calcium												
Copper ⁶ upl 0.20 Calc. based on BLM Model Calc. based on BLM Model 2.0 1.94 4.49 1.71 <2 <2 <2 <2 Cu FST Guideline Value (Acute) upl Upl Copper Manage Ge.49 Ge.49 60.4 97.7 92.3 51.7 76.3 109.1 66.7 Cu FST Guideline Value (Acute) upl Upl Copper Manage Ge.49 66.4 97.7 92.3 51.7 76.3 109.1 66.7 Cu FLT Guideline Value (Acute) upl International Manage Inter													
Cur FST Guideline Value (Acute) µg/L BLM Ligand Model value BLM Ligand Model value 64.9 60.4 97.7 92.3 51.7 76.3 109.1 66.7 Cur FST Guideline Value (Acute) µg/L M													
Iron µg/L 10.0 350 NG 48 662 201 25 50 50 134 4130 Lead µg/L 0.05 NG NG <0.05	Copper [®] Cu FST Guideline Value (Acute)		0.20		Calc. Dased ON BLIM MODEL								
Lead NG NG NG													

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBP POND							
					30-Mar-22	18-Apr-22	31-May-22	26-Jun-22	25-Jul-22	29-Aug-22	28-Sep-22	31-Oct-22
Magnesium	µg/L	5.0	NG	NG	23700	54800	110000	171000	251000	341000	316000	302000
Manganese	µg/L	0.10	NG	NG	237	1970	1900	1700	1860	3470	576	9390
Mercury	µg/L	0.005	NG	NG	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0058
Molybdenum	µg/L	0.05	NG	NG	1.66	1.21	0.668	0.27	0.815	1.18	1.14	0.92
Nickel	µg/L	0.50	NG	NG	6.95	43.1	137	93.5	38.6	23.8	12.3	19.3
Phosphorus	µg/L	50.0	NG	NG	<50	<250	<100	<250	<500	<500	<500	<500
Potassium	µg/L	50.0	NG	NG	6360	9050	15200	10400	12000	19800	21500	20200
Rubidium	µg/L	0.20	NG	NG	1.08	1.75	4.49	4.26	5.87	5.49	8.57	7
Selenium	µg/L	0.05	NG	2.0	1.03	0.436	0.567	0.386	0.305	<0.5	<0.5	<0.5
Silicon	µg/L	50.0	NG	NG	1290	2050	6270	5470	2950	508	<500	1660
Silver	µg/L	0.01	NG	NG	<0.01	<0.05	<0.02	<0.05	<0.1	<0.1	<0.1	<0.1
Sodium	µg/L	50.0	NG	NG	36000	89000	247000	279000	369000	490000	458000	473000
Strontium	µg/L	0.20	NG	NG	294	338	588	802	1020	1110	1210	1020
Sulfur	µg/L	500	NG	NG	99500	247000	505000	706000	985000	1300000	1200000	1030000
Tellurium	µg/L	0.20	NG	NG	<0.2	<1	<0.4	<1	<2	<2	<2	<2
Thallium	µg/L	0.01	NG	NG	<0.01	<0.05	0.033	<0.05	<0.1	<0.1	<0.1	<0.1
Thorium	µg/L	0.10	NG	NG	<0.1	<0.5	<0.2	<0.5	<1	<1	<1	<1
Tin	µg/L	0.10	NG	NG	<0.1	<0.5	<0.2	<0.5	<1	<1	<1	<1
Titanium	µg/L	0.30	NG	NG	2.07	<1.5	<0.6	<1.5	<3	<3	<3	<3
Tungsten	µg/L	0.10	NG	NG	<0.1	<0.5	<0.2	<0.5	<1	<1	<1	<1
Uranium	µg/L	0.01	NG	NG	2	1.1	1.24	2.45	2.74	3.15	3.52	2.51
Vanadium	µg/L	0.50	NG	NG	<0.5	<2.5	<1	<2.5	<5	<5	<5	<5
Zinc	µg/L	1.00	NG	NG	98.2	308	431	225	20.5	<10	<10	<10
Zircronium	µg/L	0.06	NG	NG	0.32	<1	<0.4	<1	<2	<2	<2	<2
Laboratory Work Order Number					FJ2200791	FJ2200923	FJ2201370	FJ2201678	FJ2201959	F2202362	FJ2202748	FJ2203077
Laboratory Identification Number					FJ2200791-001	FJ2200923-003	FJ2201370-002	FJ2201678-008	FJ2201959-006	FJ2202362-006	FJ2202748-006	FJ2203077-003

