

TO Sandra Pouliot; Canadian Malartic Corporation

CC Devin Hannan, Ken De Vos; Golder Associates Ltd.

FROM Adam Auckland

PROJECT No. 1656263.1000.1001

DATE January 1, 2018

FEDERAL INFORMATION REQUEST T(3)-08 – COMPILED RESPONSE DOCUMENTS AND RELEVANT COMMUNICATIONS

Following submission of the Version 2 Hammond Reef Gold Project Environmental Impact Statement/Environmental Assessment (EIS/EA), the Canadian Environmental Assessment Agency (CEAA) requested additional information in Information Request T(3)-08 regarding seepage from the Tailings Management Facility (TMF) and the potential impact to water quality in the downstream receiving environment as a result of TMF seepage.

CMC worked closely with CEAA to develop an approach to respond to T(3)-08. Additional field data collection, background data compilation and three-dimensional groundwater and water quality modelling were undertaken. This response package includes all documentation with respect to the development of the response approach, the development, calibration and results of the groundwater model, the results of the water quality modelling and seepage impact assessment, and relevant communication with CEAA throughout the execution of the work. The following are included in this document package:

- Part A Background Information and Response Approach
- Part B CEAA Comments on Response Approach
- Part C Field Data Collection and Conceptual Model Development
- Part D CEAA Comments on Conceptual Model Development
- Part E Baseline Model Construction and Calibration
- Part F CEAA Comments on Baseline Model Construction and Calibration
- Part G Groundwater Modelling of TMF and Seepage Impact Assessment
- Part H CEAA and MOECC Comments on Groundwater Modelling of TMF and Seepage Impact Assessment
- Part I CMC Response Letters to CEAA and MOECC

Final responses to all components of T(3)-08 are provided in Section 8.0 of Part G of this document package.

\\golder.gds\gal\Mississauga\Active\2016\3 Proj\1656263 CMC_EA Support_Hammond Reef\3. Environment\1. TMF Seepage Assessment\Compiled Document\Source\00_Cover Page.docx

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART A

Background Information and Response Approach

TECHNICAL MEMORANDUM

DATE December 12, 2017

PROJECT No. 1408383 3500 3501

DOC No.

TO Cathryn Moffett **Canadian Malartic Corporation** 008 (Rev 0)

FROM Adam Auckland and Devin Hannan

EMAIL adam_auckland@golder.com

HAMMOND REEF GOLD PROJECT - TAILINGS MANAGEMENT FACILITY, ADDITIONAL 3D **GROUNDWATER MODELLING**

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has prepared this memorandum for Canadian Malartic Corporation (CMC) as a basis for further discussion with the Government Review Team (GRT) regarding additional numerical groundwater modelling of the proposed tailings management facility (TMF) at the Hammond Reef Gold Project (the Project). The purpose of the additional groundwater modelling proposed herein is to address concerns raised by the GRT following their review of the Project's Environmental Impact Statement/Environmental Impact (EIS/EA) and responses submitted by CMC to Information Requests (IRs) received after submittal of the EIS/EA. A summary of the GRT concerns and previous responses from CMC are documented in the attached TMF Seepage Issue Tracking Log.

Following a recent Project meeting between CMC, Golder and federal and provincial government reviewers (February 2, 2016), it was agreed that CMC would complete the following:

- Conduct a search for historic borehole data not previously presented or considered in the EIS/EA (e.g., exploration drilling data); and
- Request that Golder develop a scope of work to address the concerns of the GRT for review by and discussion with the GRT.

2.0 BACKGROUND

2.1 Previous Groundwater Modelling of the TMF

In response to comments on the final EIS/EA regarding seepage related impacts to Lizard Lake, a 3D MODFLOW model of the eastern portion of the TMF was developed in 2014 to evaluate the capture efficiency of the proposed seepage collection system and to quantify potential residual seepage rates to Lizard Lake (Golder, 2014). This modelling demonstrated that the assumptions made in the EIS/EA regarding seepage capture were valid but the GRT raised additional concerns about the modelling assumptions and impacts to other potential receivers.

2.2 Government Review Team Commentary

The GRT conducted a review of the TMF modelling and communicated concerns (summarized in the attached comment log). In summary, we understand the key issues / requests to be as follows:

- Address the applicability of the currently available data to adequately characterize the site baseline hydrogeology and, if necessary, collect additional field data.
- Provide a detailed conceptual hydrogeologic model that will serve as the basis for the numerical model. Particular consideration should be given to: 1) granular troughs underlying the TMF and their potential as seepage pathways; 2) hydraulic conductivity assignments, particularly anisotropy, in lieu of heterogeneity observed in borehole logs across the site. The adequacy of the existing slug testing and grain size data as a basis for characterizing the hydraulic conductivity is also questioned.
- Develop a more regional-scale model that encompasses the entirety of the TMF, as opposed to just the eastern flank.
- Conduct a model calibration using baseline data.
- Based on the expanded domain, estimate the amount of seepage by-pass to downgradient receptors other than Lizard Lake, for example, Sawbill Bay and smaller water bodies around the perimeter of the TMF.
- Quantify the proportion of seepage occurring below the TMF base versus through the TMF dams.
- Consider all project phases from baseline to closure.
- Conduct a sensitivity analysis to examine the potential range of seepage rates emanating from the TMF.
- Evaluate potential environment impacts to all receiving water bodies.

3.0 ADDITIONAL GEOTECHNICAL DATA

Following the meeting with the GRT on February 2, 2016, a search was completed for additional geotechnical data in the area of the TMF that was not available or considered in the previous groundwater modelling analysis. This search resulted in the following information:

- Sixty (60) exploration/condemnation boreholes within the footprint of the TMF facility (Figure 1). These
 holes do not provide detailed stratigraphy of the overburden but do indicate depth to bedrock, allowing for
 improved characterization of the underlying bedrock surface.
- Five (5) detailed geotechnical boreholes (BH13-1 to BH13-5) completed in 2013 along the proposed TMF dam alignment (Figure 1).
- The attached report entitled 'Surficial Geology update of the Golden Winner area; sedimentology and stratigraphy of glaciofluvial deposits and recommendations for recce samples' prepared in 2010, including overburden characterization of seven (7) sampling trenches within the TMF footprint (Figure 1).

This information will be integrated with the existing data to provide an improved basis for the proposed scope of work to address the concerns of the GRT.

4.0 PROPOSED SCOPE OF WORK

Golder proposes to address the GRT concerns through the expansion and refinement of the current groundwater model as well as integration of the above identified data. The proposed scope of work will consist of the following:

- 1) **Model Domain Expansion.** Expand the model domain to include the entirety of the TMF and delineate the extents based on regional hydrologic boundaries. This will allow for the simulation of a comprehensive site groundwater budget and TMF seepage tracking to all collection systems and potential downgradient receptors.
- 2) Overburden Isopach Development. Incorporate additional data (as identified in Section 3.0) and regional surficial geology mapping with previously used logs to develop a detailed overburden isopach underneath the TMF. In our view the incorporation of this additional data, which provides good coverage over the TMF footprint, negates the need for additional boreholes. External to the TMF, where overburden data may not exist, the isopach will be extended into the broader model domain based on conservative assumptions (for example, assuming lateral continuity at an appropriate uniform thickness).
- 3) Hydraulic Conductivity Review. Review hydraulic conductivity data within the model domain. Discrete hydraulic conductivity zones may be developed if the data suggests significant heterogeneity exists across the site. If anisotropy is not clearly supported by either the data or calibration effort (below), an isotropic system may be conservatively assumed. In our view the existing slug testing and grain size analysis results provide for a reasonable means to characterize hydraulic conductivity and additional testing is not warranted. In any event, the model sensitivity to a range of hydraulic conductivities will be tested during sensitivity analysis (described below).
- 4) Calibration. Model calibration typically involves adjusting initial model input parameters within a reasonable range until simulated results reasonably approximate field observations. The model will be calibrated in steady-state to average water levels at monitoring wells within domain. In addition, stream / baseflow data may be considered, depending on the gauge location relative to the model domain. Finally, a base case, pre-TMF groundwater flow budget will be derived based on the calibrated model output. It is likely that an iterative, trial-and-error approach to calibration will be employed as per ASTM D 5490- 93 (Reapproved 2002) Standard Guide for Comparing Ground-Water Flow Model Simulations to Site-Specific Information.
- 5) **Project Phase Analysis.** The modelling will consider two phases of Project development: 1) current conditions (i.e. pre-TMF baseline) this is the calibrated model described above; and 2) TMF during operational phase at full build-out. The operational phase at full build-out considers the period where impacts are expected to be maximal because the aerial extent of the tailings stack and elevation of the reclaim water pond will be at their highest. From an environmental impact perspective, detailed evaluation of the construction, closure, and post-closure phases is not considered necessary for the following reasons:
 - a. **Construction** During construction, no tailings placement will occur and no water will be stored within the TMF, therefore no change to existing conditions is expected.
 - b. Closure At closure, tailings deposition and discharge of process water to the TMF reclaim pond will cease and TMF water is expected to improve with time (see Site Water Quality TSD, pp 106). Consequently, both the potential for seepage and its associated environmental impact will decrease with over time given that the tailings are non-acid generating with excess neutralizing capacity (See Geochemistry TSD). Furthermore, as indicated in Section 4.2 of the Conceptual Closure and Rehabilitation Plan TSD, seepage will continue to be collected and

pumped back to the TMF until it is determined that the seepage water quality is suitable for release. At such time, the active seepage collection system will be decommissioned.

- c. **Post-Closure** During the post-closure period, seepage water quality will have been deemed to be suitable for discharge and the TMF reclaim pond spillway will be lowered, reducing the potential for seepage.
- 6) Groundwater Flow and Seepage Simulation. Groundwater conditions during the TMF operational phase at full-build out will be simulated. A comprehensive flow budget will be developed based on the model output. Particle tracking will be employed to illustrate seepage pathways. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. Additional mitigation or modifications to the presently proposed seepage collection system may be identified during this analysis.
- 7) Sensitivity Analysis. A sensitivity analysis will be performed to establish an upper bound on results by varying select input parameters within a reasonable range about the base case input value. Golder will seek the Government Review Team's opinion in selecting parameters to test during the sensitivity analysis. Currently, we feel that recharge rates, and hydraulic conductivities/anisotropies of tailings, overburden and weathered bedrock may be potential candidates for analysis. For the purpose of scoping, we have assumed four (4) variables will be examined. Model calibration is not planned to be re-assessed during this task.
- 8) Environment Impacts. The potential impacts to the water bodies receiving TMF seepage will be reassessed based on the predicted residual seepage rates and TMF seepage water quality. This scope of this assessment will only include Lizard Lake and Sawbill Bay. Aquatic habitat in the smaller lakes and streams around the perimeter of the TMF has already been determined to be 'impacted' by the project due to loss of inflow (due to watershed reduction) or loss of connectivity to larger water bodies. As a result, these water bodies have been included in the No Net Loss/Fish Habitat Offset Plan and compensation for the loss of habitat is planned (see Part B of the Version 2 Aquatic Environment TSD).
- 9) **Report**. A report documenting model conceptualization, construction, calibration, TMF seepage collection mitigations applied, predictive analysis, sensitivity analysis and conclusions will be provided as a supporting document to the responses to Information Request T(3)-08.

5.0 CLOSURE

We trust that this memorandum serves as sufficient foundation for further discussions on refining a path forward to fully satisfy the requirements of the Government Review Team. Please contact the undersigned if you have any questions.

Prepared by:

Reviewed by:

<Original signed by>

<Original signed by>

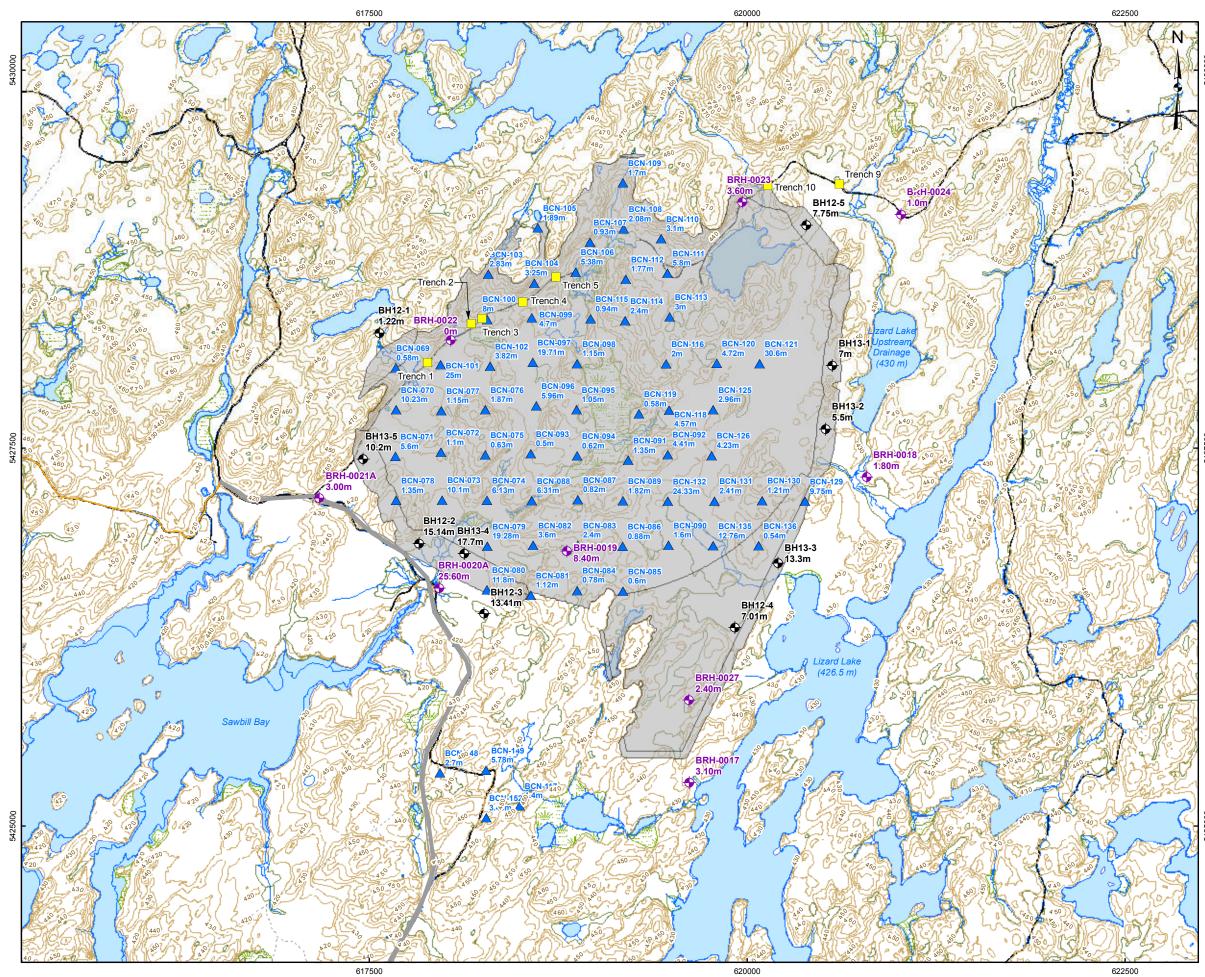
Adam Auckland, M.Sc., P.Eng. Project Manager, Water Resources Engineer Devin Hannan, P.Eng. Associate, Environmental Engineer

DAH/AA/sk

Attachments:

Figure 1 – Available Subsurface Information in the TMF Area

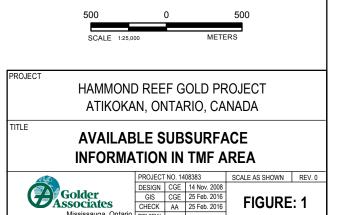
Report - 'Surficial Geology update of the Golden Winner area; sedimentology and stratigraphy of glaciofluvial deposits and recommendations for recce samples'


TMF Seepage Issue Tracking Log

REFERENCES

Golder, 2014. Technical Memorandum: Osisko Hammond Reef Gold Project – Tailings Management Facility, 3D Groundwater Modelling. 13-1118-0010 (5008). May 27, 2014.

n:\active\2014\1188\1408383-cm -hammond reef ea follow-up\3500 - water quality\3501 - tmf seepage\work scope memo\1408383_doc008_tmf modelling work scope memo_12dec2017.docx


LEGI	END
	Index Contour (5m interval)
	Ditch
	Marsh/Swamp
	River/Stream
	Road
	Trail
	Lake
<u>(</u>	Wetland
	Osisko Exploration/Condemnation Borehole (Overburden Thickness Labelled)
•	Hydrogeological Borehole (Overburden Thickness Labelled)
\$	Geotechnical Borehole (Overburden Thickness Labelled)
	Surficial Geology Study Investigation Trench
	Mine Site Road
	Access Road (Hardtack / Sawbill)
	Tailings Management Facility

REFERENCE

Base Data - Provided by OSISKO Hammond Reef Gold Project Ltd. Base Data - MNR NRVIS, obtained 2004 Produced by Golder Associates Ltd under licence from Ontario Ministry of Natural Resources, © Queens Printer 2008

Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 15N

REVIEW

Mississauga, Ontari

Surficial Geology update of the Golden Winner area: sedimentology and stratigraphy of glaciofluvial deposits and recommendations for recce sampling.

Photo. Looking eastward from a granite ridge into the valley south of the Golden Winner prospect; lowland areas covered by thick outwash deposits.).

Surficial Geology update of the Golden Winner area: sedimentology and stratigraphy of glaciofluvial deposits and recommendations for recce sampling

Prepared for: BRETT RESOURCES INC. SUITE 611, 675 WEST HASTINGS STREET VANCOUVER, BC CANADA V6B 1N2

> By: Rudolf R Stea Ph.D P.Geo. Stea Surficial Geology Services 851 Herring Cove Road Halifax, Nova Scotia B3R 1Z1

> > June 10th, 2010

Table of Contents

Table of Contents	
Introduction	
Methods	
Results	
Recommendations	
References	
Appendix 1	
Appendix 1 Map 1	pocket

Introduction

In the spring of 2010 Stea Surficial Geology Services was contracted by Brett Resources Inc. to conduct a pilot sampling study on the area surrounding the Golden Winner property on the northern part of the Hammond Reef claim areas (Map 1). This area is characterized by a broad basin and numerous granite-cored ridges and hills, in which the basin is host to thick glaciofluvial deposits and muskeg (Stea, 2009a). The purpose of this study was to:

1 Assess the sedimentology and stratigraphy of glaciofluvial deposits and the potential of sampling glaciofluvial deposits for gold content.

2. Ascertain if it is possible to sample topographic highs for locally-derived glacial till.

In the initial mapping (Stea, 2009a) this area was not extensively surveyed, so it was not known whether glaciofluvial deposits covered some or all of these hills. If it can be shown that this is not the case, these hills would be useful sites for sampling during a planned reconnaissance till sampling survey as envisioned by Stea (2009b).

Methods

Forty-three sites were examined over 6 days at the site (Appendix 1; Map 1). Thirty two ~8-10 kg samples were taken at selected locations of both till and glaciofluvial/glaciolacustrine sediments (Appendix 1; Map 1). These samples were taken to quantitatively assess the properties of the sediments including grain size and lithology, but most importantly, to investigate the heavy mineral fraction for economic mineral content. Several samples were obtained from tills near and down-ice of the main Hammond Reef showing as a check that local gold mineralization is represented in till samples and to assess what other indicator mineral types may be best suited for regional exploration.

In order to understand the thickness, extent and origin of the glaciofluvial deposits in the broad basins north of the main Hammond Property a trenching program was begun. A large excavator was used for this purpose. Unfortunately, ATV trails at present have access to only the small part of the Golden Winner basins.

Samples were sent for evaluation of free gold content to Overburden Drilling Management Limited in Ottawa, Ontario (ODM; results pending).

Results

Hills in the Golden Winner area vary from 20-50m in height and have the form of drumlins (inverted spoon shaped hills, streamlined by ice action), ridges and knolls. Sampling of the topographic highs in the Golden Winner property produced some interesting results. Generally the topographic highs were dominated by moss-covered granite outcrop. Enclaves of sediment were found in areas between granite bedrock knobs, often marked by poplar stands. The sediment was either a stony sandy diamicton (till) or silty-fine sand sediment without stones, or both (Map 1). In some localities the till was found underneath the fine-grained sediment. The origin of the fine sediment is uncertain, but it is thought to be a deep water lacustrine facies of glaciolacustrine deposition in Glacial Lake Agassiz.

In addition to sampling topographic highs a trenching program was initiated. Five trenches were dug across the eastern part of the basin and five in the western part (Map 1; Figs. 1, 3). In the western basin an ATV trail runs at the base of a prominent granite scarp. Five trenches were dug along this trail in what was originally mapped as till and glaciofluvial sediments (Stea, 2009a). In all five trenches glaciofluvial sediments were encountered, with Trench 1 exceeding 5 meters in thickness. The main sediment facies encountered were:

1 Parallel-laminated medium to coarse sand with graded beds (Trench 1) becoming finer at depth (Trench 1; Figs. 1, 2)

2. Coarse, matrix-supported gravelly sand with boulder-cobble facies. Well rounded granite boulders becoming larger to the west, exceeding one metre in diameter in some cases (Figs. 1-4).

In Trenches 2-5 granite bedrock was encountered at depths between 3 and 5m (Fig. 1). Approximately 20-40% of the cobbles/boulders were thought to be locally derived tonalitic granitoids, but there were also a high percentages of reddish syenite-or syenogranite (which may also be locally derived) and ~10-20% mafic and felsic volcanic and metasedimentary erratics.

The eastern transect (Trenches 5-10) encountered both glacial till and glaciofluvial sediments. Till areas (Trenches 6, 7, 10) revealed a stony, sandy, matrix-supported diamicton (till) with a bouldery surface layer (Figs. 3, 4). A quasi-layering was observed in the till at Trenches 6 and 7. Granite bedrock was encountered at between 2-4m depth in all these trenches. Till samples were obtained at the till/bedrock interface in all these trenches (Fig. 4). Thick glaciofluvial sediments were seen at Trenches 8 and 9 (Figs 3, 4), with similar facies to the eastern basin with the addition of cross-bedded, coarse sand. Stea (2009a) suggested a subareal deltaic origin for these glaciofluvial sediments, but the lack of identifiable surface landforms (moraines/delta-fans), the presence of fine-grained

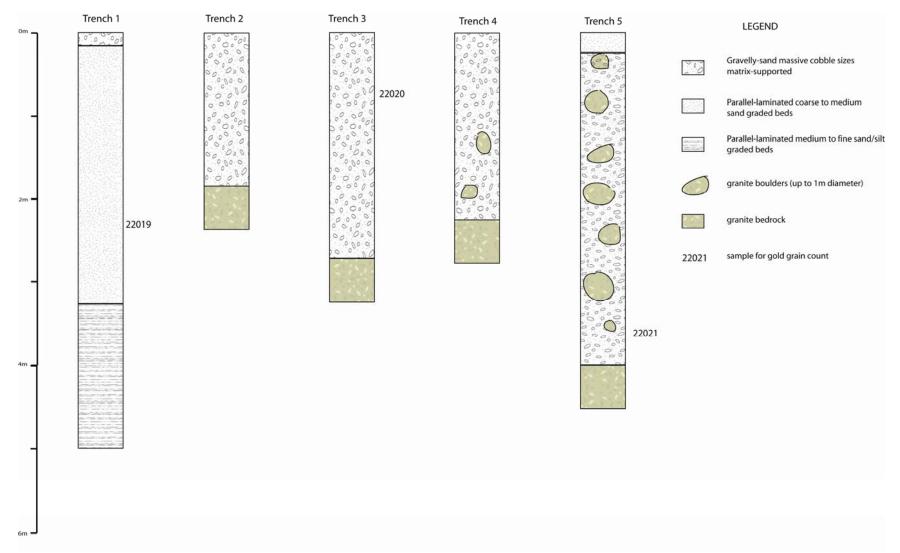


Figure 1. Trench sections along the western portion of the glaciofluvial basin in the Golden Winner property (Map 1-trench locations)

Figure 2. A Trench 1. B. Trench 1 sand facies C. Trench 2 bouldery facies D. Large rounded boulders Trench 5

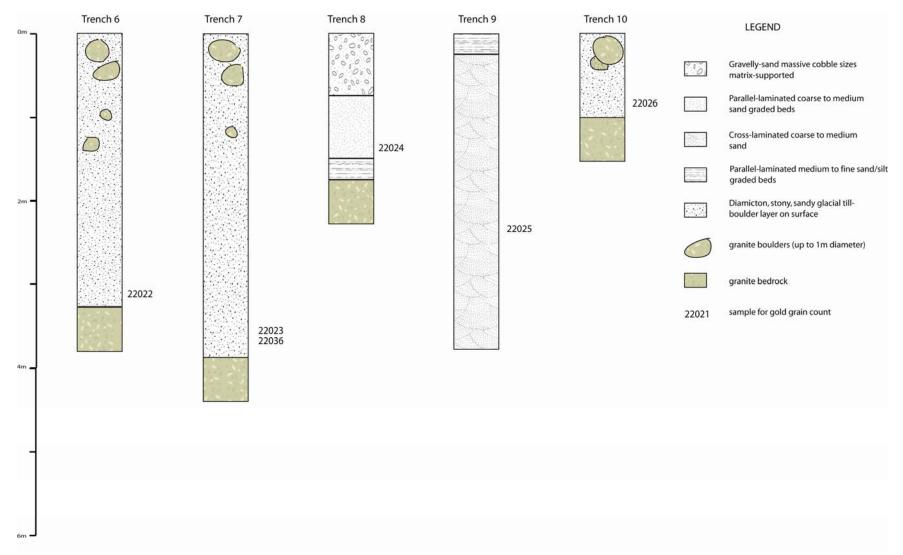


Figure 3. Trench sections along the eastern portion of the glaciofluvial basin in the Golden Winner property (Map 1-trench locations)

Figure 4 A. Bullet boulder in till indicating basal lodgement process Trench 6 B. Trench 8 C. Trench 9 sand D Trench 7 sampling till

sediments (rhythmites), complex sedimentology, and the evidence of deep water lacustrine facies on topographic highs suggests that the glaciofluvial sediments are facies of subaqueous outwash or grounding-line fans (Rust and Romanelli, 1975; Powell and Domack, 1995). These sediments were deposited by subglacial streams at the base of a glacier, into a flanking glacial lake (Glacial Lake Agassiz).