Notes:

Screening completed on BCAWQG-FST¹ and FLT² guideline values. ¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture

² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture ³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample-⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

⁵ Guideline is pH dependant. NG - No Guideline

BolD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
Shaded Light Gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline.
RED - Measured value is below detection limit (DL); value shown is 50% of DL

Blank - Not analyzed

Appendix B4 LBDB Area Water Analytical R	esults	0							
Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBDB-EDS Armor 31-May-22	LBDB-WDS Armor 30-Mar-22	LBDB-WDS Armor 31-May-22	LBDB-LD-DS 31-May-22	LBDB-LD-MS 31-May-22
Physical Parameters Acidity (Total as CaCO ₃)	µg/L	1000	NG	NG	1000	3000	1000	1000	1000
Alkalinity (Total as CaCO ₃)	mg/L	1.0	NG	NG	343	193	181	143	156
Electrical Conductivity (EC) Hardness as CaCO3, dissolved	μS/cm μg/L	2.0 500	NG	NG NG	4670 1540000	2380 1020000	3750 1790000	3460 1320000	3050 1170000
Hardness as CaCO3, from total Ca/Mg (New January 2020) pH	µg/L	0.10	65.0	6500	1690000	1150000	1910000	1440000	1270000
рн Total Dissolved Solids (TDS)	pH Units µg/L	0.10	6.5 - 9 NG	6.5-9.0 NG	8.53 4060000	8.23 1940000	8.31 3100000	8.23 2990000	8.27 2520000
Total Suspended Solids (TSS) Alkalinity (Hydroxide) as CaCO ₃	μg/L	3000	NG NG	NG NG	11500	1500	3500	3300	6300
Alkalinity (Carbonate as CaCO ₃)	μg/L μg/L	1000 1000	NG	NG	<1000 32400	<1000 <1000	<1000 3800	<1000 <1000	<1000 <1000
Alkalinity (Bicarbonate as CaCO ₃)	µg/L	1000	NG	NG	310000	193000	177000	143000	156000
Anions and Nutrients Ammonia (NH₄ as N)	μg/L	5.0	pH dependent (6.5-9.0)	pH dependent (6.5-9.0)	22.9	7.0	13.3	44.4	1350
Ammonia FST Guideline	µg/L		pH dependent (at Temp 4 °C or in situ T)		2010	3950	3150	3950	3150
Ammonia FLT Guideline Chloride (Cl [°])	μg/L μg/L	500	600000	pH dependent (at Temp 4 °C or in situ T) 150,000	387 <10000	759 <10000	606 <10000	759 <10000	606 <10000
Nitrate (NO ₃ ['] as N)	µg/L	5.0-25.0	NG	NG	177		<100	<100	365
Nitrite (NO ₂ ⁻ as N)	µg/L	1.0-5.0	Cl-dependent (> 10,000 µg/L) Guideline: 600 ug/L	Cl-dependent (> 10,000 µg/L) Guideline: 200 ug/L	<20		<20	<20	<20
Sulphate (SO ₄) ³	µg/L	300	NG	309,000 - 429,000 Hardness 76,000-180,000 = 309,000	2380000	1270000	2120000	1850000	1590000
SO4 FLT Guideline Calc	µg/L		NG	Hardness 181,000-250,000 = 429,000 Hardness > 250,000 site-specific	429000	429000	429000	429000	429000
Dissolved Organic Carbon (DOC)	mg/L	1.0	NG	NG	33.8	14.4	32.4	22.8	18.7
Metals, Total Aluminum	μg/L	3.00	NG	NG	126	24	29.6	86.9	600
Antimony	μg/L	0.10	NG	NG	0.52	0.25	0.46	0.27	<0.5
Arsenic Barium	μg/L μg/L	0.10	5.0 NG	5.0 NG	1.26 45	0.49 37.2	0.87 93.3	0.66	0.79 43.9
Beryllium	μg/L	0.10	NG	NG	45 <0.5	<0.2	93.3 <0.2	<0.2	<0.5
Bismuth Boron	μg/L μg/L	0.05	NG 1200	NG 1200	<0.25	<0.1	<0.1	<0.1	<0.25
Boron Cadmium	μg/L μg/L	10.0 0.005	1200 NG	1200 NG	243 0.701	74 0.0687	185 0.066	228 0.67	173 1.56
Calcium	µg/L	50	NG	NG	278000	262000	390000	290000	273000
Cesium Chromium ⁴	μg/L μg/L	0.01 0.1-1.0	NG NG	NG NG	<0.05 <2.5	<0.02	<0.02	0.023	<0.05 <2.5
Cobalt	µg/L	0.10	110	4.0	1.58	0.46	0.34	5.38	269
Copper ³	µg/L	0.50	Calc. based on Hardness Hardness 13,000 - 400,000 : calc.;	2 to 10	6.85	2.7	4.61	3.56	<2.5
Cu FST Guideline Calc. (relevant prior to August 2019)	μg/L		Hardness ≥ 400,000 is Capped Value of 400,000						
Cu FLT Guideline Calc. (relevant prior to August 2019)	µg/L			Hardness 50,000 - 250,000: calc.; Hardness > 250,000, Cu = 10					
Iron	µg/L	10	1000	NG	307	37	223	122	4320
Lead ³	µg/L	0.05	101 - 348	Calc. based on Hardness	<0.25	<0.1	<0.1	<0.1	<0.25
Pb FST Guideline Calc (Based on Hardness as CaCO3), applies to water hardness 8000-360,000 µg/L	µg/L		Based on Hardness 8000-360,000 Hardness ≤ 8000: 3 Hardness > 8000 : calc.		417.0	417.0	417.0	417.0	417.0
Pb FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 8000-360,000 Hardness ≤ 8000, NG Hardness > 8000 : calc.	19.6	19.6	19.6	19.6	19.6
Lithium Magnesium	μg/L μg/L	1.0 5.0	NG NG	NG	169 241000	28.5 121000	46.5 228000	81.9 173000	61.3 144000
Manganese ³	μg/L	0.10	Calc. based on Hardness	Calc. based on Hardness	186	62.4	46.2	1120	19200
Mn FST Guideline Calc (Based on Hardness as CaCO3)	µg/L		Applies to Hardness 25000-259000 μg/L Mn : calc.		3394.2	3394.2	3394.2	3394.2	3394.2
Mn FLT Guideline Calc (Based on Hardness as CaCO3)	µg/L			Applies to Hardness 37000-450000 µg/L Mn : calc.	2585	2585	2585	2585	2585
Mercury (Based on methyl Hg & total mass Hg)	µg/L	0.005	NG	Calc.	0.0064	0.0054	0.0064	<0.005	<0.005
Molybdenum Nickel	μg/L μg/L	0.05	2000 NG	≤ 1000	6.1 19.7	3.06 5.41	5.19 7.74	1.34 29.7	1.01 206
Phosphorus	µg/L	50.0	NG	NG	<250	<100	<100	<100	<250
Potassium Rubidium	μg/L μg/L	50.0 0.2	NG NG	NG	13800 2.41	5580 0.74	12200 1.7	19100 3	21000 9.71
Selenium	μg/L	0.05	NG	2.0	2.21	1.22	1.47	0.543	0.447
Silicon Silver ³ (Based on Hardness < or > 100000)	μg/L μg/L	100.0 0.01	NG 0.10 - 3.0	NG 0.05 - 1.5	4600 <0.05	3150 <0.02	5780 <0.02	4130 <0.02	4660 <0.05
Ag FST Guideline Calc	μg/L	0.01	Hardness ≤ 100,000 Ag = 0.10	0.00 - 1.0	3.0	3.0	3.0	3.0	3.0
Ag FLT Guideline Calc			Hardness > 100,000 Ag = 3.0	Hardness ≤ 100,000 Ag = 0.05	1.5	1.5	1.5	1.5	1.5
Sodium	μg/L μg/L	50.0	NG	Hardness > 100,000 Ag = 1.5 NG	597000	1.5	281000	351000	278000
Strontium	μg/L	0.2	NG	NG	1400	1100	1190	737	674
Sulfur Tellerium	μg/L μg/L	500.0 0.2	NG NG	NG NG	934000	464000	865000	760000	628000
Thallium	μg/L μg/L	0.01	NG	NG	<1 <0.05	<0.4 <0.02	<0.4 0.033	<0.4 0.028	<1 0.082
Thorium Tin	µg/L	0.10	NG NG	NG NG	<0.5	<0.2	<0.2	<0.2	<0.5
Tin Titanium	μg/L μg/L	0.10 0.3-4.5	NG	NG NG	<0.5 2.96	<0.2 <0.6	<0.2	<0.2	<0.5 <1.5
Tungsten	µg/L	0.10	NG	NG	<0.5	<0.2	<0.2	<0.2	<0.5
Uranium Vanadium	μg/L μg/L	0.01 0.50	NG NG	NG NG	17.7 <2.5	13.1 <1	10.3 <1	1.94 <1	1.46 <2.5
Zinc ³ (Based on Hardness < or > 90,000)	μg/L	3.0	Calc. based on Hardness	Calc. based on Hardness	312	<6	<6	12.2	164
	1	1	Hardness 90,000 - 500,000, Calc.				340.5	340.5	340.5
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of		340.5	340.5			I
Zn FST Guideline Calc.	µg/L		Hardness > 500,000, is Capped Value of 500,000	Hardness 90,000 - 330,000, Calc.	340.5	340.5			
Zn FST Guideline Calc. Zn FLT Guideline Calc.	μg/L μg/L			Hardness 90,000 - 330,000, Calc. Hardness > 330,000, is Capped Value of 330,000	340.5	187.5	187.5	187.5	187.5