Recommendations

The para-autochthonous nature and thickness of glaciofluvial sediments in the lowland portions of the Golden Winner area make sampling of these sediments as a reconnaissance exploration tool for local gold deposits problematic. Glaciofluvial sediment samples obtained in the western basin trench transect are all down-ice of the Golden Winner prospect so these conclusions are tentative until the gold count results are in. Theoretically, the subglacial streams that deposit subaqueous outwash, are deriving a lot of material from the basal zone of the glacier base which should be locally derived. However, unlike till, which is essentially crushed bedrock, the complex sedimentology of subaqueous outwash renders the possibility of discerning a dispersal fan of gold concentrations from an up-ice ore body less likely. Conventional soil sampling on the surface of these deposits seems an even more problematic venture.

Sampling topographic highs in the area may be a better alternative as locally-derived glacial till is a common sediment found as a discontinuous veneer on these highs. The purpose of a recce survey is to eliminate barren ground, so till sampling is preferred over soil sampling because of the large dispersal fans produced from moderate sized ore bodies (Stea, 2009a). Silty-sand deposits found on some highs may be a masking allochthonous sediment, but till can be found under these sediment veneers in most cases, and digging is relatively easy. Soil sampling can also be considered, but the effect of the lacustrine sand veneer covering some of these highs on soil results is unknown.

The ubiquity of outcrop in both lowland and highland areas of Golden Winner makes prospecting and lithogeochemical sampling an important tool.

In this study and the earlier 2009 sampling survey the author sampled several trenches near and within the Hammond Reef orebody and obtained substantial gold counts in till. It seems like a good opportunity while the trenches are open to re-sample these sites in more detail using both till and conventional soil samples within the same profiles. Differing till fractions can be analyzed to determine if a cheaper analytical method can be used and the geochemical relationships of soil, till and bedrock can be better established.

Some practical sampling recommendations. Existing trails should be cleared to get better ATV access to sites like Golden Winner. Map 1 shows only accessible trails. All others in the Brett resources trail database tested by the author were proven to be non-existent or impassable. In order to gain access for till and rock sampling of more remote muskeg-dominated parts of Golden Winner the company could consider the use of an ARGO

eight wheel transport vehicle which can take three or four geologists across bog areas with little difficulty and carry lots of cargo.

References

Powell, R. D., and Domack, E., 1995 Modern glacimarine environments *in Modern* glacial environments processes, dynamics and sediments, Butterworth, p. 445-486

Rust, B. R., and Romanelli, R., 1975, Late Quaternary subaqueous outwash deposits near Ottawa, Canada, *in Glaciofluvial and glaciolacustrine sedimentation* SEPM special publication, 23, p. 177-192.

Stea, R. R., 2009a Surficial Geology of the Hammond Reef Property, West-Central Ontario. Internal report Brett ResourcesInc.28p.

Stea, R. R., 2009b Till sampling pilot study on the Hammond Reef Property, West-Central Ontario. Brett Resources Inc (addendum); Internal report Brett resources Inc. 12p.

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

Appendix 1:

Terrain Unit		Strat unit	Sed description
Tb	Till blanket >10 m thick masking bedrock structure Till veneer discontinuous <2m	Unit 1- basal till lodgement-meltout	sDmm sandy diamicton- till matrix support
Tvd	thick topography controlled by bedrock	Unit 2 - englacial/ablation till	sDmc sandy diamicton-till clast support
GFb	Glaciofluvial- blanket- >20m thick Glaciofluvial- veneer		BGSc -bouldery gravelly sand clast support m-f S medium to fine
GFvd	discontinuous <2m thick		sand
			F/Dmm silt+clay over till
BR	bedrock		

3 Trench 10 Sandy stony till 2m over bedrock local derviation

2 Old borrow pit, vener os sandy till over granite bedrock

3 trench for bedrock sampling Hammond reef infill hollow

3 trench for bedrock sampling Hammond reef infill hollow

3 Hole 20" good B 40cm, Till stony, sandy olive grey

3 hole 40 inches deep B hor BC/ till

SAMPLE_NUM STOP_NUMBE	NORTHING	EASTING_	TERRAIN_UN	STRAT_UNIT	SED_DEST	STRIAE STRI PHOTOS COMMENTS
22001 BR-10-1	5427999.90	617106.84	GFvd	GF	S-m-f	2 Fine to medium sand discontinuos vener over granite knobs
BR-10-2	5428048.16	617168.81	GFvd	GF	G-S	2 Gravelly-sand btween bedrock knobs of granite-
22002 BR-10-3	5428024.53	616972.72	GFvd	GF	ROCK	3 Bedrock exposed in tree throw guartz vein
22003 BR-10-4	5431082.67	619103.81	Tvd	Unit 1	Dmm	2 glacial till with 10cm sand veneer
BR-10-5	5430812.98	619029.77	Tvd	Unit 1	Dmm	1 glacial till abundant in hollowsma few isolated granite knob
22004 BR-10-6	5430952.65	618994.48	GFvd/Tvd			2 top of rock drumlin veneer of sand/silt over till over bedrock.
22005 BR-10-7	5426969.13	617734.47	Tvd	Unit 1	Dmm	2 till veneer discontinuous top of knob wet hole.
BR-10-8		617808.77		GF	G-S	2 gravelly-sand in low area near swamp
22006 BR-10-9	5427794.74	617857.78	GFb	GF	G-S	2 top of hig spot-flat area-poplars
22014 BR-10-9	5427794.74	617857.78	GFb	GF	G-S	2 top of hig spot-flat area-poplars
22007 BR-10-11	5428319.47	618174.94	GFb	GF	G-S	2 borrow pit polymictic gravel >4m thick gr-mafic, metased, gneiss mineralized granite
22008 BR-10-12	5428141.65	618188.25	GFv	GF	G-S	2 top of small knob -outcrop nearby
22009 BR-10-13	5428443.48	618702.33	GFvd	GF	m-fS	2 top of high knob in GF terrain medium to fine sand with 30& silt lacustrine?
BR-10-14	5428645.04	618789.74	GFb	GF	G-S	2 road cut large rounded boulders Gf
22010 BR-10-15	5425392.41	618025.60	Tb	Unit 2	Dmm	2 road cut till deposit, melt-out till washed layers clay skins
BR-10-16	5427862.22	617595.52	BR	BR	BR	4 top of high ridge granite outcrop 40m cliff.
22011 BR-10-17	5427871.30	617566.50	GFvd	GF	m-fS	3 top of high ridge granite outcrop area between outcrops silt!!!.
22012 BR-10-18	5428308.48	617871.61	GFvd	GF	m-fS	2 top of knoll silty sand material few cobbles wet hole 2m
22013 BR-10-19	5429718.56	621538.73	GFvd	GF	m-fS	2 top of knoll, bedrock oucrop around, silty-sand well sorted poor B
22015 BR-10-20	5429110.65	621111.14	Tvd	Unit 1	Dmm	2 halfway up slope till exposed in hole well developed B/C transition
BR-10-21	5429157.39	621134.83	GFvd/Tvd			2 Silty sediment thin overlying till at top of knoll among bedrock outcrop
22016 BR-10-22	5429184.06	620206.02	Tvd	Unit 1	Dmm	3 great transitions from B/C till well developed
22017 BR-10-23	5429654.52	622306.03	GFb		m-fS/F	delta exposure fine grained beds sampled to compare with knoll silt.
BR-10-24	5430090.49	619214.30	Tvd			3 end of atv acess at Woody lake-
22018 BR-10-25	5430327.85	619309.38	Tvd	Unit 1	Dmm	2 bouldery diamicton near granite outcrop
BR-10-26	5431235.96	620609.09				no access by atv along trail
BR-10-27	5432242.86	618704.95				BOAT ACCESS Claw Lake
BR-10-28	5430917.08	617574.73				BOAT ACCESS Long Hike Lake
BR-10-29	5428787.05	621913.23				BOAT ACCESS LIZARD LAKE
22019 BR-10-30	5428065.75	617885.27	GFb	GF	m-fS	4 Trench 1 me-f S conformably bedded graded beds-lacustrine 5m+ deep
22020 BR-10-31	5428356.24	618246.32	GFb	GF	G-S	3 Trench 3 3.5 me cobbly gravelly sand lage angular gr bldrs near bedrock 3.5m
BR-10-32	5428466.18	618516.53	GFb	GF	G-S	2 Trench 4-bouldery gravelly sand -g-s matrix, bedrock 3.5m.
22021 BR-10-33	5428631.04	618735.59	GFb	GF	G-S	4 Trench 5-bouldery (1-2m d) gravely sand overlain by m-fS, bedrock 4m.
22022 BR-10-34	5429813.02	621949.68	Tb	Unit 1	Dmm	3 Trench 6 3.5 m of till overlyinh granite bedrock big glacial bullet boulder
22023 BR-10-35	5429547.10	621479.53	Tb	Unit2?	Dmm	3 Trench 7 Stony sandy consolidated till granite clasts quasi-layered/bedrock 4m
22036 BR-10-35	5429547.10	621479.53	Tb	Unit2?	Dmm	3 Trench 7 Stony sandy consolidated till granite clasts quasi-layered
22024 BR-10-36	5429182.52	620824.54	GFb	GF/GL	BGS/c-mS	3 Trench 8 Bouldery GS overlying medium sand parallel lam, then fine sand/silt/bed 3m
22025 BR-10-37	5429247.27	620608.39	GFb	GF/GL	m-fS/cS-GS	2 Trench 9 Medium-fine sand overlying par lam coarse sand-granules, x-beds, local
			<u> </u>		-	

Dmm

Dmm

Dmm

Dmm

Dmm

206

Unit 1

Unit 1

Unit 2

Unit 2

unit 1

22026 BR-10-38

22027 BR-10-39

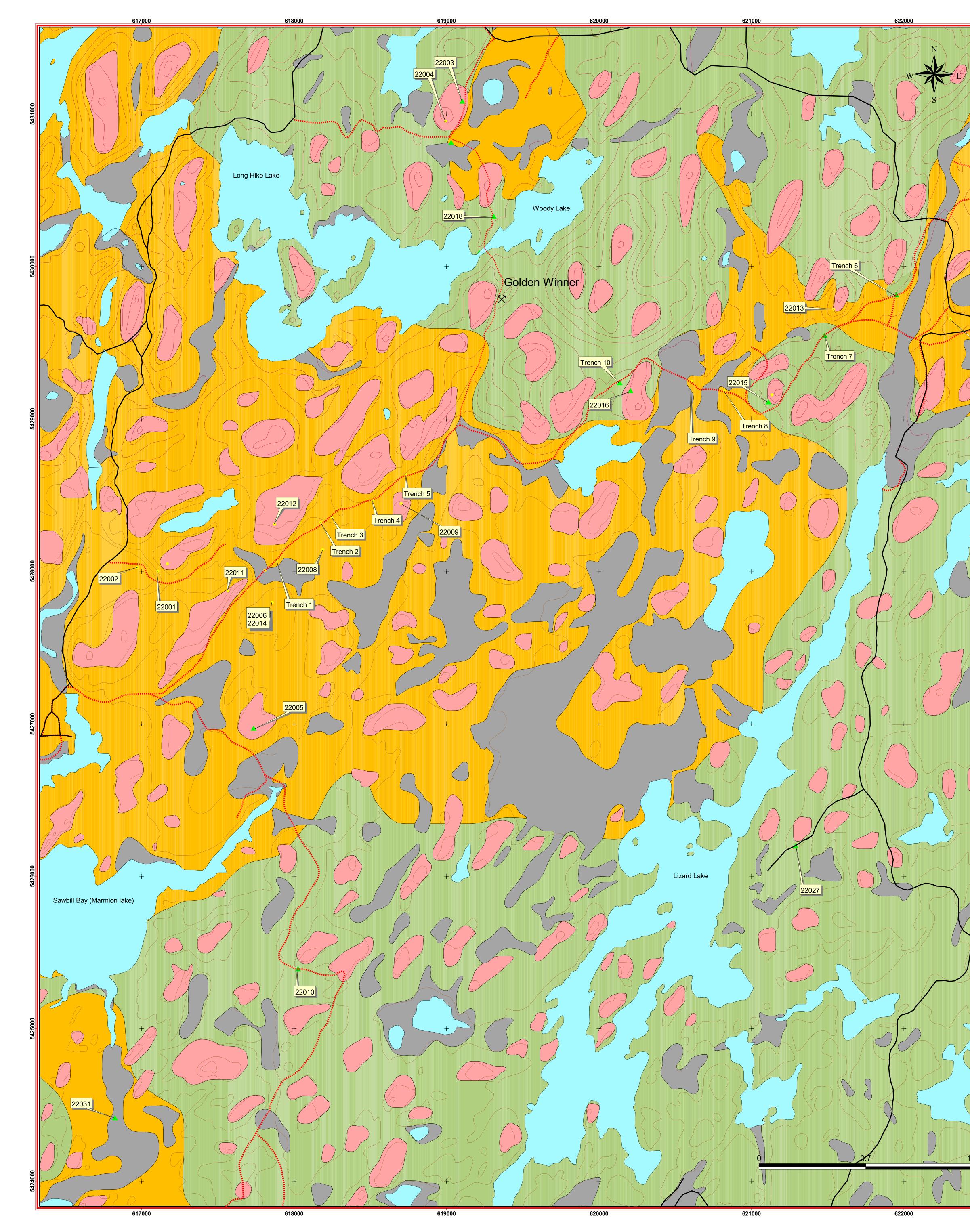
22028 BR-10-40

22029 BR-10-41

22030 BR-10-42

22031 BR-10-43

5429235.75 620135.77 Tvd


5426198.65 621288.30 Tvd

5422200.28 615060.46 Tvd

5422149.98 614631.55 Tvd

5422490.33 614039.29 Tvd

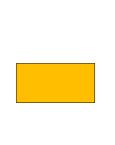
5424414.91 616825.21 Tvd

Surficial Geology of the Golden Winner prospect area, Hammond Reef Property (Brett Resources Inc.)

Universal Transverse Mercator North American Datum 1983

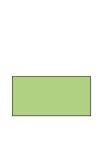
LEGEND

HOLOCENE NONGLACIAL ENVIRONMENT

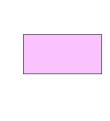

Terrain Unit and Significance to Mineral Exploration

Organic Terrain: (deposits of peat laid down in areas of high water table)

Areas where peat and muck are greater than 1m, constituting bogs and muskeg, low-lying floodplains (peat underlain by sand) and lake shore swamps. Significant detriment to exploration due to masking effect of thick organic material and creation of false anomalies by spurious concentration of metals.


PLEISTOCENE GLACIAL ENVIRONMENT

Subaqueous outwash and associated glacio-lacustrine facies: (deposits of sand and gravel formed at a glacier margin where subglacial meltwater streams empty into glacial lakes).


Sand and gravel deposits are found in broad valleys at the head of Marmion and Finlayson Lakes. Thicknesses vary widely from >10m to less than 1m and bedrock is exposed sporadically. These deposits consist of subaqueously deposited, parallel-laminated, graded beds of coarse/fine sand and coarse open-work gravels interbedded with high energy bouldery, gravel deposits. Deposits are considered detrimental to geochemical prospecting because of far-travelled material diluting a local bedrock signature. Sand deposits are probably more extensive than mapped.

Till Veneer-Discontinuous: (unsorted deposits of boulders/gravel/mud deposited directly by a glacier; basal facies formed near base of glacier, ablation facies from debris higher in the ice)

Bedrock outcrop interspersed with deposits of till, 10-80% outcrop. Topography controlled by bedrock. Till is divisible into two facies: Unit 1- silty-sandy, locally -derived basal facies; Unit 2: Bouldery sandy ablation facies with high erratic content. Terrain is suitable for prospecting and geochemical/geophysical surveys as local bedrock is either at surface or within 1m, buried by a locally-derived till. Soil may be too thin for sampling. Occasional deposits of thick ablation till may mask local bedrock.

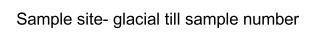
Bedrock with sediment veneer: (bedrock scoured by ice and meltwater action, remnants of till and glaciolacustine silt in hollows between bedrock knobs.

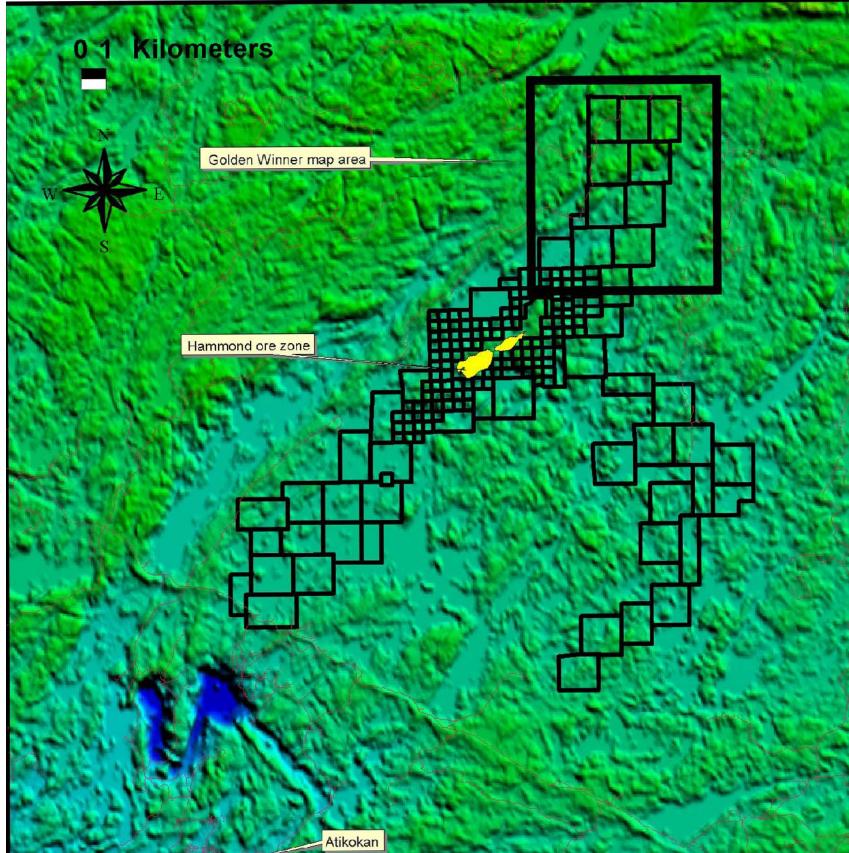


 \propto

Trench 2

22019


Bedrock outcrop or moss/boulder covered outcrop, with a thin, discontinuous cover of till and glaciolacustrine sediment . A period of intense meltwater flow may be indicated and may account for the lack of sediment cover. Terrain suitable for prospecting because bedrock is ubiquitous. Soils may be thin or absent.


Trails accessible by ATV

Truck accesible roads

Trench site- 2010 survey glaciofluvial sediments -sample number on accomapnying figure

Golden Winner prospect (gold)

22017

1.4 Kilometers

IR1			
Ref #	Summary of Comment	Information Request	CMC Response
т-39	An essential component of all numerical hydrogeological models is a sensitivity analysis. Such an assessment of the proponent's water balance model is absent, but presumably could be conducted in order to assess the sensitivity of the water balance model to variations in input parameters. All models, including the one utilized by the proponent are subject to error.	Provide an evaluation of the accuracy of the water balance model used to evaluate potential for near surface versus groundwater water quality influence, including a sensitivity analysis of the model to varied input parameters.	In response to comments received on the Final EIS/EA Report, Ca Government Review Team. We also initiated communications wi 2014 that upon further clarification he is "satisfied at this time wi
	The proponent states in the response to NRCan-8 that "In the water balance model all runoff and seepage is captured and the mass is therefore included in the final discharge water quality", indicating that in order for model results to be valid, all seepage must be collected. In order to collect all seepage, the proponent will need to quantify seepage beneath the TMF and determine the proportion of seepage below the TMF versus through dams. This information will be needed in order to develop an appropriate seepage collection system at the detailed design	Provide clarification on the seepage collection system. Specifically, will pumping wells be utilized to collect seepage from underneath the TMF? If not, please provide justification for this decision. Estimate seepage losses from the TMF, WRMF, PPCP and overburden storage using the groundwater model. Assess the effectiveness of the proposed seepage control measures, and assess the potential impact of seepage discharge to receptors.	Measures to limit, prevent and collect seepage from the TMF, WF level only at this time and consist of a series of collection ditches, During the detailed design stage for the Project additional drilling proposed stockpiles, and at that time it will be appropriate to fur design will include bedrock and depth of overburden conditions, these measures at a detailed design level without appropriate fur
	phase. For example, if a significant amount of seepage occurs beneath the TMF, then the proponent will need to take measures to reduce seepage beneath the TMF (e.g. liner) and/or collect seepage via pumping wells that intercept this flow.		
	In the proponent's response to MOE's comment, it is noted that 10% of the seepage reporting to the collection system along the east side of the TMF would likely report to Lizard Lake (a total of 227 m3/day of seepage). However it is not clear what impact this would have on Lizard Lake.	Provide a determination of seepage below the TMF versus seepage through dams. Identify contingency plans and mitigation measures if seepage beneath the TMF is greater than	As all incident water is accounted for in the receiving waters, it is regarding the conservativeness of the water quality modelling ap Attachment 4 of the Final EIS/EA Report Addendum.
	This information will be necessary to have a clear understanding of what the effects of seepage will be on water quality in the receiving environment, as well as inform the design of mitigation to intercept seepage, and any monitoring networks.	initially predicted. Provide a more detailed assessment of the impacts to Lizard Lake, which should be based on a more suitable and defensible estimate of seepage from the TMF to Lizard Lake.	The water quality of seepage has been predicted and assessed in identified and discussed in the responses to information requests evaluated. Infiltration water is expected to be compliant with ap source were considered (as part of IR-MOE-NR-GW-16 in Append into a water body would not result in adverse aquatic impacts.
			The water quality assessment considered sensitivity in relation to Lake Water Quality TSD (Section 4.2 and 4.3.2). The sensitivity ar "average" case and "upper bound" water quality scenarios (using provided are appropriate since they are based on measured and and GARD, 2012.
			At the request of the Government Review Team, additional 3D gr preliminary 3D groundwater model was constructed using availab seepage could be achieved by the proposed control system given and geologic conditions of the site. Further details of this modell Groundwater Modelling' provided as Attachment 3 of the Final El
			In light of the results of the newly undertaken groundwater mode based on the conceptual design. During the detailed design stage to refine and optimize the design of the seepage collection system
			It is the intent of Canadian Malartic Corporation to work with the and the development of predictive models will meet both the red requirements.

nadian Malartic Corporation hosted a water quality workshop on April 28, 2014 with the ith the Regional Groundwater Group Leader for MOE's Northern Region who stated on May 15, ith the estimates of seepage to Lizard Lake."