Zn FLT Guideline Calc. Zircronium		0.06		Hardness > 330,000, is Capped Value of				187.5	187.5 <1
Zn FLT Guideline Calc.	µg/L	0.06	500,000	Hardness > 330,000, is Capped Value of 330,000	187.5 <1	187.5 <0.4	187.5 <0.4		<1
Zn FLT Guideline Calc. Zircronium Metals, Dissolved	μg/L μg/L		500,000 NG 100 pH < 6.5 : calc. Al	Hardness > 330,000, is Capped Value of 330,000 NG	187.5	187.5	187.5	<0.4	
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁶	μg/L μg/L μg/L		500,000 NG 100	Hardness > 330,000, is Capped Value of 330,000 NG	187.5 <1 10.9	187.5 <0.4 2.9	187.5 <0.4 8.6	<0.4	<1
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony	μg/L μg/L μg/L μg/L μg/L	1.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH < 6.5 : colo. Al NG	187.5 <1 10.9 100	187.5 <0.4 2.9 100	187.5 <0.4 8.6 100	<0.4 36.5 100	<1 103 100
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic	μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG	187.5 <1 10.9 100 50 0.51 1.24	187.5 <0.4 2.9 100 50 0.23 0.44	187.5 <0.4 8.6 100 50 <0.5 0.72	<0.4 36.5 100 50 0.28 0.54	<1 103 100 50 <0.5 0.53
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium	μg/L μg/L μg/L μg/L μg/L	1.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH < 6.5 : colo. Al NG	187.5 <1 10.9 100 50 0.51	187.5 <0.4 2.9 100 50 0.23	187.5 <0.4 8.6 100 50 <0.5	<0.4 36.5 100 50 0.28	<1 103 100 50 <0.5
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG	187.5 <1 10.9 100 50 0.51 1.24 41.7 <0.5 <0.25	187.5 <0.4 2.9 100 50 0.23 0.44 34.6 <0.2 <0.1	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5 <0.5 <0.25	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.2 <0.1	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG	187.5 <1 10.9 100 50 0.51 1.24 41.7 <0.5	187.5 <0.4 2.9 100 50 0.23 0.44 34.6 <0.2	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2	<1 103 100 50 <0.5 0.53 44.7 <0.5
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bioron	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG NG NG NG	187.5 <1 10.9 100 50 0.51 1.24 41.7 <0.5 <0.25 244	187.5 <0.4 2.9 100 50 0.23 0.44 34.6 <0.2 <0.1 66	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5 <0.25 <0.25 198	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc.	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG NG Calc. based on hardness	187.5 <1 10.9 100 50 0.51 1.24 41.7 <0.5 <0.25 244 0.642	187.5 <0.4 2.9 100 50 0.23 0.44 34.6 <0.2 <0.1 66 0.0548	187.5 <0.4 	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of	187.5 <1 10.9 100 50 0.51 1.24 41.7 <0.5 <0.25 244 0.642	187.5 <0.4 2.9 100 50 0.23 0.44 34.6 <0.2 <0.1 66 0.0548	187.5 <0.4 	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.10 0.05 10.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of	Hardness > 330,000, is Capped Value of 330,000 NG 50 50 median pH < 6.5 : calc. Al median pH > 6.5 : 50.0 Al NG NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc.	187.5 <1	187.5 <0.4	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5 <0.25 198 0.0788 2.80	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.2 <0.1 237 0.599 2.80	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333 2.80
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barlum Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, S Capped Value of 455,000	Hardness > 330,000, is Capped Value of 330,000 NG 50 50 MG NG NG NG NG NG NG Calc. based on hardness Hardness > 285,000, Calc. Hardness > 285,000, Calc. Hardness > 285,000, Sacapped Value of 285,000 NG NG NG NG NG NG NG NG NG NG	187.5 <1	187.5 <0.4	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5 <0.25 198 0.0788 2.80 0.46 380000 <0.05	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599 2.80 0.46 282000 <0.02	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.5 (0.5 176 0.333 2.80 0.46 247000 <0.05
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1.0 0.10 0.10 0.10 0.10 0.05 10.0 0.005 50.0	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000	Hardness > 330,000, is Capped Value of 330,000 NG 50 50 MG NG NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG	187.5 <1	187.5 <0.4	187.5 <0.4 8.6 100 50 <0.5 0.72 96.8 <0.5 <0.25 198 0.0788 2.80 0.46 380000 <0.05 <2.5	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599 2.80 0.46 282000 <0.02 <1	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333 2.80 0.46 247000
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	1.0 0.10 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, Is Capped Value of 455,000 NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 50 MG NG NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness ≥ 285,000, is Capped Value of 285,000 NG NG NG NG NG NG NG NG NG NG	187.5 <1	187.5 <0.4	187.5 <0.4	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599 2.80 0.46 282000 <0.02 <1 5.08 3.09	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333 2.80 0.46 247000 <0.05 <2.5 279 1.26
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	1.0 0.10 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10 0.10	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, is Capped Value of 455,000 NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG NG NG NG Calc. based on hardness Hardness 3,400 - 285,000, Calc. Hardness > 285,000, is Capped Value of 285,000 NG NG NG NG NG NG NG NG NG Calc. based on BLM Model	187.5 <1	187.5 <0.4	187.5 <0.4	 <0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599 2.80 0.46 282000 <0.02 <1 5.08 3.09 147.7 	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333 2.80 0.46 247000 <0.05 <2.5 279 1.26 142.7
Zn FLT Guideline Calc. Zircronium Metals, Dissolved Aluminum ⁵ Al FST Guideline Calc (based on pH) Al FLT Guideline Calc (based on median pH) Antimony Arsenic Barium Beryllium Bismuth Boron Cadmium ³ (Based on Hardness as CaCO ₃) Cd FST Guideline Calc. Cd FLT Guideline Calc. Calcium Cesium Chromium Cobalt Copper ⁶	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	1.0 0.10 0.10 0.10 0.10 0.05 10.0 0.005 50.0 0.01 0.10 0.10	500,000 NG 100 pH < 6.5 : calc. Al pH ≥ 6.5 : 100.0 Al NG NG NG NG NG Calc. based on Hardness Hardness 7,000 - 455,000, Calc. Hardness > 455,000, Is Capped Value of 455,000 NG NG NG NG NG NG NG NG NG NG	Hardness > 330,000, is Capped Value of 330,000 NG 50 median pH < 6.5 : calc. Al median pH ≥ 6.5 : 50.0 Al NG NG	187.5 <1	187.5 <0.4	187.5 <0.4	<0.4 36.5 100 50 0.28 0.54 25.7 <0.2 <0.1 237 0.599 2.80 0.46 282000 <0.02 <1 5.08 3.09	<1 103 100 50 <0.5 0.53 44.7 <0.5 <0.25 176 0.333 2.80 0.46 247000 <0.05 <2.5 279 1.26