RMA, ore, low-grade ore, and overburden stockpiles have been developed at the conceptual , and pumping stations. There are many proven ways to intercept seepage from a given site. g will be undertaken along the dam alignments, ditch alignments and near the edges of ther specify the details of the seepage collection system design. Considerations during detailed and use of pumping; however it is not possible for Canadian Malartic Corporation to fully define nding and Project EIS/EA approval.

immaterial whether the water flows through the dams or beneath the TMF. Further detail proach is in the memorandum entitled 'Water Quality Background Information', provided as

the Final EIS/EA Report. All infiltration from Project facilities was assigned a water quality (as s from the Draft EIS/EA Report) and direct discharge of this water from the facilities was plicable MMER and O. Reg 560/94 criteria. In addition, concentrations for each potential point lix 1.IV of the Final EIS/EA Report) and it was found that direct discharge of these concentrations

o flows and water quality as provided in both the Site Water Quality TSD (Section 4.3) and the nalysis considered a range of flow conditions ranging from 100-year dry to 100-year wet and g 75th percentile values for chemistry inputs). It is considered that the sensitivity model runs as modelled data developed following standard procedures such as those provided in MEND 2009

roundwater modelling efforts were undertaken for the eastern portion of the TMF. The ble information and, through this evaluation, it was shown that capture of greater than 90% of a the current TMF design configuration and the current understanding of the tailing properties ling evaluation are provided in the memorandum entitled 'Tailings Management Facility, 3D IS/EA Report Addendum.

elling, it is considered that the assumed seepage capture efficiency is realistically achievable e additional information collected will be used to develop a more robust modelling evaluation m.

e design engineers and the applicable regulatory agencies to ensure that future data collection quirements of engineering design and needs of the agencies with respect to permitting

IR2			
Ref #	Summary of Comment	Information Request	CMC Response
Т(2)-17	In the review of the draft EIS, it was noted in the Hydrogeology Technical Supporting Document (TSD), dated February 2013 that a trough of granular material was encountered to depths of approximately 25m at the southwest section of the tailings management facility (TMF).	1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Develop a plan for the additional boreholes and	To complete the requested undertaking of a project.
	Groundwater elevations at the monitoring well (BRH-0020) are about 2 metres above those of the Upper Marmion Reservoir. This suggests that overburden groundwater in this area readily discharges to Upper Marmion Reservoir through a permeable pathway in granular materials. The	stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint.	The EIS/EA must adequately address po
	proponent plans to collect seepage from the TMF along the downstream toe of the TMF dams but did not consider seepage from the base of the TMF. Thus, it was requested that the proponent provide an evaluation of the potential seepage to groundwater underneath the TMF and	2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences	_
	assessment of the potential effect the seepage could have on groundwater quality and the resultant surface water quality in Lizard Lake and Upper Marmion Reservoir.	of laterally continuous clay), provide responses to and action on questions 3-7.	Addendum (June 2015): 1. All water and chemical mass load pla
	In response the proponent used a water balance approach and noted that it contains less uncertainty than a hydrogeological modelling approach. The proponent also stated that In the water balance model all runoff and seepage is captured and the mass is therefore included in the final discharge water quality, indicating that in order for model results to be valid, all seepage must be collected. However, federal reviewers noted that the model results do not take into account the seepage losses from the base of the TMF or through dams. Thus, in the first information request dated March 25, 2014, comment T-39 indicated that in order to collect all seepage, the proponent would need to quantify seepage losses from the base of the TMF, using a groundwater model and determine the proportion of seepage below the TMF versus through dams. Comment T-39 also included the request to assess the effectiveness of the proposed seepage control measures and assess the potential impact of seepage discharge to receptors.	4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model.	no resulting aquatic effects (see TSDs a a. To state this differently, we assign we surface water or groundwater, and bot discharge, then there will be more infilt regardless of the outcome of any grour 2. Even at full predicted concentrations are no resulting aquatic impacts (IR MC Therefore it follows that 3. As a result of points 1, and 2, above i or groundwater pathway, it is all accou
	presence of clay lenses within the overburden material that would tend to impede vertical flow. However, federal reviewers noted that Figure 2-5 o the Hydrogeology TSD shows the overburden as primarily comprised of silts and sand, and much of the footprint of the TMF is classified as "Outwash Deltas/Channels" and "Organic Terrain". The clay layers that do exist in some boreholes do not show lateral continuity.		as a point source, or overall mass load t
	It also appears that the 3D groundwater modelling conducted does not adequately characterize the site because it only covers a portion of the TMF and is based on very limited data. This approach does not provide an understanding of the permeability of the overburden underneath the TMF nor does it provide an understanding of groundwater seepage flow paths from the TMF into adjacent waterbodies such as Lizard Lake and Upper Marmion Reservoir. It is not clear what the magnitude and geographic extent (direction and distance) of the effects from seepage losses from the base of the TMF are		Based on the above CMC submits that: - there is ample evidence and analyses aquatic life, regardless of the outcome - as a result CMC further submits that t regarding potential project impacts at t CMC did conduct some supplemental n
	on surface water quality and fish and fish habitat in Lizard Lake and in Upper Marmion Reservoir. The entire TMF needs to be modelled with sufficient monitoring well data and the use of particle tracking in order to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. The 3D groundwater modeling must be re-run and the sensitivity analysis and model results provided. Based on the review of the Technical Memorandum on the 3D groundwater Modelling (dated May 21, 2014), the following deficiencies were noted:	d) as described in 2., include the information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and if the assumption Khorizontal:Kvertical = 1:0.1 is valid. If it is not, update the model assumption	EIS/EA Report), it was directed at response seepage capture was feasible under typ basin at the level of detail design.
	 The model is not calibrated properly nor was a detailed conceptual model presented. The conceptual model provides a visual depiction of the existing groundwater system including stratigraphic layers (shown in cross sections or block diagrams) and information on groundwater flow directions. The hydraulic conductivity for the overburden is poorly characterized and based on limited single-well response tests and estimates based on 	also help better define the Khorizontal:Kvertical relationship; and e) provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.	appropriate seepage reduction or colle CMC is willing to commit to the followin design engineering work to be complet - collection of the requested additional
	 grain-size distribution. Hydraulic conductivity is an important model parameter that can significantly affect model outcomes. The assumption Khorizontal:Kvertical = 1:0.1 is not supported by the borehole data. The borehole logs do not show thick sequences of clay that are continuous across the TMF site. The proponent's response to previous comments about seepage effects on Lizard Lake have focused on the operating phase of the mine, or the 	 6. Provide the methodology, analysis and model results. 7. Based on the results from question 1-6 above, provide a detailed description of the mising provide to intercent second contingency place in the quest second contingency place. 	installation of 3 to 5 monitoring wells w - Collection of additional data through - Re-evaluation of all potential seepage
	immediate post-operating phase when human intervention is still available to manage seepage. Seepage loss during post-closure phase could be a concern if permeability of units underneath TMF is higher than modeled, even with revegetation. The proponent needs to adequately model the post-closure (abandonment) phase to assess the long-term effects of seepage losses to Lizard Lake and the Upper Marmion Reservoir.	mitigation measures proposed to intercept seepage and contingency plans in the event seepage beneath the TMF would be greater than predicted.	o Phreatic surface detail and seepage r o Detailed design drawings for each da o Construction specifications and mate
	The proponent indicates that there "are many additional options to intercept seepage" but does not identify other possible mitigation measures. The proponent indicated that the current plan for the seepage collection systems is in the conceptual stage only and that ditching and pumping stations will be utilized. However, no further details are provided. It is important to provide details on the seepage collection systems, taking into consideration the results of the 3D groundwater model for the entire TMF, in order to assess not only the effectiveness and suitability of the proposed mitigation measures, but also the comparative suitability of the proposed site itself. Furthermore, it is important to have information on the framework of the follow-up program to monitor seepage and to identify the response actions that would be undertaken in the event that a malfunction were to occur or in the event seepage beneath the TMF is greater than predicted.		o Construction specifications for seepag interception well requirements as need o This will satisfy the overall request, ar To be clear CMC believes that seepage engineering controls that will be put in the detailed design phase, and CMC is w the proposed course of action in the re-
	This information will assist the Agency in assessing the adverse environmental effects of seepage losses from the TMF, the magnitude and geographic extent (direction and distance) of any seepage that may pass underneath the TMF to Lizard Lake and Upper Marmion Reservoir and the effectiveness of the proposed mitigation measures. This information is required in order for the Agency to provide a recommendation to the federa Minister of Environment on whether the project is likely to cause significant adverse environmental effects.		

ing would require a level of effort commensurate with the detailed feasibility and design phases

potential for impact to the environment at a level that allows for appropriate decision making acts of a given project. The current assessment is suitable and appropriate to make these s documented in the TSD and subsequent IR Responses as provided in the Final EIS/EA Report

placed on the TMF is accounted for in the discharge, and is used in analysis of basin impact, with a si identified and IR T-34, T-39 and IR MOE-NR-GW-16 from the first round of IRS)

water the same concentration, based on the chemistry of the tailings, weather it leaves as oth of these waters report to Marmion Basin in our assessment – if we increase groundwater filtration, and less surface runoff so the total amount of water, and mass load, will be the same bundwater modelling.

ns of the tailings water (i.e. groundwater reporting directly to surface water in the basin) there IOE-NR-GW-16 from the first round of IRS)

e it is inconsequential weather the water (or chemical mass) reports via a surface water pathway punted for, and at full concentrations (and full mass loads) does not cause aquatic impacts, either d to the basin.

at:

es completed to reasonably conclude there will be no impact to human health, terrestrial life, or ne of any proposed groundwater modelling conducted,

t the current groundwater analyses and model is sufficient to reasonably make decisions It the Hammond reef property.

I modelling in response to regulator concerns (see IR T-40 located in Appendix 1.IV of the Final sponding to questions related to the North and West sides of the TMF, and demonstrating that typical conditions, as was requested by the reviewers. The intent was not to model the entire

ng the groundwater will be important during construction and operation of the facility, such that llection measures can be incorporated into the final design.

wing course of action (as a condition of approval of the EIS/EA), but only as part of the detailed leted prior to construction:

nal drilling data in Item 1 of the request during the detailed design phase of the project through s within the central area of the impoundment.

h drilling, including depth to bedrock, and sediment profiles along all proposed dam alignments. ge pathways for each proposed dam of the facility, including 2D seepage models (or a 3D model if

drilling in the center of the impoundment), in order to produce:

e rates for dam stability analysis

dam

terial specifications for the dam proper

bage interception and collection, including depths of ditches, pumping requirements, and eded to achieve the seepage design objectives.

and in particular Item 7 of the above request

se capture objectives as stated in the EIS/EA document are effectively achievable through in place for the project, additional data will be collected and modelling will be completed during s willing to accept these requirements as conditions of EIS/EA approval, however given the cost of request it is not realistic or feasible for CMC to undertake this at this time.

IR3			·
Ref #	Summary of Comment	Information Request	CMC Respo
Ref # T(3)-08	Summary of Comment The T(2)-17 response does not provide information to assess the potential adverse effects of seepage from the tailings management facility (TMF) on particular receiving water bodies that are frequented by fish, including but necessarily limited to Lizard Lake and Sawbill Bay. Instead CMC's response outlines a perspective on the potential impacts of seepage to aquatic life in the Marmion basin. By focusing on the entire basin, rather than individual water bodies within the basin, the approach fails to predict whether seepage may affect any particular water body. According to subsection 10.2.3.1 of the EIS Guidelines, the EIS shall provide results of the hydrogeological assessment that determines: groundwater seepage location, rates, seepage quality, and direction into or from the open pits, mine rock stockpiles and other stockpiles, TIA facilities, primary sedimentation pond and process water pond, and from the pits during future overflow. Clarity on seepage is required to understand the flow regime, including whether the seepage flow through the base of the TMF and/or through the TMF dam potentially will enter any receiving water body frequented by fish. Also, Subsection 13.1.2 of the EIS Guidelines requires the EIS to include a description of the follow-up program to evaluate the predictions of effects and the effectiveness of the proposed mitigation. T(2)-17 is re-submitted, with minor changes in items 1 and 3, to request the information needed by the Agency to assess the adverse environmental effects of seepage losses from the TMF, the magnitude and geographic extent (direction and distance), of any seepage that may discharge into any receiving water body frequented by fish, and the effectiveness of the proposed mitigation measures. Discussion on the potential adverse effects and their significance linked to the findings	 Information Request The response to T(2)-17 of Information Request #2 does not meet the expectations of the Agency and federal reviewers. Therefore, we are repeating the request and have synthesized it to provide additional clarity. 1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Perform additional single-well response tests and consider performing a pump test to better characterize hydraulic conductivity values and isotropy/anisotropy. Develop a plan for the additional boreholes and stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint. 2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences of laterally continuous clay), provide responses to and action on questions 3-7. 3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in discussion with relevant government to ensure baseline information is gathered in regions where unit with higher hydraulic conductivities are found within the proposed TMF footprint. 4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model. 	
	This information is required in order for the Agency to provide a recommendation to the federal Minister of Environment and Climate Change on whether the Project is likely to cause significant adverse environmental effects.	 5. Re-run the 3D model based on the following: a) perform a more robust calibration using additional monitoring well data; b) presenting a detailed conceptual model using visual depictions to describe the baseline hydrogeological conditions; c) model all project phases including baseline, operations phase, closure (decommissioning), and post-closure (abandomment); d) as described in 2, include information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and to determine if the assumption Korizontal-Kvertical = 1:0.1 is valid, if it is not, update the model assumption for isotropy/anisotropy. The installation of additional monitoring wells and hydraulic testing will also help better define the Khorizontal-Kvertical relationship; and e) provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity. f. Provide the methodology, analysis and model results. 7. Based on the results from question 1-6 above, provide a detailed description of the mitigation measures proposed to intercept seepage and contingency plans in the event seepage beneath the TMF would be greater than predicted. 8. Describe the residual effects on water quality; the significance of those residual effects based on the Agency's methodology for assessing significance (including the criteria of magnitude, geographic extent, duration, frequency, reversibility, ecological/social/cultural context]; and the follow-up program, including any monitoring measures, which will be implemented to evaluate the predictions of effects and the effectiveness of the proposed mitigation. 	d

ponse

TECHNICAL MEMORANDUM

DATE December 12, 2017

TO Sandra Pouliot Canadian Malartic Corporation

FROM Adam Auckland and Devin Hannan

DOC No. 011 (Rev 0)

PROJECT No. 1408383 3500 3501

EMAIL adam auckland@golder.com

HAMMOND REEF GOLD PROJECT – TAILINGS MANAGEMENT FACILITY, ADDITIONAL STRATIGRAPHIC INFORMATION AND PROPOSED 3D GROUNDWATER MODELLING

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has prepared this draft Technical Memorandum (memorandum) for Canadian Malartic Corporation (CMC) as clarification for the Government Review Team (GRT) regarding questions brought forward relating to the need for additional field data collection, assessing the assumption of isotropy / anisotropy and additional numerical groundwater modelling of the proposed tailings management facility (TMF) at the Hammond Reef Gold Project (the Project). This is a supplementary memorandum to the Hammond Reef Gold Project – Tailings Management Facility, Additional 3D Groundwater modelling memorandum, dated March 1, 2016. The review comments by the GRT on the aforementioned memorandum were provided to CMC in a letter dated May 6, 2016 titled "Federal Review of the Draft Technical Memorandum on the Additional 3D Groundwater Modelling for the Hammond Reef Gold Project Federal Environmental Assessment".

Key items that were identified by the GRT included: 1) additional information on stratigraphy; 2) additional hydraulic conductivity data; 3) assessment of anisotropy; 4) completion of modelling for closure and post closure phases; and, 5) inclusion of the conceptual seepage collection system in the model. These items were discussed in a conference call between CMC, the GRT and Golder on May 18, 2016. During this call, the GRT requested that items clarified on the call also be provided in a memo in order to have the opportunity to review the additional information provided.

Baseline Hydrogeological Conditions

A review of the current hydrogeological conditions in the vicinity of the Tailings Management Facility (TMF) was provided in order to explain our rational for the locations of existing boreholes / monitoring wells and why we consider that there is sufficient subsurface information to complete the proposed hydrogeological model as described in the aforementioned March 1, 2016 memorandum. The following is a summary of the baseline conditions and existing information.

Stratigraphy

In total, there are 22 single and nested borehole locations with detailed stratigraphic information and an additional 64 condemnation drillholes for which overburden thickness is available. The locations of these boreholes and drillholes are shown in Figure 1. We wish to note that, in our opinion, the dataset as illustrated in Figure 1 provides excellent coverage within and around the boundaries of the propose TMF and is in our view sufficient to adequately characterize overburden thickness in the area.

Local relief in the Marmion Lake area is commonly less than 45 m but may exceed 60 m in some areas (Mollard and Mollard 1980). Over the project area, overburden is generally thin and discontinuous. The proposed TMF is located in a low lying area, bounded to the north, northwest and northeast by a generally continuous topographic high, with elevations on the order of 470 to 480 metres above mean sea level (m amsl) compared to elevations of approximately 420 m amsl in the low lying areas of the centre of the proposed TMF. The southwest, south and east of the proposed TMF are characterized by troughs or valleys between extensive bedrock outcrops (Figure 1). As such, borehole drilling and monitoring well installations in the area were primarily focused in the valleys between bedrock outcrops along the perimeter of the TMF as these would be considered the key potential seepage pathways. In order to illustrate this topography and constraints on groundwater flow, topographic cross-sections were produced around the perimeter of the proposed TMF and are presented in Figures 2A through 2E.

As can be observed in these cross-sections, overburden aquifers are generally of limited lateral extent due to significant bedrock outcropping. Bedrock, which is situated at or near the ground surface over much of the project area, controls the topography and therefore the surface drainage conditions (Mollard and Mollard 1980). In general, the overburden, overlying bedrock, ranges from not present to greater than 30 m in thickness in the area of the TMF. The stratigraphy encountered by boreholes in the area of the TMF is detailed in Table 1 below (data from condemnation holes is not listed as the bulk overburden logged was not separated into sub-units). Note that not all of the layers were present in all boreholes. Boreholes were either advanced into the bedrock (19 of 21 holes) or terminated upon refusal on probable bedrock (3 of 21 holes). It is possible that the maximum thickness of the overburden is greater than recorded in the boreholes that were terminated upon refusal.

Borehole Location	Peat/ Organics Thickness (m)	Silt and Sand Thickness (m)	Silty clay to clayey silt Thickness (m)	Till (Sand and Gravel/ Boulders, Sand, Clay) Thickness (m)	Overburden/ Bedrock contact Depth (m)
BRH-0016	-	1.1	-	0.4	1.5
BRH-0017	-	2.3	-	0.8	3.1
BRH-0018	-	1.8	-	-	1.8
BRH-0019	0.3	1.2	6.1	0.8	8.4
BRH-0020	0.2	0.6	14	10.8	25.6
BRH-0021	0.6	0.6	1.4	0.4	3.0
BRH-0022	-	-	-	0.1	0.1
BRH-0023	0.5	1.0	-	2.1	3.6
BRH-0024	-	-	-	1.0	1.0
BRH-0025	1.2	0.3	-	0.2	1.7
RH-0026	0.2	1.0	-	0.3	1.5
BRH-0027	0.6	1.1	-	0.7	2.4
BH12-1	0.1	0.81		0.3	1.2
BH12-2		2.9	5.7	6.53	15.14
BH12-3	1.37	2.9	4.57	4.57	13.41

Table 1: General	Stratigraphy	at the TMF
	onungrupny	

Borehole Location	Peat/ Organics Thickness (m)	Silt and Sand Thickness (m)	Silty clay to clayey silt Thickness (m)	Till (Sand and Gravel/ Boulders, Sand, Clay) Thickness (m)	Overburden/ Bedrock contact Depth (m)
BH12-4	2.13		3.05	1.83	7.01
BH12-5	1.65	3.91		2.19	7.75
BH13-1	2.74	1.53	0.91	1.83	7.01
BH13-2	0.61	3.96		0.92	5.49
BH13-3	2.59		6.25	4.42	13.26*
BH13-4		1.52	4.58	13.1	17.68*
BH13-5	1.68		2.74	7.47	10.21*

Notes: * indicates borehole terminated upon auger refusal.

Stratigraphy across the TMF, based upon the above noted boreholes, is generally consistent, with peat at surface underlain by silt and sand. A silty clay / clayey silt layer is observed in approximately half of the boreholes. It is consistently observed in all of the boreholes located along the south and east of the TMF, and seems to be correlated to areas of thicker overburden deposits. The silty clay / clayey silt layer is generally not observed in boreholes with less than 5 metres total overburden and generally present in boreholes with more than 5 metres of overburden. This can be accounted for in the model, such that the silty clay / clayey silt unit would not be considered in the areas of shallow overburden. The silty clay / clayey silt unit is underlain by a sandy, gravelly till. Overall the thickness of these units are relative to the overall thickness of the overburden.

The combination of detailed stratigraphic information from the 22 boreholes and the laterally extensive information on overburden thickness from the condemnation drillholes provides sufficient information to characterize the hydrostratigraphic setting in the area of the TMF in order to develop the proposed groundwater model. Key areas for assessing potential seepage pathways will be the bedrock valleys along the perimeter of the TMF footprint, as most seepage from the base of the TMF in the overburden would be expected to report laterally through the overburden in these valleys. These are the areas where most of the available hydrogeological / geotechnical boreholes have been completed.

Hydraulic Conductivity

The hydraulic conductivity of the subsurface materials were estimated by conducting rising head tests and analysis of grain size. Within the TMF footprint, a total of 11 overburden and 6 bedrock hydraulic conductivities were obtained through either rising head tests or grain size (Hazen) method. In addition to hydraulic conductivities measured in the immediate vicinity of the TMF, an additional 20 bedrock and 19 overburden measurements were obtained from locations around the proposed Open Pit, Mine Rock Area and alternative TMF areas. Based on a review of the borehole logs, the stratigraphic units logged at these locations are similar to those encountered at the TMF and would supplement the data available for the TMF groundwater model.

Recognizing the concern brought forward by the GRT of providing additional hydraulic conductivity information, it is proposed that rising / falling head tests be completed at the monitoring wells that have been installed in 2012. These include 3 bedrock monitoring wells and 4 overburden monitoring wells at the TMF as well as 6 additional overburden monitoring wells located to the west and south of the TMF with well screens considered to be in units

representative of the stratigraphy at the TMF. With these additional locations, a total of 29 bedrock and 36 overburden hydraulic conductivity measurements will be available to be used in the development of the groundwater model.

Anisotropy

Although Vertical Hydraulic Conductivity (Kv) is considered an important hydraulic characteristic, it is rarely measured in the field, generally for lack of practical field tests. Laboratory analyses for Ky are generally based on permeameter measurements but these are often difficult when applied to cores from heterogeneous and especially unconsolidated formations because these measurements are generally small scale and representative of the disturbed sample (Kabala, 1993). Although some studies have been completed that suggest options for measurement of Kv in the field, in practice, Kv/Kh is often based on the review of stratigraphic logs and assessment of the presence or absence of horizontally bedded formations. It can then be further assessed through sensitivity analyses within a groundwater model. In reviewing borehole logs at the TMF, and the project site in general, and as summarized in Table 1 above, a Silt and Sand or Silty Sand unit is observed in almost every borehole. In general, wherever overburden deposits tend to be thicker than approximately 10 m, a Clayey Silt / Silty Clay is also observed. The presence of these units would indicate that the ratio of Kv / Kh in the bulk overburden aguifer would be less than 1 and that the originally proposed anisotropy ratio of 0.1 is within the generally accepted range. Freeze and Cheery (1979) summarize a study completed by Jonson and Morris (1962) in which vertical and horizontal conductivities of 61 laboratory samples of fluvial and lacustrine sediments were assessed. From this study, it was determined that horizontal conductivities were between 2 to 10 times larger than the vertical values, which would consist of Kv/Kh of between 0.5 and 0.1.

Nonetheless, in order to address concerns raised by the GRT, it is proposed that the anisotropy be evaluated as a sensitivity analysis in the groundwater model. Two anisotropy ratios will be assessed, and calibrations performed on both a ratio of Kv/Kh of 0.1 and 1.0; the latter implying conservative isotropic conditions.

Operational Seepage collection

Conceptual seepage collection measures, which consist of a perimeter seepage collection system of ditches and pump stations is proposed downstream of the TMF containment dams to collect and pump seepage back into the TMF, have been proposed to date. It should be recognized however that the detailed design of the seepage collection measures has not completed and is not available for the proposed groundwater model. Reasonable assumptions will be made with respect to the location and depth of these ditches and a summary of these assumptions will be provided. A review will be completed to confirm viability of seepage collection using reasonable and proven methods, based on the observed borehole conditions, stratigraphy, modelled flow and literature data following the model runs. Once the Project progresses to the permitting phase, detailed designs will be completed of the collection system and the groundwater model can be updated at that time if deemed necessary.

As is typical for operating tailings facilities, monitoring wells will be installed along the perimeter of the TMF, in low lying areas along which key seepage pathways would be expected, and monitoring will be completed throughout the life of the Project and into closure. This monitoring would be used to confirm if the seepage control measures are operating as anticipated. As part of the report that will be prepared to accompany the groundwater model, high level monitoring plans for the TMF will be proposed and possible contingency measures, beyond the seepage collection system described above, will be proposed.

Closure and Post-closure modelling

As requested by the GRT, the groundwater modelling will also be completed for the closure and post-closure phases of the project.

CLOSURE

We trust that this memorandum serves as sufficient foundation for further discussions on refining a path forward to fully satisfy the requirements of the Government Review Team. Please contact the undersigned if you have any questions.

Prepared by:

<Original signed by>

Reviewed by: <0riginal signed by>

Adam Auckland, M.Sc., P.Eng. Project Manager, Water Resources Engineer Devin Hannan, P.Eng. Associate, Enviromental Engineer

KB/DH/AA/sk

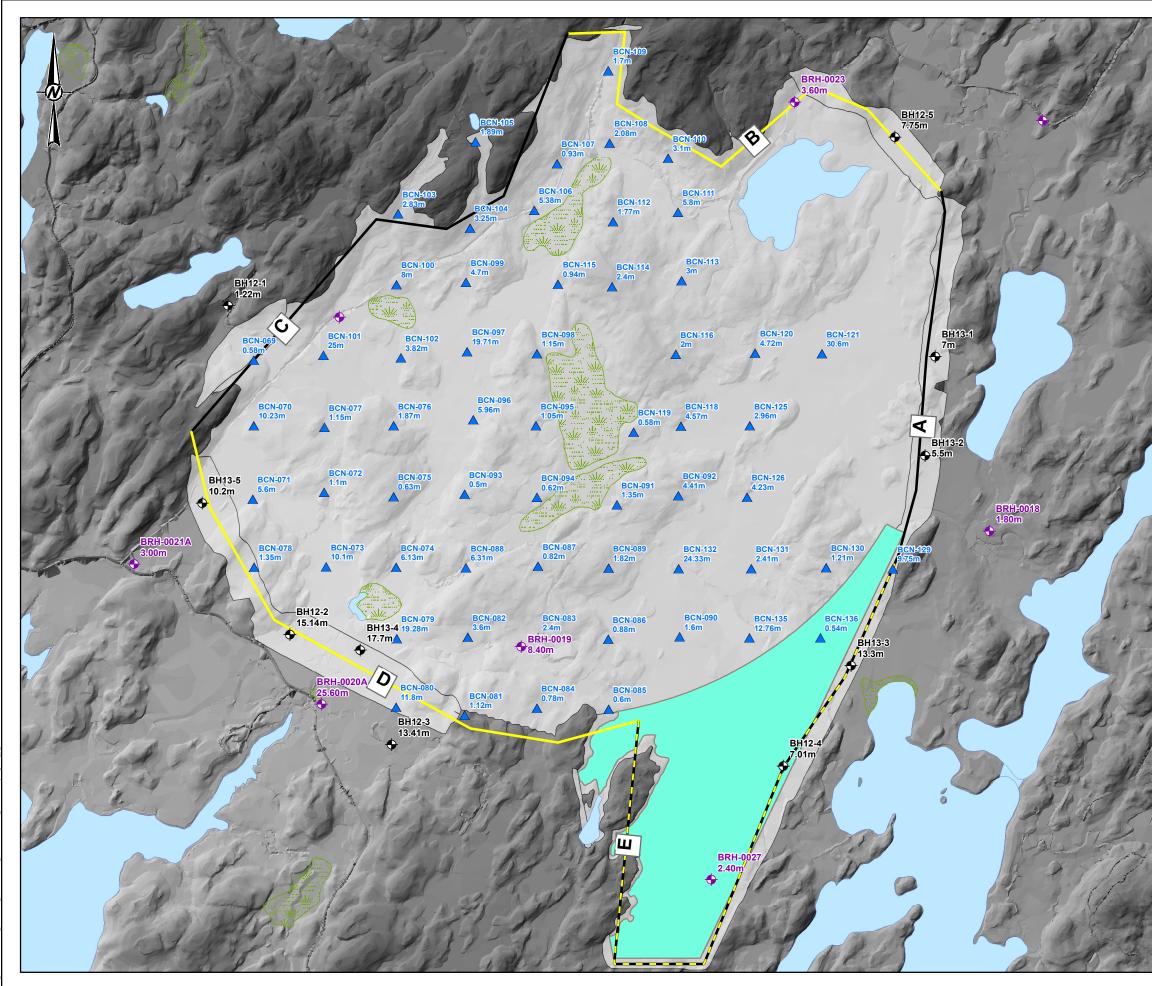
Attachments:

Figure 1 – Topographic Cross-Section Locations Figures 2A – 2E – Topographic Cross-Sections A through E

REFERENCES

Golder, 2014. Technical Memorandum: Osisko Hammond Reef Gold Project – Tailings Management Facility, 3D Groundwater Modelling. 13-1118-0010 (5008). May 27, 2014.

Freeze R.A. and Cheery J.A. 1979. Groundwater. Prentice Hall. New Jersey.


Jonson A.I., and D.A. Morris. 1962. Physical and hydrologic properties of water bearing deposits from core holes in the Las Banos-Kettleman City area, California. U.S. Geol. Surv. Open-File. Denver, Colo.

Kabala, Z.J., 1993. The Dipole Flow Test: A new single borehole test for aquifer characterization.

Mollard, D.G., Mollard, J.D. 1980. Northern Ontario Engineering Geology Terrain Study 55: Marmion Lake Area (NTS 52B/NW) District of Rainy River. Ontario Geological Survey, Ministry of Natural Resources.

n:\active\2014\1188\1408383-cm -hammond reef ea follow-up\3500 - water quality\3501 - tmf seepage\tmf-additional stratigraphic information memo\1408383_doc011_rev 0_tmf modelling work scope memo_12dec2017.docx

▲ Condemnation Hole(Overburden Thickness Labelled)

+ Hydrogeological Borehole (Overburden Thickness Labelled)

Geotechnical Borehole (Overburden Thickness Labelled)
 Cross-Section

- Cross-Section
- ---- Cross-Section
- Polishing Pond
- Tailings Management Facility
- Lake
- Wetland

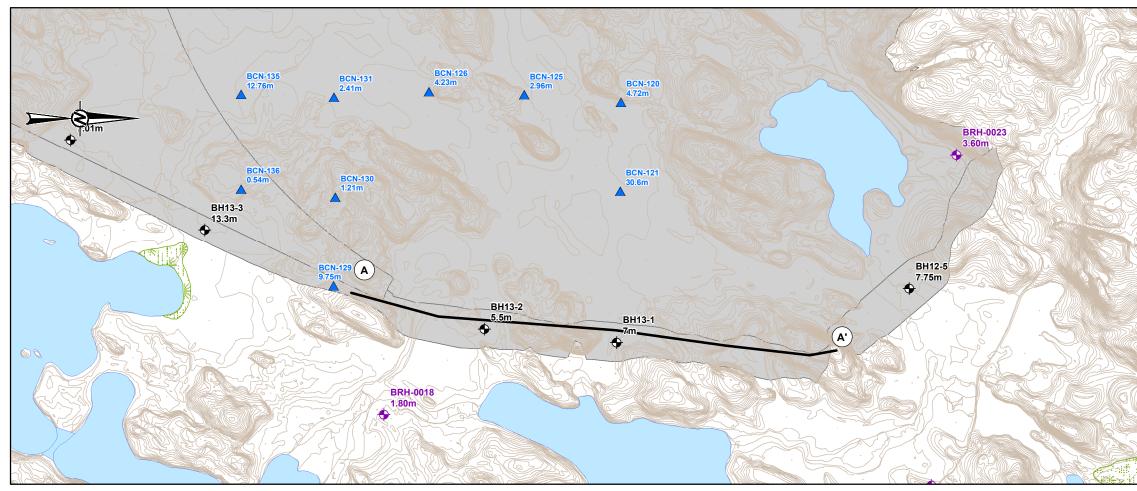
NOTES THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 1408383/3500

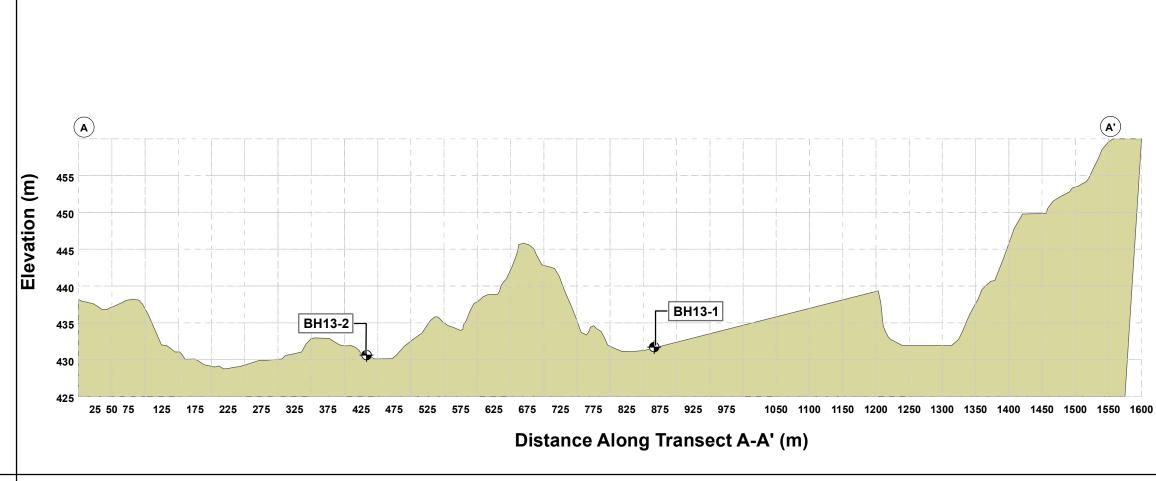
REFERENCE

CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE – ONTARIO. HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERNMENT-LICENCE-ONTARIO PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 15 VERTICAL DATUM: CGVD28

CLIENT CANADIAN MALARTIC CORPORATION

PROJECT HAMMOND REEF GOLD P ROJECT ATIKOKAN, ONTARIO, CANADA TITLE


TOPOGRAPHIC CROSS-SECTION LOCATIONS


CONSULTANT

YYYY-MM-DD		2016-06-03	
PREPARED		RRD	
DESIGN		RRD	
REVIEW		KAB	
APPROVED			
	Rev.		FIGURE
	А		1

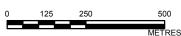
PROJECT No. 1408383

CondemnationHole (Overburden Thickness Labelled)
 Hydrogeological Borehole (Overburden Thickness Labelled)
 Geotechnical Borehole (Overburden Thickness Labelled)

LEGEND

---- Cross-Section

- Contour


Lake

Tailings Management Facility

NOTES THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 1408383

REFERENCE

CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE – ONTARIO. HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERNMENT-LICENCE-ONTARIO PROJECTION: TRANSVERSE MECATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 15 VERTICAL DATUM: CGVD28

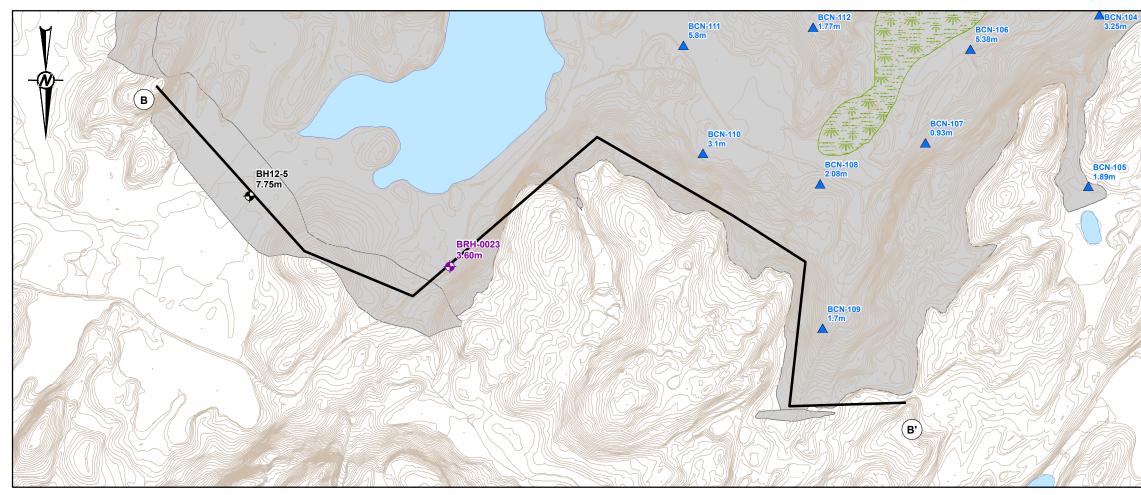
SCALE 1:12,000

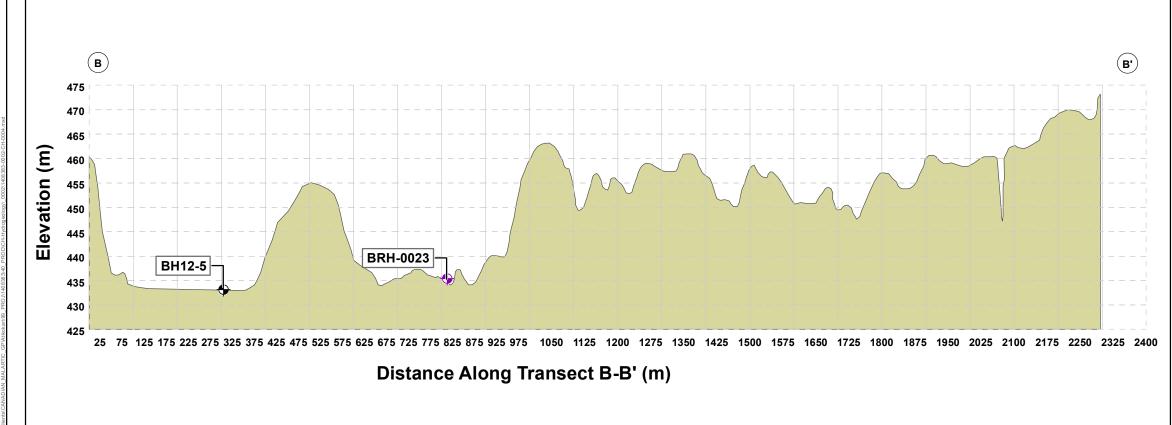
CLIENT CANADIAN MALARTIC CORPORATION

PROJECT HAMMOND REEF GOLD P ROJECT ATIKOKAN, ONTARIO, CANADA TITLE

TOPOGRAPHIC CROSS-SECTION A-A'

PHASE 3500


CONSULTANT



YYYY-MM-DD	2016-06-03	3
PREPARED	RRD	
DESIGN	RRD	
REVIEW	KAB	
APPROVED		
Re	V.	FIGURE

PROJECT No. 1408383

.

▲ CondemnationHole (Overburden Thickness Labelled)

Hydrogeological Borehole (Overburden Thickness Labelled)

✤ Geotechnical Borehole (Overburden Thickness Labelled)

---- Cross-Section

Tailings Management Facility

Contour

Wetland

NOTES THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 1408383/3500

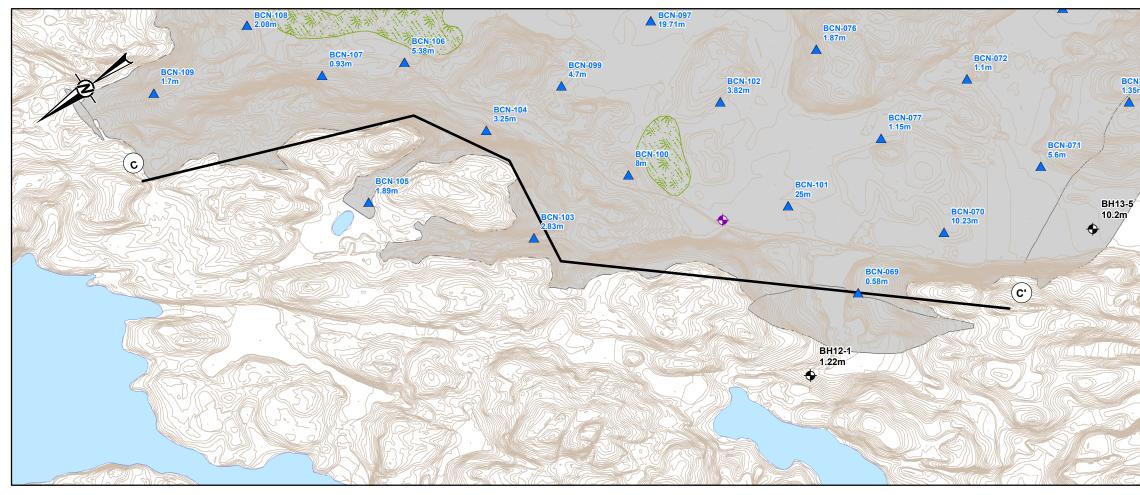
REFERENCE

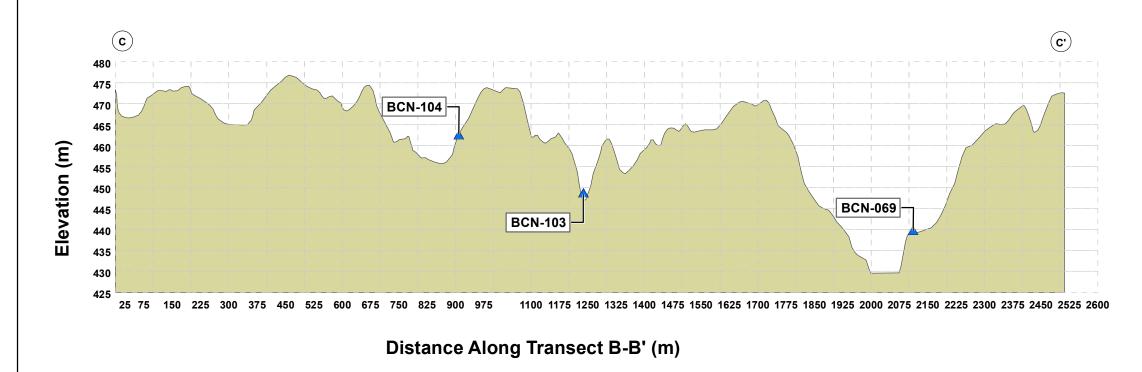
CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE – ONTARIO. HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERNMENT-LICENCE-ONTARIO PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 15 VERTICAL DATUM: CGVD28

SCALE 1:8,000

CLIENT CANADIAN MALARTIC CORPORATION

PROJECT HAMMOND REEF GOLD P ROJECT ATIKOKAN, ONTARIO, CANADA TITLE


TOPOGRAPHIC CROSS-SECTION B-B'


CONSULTANT

YYYY-MM-DD	2016-06-03	
PREPARED	RRD	
DESIGN	RRD	
REVIEW	KAB	
APPROVED		
	Rev.	FIGURE
	A	2B

PROJECT No. 1408383

▲ Condemnation Hole (Overburden Thickness Labelled)

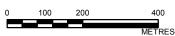
Hydrogeological Borehole (Overburden Thickness Labelled)

Geotechnical Borehole (Overburden Thickness Labelled)

---- Cross-Section

Tailings Management Facility

---- Contour


Lake

Wetland

NOTES THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 1408383/3500

REFERENCE

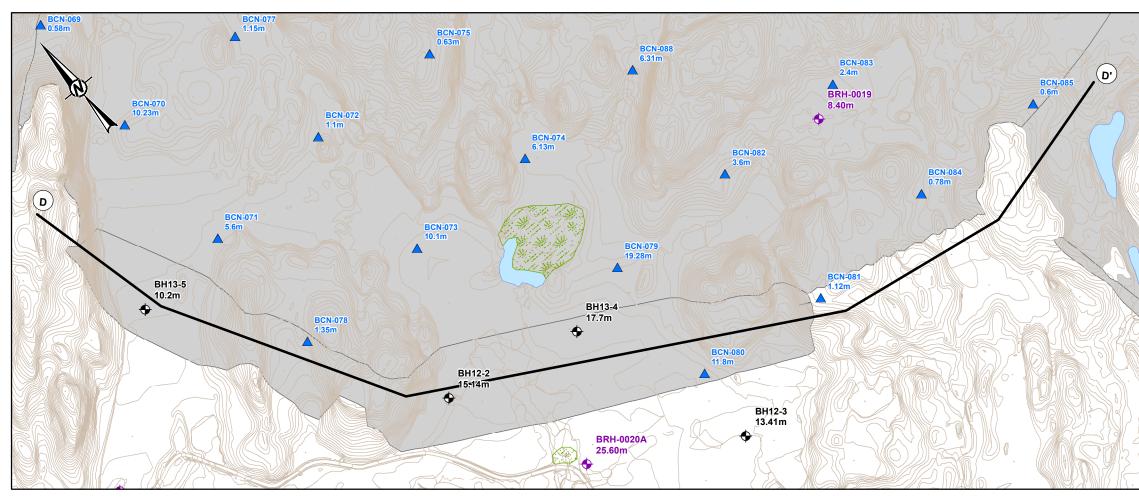
CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE – ONTARIO. HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERNMENT-LICENCE-ONTARIO HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERN PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM: UTM ZONE 15 VERTICAL DATUM: CGVD28

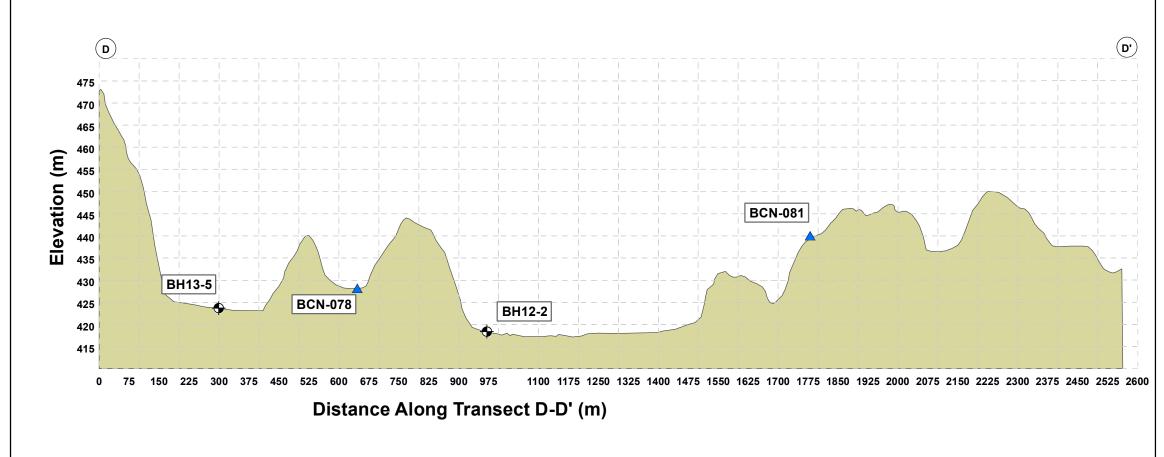
SCALE 1:10,000

CLIENT CANADIAN MALARTIC CORPORATION

PROJECT HAMMOND REEF GOLD P ROJECT ATIKOKAN, ONTARIO, CANADA

TITLE TOPOGRAPHIC CROSS-SECTION C-C'


PHASE 3500


CONSULTANT

PROJECT No. 1408383

YYYY-MM-DD	2	2016-06-03
PREPARED	F	RRD
DESIGN	F	RRD
REVIEW	۲	(AB
APPROVED	-	-
	Rev.	FIGURE
	А	2C

▲ Condemnation Hole (Overburden Thickness Labelled)

+ Hydrogeological Borehole (Overburden Thickness Labelled)

Geotechnical Borehole (Overburden Thickness Labelled)

---- Cross-Section

Tailings Management Facility

Contour

Lake Wetland

REFERENCE CONTAINS INFORMATION LICENSED UNDER THE OPEN GOVERNMENT LICENCE – ONTARIO. HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERNMENT-LICENCE-ONTARIO HTTPS://WWW.ONTARIO.CA/GOVERNMENT/OPEN-GOVERN PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83

COORDINATE SYSTEM: UTM ZONE 15 VERTICAL DATUM: CGVD28

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT NO. 1408383/3500

75 150 300

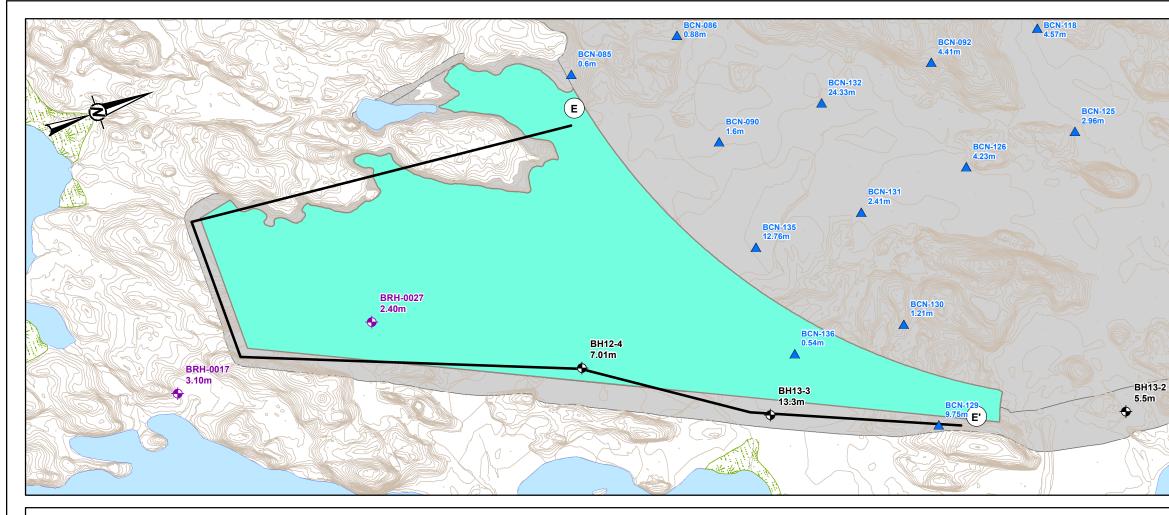
SCALE 1:8,000

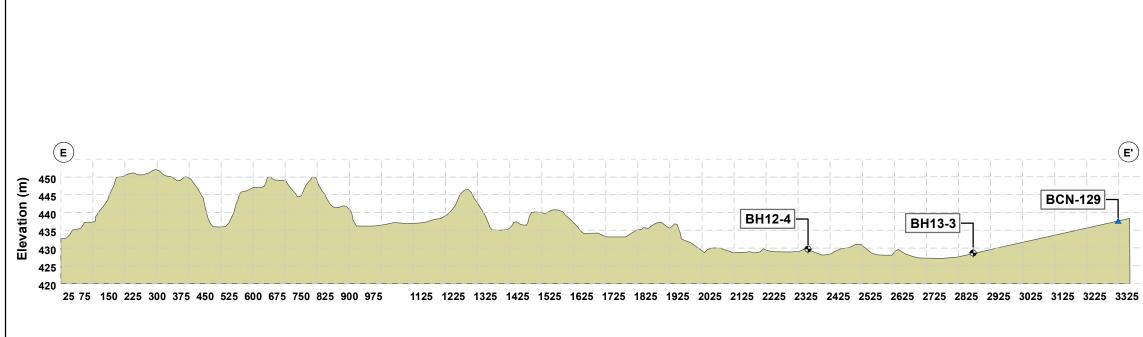
CLIENT CANADIAN MALARTIC CORPORATION

PROJECT HAMMOND REEF GOLD P ROJECT ATIKOKAN, ONTARIO, CANADA TITLE

TOPOGRAPHIC CROSS-SECTION D-D'

PHASE 3500


CONSULTANT


PROJECT No. 1408383

NOTES

2016-06-03	
RRD	
RRD	
KAB	
V.	FIGURE
	RRD RRD KAB

Distance Along Transect E-E' (m)

LEGEND					
🔺 Conden	nnation I	Hole (Ov	verburden Thic	kness Labelle	ed)
🔶 Hydrog	eologica	l Boreho	le (Overburde	n Thickness L	abelle
Geotecl	hnical Bo	orehole (Overburden T	hickness Lab	elled)
-Cross-S		,			,
Polishin					
Tailings	-	omont Er	acility		
			acinty		
Contour	ľ				
Lake					
Wetland	1				
NOTEO					
NOTES THIS FIGURE IS TO) BE READ II		TION WITH THE ACCON	MPANYING	
GOLDER ASSOCIA	TES LTD. RE	PORT NO. 14	108383/3500		
			R THE OPEN GOVERN		
PROJECTION: TRA	NSVERSE M	IERCATOR D			
	0	125	250	500	
		_		METRES	
	SCALE 1:	10,000		WE ITLU	
CLIENT	/ALARTI	C CORP	ORATION		
			-		
HAMMOND F ATIKOKAN, (
TITLE TOPOGRAPI					
CONSULTANT			YYYY-MM-DD	2016-06-03	
<u></u>			PREPARED	RRD	
	Gold	24	DESIGN	RRD	
	Associa	ates	REVIEW	KAB	
			APPROVED		
PROJECT No.	PHAS			ev.	FIGU
1408383	3500	1	A	1	2

25.000 JEFT THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIEL

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART B CEAA Comments on Response Approach

Canadian Environmental Assessment Agency

Ontario Regional Office 55 St. Clair Avenue East, Room 907 Toronto, ON M4T 1M2 Agence canadienne d'évaluation environnementale

Bureau régional de l'Ontario 55, avenue St-Clair est, bureau 907 Toronto (Ontario) M4T 1M2

May 6, 2016

ELECTRONIC MAIL

Ms. Sandra Pouliot, ing. Project Manager, Environment Canadian Malartic Corporation 100, chemin du Lac Mourier Malartic, QC JOY 1Z0

SUBJECT: Federal Review of the Draft Technical Memorandum on the Additional 3D Groundwater Modelling for the Hammond Reef Gold Project Federal Environmental Assessment

Dear Ms. Pouliot:

The Canadian Environmental Assessment Agency (the Agency), along with Natural Resources Canada and Environment and Climate Change Canada, completed the review of the Canadian Malartic Corporation (CMC) March 1, 2016 draft technical memorandum on the additional 3D groundwater modelling for the proposed Hammond Reef Gold Project.

The Agency recognizes the work done by CMC to produce the draft technical memorandum in response to expectations of the proposed scope of work recommended by T(3)-08 of Information Request #3 and the related discussions held during the teleconference of February 2, 2016. However, upon review, the draft technical memorandum outlines a proposed scope of work that will not fully address T(3)-08.

The proposed scope of work proposes to expand the hydrogeological model to encompass the entire tailings management facility by using the historic borehole data described in the memorandum. Federal experts have reviewed the dataset and the limitations of this dataset, as acknowledged in the draft technical memorandum, do not provide sufficient geotechnical information for the modeling. Of particular note is the lack of stratigraphic information and information for analysis of hydraulic conductivity and anisotropy data. Annexes 1 and 2, attached to this letter, link the deficiencies identified in the draft technical memorandum to the parts of T(3)-08.

.../2

Annex 1 provides a cross reference between the Information Request and deficiencies with the proposed scope of work, while Annex 2 provides an overview of the technical deficiencies with the proposed scope of work. Of particular note, as identified in parts 6 and 7 of the Information Request and noted in Annex 1, in some specific cases the scope of work does not respond directly to how some of the Information Request will be addressed.

To support CMC duly responding to T(3)-08 of Information Request #3, the Agency and federal reviewers are willing to meet with CMC to discuss this correspondence and the attachments. It is expected that the deficiencies identified in the scope of work will be addressed to the satisfaction of the federal reviewers before CMC prepares its response to T(3)-08.