Parameter	Unit	RDL	BCAWQG - FST 1	BCAWQG - FLT 2	LBDB-EDS Armor 31-May-22	LBDB-WDS Armor 30-Mar-22	LBDB-WDS Armor 31-May-22	LBDB-LD-DS 31-May-22	LBDB-LD-MS 31-May-22
Magnesium	µg/L	5.0	NG	NG	214000	106000	204000	149000	134000
Manganese	µg/L	0.10	NG	NG	169	59.4	41.8	1030	18200
Mercury	μg/L	0.005	NG	NG	0.0115	<0.005	0.0102	< 0.005	< 0.005
Molybdenum	µg/L	0.05	NG	NG	6	3.07	5.17	1.35	0.656
Nickel	µg/L	0.50	NG	NG	17.7	5.24	7.16	26.7	208
Phosphorus	µg/L	50.0	NG	NG	<250	<100	<250	<100	<250
Potassium	µg/L	50.0	NG	NG	13300	5490	11800	17500	21400
Rubidium	µg/L	0.20	NG	NG	2.4	0.56	1.56	2.98	9.67
Selenium	µg/L	0.05	NG	2.0	2.19	1.12	1.15	0.538	0.328
Silicon	µg/L	50.0	NG	NG	4220	2970	5400	3780	4300
Silver	µg/L	0.01	NG	NG	<0.05	<0.02	<0.05	<0.02	<0.05
Sodium	µg/L	50.0	NG	NG	577000	171000	273000	331000	283000
Strontium	µg/L	0.20	NG	NG	1280	972	1130	700	617
Sulfur	µg/L	500	NG	NG	858000	434000	771000	685000	556000
Tellurium	µg/L	0.20	NG	NG	<1	<0.4	<1	<0.4	<1
Thallium	µg/L	0.01	NG	NG	<0.05	<0.02	<0.05	0.032	0.08
Thorium	µg/L	0.10	NG	NG	<0.5	<0.2	<0.5	<0.2	<0.5
Tin	µg/L	0.10	NG	NG	<0.5	<0.2	<0.5	<0.2	<0.5
Titanium	µg/L	0.30	NG	NG	<1.5	<1.5	<1.5	<0.6	<1.5
Tungsten	µg/L	0.10	NG	NG	<0.5	<0.5	<0.5	<0.2	<0.5
Uranium	µg/L	0.01	NG	NG	18.5	3.6	11	2.03	1.46
Vanadium	µg/L	0.50	NG	NG	<2.5	<2.5	<2.5	<1	<2.5
Zinc	µg/L	1.00	NG	NG	279	<5	<5	9.8	146
Zircronium	µg/L	0.06	NG	NG	<1	<1	<1	<0.4	<1
Laboratory Work Order Number					FJ2201370	FJ2200791	FJ2201370	FJ2201370	FJ2201370
Laboratory Identification Number					FJ2201370-005	FJ2200791-002	FJ2201370-006	FJ2201370-004	FJ2201370-003

Notes:

Screening completed on BCAWQG-FST¹ and FLT² guideline values.

¹ BC Ministry of Environment, Water Protection & Sustainability Branch (2019). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture

² BC Ministry of Environment, Water Protection & Sustainability Branch (2018). British Columbia Approved Water Quality Guidelines (BCAWQG): Aquatic Life, Wildlife & Agriculture

³ Guideline is hardness dependant. Where results are above laboratory reportable detection limits, guideline limits have been evaluated based on individual sample hardness. Sample
⁴ Guideline is for Chromium (IV) cation. Analytical results are for unspeciated Chromium. Where analytical results exceed the guideline, speciated analysis may be warranted.

⁵ Guideline is pH dependant. NG - No Guideline

Detection limit can vary as described in the COA. Detection limit can be raised when dilutation is required due to high Dissolved Solids/Electrical Conductivity (DLDS), e.g. nitrite. BOLD and shaded dark gray: Exceeds BCAWQG-FST (Freshwater Short Term) guideline. Shaded Light Gray: Exceeds BCAWQG-FLT (Freshwater Long Term) guideline. RED - Measured value is below detection limit (DL); value shown is 50% of DL Blank - Not analyzed