Please feel free to contact me at 416-797-3402, 416-952-1574 or HammondReef@ceaa-acee.gc.ca, if there are questions about the content of this letter or the attachments and to schedule a meeting.

Sincerely, <Original signed by>

Loraine Cox Project Manager Attachment:

- Annex 1: Table Linking T(3)-08 of Information Request #3 to the Deficiencies Identified During the Federal Review of the Additional 3D Groundwater Modelling Memorandum (one page)
- Annex 2: NRCan's Technical Review of the 3D Groundwater Modelling Memorandum, Hammond Reef Project, Ontario (eight pages)
- cc. Angélique Magee, Natural Resources Canada
 Jennifer Dorr, Natural Resources Canada
 Sheryl Lusk, Environment and Climate Change Canada
 Antonia Testa, Ontario Ministry of the Environment and Climate Change

T(3)-08	Review Findings			
Part #				
1	Refer to Sections 2.1.3 and 2.1.4, page 4 of Annex 2			
2	Refer to Sections 2.1.3 and 2.1.4, page 4 of Annex 2			
3	Refer to Sections 2.1.3 and 2.1.4, page 4 and section 2.5.3, page 7 of Annex 2			
4	Refer to Section 2.3.3 page 6 of Annex 2			
5a	Refer to Sections 2.2.3 and 2.2.4, page 5 and Section 2.4.3 page 6 of Annex 2			
5b	Refer to Sections 2.2.3 and 2.2.4, page 5 of Annex 2			
5c	Refer to Sections 2.2.3 and 2.2.4, page 5 and Section 2.6.3 and 2.6.4 page 7 of			
	Annex 2			
5d	Refer to Sections 2.2.3 and 2.2.4, page 5 of Annex 2			
5e	Refer to Sections 2.2.3 and 2.2.4, page 5 and Section 2.7.3, pages 7 and 8 of Annex			
	2			
6	The proponent did not respond directly to Part 6 of T(3)-08. It is expected that the			
	proponent will provide methodology, analysis and model results with the new			
	model.			
7	The proponent did not respond directly to Part 7 of T(3)-08. It is expected that			
	based on the revised 3D numerical groundwater model, the proponent will provide			
	a detailed description of the mitigation measures proposed to intercept seepage			
	and the contingency plans in the event seepage is greater than predicted.			
8	The proposed scope of work indicates that the potential impacts to Lizard Lake and			
	Sawbill Bay receiving TMF seepage will be re-assessed based on the predicted			
	residual seepage rates and TMF seepage water quality. Depending on factors such			
	as the depositional type and permeability of the surficial deposits, scoping the			
	assessment to Lizard Lake and Sawbill Bay may not be sufficient. The assessment			
	needs to include all waterbodies that are frequented by fish that could potentially			
	be affected by TMF seepage. Also, the proposed scope of work needs to include a			
	commitment to describe the groundwater and surface water quality monitoring			
	measures to verify seepage effects on water quality.			

Annex 1: Table Linking T(3)-08 of Information Request #3 to the Deficiencies Identified During the Federal Review of the Additional 3D Groundwater Modelling Memorandum

Natural Resources Ressources naturelles Canada

NRCan's Technical Review of the 3D Groundwater Modelling Memorandum, Hammond Reef Project, Ontario

a) Overview of Comments and Information Request T(3)-08

1.1. NRCan's General Comments Regarding the Proponent's Response

The Proponent has proposed a plan and approach to responding to information request T(3)-08 in their memo: Hammond Reef Gold Project- Tailings Management Facility, Additional 3D Groundwater Modelling, Draft Technical Memorandum, March 1, 2016. The Canadian Environmental Assessment Agency requested a review of the memo from the federal review team. The provincial review team plans to review the information proposed as well in the context of their potential permits and authorizations for the project. The Proponent outlined issues below in an attempt to address information request T(3)-08, but NRCan notes the issues they outline are not a complete representation of the information request submitted to the Proponent. The comments and rationale for T(3)-08, as well as the information request (IR) is restated below. The relevant section of the IR in relation to the issues outlined by the Proponent in their Memo are also restated in sections within NRCan's review, for further clarity regarding the sufficiency of the approach the Proponent is proposing to responding to IR T(3)-08.

1.2. Comments and Rationale from T(3)-08 (copied verbatim, Jan. 29, 2016 IR Table)

The T(2)-17 response does not provide information to assess the potential adverse effects of seepage from the tailings management facility (TMF) on particular receiving water bodies that are frequented by fish, including but not necessarily limited to Lizard Lake and Sawbill Bay. Instead CMC's response outlines a perspective on the potential impacts of seepage to aquatic life in the Marmion basin. By focusing on the entire basin, rather than individual water bodies within the basin, the approach fails to predict whether seepage may affect any particular water body.

According to subsection 10.2.3.1 of the EIS Guidelines, the EIS shall ... provide results of the hydrogeological assessment that determines: groundwater seepage location, rates, seepage guality, and direction into or from the open pits, mine rock stockpiles and other stockpiles, TIA facilities, primary sedimentation pond and process water pond, and from the pits during future overflow. Clarity on seepage is required to understand the flow regime, including whether the seepage flow through the base of the TMF and/or through the TMF dam potentially will enter any receiving water body frequented by fish.

Also, Subsection 13.1.2 of the EIS Guidelines requires the EIS to include a description of the follow-up program to evaluate the predictions of effects and the effectiveness of the proposed mitigation.

T(2)-17 is re-submitted, with minor changes in items 1 and 3, to request the information needed by the Agency to assess the adverse environmental effects of seepage losses from the TMF, the magnitude and geographic extent (direction and distance), of any seepage that may discharge into any receiving water body frequented by fish, and the effectiveness of the proposed mitigation measures. Discussion on the potential adverse effects and their significance linked to the findings should also be provided.

This information is required in order for the Agency to provide a recommendation to the federal Minister of Environment and Climate Change on whether the Project is likely to cause significant adverse environmental effects.

1.3 Information Request T(3)-08

The response to T(2)-17 from Information Request #2 was insufficient. The IR was reworked and submitted to the proponent on Jan 29, 2016:

- 1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Perform additional single-well response tests and consider performing a pump test to better characterize hydraulic conductivity values and isotropy/anisotropy. Develop a plan for the additional boreholes and stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint.
- 2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences of laterally continuous clay), provide responses to and action on questions 3-7.
- 3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in discussion with relevant government departments to ensure baseline information is gathered in regions where units with higher hydraulic conductivities are found within the proposed TMF footprint.
- 4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model.
- 5. Re-run the 3D model based on the following:
 - a) perform a more robust calibration using additional monitoring well data;
 - b) presenting a detailed conceptual model using visual depictions to describe the baseline hydrogeological conditions;
 - c) model all project phases including baseline, operations phase, closure (decommissioning), and post-closure (abandonment);
 - d) as described in 2., include information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and to determine if the assumption $K_{horizontal}$: $K_{vertical} = 1:0.1$ is valid. If it is not, update the model assumption for isotropy/anisotropy. The installation of additional monitoring wells and hydraulic testing will also help better define the Khorizontal:Kvertical relationship; and
 - e) provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.
- 6. Provide the methodology, analysis and model results.

Natural Resources Ressources naturelles Canada

- 7. Based on the results from question 1-6 above, provide a detailed description of the mitigation measures proposed to intercept seepage and contingency plans in the event seepage beneath the TMF would be greater than predicted.
- 8. Describe the residual effects on water quality; the significance of those residual effects based on the Agency's methodology for assessing significance (including the criteria of magnitude, geographic extent, duration, frequency, reversibility, ecological/social/cultural context); and the follow-up program, including any monitoring measures, which will be implemented to evaluate the predictions of effects and the effectiveness of the proposed mitigation.

2. NRCan's Technical Review Comments on the 3D Groundwater Modelling Memo

2.1. Baseline Data in Relation to Hydrogeology Modelling

2.1.1. Parts 1, 2 and 3 of IR (3)-08

- 1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Perform additional single-well response tests and consider performing a pump test to better characterize hydraulic conductivity values and isotropy/anisotropy. Develop a plan for the additional boreholes and stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint.
- 2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences of laterally continuous clay), provide responses to and action on questions 3-7.
- 3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in discussion with relevant government departments to ensure baseline information is gathered in regions where units with higher hydraulic conductivities are found within the proposed TMF footprint.

Natural Resources Ressources naturelles Canada

2.1.2. Issue as Outlined by the Proponent

Canada

Address the applicability of the currently available data to adequately characterize the site baseline hydrogeology and, if necessary, collect additional field data.

2.1.3. NRCan's Review of the Ability of Proposed Plan to Address Parts 1-3 of IR(3)-08

The Proponent has completed a search for additional geotechnical data in the area of the TMF that was not available or considered in the previous groundwater modelling analysis. It is NRCan's opinion that the usefulness of the information that was found is limited on its own, but may help in the development of the more comprehensive model that the proponent has proposed. The majority of this data provides only depth to bedrock, but seems to provide good coverage over the TMF. Trench data provides surficial geology information around the periphery of the TMF, but little information for the interior of the TMF.

The Proponent plans to incorporate additional data and regional surficial geology mapping with previously used logs to develop a detailed overburden isopach map for the TMF. The Proponent is of the view that this information negates the need to drill additional boreholes. It is NRCan's view that development of an isopach map will greatly improve the understanding of the distribution and thickness of permeable surficial sediments within the TMF footprint. However, NRCan recommends that the Proponent consider collection of additional data, as it is important to have additional detailed stratigraphic information to better delineate the depositional type and permeability of the surficial deposits.

2.1.4. NRCan's Recommendation

NRCan recommends that the proponent consider collection of additional data, as it is important to better delineate the depositional type and permeability of the surficial deposits in order to ensure adequate baseline data for the site is used in hydrogeology model.

2.2. Hydrogeology and Numerical Model for TMF

2.2.1. Part 5 of IR (3)-08

- 5. Re-run the 3D model based on the following:
 - a) perform a more robust calibration using additional monitoring well data;
 - b) presenting a detailed conceptual model using visual depictions to describe the baseline hydrogeological conditions;
 - c) model all project phases including baseline, operations phase, closure (decommissioning), and post-closure (abandonment);
 - d) as described in 2., include information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and to determine if the assumption K_{horizontal}:K_{vertical} = 1:0.1 is valid. If it is not, update the model assumption for isotropy/anisotropy. The installation of additional monitoring wells and hydraulic testing will also help better define the K_{horizontal}:K_{vertical} relationship; and
 - e) provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.

Natural Resources Ressources naturelles Canada

6. Provide the methodology, analysis and model results.

2.2.2. Issue as outlined by the Proponent

Provide a detailed conceptual hydrogeologic model that will serve as the basis for the numerical model. Particular consideration should be given to: 1) granular troughs underlying the TMF and their potential as seepage pathways; 2) hydraulic conductivity assignments, particularly anisotropy, in lieu of heterogeneity observed in borehole logs across the site. The adequacy of the existing slug testing and grain size data as a basis for characterizing the hydraulic conductivity is also questioned.

2.2.3. NRCan's review of the ability of proposed plan to address Part 5 of IR(3)-08

The Proponent plans to expand the hydrogeological model to encompass the entire TMF and will be using the additional well data found during their existing data search. NRCan presumes that the updated information will be used to develop new cross sections. The Proponent has committed to developing an isopach map for the overburden. This is an important part of the conceptual model along with cross sections.

With respect to granular troughs within surficial materials, the Proponent may not be able to adequately delineate these without additional data and as such it is recommended by NRCan that the Proponent consider collection of additional data.

With respect to hydraulic conductivity, the proponent plans to review hydraulic conductivity data within the model domain and discrete hydraulic conductivity zones may be developed if the data suggests significant heterogeneity exists across the site. If anisotropy is not clearly supported by either the data or calibration effort (below), an isotropic system may be conservatively assumed. The Proponent is of the opinion that existing slug testing and grain size analysis results provide a reasonable means to characterize hydraulic conductivity. It is NRCan's view that there is still significant uncertainty with respect to hydraulic conductivity and no new hydraulic conductivity data has been made available.

It is not clear how the Proponent plans to provide a better analysis of hydraulic conductivity/anisotropy data.

2.2.4. NRCan's Recommendations

With respect to granular troughs within surficial materials, the Proponent may not be able to adequately delineate these without additional data and as such it is recommended by NRCan that the Proponent consider collection of additional data.

It is NRCan's view that there is significant uncertainty with respect to hydraulic conductivity in the footprint of the TMF, and no new hydraulic conductivity data has been made available. NRCan recommends that the Proponent clarify in their proposed plan how they will provide a better analysis of hydraulic conductivity and anisotropy data. NRCan notes that additional baseline data may be required in order to do this.

2.3 Expansion of Model Domain to Cover Entire TMF

2.3.1. Part 4 of IR(3)-08

4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model.

2.3.2. Issue as outlined by the Proponent

Develop a more regional-scale model that encompasses the entirety of the TMF, as opposed to just the eastern flank.

2.3.3. NRCan's review of the ability of proposed plan to address Part 4 of IR (3)-

08

The proponent plans to expand the model domain to include the entire TMF and will delineate the extents based on regional hydrologic boundaries. It is NRCan's view that with the incorporation of an appropriate level of sufficient baseline data within the TMF into the model, this plan should be sufficient to address Part 4 of IR(3)-08.

2.4. Calibration of Hydrogeology Model to Adequate Baseline Data

2.4.1. Part 5 a) of IR (3)-08

5. a) perform a more robust calibration using additional monitoring well data;

2.4.2. Issue as Outlined by the Proponent

Conduct a model calibration using baseline data.

2.4.3. NRCan's Review of the Ability of Proposed Plan to Address Part 5 a) of IR (3)-08

The model will be calibrated in steady-state to average water levels at monitoring wells within domain. In addition, stream / baseflow data may be considered, depending on the gauge location relative to the model domain. A base case, pre-TMF groundwater flow budget will be derived based on the calibrated model output. It is an iterative, trial-and-error approach to calibration. It is NRCan's view that this approach is reasonable.

2.5. Potential Seepage from TMF

2.5.1. Part 3 of IR (3)-08

3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in discussion with relevant government departments to ensure baseline information is gathered in regions where units with higher hydraulic conductivities are found within the proposed TMF footprint.

2.5.2 Issue as Outlined by the proponent

Based on the expanded domain, estimate the amount of seepage by-pass to downgradient receptors other than Lizard Lake, for example, Sawbill Bay and smaller water bodies around the perimeter of the TMF. Quantify the proportion of seepage occurring below the TMF base versus through the TMF dams.

Natural Resources Ressources naturelles Canada

2.5.3. NRCan's Review of the Ability of Proposed Plan to Address Part 3 of IR (3)- 08

The expanded model should allow for seepage tracking from the TMF to all collection systems and potential downgradient receptors. A comprehensive flow budget will be developed based on the model output. Particle tracking will be employed to illustrate seepage pathways. Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. It is NRCan's view that this is a reasonable approach and with proper calibration of the model, should address this issue.

2.6. Modeling Different Phases of Project

2.6.1. Part 5 c) of IR(3)-08

Canada

5. c) model all project phases including baseline, operations phase, closure (decommissioning), and post-closure (abandonment).

2.6.2. Issue as Outlined by Proponent:

Consider all project phases from baseline to closure.

2.6.3. NRCan's review of ability of proposed plan to address Part 5 c) of IR (3)-08

The modelling will consider current conditions (baseline) and operations phase at full buildout. The proponent will not consider post-closure conditions and has provided the following justification for that decision. The proponent claims that during the post-closure period, seepage water quality will have been deemed to be suitable for discharge and the TMF reclaim pond spillway will be lowered, reducing the potential for seepage.

2.6.4 NRCan's Recommendations

However, NRCan recommends that closure/post-closure modeling be conducted in case the water quality is not deemed suitable for discharge into the receiving water bodies. This is standard practice for modelling closure/post-closure modelling in conjunction with a sensitivity analysis and is a useful tool for showing the closure/post-closure effects of the project and how these predictions may vary if some of the assumptions are not accurate.

2.7. Sensitivity Analysis

2.7.1. Part 5 e) of IR (3)-08

5. e) provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.

2.7.2 Issue as Outlined by Proponent

Conduct a sensitivity analysis to examine the potential range of seepage rates emanating from the TMF.

2.7.3 NRCan's Review of the Ability of Proposed Plan to Address Part 5 e) of IR (3)-08:

A sensitivity analysis will be performed to establish an upper bound on results by varying select input parameters within a reasonable range about the base case input value. Golder

Natural Resources Ressources naturelles Canada Canada

will seek the Federal review team's opinion in selecting parameters to test during the sensitivity analysis. The proponent proposes recharge rates, and hydraulic conductivities/anisotropies of tailings, overburden and weathered bedrock as potential candidates for analysis. It is NRCan's view that this is a good approach and that the suggested variables are reasonable.

2.8 Environmental Effects on Receiving Water Bodies

2.8.1. Part 8 of IR (3)-08

Describe the residual effects on water quality; the significance of those residual effects based on the Agency's methodology for assessing significance (including the criteria of magnitude, geographic extent, duration, frequency, reversibility, ecological/social/cultural context); and the follow-up program, including any monitoring measures, which will be implemented to evaluate the predictions of effects and the effectiveness of the proposed mitigation.

2.8.2. Issue as Outlined by the Proponent

Evaluate potential environmental impacts to all receiving water bodies.

2.8.3. NRCan's Review of the Ability of Proposed Plan to Address Part 8 of IR (3)-08:

The expanded model should allow for seepage tracking from the TMF to all collection systems and potential downgradient receptors. A comprehensive flow budget will be developed based on the model output. Particle tracking will be employed to illustrate seepage pathways. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. It is NRCan's view that the modelling part of this approach is quite reasonable. However, it is outside of NRCan's area of expertise to comment on potential environmental impacts to surface water receptors.

Document Reviewed:

Hammond Reef Gold Project- Tailings Management Facility, Additional 3D Groundwater Modelling, Draft Technical Memorandum, March 1, 2016

Canadian Environmental Assessment Agency

Agence canadienne d'évaluation environnementale

Ontario Regional Office 55 St. Clair Avenue East, Suite 907 Toronto ON, M4T 1M2 Bureau régional de l'Ontario 55, avenue St-Clair est, bureau 907 Toronto (Ontario) M4T 1M2

July 29, 2016

ELECTRONIC MAIL

Ms. Sandra Pouliot, ing. Project Manager, Environment Canadian Malartic Corporation 100, chemin du Lac Mourier Malartic, QC J0Y 1Z0

SUBJECT: Federal Comments on the June 15, 2016 Supplementary Memorandum on the Scope of Work for the 3D Groundwater Modeling for the Federal Environmental Assessment of the Hammond Reef Gold Project

Dear Ms. Pouliot:

The Canadian Environmental Assessment Agency, along with Environment and Climate Change Canada and Natural Resources Canada, completed the review of the June 15, 2016 supplementary memorandum on the scope of work (SOW) for the 3D groundwater modeling for the proposed Hammond Reef Gold Project.

Upon review of the original March 1, 2016 memorandum and June 15, 2016 supplementary memorandum, clarification has been provided on the proposed SOW's model domain expansion, calibration, project phase analysis, groundwater flow and seepage simulation and sensitivity analysis. However, there are other components of the SOW, including characterization of stratigraphy and hydraulic conductivity, which require further clarification. The attached table provides a summary of the items that remain unresolved, along with the federal review findings and recommendations.

The first six recommendations contained in the table outline elements, which form the basis of the assumptions and inputs necessary for building a conservative 3D hydrogeological model. The Agency and federal reviewers are seeking clarification on how Canadian Malartic Corporation (CMC) will wholly incorporate the recommendations and expect to review and approve a written submission of the model assumptions and inputs before CMC conducts any model runs. The submission should also explain how the unresolved items in the attached table are addressed.

The seventh recommendation seeks to ensure the report on the modeling results is used to inform all analyses required to wholly respond to Information Request T(3)-08 and make certain the scope of work includes not only the report on the modeling results, but also the responses to all parts of T(3)-08.

Efforts by CMC and federal reviewers to resolve the issues are recognized by the Agency. The Agency and federal reviewers have cooperated with CMC in exploring the option of using historic borehole data in lieu of drilling new boreholes to improve the hydrogeological model. However, CMC should also recognize and consider revisiting the viable option to conduct additional fieldwork to address the dataset issues of the proposed scope of work.

The Agency and federal reviewers are seeking to meet with CMC to discuss its written submission. Please contact Loraine Cox at (416) 952-1574 or me at (416) 564-1589, or alternatively send an email to <u>HammondReef@ceaa-acee.gc.ca</u> to organize a meeting.

Sincerely, <Original signed by>

> Carl Johansson / Project Manager

Attachment: Table of Federal Review Findings on the Proposed Scope of Work for the 3D Groundwater Modeling (six pages)

cc. Sheryl Lusk, Environment and Climate Change Canada Jennifer Dorr, Natural Resources Canada Antonia Testa, Ministry of the Environment and Climate Change

Table of Federal Review Findings on the Proposed Scope of Work for the 3D Groundwater Modeling

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	Status
Model Domain Expansion	• Expand the model domain to include the entirety of the TMF and delineate the extents based on regional hydrologic boundaries. This will allow for the simulation of a comprehensive site groundwater budget and TMF seepage tracking to all collection systems and potential downgradient receptors. [March 1, 2016 memo]	 With the incorporation of an appropriate level of sufficient baseline data within the TMF into the model, this plan should be sufficient to address Part 4 of IR T(3)-08. RECOMMENDATION: #1 Prior to executing any model runs, the proponent should provide the Government Review Team (GRT) a written submission on the model assumptions and inputs to verify that the proposed approach is reasonable to the GRT. 	Resolved

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	Status
Overburden Isopach Development	 Incorporate additional data (as identified in Section 3.0) and regional surficial geology mapping with previously used logs to develop a detailed overburden isopach underneath the TMF. [March 1, 2016 memo] In our view the incorporation of this additional data, which provides good coverage over the TMF footprint, negates the need for additional boreholes. [March 1, 2016 memo] External to the TMF, where overburden data may not exist, the isopach will be extended into the broader model domain based on conservative assumptions (for example, assuming lateral continuity at an appropriate uniform thickness). [March 1, 2016 memo] 	 The stratigraphy indicated in the June 15, 2016 Technical Memo does not address the extensive glaciofluvial sand and gravel deposits reported and mapped by Stea (2010) presented as part of the March 1st 2016 draft TM. Although the cross-sections in the June 15th, 2016 Technical Memo only show surface topography and do not show subsurface materials, the topographic profiles clearly suggest the presence of filled valleys (also previously referred to as "granular troughs"). These filled valleys are mapped by Stea (2010) predominantly as "subaqueous outwash and associated glacio-lacustrine facies". Consequently, these deposits may be expected to be extensive within the filled valleys (possibly at depth). Although the condemnation holes provide distributed coverage of depth to bedrock across the TMF area, many of the holes are on or near the edges of bedrock ridges and there is only partial delineation of the depth to bedrock in filled valleys. Most of the deeper boreholes are located in the middle of these filled valleys. The initial groundwater model presented in the June 15, 2015 EIS amendment lumps the entire overburden into one hydrostratigraphic unit and therefore does not distinguish between higher hydraulic conductivity sand and gravel and lower hydraulic conductivity silt, clay and till. The different hydraulic conductivity layers could be significant for groundwater flow within the filled valleys as there may be confined flow beneath the layer of silty clay to clayey silt. The initial groundwater model presented in the June 15, 2015 EIS amendment indicates a continuous overburden layer between the tailings and bedrock. It is clear from the condemnation borehole data that there will be areas where the tailings will be in direct contact with the weathered bedrock or that the overburden will be very thin (i.e. not likely a low hydraulic conductivity barrier between tailings and bedrock). The proponent plans to incorporate additional data and regional surfici	Further clarification required
		 #2 The stratigraphy in the groundwater model should be based on a conceptual geological model that incorporates both the existing stratigraphy as presented in the Technical Memo and the sedimentological and mapping results by Stea (2010). The possibility that coarse sediment in filled valleys may be pathways for flow under the TMF should be assessed in the modelling. 	
		#3 The groundwater model should include separate model layers for distinct hydrostratigraphic units where these may be important to the interpretation of groundwater flow (e.g., filled valleys and beneath the TMF dams).	
		#4 The groundwater model should include areas where the tailings are in direct contact with the bedrock (e.g., current bedrock ridges) where sediment is thin or absent. This could be a direct pathway for water to flow from the tailings to more permeable units beneath the silt and clay layer.	
		Recommendation #1 also applies	

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	
Hydraulic Conductivity Review	 Review hydraulic conductivity data within the model domain. [March 1, 2016 memo] Within the TMF footprint, a total of 11 overburden and 6 bedrock hydraulic conductivities were obtained through either rising head tests or grain size (Hazen) method. In addition to hydraulic conductivities measured in the immediate vicinity of the TMF, an additional 20 bedrock and 19 overburden measurements were obtained from locations around the proposed Open Pit, Mine Rock Area and alternative TMF areas. Based on the review of the borehole logs, the stratigraphic units logged at these locations are similar to those encountered at the TMF and would supplement the data available for the TMF groundwater model. [June 15, 2016 memo] Discrete hydraulic conductivity zones may be developed if the data suggests significant heterogeneity exists across the site. [March 1, 2016 memo] If anisotropy is not clearly supported by either the data or calibration effort (below), an isotropic system may be conservatively assumed. [March 1, 2016 memo] In our view the existing slug testing and grain size analysis results provide for a reasonable means to characterize hydraulic conductivity and additional testing is not warranted. [March 1, 2016 memo] In any event, the model sensitivity to a range of hydraulic conductivities will be tested during sensitivity analysis (described below). [March 1, 2016 memo] In any event, the model sensitivity to a range of hydraulic conductivities will be tested during sensitivity analysis (described below). [March 1, 2016 memo] Recognizing the concern brought forward by the GRT of providing additional hydraulic conductivity information, it is proposed that rising / falling head tests be completed at the monitoring wells that have been installed in 2012. These include 3 bedrock monitoring wells and 4 overburden monitoring wells at the TMF as well as 6 additional overburden monitoring wells located to the west and sout	 The stratigraphy indicated in the Technical Memo does not address the extensive glacifituvials and and gravel deposits reported and mapped by Stea (2010) presented as part of the March 1st 2016 draft TM. Although the cross-sections in the June 15th, 2016 Technical Memo only show surface topography and do not show subsurface materials, the topographic profiles clearly suggest the presence of filled valleys (also previously referred to as "granular troughs"). These filled valleys are mapped by Stea (2010) predominantly as "subaqueous outwash and associated glacio-lacustrine facies". Consequently, these deposits may be expected to be extensive within the filled valleys (possibly at depth). Although the condemnation holes provide distributed coverage of depth to bedrock across the TMF area, many of the holes are on or near the edges of bedrock ridges and there is only partial delineation of the depth to bedrock in filled valleys. Most of the deeper boreholes are located in the middle of these filled valleys. The initial groundwater model presented in the June 15, 2015 EIS amendment lumps the entire overburden into one hydrostratigraphic unit and therefore does not distinguish between higher hydraulic conductivity sand and gravel and lower hydraulic conductivity sill, clay and till. The different hydraulic conductivity layers could be significant for groundwater flow within the filled valleys as there may be confined flow beneath the layer of silty clay to clayey sill. The initial groundwater model presented in the June 15, 2015 EIS amendment indicates a continuous overburden layer between the tailings will be dorock. It is clear from the condemnation borehole data that there will be areas where the tailings will be in direct contact with the weathered bedrock or that the overburden will be very thin (i.e. not likely a low hydraulic conductivity darset. These deposits are mapped over a considerable area of the TMF and therefore may be significant for vertical and horizontal flo	• Further clarification required

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	Status
Calibration	 Model calibration typically involves adjusting initial model input parameters within a reasonable range until simulated results reasonably approximate field observations. [March 1, 2016 memo] The model will be calibrated in steady-state to average water levels at monitoring wells within domain. [March 1, 2016 memo] In addition, stream / baseflow data may be considered, depending on the gauge location relative to the model domain. [March 1, 2016 memo] Finally, a base case, pre-TMF groundwater flow budget will be derived based on the calibrated model output. It is likely that an iterative, trial-and-error approach to calibration will be employed as per ASTM D 5490- 93 (Reapproved 2002) <i>Standard Guide for Comparing Ground-Water Flow Model Simulations to Site-Specific Information</i>. [March 1, 2016 memo] 	 The model will be calibrated in steady-state to average water levels at monitoring wells within domain. In addition, stream /baseflow data may be considered, depending on the gauge location relative to the model domain. A base case, pre-TMF groundwater flow budget will be derived based on the calibrated model output. It is an iterative, trial-and-error approach to calibration. It is NRCan's view that this approach is reasonable. RECOMMENDATION: Recommendation #1 applies 	• Resolved
Project Phase Analysis	 The modelling will consider the following phases: pre-TMF baseline, operations, closure and post-closure. [June 15, 2016 memo] The operational phase at full build-out considers the period where impacts are expected to be maximal because the aerial extent of the tailings stack and elevation of the reclaim water pond will be at their highest. [March 1, 2016 memo] 	 Including closure (decommissioning) and post-closure (abandonment) phases in the modeling is appropriate. This is standard practice for modeling closure and post-closure in conjunction with sensitivity analysis and is a useful tool for showing the closure/post-closure effects of the project and how these predictions may vary if some of the assumptions are not accurate. Although there may be relatively less seepage occurring during the closure and post-closure phases (as compared to operations), any seepage that may occur during the final post-closure phase will not be intercepted, pumped or treated since the proponent plans on decommissioning these controls during that phase, and therefore, the potential effects on the receiving environment could be greater than during operations. 	Resolved

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	Status
Groundwater Flow and Seepage Simulation	 Groundwater conditions during the TMF operational phase at full-build out will be simulated. [March 1, 2016 memo] A comprehensive flow budget will be developed based on the model output. [March 1, 2016 memo] Particle tracking will be employed to illustrate seepage pathways. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. [March 1, 2016 memo] Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. [March 1, 2016 memo] Conceptual seepage collection measures, which will consist of a perimeter seepage collection system of ditches and pump stations is proposed downstream of the TMF containment dams to collect and pump seepage back into the TMF. Reasonable assumptions will be made with respect to the location and depth of these ditches and a summary of these assumptions will be provided. [June 15, 2016 memo] A review will be completed to confirm viability of seepage collection using reasonable and proven methods, based on the observed borehole conditions, stratigraphy, modelled flow and literature data following the model runs. [June 15, 2016 memo] Additional mitigation or modifications to the presently proposed seepage collection system may be identified during this analysis. [March 1, 2016 memo] 	 The expanded model should allow for seepage tracking from the TMF to all collection systems and potential downgradient receptors. A comprehensive flow budget will be developed based on the model output. Particle tracking will be employed to illustrate seepage pathways. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. It is NRCan's view that this is a reasonable approach and with proper calibration of the model, should address this issue. ECCC would like to add that significant seepage can also flow from layers of high hydraulic conductivity (e.g., sand and gravel) into the bedrock (which is typically fractured and weathered), and then outwards from the TMF. In other words, overburden does not necessarily limit the amount of seepage that can flow into and then through the upper bedrock layer; the hydraulic conductivity of the different overburden layers are an important consideration regarding the pathway for seepage into the bedrock and then laterally out of the TMF. NRCan is satisfied to include conceptual level designs in the groundwater model at this time. NRCan notes that the stratigraphy may not be conducive to the effective functioning of such a system in locations where collection system is located above a low hydraulic conductivity silty or clayey unit that is underlain by more permeable sand and gravel. RECOMMENDATION: Recommendation #1 applies 	• Resolved
Sensitivity Analysis	 A sensitivity analysis will be performed to establish an upper bound on results by varying select input parameters within a reasonable range about the base case input value. [March 1, 2016 memo] Golder will seek the Government Review Team's opinion in selecting parameters to test during the sensitivity analysis. Currently, we feel that recharge rates, and hydraulic conductivities/anisotropies of tailings, overburden and weathered bedrock may be potential candidates for analysis. [March 1, 2016 memo] For the purpose of scoping, we have assumed four (4) variables will be examined. Model calibration is not planned to be re-assessed during this task. [March 1, 2016 memo] 	 The proponent proposes recharge rates, and hydraulic conductivities/anisotropies of tailings, overburden and weathered bedrock as potential candidates for analysis. It is NRCan's view that this is a good approach and that the suggested variables are reasonable. [Note: In the June 15, 2016 memo, the proponent indicated two anisotropy ratios will be assessed and calibrations performed on both a ratio of K_v/K_h of 0.1 and 1.0.] 	• Resolved

Components of Proposed Scope of Work (from March 1, 2016 memo)	Proponent's Proposed Approach (from March 1, 2016 and June 15, 2016 memos)	Federal Review Findings and Recommendations	
Environmental Impacts	 The potential impacts to the water bodies receiving TMF seepage will be re-assessed based on the predicted residual seepage rates and TMF seepage water quality. [March 1, 2016 memo] This scope of this assessment will only include Lizard Lake and Sawbill Bay. [March 1, 2016 memo] Aquatic habitat in the smaller lakes and streams around the perimeter of the TMF has already been determined to be 'impacted' by the project due to loss of inflow (due to watershed reduction) or loss of connectivity to larger water bodies. As a result, these water bodies have been included in the No Net Loss/Fish Habitat Offset Plan and compensation for the loss of habitat is planned (see Part B of the Version 2 Aquatic Environment TSD). [March 1, 2016 memo] 	 The expanded model should allow for seepage tracking from the TMF to all collection systems and potential downgradient receptors. A comprehensive flow budget will be developed based on the model output. Particle tracking will be employed to illustrate seepage pathways. Seepage rates emanating from the TMF vertically through the base and laterally through the flanks / dams will be discretely quantified. Discharge to seepage collection systems and further downgradient receptors will be assessed using the zone budget utility in the modelling software. It is NRCan's view that this is a reasonable approach. The proposed scope of work indicates that the potential impacts to Lizard Lake and Sawbill Bay receiving TMF seepage will be re-assessed based on the predicted residual seepage rates and TMF seepage water quality. Depending on factors such as the depositional type and permeability of the surficial deposits, scoping the assessment to Lizard Lake and Sawbill Bay may not be sufficient. The assessment needs to include all waterbodies that are frequented by fish that could potentially be affected by TMF seepage. Also, the proposed scope of work needs to include a commitment to describe the groundwater and surface water quality monitoring measures to verify seepage effects on water quality. 	
		Recommendation #1 also applies	0.07. 11
Report	 A report documenting model conceptualization, construction, calibration, TMF seepage collection mitigations applied, predictive analysis, sensitivity analysis and conclusions will be provided as a supporting document to the responses to Information Request T(3)-08. [March 1, 2016 memo] 	 It is expected that based on the revised 3D numerical groundwater model, the proponent will provide, in addition to a detailed description of the environmental effects of seepage and mitigation measures proposed to intercept seepage, details on the contingency plans in the event seepage is greater than predicted. Also, the response to Information Request T(3)-08 needs to describe the water quality monitoring measures to verify seepage effects on water quality over the life of the Project. It is expected the modeling results would suggest a concept for a monitoring program, program objectives and parameters. 	 GRT will review the IR response package when available
		 RECOMMENDATION: #7 The proponent response to Information Request T(3)-08 should clearly indicate which parts of the modeling report and the subsequent analysis are linked to each part of the response to T(3)-08. 	

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART C

Field Data Collection and Conceptual Model Development

TECHNICAL MEMORANDUM

DATE October 6, 2016

PROJECT No.	1656263 (1000.1001)
-------------	---------------------

TO Sandra Pouliot, ing Canadian Malartic Corporation **DOC No.** 004 (Rev 1)

CC Karen Besemann, Adam Auckland, Ken DeVos (Golder)

FROM Devin Hannan, P.Eng.

EMAIL dhannan@golder.com

HAMMOND REEF GOLD PROJECT: TAILINGS MANAGEMENT FACILITY HYDROGEOLOGICAL FIELD WORK AND CONCEPTUAL MODEL DEVELOPMENT

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) is pleased to present Canadian Malartic Corporation (CMC) with this updated technical memorandum describing recent hydrogeological field work and conceptual groundwater model development pertaining to the proposed Hammond Reef Tailings Management Facility (TMF) site near Atikokan, Ontario (Figure 1). This document supersedes an earlier Golder memorandum of the same title dated September 21, 2016.

This memorandum builds upon technical correspondence between CMC, Golder and the joint government review team of Canadian Environmental Assessment Agency (CEAA), Environment and Climate Change Canada, and Natural Resources Canada (the Government Review Team or GRT). In particular, Golder seeks to address specific hydrogeology-related concerns communicated by the GRT in the following:

- Information Request #3 from the Technical Review of the Responses to Information Request #2 for the Hammond Reef Gold Project Environmental Assessment, T3-08 (CEAA, January 29 2016).
- Federal Comments on the June 15, 2016 Supplementary Memorandum on the Scope of Work for the 3D Groundwater Modeling for the Federal Environmental Assessment of the Hammond Reef Gold Project with Table of Federal Review Findings on the Proposed Scope of Work for the 3D Groundwater Modeling (CEAA, July 29 2016).
- Teleconference between CMC, Golder and the GRT on September 27, 2016.

This memorandum is organized into four main sections:

- 1) **Field Data**. The results of a recent hydrogeology field campaign conducted in support of the model development are reviewed.
- 2) **Conceptual Model**. A conceptual basis for the eventual numerical groundwater model is presented, including a discussion of model domain, hydrologic boundaries, hydrostratigraphy, hydraulic conductivity, recharge, and flow patterns.
- 3) **Proposed Next Steps**. The groundwork for next steps in model development, including numerical model construction, calibration, TMF simulation and sensitivity analysis, is set forth.

4) **Review Comment Address**. Specific GRT written comments/questions are addressed using information in the above sections as a basis.

This memorandum provides an interim synopsis of work completed to-date on field data collection and baseline (pre-TMF) conceptual model development. Golder seeks the GRT's approval on the foundational work described herein prior to proceeding with numerical model construction and subsequent predictive scenarios.

2.0 FIELD DATA

Extensive hydrogeological field work has already been conducted at the TMF site as documented in *Hammond Reef Gold Project, Hydrogeology Technical Support Document* (Golder, 2013¹). A compilation of Golder borehole logs is provided in Appendix A. Whereas these prior data provides an important foundation in the hydrogeological characterization of the site, the following subsections detail additional field data collected or analyzed in support of the current conceptual model development.

2.1 Condemnation Holes

A total of 64 condemnation hole logs (historic mining exploration holes) have been incorporated into the geologic dataset (Figure 1). Table 1 lists condemnation hole ID, easting, northing, and recorded overburden thickness. Most of the condemnation holes are positioned in a semi-uniform spaced grid at roughly 300 metre intervals across a large portion of the TMF, thus providing good coverage over the primary area of model interest. The logs list depth to overburden but do not describe specific overburden materials. The use of these logs as inputs in overburden mapping is further described in Section 3 Conceptual Model.

2.2 Surficial Geology Mapping

The geologic report *Surficial Geology update of the Golden Winner area: sedimentology and stratigraphy of glaciofluvial deposits and recommendations for recce sampling* (Stea, 2010) was reviewed and the data therein incorporated in this current work. Specifically, the surficial geology mapping (Figure 2) and geologic logging of the ten "trenches" (test pits) were incorporated into the overburden thickness and stratigraphic mapping of the current conceptual model. In particular, the surficial geology mapping supplements the pre-existing borehole data to characterize the shallow geology underlying the entirety of the TMF.

2.3 Hydraulic Response Testing and Analysis

A total of 10 hydraulic response (slug) tests were carried out during August 2016. Individual analysis sheets, including water level response curves and mathematical analysis, are included in Appendix B. Wells in the vicinity of the TMF were targeted to supplement the larger hydraulic conductivity dataset (Table 2).

2.3.1 Method

Tests were performed by quickly removing a volume of water from the monitoring well using a Waterra[©] Inertial Pump (a rising head method). The recovery to the static water level was monitored manually at frequent time intervals by measuring the depth to water using an electric water level meter. In select monitoring wells (BH12-1, BH12-2, BH12-3B, and BH12-7A) the recovery to the static water level was monitored using a data logger set to record in 30 second intervals. The data loggers were installed following a one to three hour period of manual measurement.

Testing could not be completed and/or fully analyzed at all target wells. During the testing in BH12-5A (screened in tonalite bedrock) and BH12-6A (screened in silt) the water level recovered quickly and could not be manually measured; this occurrence suggests a relatively high hydraulic conductivity adjacent to the screened interval.

Golder has assumed a relatively large hydraulic conductivity of 1E-4 m/s at these locations for the purposes of calculating a geometric mean of the larger dataset. BH12-8 was not tested as the static water level was only 0.5 metres above the base of the well. BH12-9 was found to be damaged and could not be tested.

2.3.2 Data Analysis

The Bouwer and Rice (1976) (Bouwer-Rice) solution was applied to the analysis of the tests. The Bouwer-Rice solution is a zero-storage solution that is applicable to both confined and unconfined aquifers with completely or partially penetrating wells, and can be used for tests in which the water level falls within the screened interval. Storage in the formation is neglected by fitting the solution to the linear portion of the data plotted in semi-log space.

The collected data is generally of good quality and no data points were removed from the analysis period. The initial displacement (i.e., the volume of water removed) was not measured during the tests, and the zero time represents the time of the first water level measurement in the recovery period. Although this method is not consistent with the instantaneous initial displacement assumption on which most analytical methods are based, the analysis employed is consistent with the Pandit and Miner (1986) translation method as recommended by Butler (1998) for non-instantaneous test initiation. The theoretical initial drawdown shown in the analysis sheets (Appendix A) is the point where the line of best fit through the data intercepts with the zero elapsed time line. Although this theoretical drawdown does not always match with the first measurement of drawdown, this match is not required for the analysis method chosen.

2.3.3 Results

Test results are summarized in Table 3. The following text discusses the results in the context of screened units, as this interpretation has bearing on hydraulic conductivity assignments in the conceptual model (Section 3).

Overburden: The hydraulic conductivity of the overburden materials was estimated to range from 3E-7 m/s to 1E-4 m/s. The hydraulic conductivity measured at BH12-6B (1E-5 m/s) is likely associated with fill materials, and may not be representative of natural overburden. It is noted that (with the exception of BH12-6B) the results for tests conducted in the silty or silty clay (fine-grained) units did not yield significantly lower hydraulic conductivities than sand and gravel (coarse-grained) units. It could be that the presence of silt layers within the clayey host are controlling lateral permeability around the screened interval. Meanwhile, drilling blow counts suggested that the sand and gravel material was very dense. It is worth noting; however, that in the context of the entire dataset (Table 2), a clearer distinction between the average hydraulic conductivity of fine (3E-7 m/s) and coarse grained units (1E-5 m/s) is present.

Bedrock: Based on the results of the hydraulic testing at BH12-1 and BH12-3A, the hydraulic conductivity of the fresh (competent) bedrock was estimated to range from 4E-8 m/s to 9E-7 m/s, whereas the single weathered bedrock test of this group, which had an immeasurably rapid response, is assumed to have a hydraulic conductivity of 1E-4 m/s.

3.0 CONCEPTUAL MODEL

A conceptual model synthesizes the available data into a description of the hydrogeologic system and thus serves as the foundation or guide for the subsequent numerical model construction. This section describes key conceptual model components including model domain, hydrologic boundaries, overburden thickness, hydrostratigraphic units, hydraulic conductivities, recharge and flow directions.

3.1 Model Domain and Hydrologic Boundaries

The proposed model domain is illustrated in Figure 1. The model area is somewhat centred on the TMF and is regional in scale (22 km²). The perimeter is delineated based on major hydrologic boundaries including Sawbill Bay to the south and its associated tributary to the west, a large lake to the north and Lizard Lake to the east. These regional features are considered groundwater discharge zones and would be the eventual receptors of TMF seepage, should any seepage bypass the collection system. Elsewhere, the model perimeter is coincident with subwatershed boundaries or topographic highs. The water table is known to roughly follow topographic trends (Section 3.5); as such, these topographic highs are likely synonymous with groundwater flow divides. Internal to the model are several smaller lakes and streams; these are also considered local groundwater discharge zones.

3.2 Overburden Thickness

An overburden thickness map is inferred based on the combined information contained in consultant borehole logs, condemnation holes, and Stea (2010) trenches and surficial geology mapping (Figure 3). The geostatistical routine kriging is used to interpolate the overburden isopach over a uniform 20 m x 20 m grid. The interpolated thickness ranges from 0 m to 31 m with an average thickness of 5 m. As a check, a secondary grid is created using triangulation with linear interpolation. It is found that the two grids are typically within +/- 1 m of each other.

Several prominent "overburden troughs" exist throughout the model domain (Figure 3). It is important to note that the undulating bedrock relief will tend to isolate one trough from another ("pinch outs"). As such, an "aquifer" in one trough may not be hydraulically connected to another in an adjacent trough and potential seepage pathways through overburden could be limited by virtue of bedrock topography. Conversely, there are instances where overburden appears to be laterally continuous from underneath the TMF area to the external environment (for example, see the trough in the vicinity of BH13-4 in the southwest of the proposed TMF footprint).

Because of the preponderance of bedrock outcrops throughout the domain (Figure 2), potential overburden-filled bedrock valleys lacking data constraints may be obscured during the interpolation process. Thus, to overcome this issue, in areas where overburden is mapped as present at surface but no proximal thickness information exists, overburden is assumed to be a maximum of 10 m thick along the approximate centre of the presumed bedrock valley using "dummy points" (Figure 3). In the interest of conservatism, a focus is given towards promoting lateral continuity within the overburden, especially along the perimeter of the TMF. However, actual data points must be honoured and the use of dummy points is used with some restraint around areas with known overburden thicknesses. Approximately 850 dummy points are used as additional constraints in the interpolation process (Figure 3). The assumed value of 10 m is twice the observed average and represents the 85th percentile of logged thicknesses. A result of this approach is that significant lateral continuity between some overburden deposits is established which may not exist in reality. As such, this assignment represents a conservative approach in the context of facilitating TMF seepage.

3.3 Hydrostratigraphy

The conceptual hydrostratigraphy is summarized in Table 4. Supporting discussion for the geologic layering, unit thickness and hydraulic conductivity assignments is provided in the following sub-sections.

3.3.1 Geologic Layering

Where overburden is present in significant quantities a "coarsening downwards" trend is typically observed in the borehole logs. For the conceptual model, we have adopted the following generalized geologic layering which

acknowledges the major transitions in material types but is also structured to facilitate discrete hydraulic properties (from ground surface down):

- 1) Surficial Deposit Layer (peat/muck or sand/gravel as per Figure 2)
- 2) Fine-Grained Layer (predominately silt and/or clay)
- 3) Coarse-Grained Layer (predominately sand and/or gravel)
- 4) Weathered Bedrock Layer
- 5) Competent Bedrock Layer

An example of this layering is illustrated in cross-sections along the southwestern flank of the TMF (Figure 4).

3.3.2 Unit Thickness

The Surficial Deposit Layer is typically less than 3 m thick (see Golder, 2016, Table 1). However, for the purposes of the conceptual model we have assumed a uniform 3 m thickness across the model domain wherever overburden exists. This assignment is expected to provide a reasonably sufficient depth for the layer to remain largely saturated during numerical simulations and avoid model non-convergence. Using a value at the greater end of the thickness range further increases transmissivity and is thus conservative relative to promoting TMF seepage.

Below the initial Surficial Deposit Layer resides a Fine-Grained Layer and then a Coarse-Grained Layer. Fine-Grained Layer materials (silt and/or clay based) are ubiquitous in boreholes that have overburden thickness extend beyond 3 m in depth (21 of 25 boreholes in or around the model domain). Whereas the Stea (2010) trenching indicate a general absence of finer-grained materials at their respective locations, these test pits are relatively shallow and terminate on bedrock at depths of about 1.5 m to 4.9 m and are thus considered reflective of the aforementioned Surficial Layer. The transition from fine- to coarse-grained material types is often gradual and varies widely from log to log. Furthermore, a continuous, seamless layering of these units is not possible because so much of the overburden is isolated within discrete troughs bounded by rock. Nonetheless, we note that basal coarse-grained materials typically comprise less than 50% of a given overburden sequence. Thus, for the conceptual model, in the interest of simplicity and conservatism, we assume that the Coarse- Grained and Fine-Grained Layers have equally proportional thicknesses (Figure 4). For example, if a given overburden section is 10 m thick, 3 m would be allocated to the Surficial Layer whereas 3.5 m would be allocated to the Fine-Grained Layer and 3.5 m to the Coarse-Grained Layer.

A mix of fresh or weathered conditions is observed within shallow bedrock. Where present, the depth of weathering averages approximately 3 m (Table 5). Again, for the sake of simplicity and conservatism, we have assumed that weathered bedrock is prevalent everywhere within the model domain at a uniform 3 m thickness (Figure 4). The underlying competent rock is assumed to extend to the bottom of the model (to be determined during the numerical model construction, but likely 50 m or more thick).

3.3.3 Hydraulic Conductivity

Hydraulic conductivity (K) is correlated to geologic unit and is assigned in accordance with the geometric mean of that unit's respective hydraulic conductivity dataset (Table 2 and Table 4). As such the Surficial Deposit K = 1E-5 m/s, Fine-Grained K = 3E-7 m/s, Coarse-Grained K = 1E-5 m/s, Weathered Bedrock K = 2E-6 m/s, and Competent Rock K = 2E-7 m/s. (Note: the Surficial Deposit data is based on testing of the first major unit within the upper 3 m of soil).

Almost all material hydraulic conductivities are assumed to be isotropic ($K_H:K_V = 1:1$); this assignment will tend to promote vertical seepage from the TMF relative to an anisotropy that reduces vertical hydraulic conductivity. The one exception is specific portions of the Fine-Grained layer: wherever deposits of overburden are on the order of 10 m or greater a significant clay presence is logged within the Fine-Grained strata (Golder, 2016). This clay will likely have some influence on vertical permeability and lead to anisotropy. We propose to make the ratio of horizontal to vertical hydraulic conductivity in the Fine-Grained layer $K_H:K_V = 1:0.1$, except where overburden thins to less than 10 m, whereupon the layer will become isotropic. The effect of the applied anisotropy on TMF seepage will be examined during a sensitivity analysis (Section 4).

Note that the hydraulic conductivities introduced herein are an initial base-case estimate. The final hydraulic conductivity inputs used in the numerical model, while expected to be close to those listed in Table 4, will be refined through the model calibration process and tested in a sensitivity analysis (Section 4).

3.4 Recharge

We have consulted literature sources to provide a conceptual basis for recharge rates. Singer and Cheng (2002) calculate annual bulk groundwater recharge to six major river basins in northern Ontario as being less than 100 mm/yr; this relatively low rate is a function of climate, topography, vertical soil/fracture permeability and soil moisture conditions particular to the northern environment. However, estimated recharge rates for discrete zones can vary according to surficial geology types (Table 6).

The mapped surficial materials are divided into four groupings (Figure 2): 1) bedrock; 2) sand and gravel; 3) till veneer; or 4) peat / muck. At this stage in model development, we propose to *initially* assign recharge rates in according to mapped surficial materials (Figure 2) in concert with Table 3 as follows: bedrock = 5 mm/yr, till veneer = 25 mm/yr, sand and gravel = 300 mm/yr and peat / muck = 5 mm/yr. Some refinement of recharge rate inputs will occur during the calibration stage (Section 4). Ultimately, however, we expect the total recharge rate over the model domain to be less than 100 mm/yr.

3.5 Groundwater Levels

3.5.1 Depth to Water

There are 21 monitoring wells in the vicinity of the model domain (Figure 5). Based on a review of water levels at shallow wells within this group (Golder, 2013¹ and measurements taken thereafter) the depth to water table ranges from 0 m to 4.4 m with most water levels being within 1.5 m of ground surface. These relatively shallow water table depths are partly indicative of many of the wells being located in valley areas or close to discharge features, where groundwater would be expected to be close to ground surface.

3.5.2 Flow Directions

An inferred water table map (Figure 5) is developed using average water levels in shallow wells and surface water elevations taken from the topographic DEM (Figure 1). Where water level data exists, it is observed that groundwater flow patterns roughly mimic topographic trends; that is, groundwater highs coincide with ridges or hills whereas groundwater lows coincide with valley areas. However, this pattern is not shown everywhere throughout the model domain in part because several of the hilly areas do not have a groundwater level measurement to constrain (i.e. likely raise) the water table locally around them. Overall, there is a general regional trend of southwesterly flow towards Sawbill Bay or southeasterly flow towards Lizard Lake with localized divides occurring within the model domain.

In terms of vertical gradients, at nested locations the majority of well pairs exhibit an upward flow. This correlates to the position of many of the wells in low-lying valley areas and/or close to groundwater discharge zones, where groundwater upwelling is to be expected.

3.6 Assumptions

A summary of key assumptions employed in the development of the conceptual model is as follows:

- The groundwater flow system may be modelled on a steady-state basis considering average conditions.
- Lakes, streams and wetlands are considered potential discharge zones.
- Groundwater divides are approximately coincident with topographic highs.
- Groundwater flow, including that in the bedrock system, may be simulated as an equivalent porous medium (EPM). In this setting, groundwater flow is a function of the hydraulic gradient and the hydraulic conductivity of the medium. This assumption also implies that the hydraulic response in the overburden may be transmitted to the underlying bedrock and vice versa. An EPM assumption is deemed sufficient for characterizing groundwater flow at the scale of this analysis.
- Overburden is assumed to be a maximum of 10 m thick in areas where overburden is mapped as present at surface but no proximal thickness information exists to fully characterize the area.
- Bedrock surface is weathered at a uniform thickness of 3 m across the model domain.
- Below a 3 m layer of surficial material. For a given overburden section of significant thickness, a 3 m layer of surficial deposit layer exists followed by a fine-grained layer and coarse-grained layer, the latter two having equally proportional thicknesses.

4.0 NEXT STEPS

Provided the conceptual model detailed herein is acceptable to the GRT, the following next steps are proposed:

- 1. Numerical Model Construction and Calibration:
 - a. A MODFLOW groundwater model will be constructed using the conceptual model outlined herein as the basis.
 - b. The model will be calibrated using steady-state, average conditions. Calibration targets will include the average water level recorded at wells within the model domain and the flow patterns as inferred in Section 3.5.
 - c. A sensitivity analysis will be performed to assess the influence of hydraulic conductivity and recharge inputs on the calibration result. Through this work an "optimal" base case set of parameters will be finalized.
 - d. A technical memorandum summarizing the above will be provided for the GRT's interim review prior to initiating the next step in modelling (Simulation of TMF). In addition, a more detailed description of proposed next steps in the Simulation of TMF (below) will be provided.
- 2. Simulation of TMF:
 - a. The TMF will be implemented within the numerical model framework for all project phases (operation, closure and post-closure) including the application of conceptual design details of seepage collection system (location, typical dimensions, materials/apparatus, operating parameters, etc.).

- b. Seepage quantities and environmental fate will be evaluated using zone budgeting and particle tracking in MODFLOW. This analysis will provide a base case estimate of capture efficiency, potential seepage bypass rates and the amount of discharge reporting to discrete receptors external to the TMF (for example, Lizard Lake, Sawbill Bay, etc.).
- c. A sensitivity analysis will be performed to assess the potential upper and lower bounds of seepage / rates and bypass by targeting key parameters within the model and adjusting them within a reasonable range of values.
- d. A technical memorandum summarizing the above will be provided for the GRT's review.

5.0 REVIEW COMMENT ADDRESS

The following lists and provides initial address to outstanding GRT comments. Note that this address is not a final response to GRT comments but rather seeks to describe how the ongoing modelling work will serve to eventually resolve these issues.

5.1 Information Request #3

From Information Request #3 from the Technical Review of the Responses to Information Request #2 for the Hammond Reef Gold Project Environmental Assessment, T3-08 (CEAA, January 29 2016):

1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Perform additional single-well response tests and consider performing a pump test to better characterize hydraulic conductivity values and isotropy/anisotropy. Develop a plan for the additional boreholes and stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint.

Response: We first ask the reader to consider the new information conveyed in Section 2 and Section 3 of this memorandum. With reference to these sections:

Subsequent to GRT providing this comment in January 2016, Golder has supplemented the already substantial historic dataset (Golder, 2013¹) with the inclusion of detailed surficial geology mapping covering the entirety of the TMF footprint, 64 condemnation boreholes, and 10 additional single-well response tests in overburden and bedrock units. In areas where data may be considered relatively limited, the conceptual model has employed conservative assumptions for unit thicknesses, hydraulic conductivity and anisotropy that will tend to promote tailings seepage. Furthermore, uncertainty in model parameters and their effect on TMF seepage will be tested during model sensitivity analysis. As such, Golder feels the approach to characterizing hydrogeologic conditions within the TMF footprint is adequate and additional drilling and hydraulic testing are not necessary.

2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences of laterally continuous clay), provide responses to and action on questions 3-7.

Response: We acknowledge that materials at the base of the TMF may include permeable units and these are considered in the conceptual model (refer to Section 2 and Section 3).

3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in discussion with relevant government departments to ensure baseline information is gathered in regions where units with higher hydraulic conductivities are found within the proposed TMF footprint.

Response: See Golder response to comment #1.

4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model.

Response: The entire TMF and regional surrounds will be included in a 3D numerical groundwater model (refer to Section 3 and Section 4).

5. Re-run the 3D model based on the following:

a) Perform a more robust calibration using additional monitoring well data;

b) Presenting a detailed conceptual model using visual depictions to describe the baseline hydrogeological conditions;

c) Model all project phases including baseline, operations phase, closure (decommissioning), and postclosure (abandonment);

d) As described in 2., include information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and to determine if the assumption Khorizontal:Kvertical = 1:0.1 is valid. If it is not, update the model assumption for isotropy/anisotropy. The installation of additional monitoring wells and hydraulic testing will also help better define the Khorizontal:Kvertical relationship; and

e) Provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.

Response: A conceptual model has been provided in this memorandum (refer to Section 3). The forthcoming numerical model will be calibrated to monitoring well data to form the "baseline" or "pre-TMF" condition (Section 4). All subsequent project phases, including TMF operation, closure and postclosure, will be simulated thereafter (Section 4). Sensitivity analyses will be conducted for both calibration and predictive (TMF in-place) scenarios (Section 4). In terms of the request for additional monitoring wells and hydraulic testing please refer to Golder's response to Comment #1.

6. Provide the methodology, analysis and model results.

Response: Subsequent to GRT's review and approval of the information contained within this conceptual model memorandum, Golder will undertake the next phase of modelling – namely base case (pre-TMF) numerical model construction and calibration. An interim numerical model construction and calibration memorandum will be provided for the GRT's review and will describe implementation of the conceptual model (Section 3) into the MODFLOW framework, including approach, assumptions, boundary conditions, layer structure, hydraulic inputs, calibration results, flow budget and head outputs and sensitivity analysis.

Subsequent to the numerical model construction and calibration memorandum's approval, the TMF inplace predictive scenarios will be undertaken and a final memorandum will be submitted documenting, amongst other information, implementation of the TMF phases and seepage collection system within the model framework and simulated seepage rates and pathways for both base case and sensitivity analysis scenarios.

7. Based on the results from question 1-6 above, provide a detailed description of the mitigation measures proposed to intercept seepage and contingency plans in the event seepage beneath the TMF would be greater than predicted.

Response: Mitigation measures and contingency plans will be described within the final memorandum described in Golder's response to Comment #6.

8. Describe the residual effects on water quality; the significance of those residual effects based on the Agency's methodology for assessing significance (including the criteria of magnitude, geographic extent, duration, frequency, reversibility, ecological/social/cultural context); and the follow-up program, including any monitoring measures, which will be implemented to evaluate the predictions of effects and the effectiveness of the proposed mitigation.

Response: The hydrodynamic mixing models (i.e., box models) of Upper Marmion Reservoir and Lizard Lake (see Lake Water Quality TSD) will be updated to include the predicted seepage bypass discharge. TMF Reclaim Pond water quality will be assigned to the seepage bypass to assess the potential residual effects of TMF seepage on water quality in the receiving water bodies. Water quality effects on smaller receiving water bodies upstream of Upper Marmion Reservoir and Lizard Lake or to the north of the TMF will also be assessed. The significance of the residual effects will be described based on the Agency's methodology for assessing significance. Monitoring measures will be described as required to evaluate the predictions of effects and the effectiveness of the proposed mitigation. The results of this effects assessment will be summarized in a technical memorandum that will be provided to the GRT in response to this comment.

5.2 Table of Federal Review Findings

The following addresses Federal Comments on the June 15, 2016 Supplementary Memorandum on the Scope of Work for the 3D Groundwater Modeling for the Federal Environmental Assessment of the Hammond Reef Gold Project (CEAA, July 29 2016), specifically the unresolved recommendations listed in Table of Federal Review Findings on the Proposed Scope of Work for the 3D Groundwater Modeling.

1. Prior to executing any model runs, the proponent should provide the Government Review Team (GRT) a written submission on the model assumptions and inputs to verify that the proposed approach is reasonable to the GRT.

Response: This current memorandum describes conceptual model development, including key assumptions (refer to Section 3 of this memorandum).

2. The stratigraphy in the groundwater model should be based on a conceptual geological model that incorporates both the existing stratigraphy as presented in the Technical Memo and the sedimentological and mapping results by Stea (2010). The possibility that coarse sediment in filled valleys may be pathways for flow under the TMF should be assessed in the modelling.

Response: The current model stratigraphy considers consultant logs, condemnation holes, and the sedimentological and mapping results documented by Stea (2010) (refer to Section 2 and Section 3). A result of this work is that coarse sediment in filled bedrock valleys (Coarse-Grained Layer) are present in the model.

3. The groundwater model should include separate model layers for distinct hydrostratigraphic units where these may be important to the interpretation of groundwater flow (e.g., filled valleys and beneath the TMF dams).

Response: The model considers the main hydrostratigraphic units in the area including surficial deposit, fine-grained deposit, coarse-grained deposit, weathered bedrock and competent bedrock layers (Section 3). The Coarse-Grained Layer is present in filled bedrock valleys.

4. The groundwater model should include areas where the tailings are in direct contact with the bedrock (e.g., current bedrock ridges) where sediment is thin or absent. This could be a direct pathway for water to flow from the tailings to more permeable units beneath the silt and clay layer.

Response: The model will include the entirety of the TMF, including areas where it is in direct contact with bedrock (Section 2 and Section 3).

5. The preference would be to ensure that each hydrostratigraphic unit is adequately sampled for hydraulic conductivity using field measurements. In the absence of adequate field hydraulic conductivity data for any particular hydrostratigraphic unit, conservative estimates of hydraulic conductivity should be assumed in the groundwater model (i.e. that would tend to favor seepage).

Response: Sufficient hydraulic testing and/or grain size data has been collected to characterize the hydraulic conductivity of surficial deposit, fine-grained (silts and clays), coarse-grained (sands and gravels), weathered bedrock and competent bedrock units (Table 2); the respective geometric mean of measured hydraulic conductivities for each of these units is applied in the model (Section 3). Shallow soils (surficial deposit) as mapped in Stea (2010) are assigned an isotropic hydraulic conductivity of 1E-5 m/s; this relatively high permeability would tend to favour seepage (Section 3).

6. The groundwater model should consider whether the seepage collection system will perform adequately in the presence of possible layering of low hydraulic conductivity silt and clay with higher hydraulic conductivity sand and gravel beneath portions of the seepage collection system.

Response: The current conceptual model (Section 3) allows for this possibility. The performance of the collection system will be assessed in subsequent work (Section 4).

7. The proponent response to Information Request T(3)-08 should clearly indicate which parts of the modeling report and the subsequent analysis are linked to each part of the response to T(3)-08.

Response: Acknowledged. Note that the above comment address is not a final response to GRT comments but rather describe how the ongoing modelling work will serve to eventually resolve these issues. A final response, including clear linkages to the T(3)08 document, will be provided when the modelling analysis is completed.

6.0 CLOSURE

We thank CMC for retaining Golder on this project and look forward to the GRT's review of this current work. If you have any questions, please do not hesitate to contact the undersigned.

Adam Auckland Project Manager

Devin Hannan, P.Eng. Associate, Environmental Engineer

DH/KB/AA/sk

n:\active\2016\3 proj\1656263 cmc_ea support_hammond reef\3. ir3 responses\1. tmf seepage assessment\doc004_tmf hydrogeological field work and conceptual model development\rev 1\1656263_doc004_tmf conceptual model_rev 1_6oct2016.docx

REFERENCES

Bouwer, H., and R.C. Rice. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12(3), 423.

Butler, J.J. Jr. 1998. The Design, Performance, and Analysis of Slug Tests. Lewis Publishers, Boca Raton, Florida.

Freeze, R.A., and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ.

Golder, 2016. Hammond Reef Gold Project – Tailings Management Facility, Additional Stratigraphic Information and Proposed 3D Groundwater Modelling. Prepared for CMC. June 2016.

Golder, 2013¹. Hammond Reef Gold Project, Hydrogeology Technical Support Document, Version 2. Document No. DOC017. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013². Design Basis for Runoff and Seepage Collection Systems – Hammond Reef Gold Project. Document No. 011 (Rev 0). Project No. 13-1118-0010 (2010). Submitted to Osisko Hammond Reef Gold Ltd. December 3, 2013.

Pandit, N.S. and R.F. Miner, 1986. Interpretation of Slug Test Data. Ground Water, 24(6), 743.

Singer, S.N. and C.K. Cheng, 2002. An Assessment of the Groundwater Resources of Northern Ontario, Areas Draining Into Hudson Bay, James Bay, and Upper Ottawa River. Hydrogeology of Ontario Series (Report 2). Environmental Reporting and Monitoring Branch. Ontario Ministry of the Environment. Toronto, Ontario.

Stea, 2010. Stratigraphy of glaciofluvial deposits and recommendations for recce sampling. Prepared for Brett Resources Inc.. June 2010.

Attachments:

Table 1: Condemnation Holes Table 2: Hydraulic Conductivity Data Summary Table 3: Recent Slug Test Summary Table 4: Hydrostratigraphic Unit Summary Table 5: Bedrock Weathering Depth

Table 6: Recharge Rates (Singer and Cheng, 2002) Figure 1: Study Area and Model Domain Figure 2: Surficial Geology (STEA, 2010) Figure 3: Inferred Overburden Thickness Figure 4: Cross-Section 1 (NW to SE) Figure 5: Inferred Shallow Groundwater Elevation Appendix A: Borehole Logs Appendix B: Hydraulic Response Testing

TABLES

Table 1: Condemnation Holes

ID	Easting NAD83	Northing NAD83	Overburden Thickness (m)
BCN-069	617,676	5,428,031	0.6
BCN-070	617,677	5,427,754	10.2
BCN-071	617,673	5,427,444	5.6
BCN-072	617,975	5,427,472	1.1
BCN-073	617,983	5,427,156	10.1
BCN-074	618,280	5,427,155	6.1
BCN-075	618,268	5,427,455	0.6
BCN-076	618,268	5,427,753	1.9
BCN-077	617,976	5,427,747	1.2
BCN-078	617,678	5,427,155	1.4
BCN-079	618,282	5,426,853	19.3
BCN-080	618,279	5,426,563	11.8
BCN-081	618,570	5,426,528	1.1
BCN-082	618,583	5,426,858	3.6
BCN-083	618,880	5,426,857	2.4
BCN-084	618,875	5,426,559	0.8
BCN-085	619,178	5,426,553	0.6
BCN-086	619,177	5,426,850	0.9
BCN-087	618,880	5,427,160	0.8
BCN-088	618,575	5,427,152	6.3
BCN-089	619,178	5,427,151	1.8
BCN-090	619,480	5,426,859	1.6
BCN-091	619,213	5,427,419	1.4
BCN-092	619,474	5,427,458	4.4
BCN-093	618,569	5,427,463	0.5
BCN-094	618,875	5,427,450	0.6
BCN-095	618,872	5,427,754	1.1
BCN-096	618,605	5,427,779	6.0
BCN-097	618,581	5,428,068	19.7
BCN-098	618,876	5,428,058	1.2
BCN-099	618,575	5,428,361	4.7
BCN-100	618,281	5,428,351	8.0
BCN-101	617,972	5,428,052	25.0
BCN-102	618,299	5,428,041	3.8
BCN-103	618,287	5,428,651	2.8
BCN-104	618,592	5,428,591	3.3

ID	Easting NAD83	Northing NAD83	Overburden Thickness (m)
BCN-105	618,616	5,428,955	1.9
BCN-106	618,865	5,428,665	5.4
BCN-107	618,960	5,428,863	0.9
BCN-108	619,183	5,428,950	2.1
BCN-109	619,178	5,429,255	1.7
BCN-110	619,431	5,428,886	3.1
BCN-111	619,472	5,428,657	5.8
BCN-112	619,198	5,428,618	1.8
BCN-113	619,487	5,428,367	3.0
BCN-114	619,193	5,428,343	2.4
BCN-115	618,965	5,428,354	0.9
BCN-116	619,464	5,428,056	2.0
BCN-117	618,494	5,425,134	1.4
BCN-118	619,484	5,427,753	4.6
BCN-119	619,284	5,427,726	0.6
BCN-120	619,800	5,428,060	4.7
BCN-121	620,082	5,428,059	30.6
BCN-125	619,776	5,427,754	3.0
BCN-126	619,765	5,427,451	4.2
BCN-129	620,382	5,427,148	9.8
BCN-130	620,100	5,427,153	1.2
BCN-131	619,783	5,427,149	2.4
BCN-132	619,476	5,427,149	24.3
BCN-135	619,775	5,426,855	12.8
BCN-136	620,075	5,426,855	0.5
BCN-148	617,967	5,425,351	2.7
BCN-149	618,273	5,425,369	5.8
BCN-152	618,275	5,425,056	3.4

			ATA SUMMA	RT							-
Borehole ID	Site Area	Easting NAD83	Northing NAD83	Ground Surface Elevation (masl)	Total Borehole Depth (mbgs)	Screen Interval or Sample Depth (mbgs)	Depth to Rock (mbgs)	Material Description Summary (refer to borehole logs for full description)	Test Method	Conceptual Model Unit Classification	K (m/s)
BH12-10 BH12-6B	TMF TMF	617,850 616,523	5,425,008 5,426,942	433.1 416.2	3.15 3.35	1.52-3.05 1.52-3.05	3.2 9.9	Silty Sand Silty Sand (fill)	Slug Test Slug Test	1. Surficial 1. Surficial	6.E-06 1.E-05
BRH-0012B	Mine	615,588	5,422,185	416.9	5.70	1.5-2.4	3.4	Gravelly Sand, Some Clay, Trace Silt	Slug Test	1. Surficial	1.E-05
BRH-0016B BRH-0023	Mine TMF	618,407 619,973	5,425,303 5,429,127	444.8 434.9	1.52 3.60	0.8-1.5 1.8-3.4	1.5 3.6	Sandy, Clayey Silt Sand and Gravel	Slug Test Slug Test	1. Surficial 1. Surficial	7.E-06 7.E-06
3RH-0034B 3H12-1	Mine TMF	621,906 617,568	5,424,427 5,428,261	444.4 436.8	2.70 4.19	1.5-3.0 0.10-0.61	4.6 1.2	Peat Silt and Sand	Slug Test Grain Size	1. Surficial 1. Surficial	3.E-06 (2E-8)
3H12-2	TMF	617,830	5,426,870	418.4	18.29	2.29-2.74	15.1	Sandy Silt	Grain Size	1. Surficial	2.E-06
3H12-5 3H12-6	TMF TMF	620,391 616,523	5,428,975 5,426,941	433.0 416.2	10.69 9.91	2.29-2.74 2.29-2.74	7.8 9.9	Silty Sand	Grain Size Grain Size	1. Surficial 1. Surficial	2.E-03 5.E-06
BRH-0012A	Mine	615,588	5,422,185	416.9	5.70	1.5-2.1	3.4	Gravelly Sand, Some Clay, Trace Silt	Grain Size	1. Surficial	1.E-05
BRH-0013 BRH-0016A	Mine Mine	615,631 618,407	5,422,933 5,425,303	416.6 444.8	4.37 5.73	0.8-1.3	1.3 1.5	Gravelly Sand, Some Clay, Trace Silt Gravelly, Silty Sand, Some Clay	Grain Size Grain Size	1. Surficial 1. Surficial	5.E-05 1.E-05
BRH-0018 BRH-0023	TMF TMF	620,794 619,973	5,427,311 5,429,127	430.6 434.9	8.69 3.58	0-0.6	1.8 3.6	Clayey Sand and Silt Sand and Gravel, Some Clay, Trace Silt	Grain Size Grain Size	1. Surficial 1. Surficial	(7E-7) 3.E-05
BRH-0023	TMF	619,973	5,429,127	434.9	3.60	1.5-2.1	3.6	Silt and Sand	Grain Size	1. Surficial	3.E-05
BRH-0026 BRH-0027	TMF TMF	620,607 619,614	5,431,227 5,425,831	460.9 434.8	8.70 2.36	0.7-1.3 0.8-2.4	1.5 2.4	Sand and Gravel Silty Sand, Some Gravel, Some Clay	Grain Size Grain Size	1. Surficial 1. Surficial	9.E-06 1.E-05
BRH-0029A	Mine	619,343	5,420,385	387.1	11.90	1.5-2.1	5.6	Gravelly Sand	Grain Size	1. Surficial	4.E-06
3H12-3B	TMF	618,259	5,426,406	419.7	11.58	10.06-11.58	13.4	Silt	Slug Test	Surficial Geomean 2. Fine-Grained	1.E-05 7.E-07
BH12-6A	TMF	616,523	5,426,941	416.2	9.91	8.38-9.91	9.9	Silt	Slug Test	2. Fine-Grained	1.E-04
BH12-7A BH12-7B	TMF TMF	616,444 616,444	5,426,813 5,426,814	415.8 415.8	8.08 4.00	5.79-7.31 2.13-3.66	8.1 8.1	Silt / Gravel and Sand Silty Clay	Slug Test Slug Test	2. Fine-Grained 2. Fine-Grained	3.E-07 2.E-06
BRH-0005B BRH-0015B	Mine Mine	612,361 617,875	5,421,894 5,423,186	441.8 417.3	8.53 5.50	7.0-8.5 4.0-5.8	0.9 5.8	Cobbles and Clay Clay, Some Silt	Slug Test Slug Test	2. Fine-Grained 2. Fine-Grained	8.E-07 7.E-07
BRH-0028B	Mine	618,741	5,421,296	383.6	3.60	2.1-3.7	3.8	Silty Clay, Trace Gravel	Slug Test	2. Fine-Grained	1.E-06
BRH-0030B BRH-0032B	Mine Mine	620,493 620,345	5,420,832 5,423,914	415.8 427.9	3.00 3.50	1.5-3.0 2.3-3.7	3.3 4.0	Silt, Trace Clay Silty Clay, Some Sand	Slug Test Slug Test	2. Fine-Grained 2. Fine-Grained	6.E-06 3.E-06
BH12-2	TMF	617,830	5,426,870	418.4	18.29	10.66-11.12	15.1	Silt	Grain Size	2. Fine-Grained	6.E-08
BH12-3 BH12-3	TMF TMF	618,260 618,260	5,426,405 5,426,405	419.7 419.7	16.46 16.46	3.10-3.51 2.29-2.74	13.4 13.4	Silt Silt	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	3.E-08 1.E-07
BH12-3	TMF	618,260	5,426,405	419.7	16.46	1.52-1.98	13.4	Silt and Sand	Grain Size	2. Fine-Grained	7.E-07
BH12-3 BH12-3	TMF TMF	618,260 618,260	5,426,405 5,426,405	419.7 419.7	16.46 16.46	9.14-9.60 12.19-12.65	13.4 13.4	Silt Silt and Sand	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	2.E-08 4.E-08
BH12-6 BH12-6	TMF	616,523 616,523	5,426,941 5,426,941	416.2 416.2	9.91 9.91	3.05-3.35 9.14-9.60	9.9 9.9	Silt Silt	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	1.E-07 4.E-08
BH12-7	TMF	616,444	5,426,813	415.8	8.08	4.57-5.03	8.1	Silt	Grain Size	2. Fine-Grained	6.E-08
BH12-8 BH12-9	TMF Mine	616,371 616,268	5,427,060 5,422,990	418.5 383.1	4.42 9.22	2.29-2.74 3.05-3.51	4.4 9.2	Silt Clayey Silt	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	3.E-07 3.E-08
BH12-9	Mine	616,268	5,422,990	383.1	9.22	1.52-1.98	9.2	Silt	Grain Size	2. Fine-Grained	7.E-08
BH12-9 BH13-2	Mine TMF	616,268 620,519	5,422,990 5,427,627	383.1 431.1	9.22 5.49	4.57-5.03 2.3-2.9	9.2 5.5	Clayey Silt Silt	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	2.E-08 1.E-06
BH13-3	TMF	620,205	5,426,739	427.0	13.26	9.9-10.5	13.3	Silt	Grain Size	2. Fine-Grained	6.E-07
BH13-3 BH13-4	TMF TMF	620,205 618,128	5,426,739 5,426,804	427.0 418.5	13.26 17.68	5.5-5.9 0.8-1.4	13.3 17.7	Silty Clay Sandy Silt	Grain Size Grain Size	2. Fine-Grained 2. Fine-Grained	3.E-08 5.E-08
BH13-4	TMF TMF	618,128	5,426,804 5,426,804	418.5	17.68	6.1-6.7	17.7 17.7	Sandy Silt	Grain Size Grain Size	2. Fine-Grained	2.E-06
BH13-4 BRH-0021	TMF	618,128 617,175	5,426,804	418.5 420.4	17.68 5.90	4.6-5.2 1.6-2.1	3.0	Silt Sandy, Clayey Silt	Grain Size	2. Fine-Grained 2. Fine-Grained	9.E-08 4.E-07
BH12-2	TMF	617,830	5,426,870	418.4	18.29	13.11-14.63	15 1	Silty Sand and Gravel	Slug Toot	Fine-Grained Geomean 3. Coarse-Grained	: 3.E-07 6.E-07
вн12-2 ВН12-4	TMF	619,918	5,426,313	418.4	10.16	5.49-7.01	7.0	Silt / Silty Sand	Slug Test Slug Test	3. Coarse-Grained	0.E-07 2.E-06
BH12-5B BRH-0014B	TMF Mine	620,390 617,147	5,428,976 5,422,218	433.0 416.9	6.50 4.88	5.33-6.86 3.4-4.9	7.8 5.1	Sand Silty Sand, Some Gravel	Slug Test Slug Test	3. Coarse-Grained 3. Coarse-Grained	6.E-06 6.E-07
BRH-0019	TMF	617,958	5,426,576	430.6	8.41	5.0-8.0	8.4	Silty Clay	Slug Test	3. Coarse-Grained	6.E-06
BRH-0020A BRH-0029B	TMF Mine	617,958 619,343	5,426,576 5,420,385	416.5 387.1	28.86 5.60	26.3-28.9 2.6-5.6	25.6 5.6	Sand Gravelly Sand, Some Silt	Slug Test Slug Test	3. Coarse-Grained 3. Coarse-Grained	1.E-04 1.E-06
BRH-0033	Mine	621,181	5,423,647	440.2	7.30	3.0-6.1	7.3	Coarse Sand, Some Clay	Slug Test	3. Coarse-Grained	8.E-06
BH12-4 BH12-5	TMF TMF	619,918 620,391	5,426,313 5,428,975	428.8 433.0	10.16 10.69	6.10-6.55 3.35-3.51	7.0 7.8	Silty Sand	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	2.E-03 2.E-06
BH12-5	TMF	620,391	5,428,975	433.0	10.69	7.62-7.75	7.8	Gravelly Silty Sand	Grain Size	3. Coarse-Grained	6.E-06
BH12-5 BH12-7	TMF TMF	620,391 616,444	5,428,975 5,426,813	433.0 415.8	10.69 8.08	6.10-6.55 7.62-8.08	7.8 8.1	Sand Sand and Gravel	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	1.E-04 3.E-05
BH12-9 BH13-1	Mine TMF	616,268 620,562	5,422,990 5,428,046	383.1 431.0	9.22 7.01	9.14-9.22 3.0-3.6	9.2 7.0	Gravelly Silty Sand Silty Sand	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	6.E-06 6.E-06
BH13-4	TMF	618,128	5,426,804	418.5	17.68	N/A	17.7	Sand	Grain Size	3. Coarse-Grained	9.E-05
BH13-4 BRH-0014	TMF Mine	618,128 617,147	5,426,804 5,422,218	418.5 416.9	17.68 8.78	N/A 4.6-5.1	17.7 5.1	Sand Sand and Gravel, Some Clay, Trace Silt	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	4.E-05 2.E-05
BRH-0017	TMF	619,624	5,425,289	427.7	7.16	5.6-7.2	3.1	Sand, Some Silt, Some Clay, Trace Gravel	Grain Size	3. Coarse-Grained	2.E-06
BRH-0023 BRH-0029A	TMF Mine	619,973 619,343	5,429,127 5,420,385	434.9 387.1	3.60 11.90	3.1-3.5 3.8-4.4	3.6 5.6	Gravelly Sand, Some Silt, Trace Clay Gravelly Sand	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	5.E-05 3.E-05
BRH-0029A	Mine	619,343	5,420,385	387.1	11.90	5.3-5.6	5.6	Sand Some Gravel	Grain Size	3. Coarse-Grained	2.E-04
BRH-0029A BRH-0032A	Mine Mine	619,343 620,345	5,420,385 5,423,914	387.1 424.0	11.90 7.30	8.8-11.9 5.7-7.3	5.6 4.0	Gravelly Sand, Some Silt, Some Clay Gravelly Sand, Some Clay, Trace Silt	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	1.E-05 5.E-05
BRH-0033	Mine	621,181	5,423,647	440.2	7.30 7.30	3.8-4.4	7.3	Sand, Trace Gravel, Trace Silt, Trace Clay	Grain Size	3. Coarse-Grained	1.E-04
BRH-0033 BRH-0034A	Mine Mine	621,181 621,906	5,423,647 5,424,427	440.2 439.7	7.30 7.30	3.0-6.1 4.3-4.6	4.0 4.6	Sand, Some Clay, Trace Silt, Trace Gravel Gravelly Sand, Some Silt, Some Clay	Grain Size Grain Size	3. Coarse-Grained 3. Coarse-Grained	6.E-05 3.E-06
BH12-3A	TMF	618,260	5,426,405	419.7	16.46	14.93-16.46	13.4	Bedrock	Slug Test	Coarse-Grained Geomean 4. Weathered Bedrock	: 1.E-05 9.E-07
BH12-5A	TMF	620,391	5,428,975	433.0	10.69	9.14-10.67	7.8	Bedrock	Slug Test	4. Weathered Bedrock	1.E-04
3RH-0001B 3RH-0002B	Mine Mine	611,909 612,177	5,421,761 5,420,589	429.1 422.6	7.16 5.78	4.1-7.2 4.2-5.7	0.0	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock 5. Competent Bedrock	3.E-08 5.E-06
3RH-0003	Mine	612,744	5,421,086	420.6	5.89	4.4-5.9	0.0	Bedrock	Slug Test	4. Weathered Bedrock	1.E-07
BRH-0004 BRH-0006	Mine Mine	613,473 613,857	5,421,807 5,422,544	429.6 417.0	4.27 3.88	2.6-4.1 2.1-3.6	0.0 0.9	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock4. Weathered Bedrock	3.E-07 3.E-07
BRH-0007A BRH-0007B	Mine	614,656	5,420,825 5,420,826	427.1 427.0	18.44	16.9-18.4 5.3-6.8	0.7	Bedrock	Slug Test	4. Weathered Bedrock	2.E-06
3RH-0008B	Mine Mine	614,656 611,682	5,421,026	420.6	6.86 5.74	3.8-5.7	0.7 0.5	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock 4. Weathered Bedrock	1.E-06 (4E-9)
3RH-0009 3RH-0010	Mine Mine	613,878 615,227	5,421,290 5,423,654	416.3 436.1	7.77 2.67	6.1-7.6 0.7-2.7	2.7 0.0	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock 4. Weathered Bedrock	2.E-05 6.E-07
3RH-0011	Mine	615,105	5,421,919	434.2	5.64	3.6-5.5	1.1	Bedrock	Slug Test	4. Weathered Bedrock	3.E-07
3RH-0012A 3RH-0013	Mine Mine	615,588 615,631	5,422,185 5,422,933	416.9 416.6	5.70 4.37	4.1-5.7 2.7-4.3	3.4 1.3	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock 4. Weathered Bedrock	3.E-05 2.E-07
3RH-0014A	Mine	617,147	5,422,218	416.9	8.78	7.3-8.8	5.1	Bedrock	Slug Test	4. Weathered Bedrock	6.E-06
3RH-0015A 3RH-0016A	Mine Mine	617,875 618,407	5,423,186 5,425,303	417.3 444.8	8.74 5.73	7.2-8.7 2.7-5.7	5.8 1.5	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock4. Weathered Bedrock	2.E-07 3.E-05
3RH-0026 3RH-0030A	TMF	620,607 620,493	5,431,227 5,420,832	460.9 415.8	8.75	5.8-8.7 4.1-5.6	1.5 3.3	Bedrock	Slug Test	4. Weathered Bedrock4. Weathered Bedrock	2.E-06 1.E-05
A0600-11716	Mine		J,420,832	1410.0	5.60	•	0.0	Bedrock	Slug Test	4. Weathered Bedrock	
3H12-1 3RH-0001A	TMF Mine	617,568 611,909	5,428,261 5,421,762	436.8 429.0	4.19 19.22	2.59-4.11 16.0-19.0	1.2 0.0	Bedrock Bedrock	Slug Test Slug Test	5. Competent Bedrock 5. Competent Bedrock	4.E-08 7.E-10
3RH-0002A	Mine	612,178	5,420,590	422.7	19.25	16.2-19.3	1.2	Bedrock	Slug Test	4. Weathered Bedrock	7.E-05
3RH-0005A 3RH-0008A	Mine Mine	612,360 611,682	5,421,894 5,421,030	441.7 419.6	19.07 19.49	16.0-19.0 17.9-19.5	0.9 0.5	Bedrock Bedrock	Slug Test Slug Test	4. Weathered Bedrock 5. Competent Bedrock	1.E-08 2.E-08
3RH-0017A	TMF	619,624	5,425,289	427.7	7.16	5.6-7.2	3.1	Bedrock	Slug Test	5. Competent Bedrock	7.E-07
3RH-0018 3RH-0021A	TMF TMF	620,794 617,175	5,427,311 5,427,168	430.6 420.4	8.69 5.90	5.5-8.7 4.2-5.9	1.8 3.0	Bedrock Bedrock	Slug Test Slug Test	5. Competent Bedrock 5. Competent Bedrock	3.E-07 8.E-05
3RH-0022	TMF	618,040	5,428,215	430.6	5.39	2.1-5.2	0.1	Bedrock	Slug Test	5. Competent Bedrock	2.E-06
3RH-0028A 3RH-0029A	Mine Mine	618,741 619,343	5,421,296 5,420,385	383.6 387.1	5.80 11.90	4.2-5.8 8.8-11.9	3.8 5.6	Bedrock Bedrock	Slug Test Slug Test	5. Competent Bedrock 5. Competent Bedrock	3.E-06 1.E-07
	Mine	620,345	5,423,914	424.0	7.30	5.7-7.3	4.0	Bedrock	Slug Test	5. Competent Bedrock	2.E-08
3RH-0032A 3RH-0034A	Mine	621,906	5,424,427	439.7	7.30	5.8-7.3	4.6	Bedrock	Slug Test	Competent Bedrock	3.E-07

Notes: -masl is metres above sea level. -mbgs is metres below ground surface. -m/s is metres per second. -K is hydraulic conductivity. -Parenthesis () indicate data is considered an outlier and not used in geomean calculations. -*Italicized font* indicates an assumed value.

Monitoring Well	Screened Unit(s)	Screened Interval (mbgs)	Static Water Level (mbgs)	Hydraulic Conductivity (m/s)
BH12-1	Fresh Bedrock	2.59 to 4.11	0.80	4E-8
BH12-2	Silty Sand and Gravel	13.11 to 14.63	0.78	6E-7
BH12-3A	Fresh Bedrock	14.93 to 16.46	0.09	9E-7
BH12-3B	Silt	10.06 to 11.58	0.16	7E-7
BH12-4	Silt / Silty Sand	5.49 to 7.01	0.38	2E-6
BH12-5A	Weathered Bedrock	9.14 to 10.67	0.36	Assumed 1E-4
BH12-5B	Sand	5.33 to 6.86	0.33	6E-6
BH12-6A	Silt	8.38 to 9.91	0.83	Assumed 1E-4
BH12-6B	Silty Sand (Fill)	1.52 to 3.05	0.98	1E-5
BH12-7A	Silt / Gravel and Sand	5.79 to 7.31	0.51	3E-7
BH12-7B	Silty Clay	2.13 to 3.66	1.16	2E-6
BH12-8	Silt	2.29 to 3.81	3.25	N/A
BH12-9	Silty Clay / Silty Sand	7.62 to 9.14	Damaged	Damaged
BH12-10	Silty Sand	1.52 to 3.05	0.46	6E-6

Table 3: Recent Slug Test Summary (August 2016)

Table 4: Hydrostratigraphic Unit Summary

Layer (Ground Downwards)	Unit Description	Thickness (m)	Horizontal Hydraulic Conductivity Geomean (m/s)
1	Surficial Deposit	3	1E-5
2	Fine-Grained	50% of Layer 2+3	3E-7
3	Coarse-Grained	50% of Layer 2+3	1E-5
4	Weathered Bedrock	3	2E-6
5	Competent Bedrock	50+	2E-7

Borehole ID	Easting NAD83	Northing NAD83	Ground Surface Elevation (masl)	Total Borehole Depth (mbgs)	Depth to Rock (mbgs)	Depth of Weathering (mbtor)
BH12-1	617,568	5,428,261	436.8	4.19	1.2	0.0
BH12-3	618,260	5,426,405	419.7	16.46	13.4	N/A
BH12-5	620,391	5,428,975	433.0	10.69	7.8	2.9
BRH-0001	611,909	5,421,761	429.1	7.16	0.0	9.0
BRH-0002	612,177	5,420,589	422.6	5.78	1.2	N/A
BRH-0003	612,744	5,421,086	420.6	5.89	0.0	2.7
BRH-0004	613,473	5,421,807	429.6	4.27	0.0	4.1
BRH-0005	612,360	5,421,894	441.7	19.07	0.9	16.0
BRH-0006	613,857	5,422,544	417.0	3.88	0.9	N/A
BRH-0007	614,656	5,420,826	427.0	6.86	0.7	2.3
BRH-0008	611,682	5,421,026	420.6	5.74	0.5	13.2
BRH-0009	613,878	5,421,290	416.3	7.77	2.7	2.5
BRH-0010	615,227	5,423,654	436.1	2.67	0.0	N/A
BRH-0011	615,105	5,421,919	434.2	5.64	1.1	3.4
BRH-0012	615,588	5,422,185	416.9	5.70	3.4	N/A
BRH-0013	615,631	5,422,933	416.6	4.37	1.3	N/A
BRH-0014	617,147	5,422,218	416.9	8.78	5.1	N/A
BRH-0015	617,875	5,423,186	417.3	8.74	5.8	N/A
BRH-0016	618,407	5,425,303	444.8	5.73	1.5	4.2
BRH-0017	619,624	5,425,289	427.7	7.16	3.1	0.0
BRH-0018	620,794	5,427,311	430.6	8.69	1.8	0.0
BRH-0021	617,175	5,427,168	420.4	5.90	3.0	0.0
BRH-0022	618,040	5,428,215	430.6	5.39	0.1	0.0
BRH-0024	621,017	5,429,046	435.4	7.20	1.0	0.0
BRH-0026	620,607	5,431,227	460.9	8.75	1.5	7.2
BRH-0028A	618,741	5,421,296	383.6	5.80	3.8	0.0
BRH-0029A	619,343	5,420,385	387.1	11.90	5.6	0.0
BRH-0030A	620,493	5,420,832	415.8	5.60	3.3	1.3
BRH-0032A	620,345	5,423,914	424.0	7.30	4.0	0.0
BRH-0034A	621,906	5,424,427	439.7	7.30	4.6	0.0
					Average:	3.1

Table 5: Bedrock Weathering Depth

Notes:

-masl is metres above sea level.

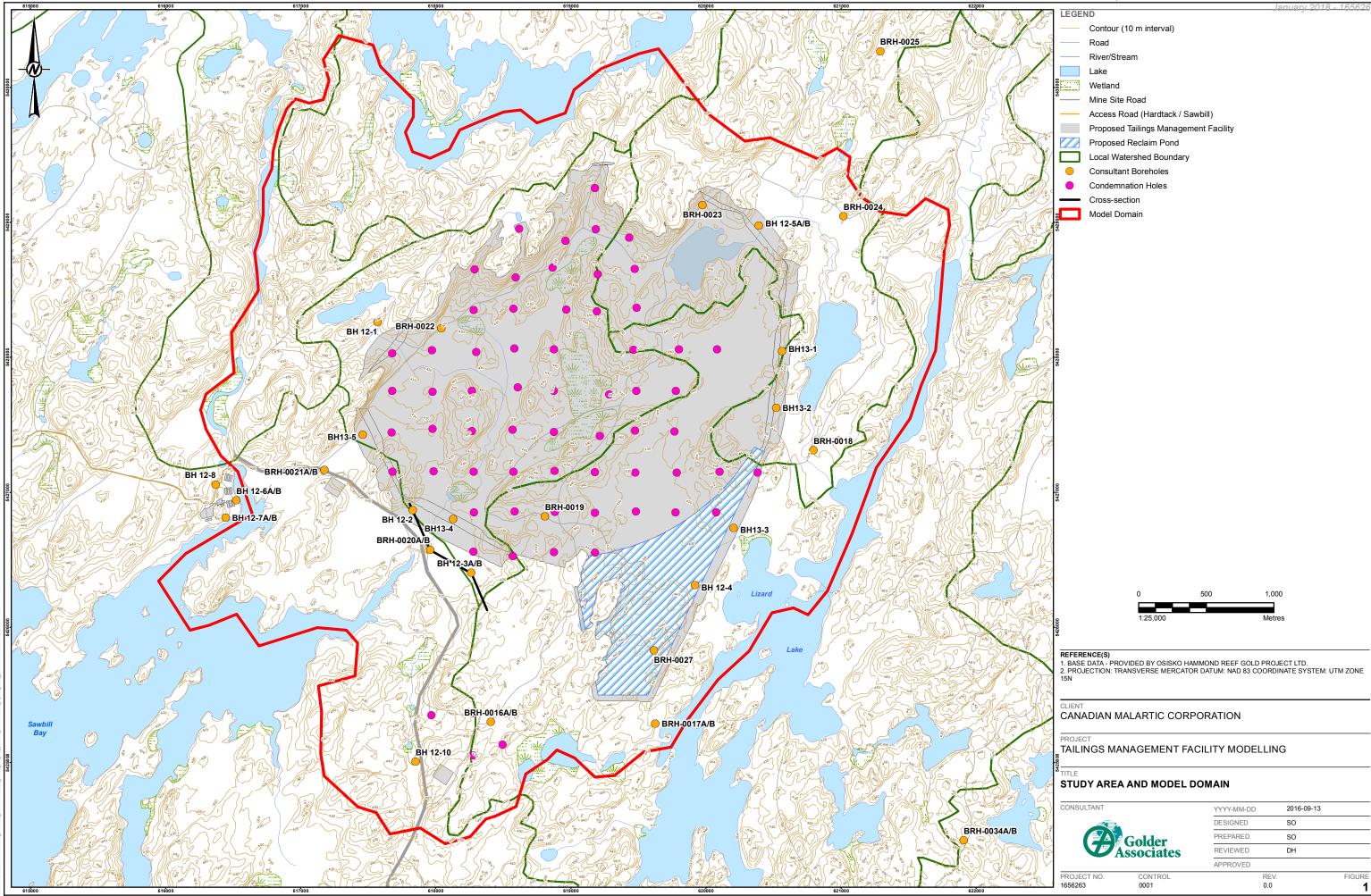
-mbgs is metres below ground surface.

-m/s is metres per second.

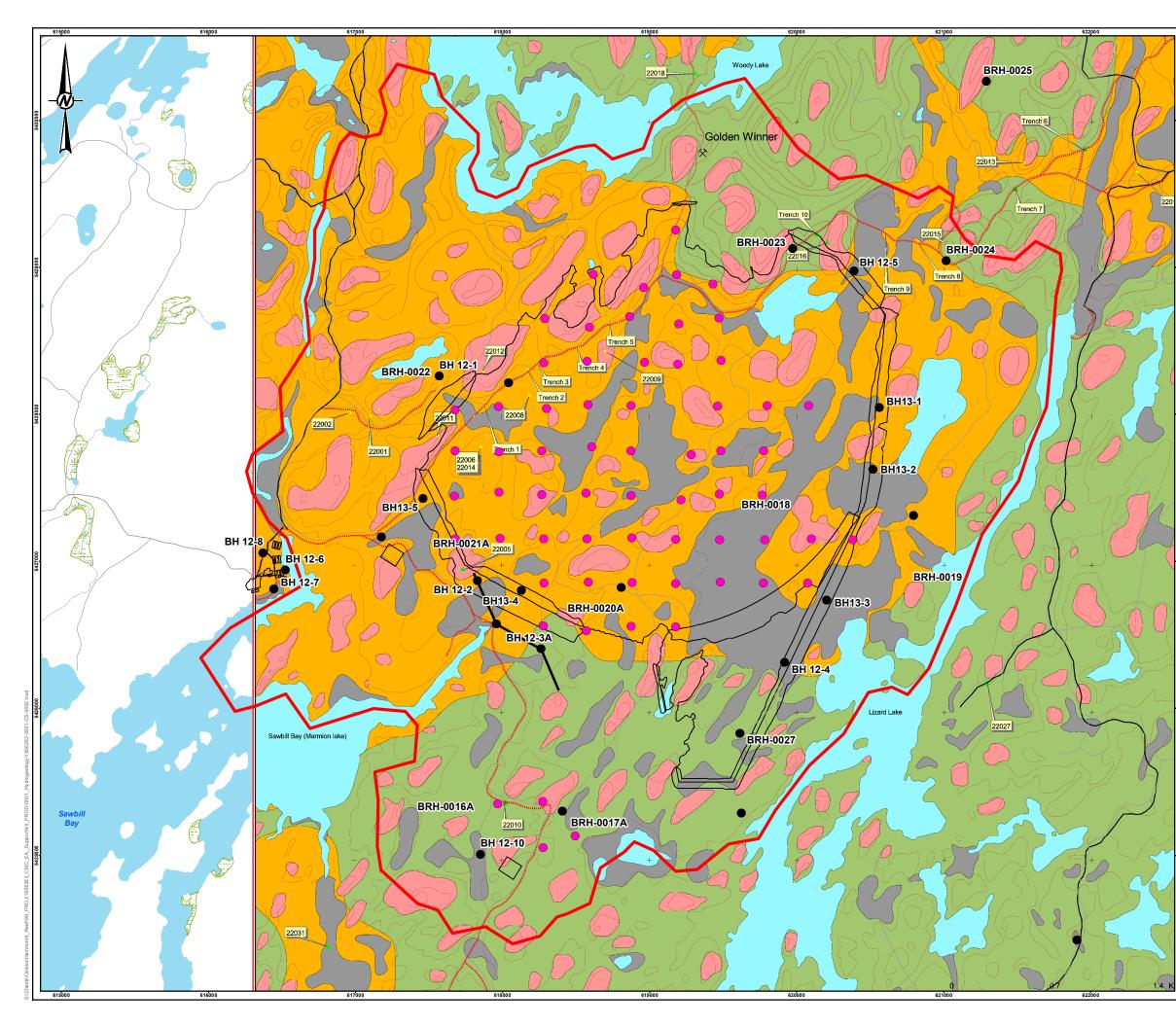
-mbtor is metres below top of rock.

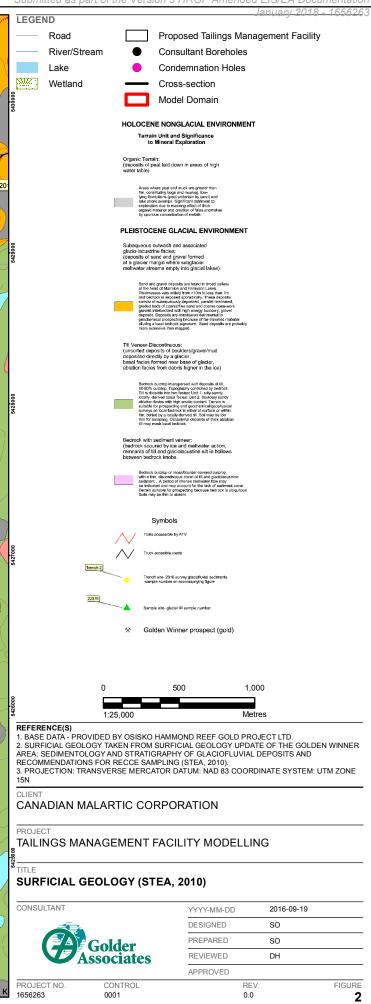
-N/A means full depth of weathering is unknown but logged depth is less than avg. and thus ignored.

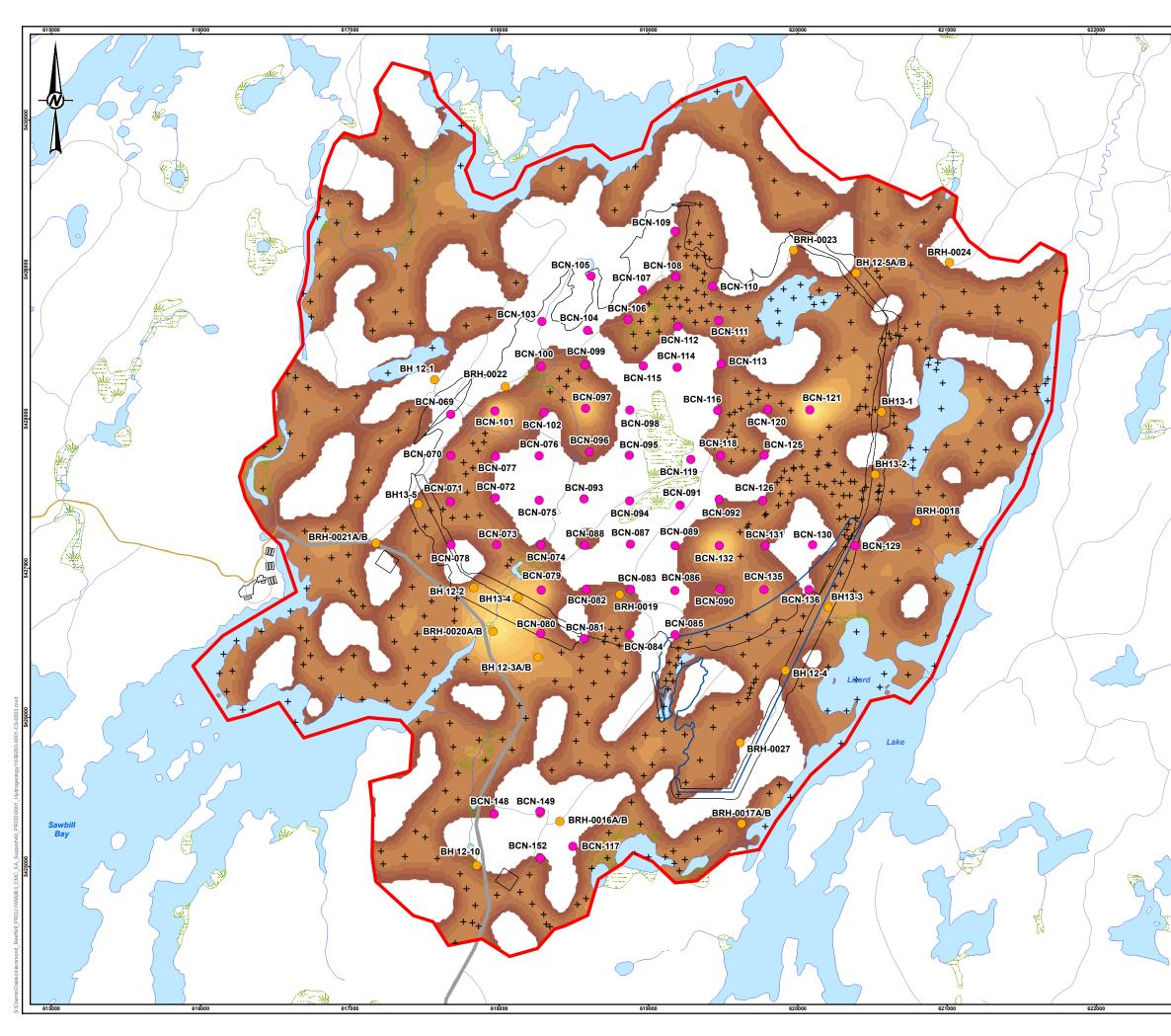
-Italicized font indicates minimum depth of weathering (to bottom of hole).

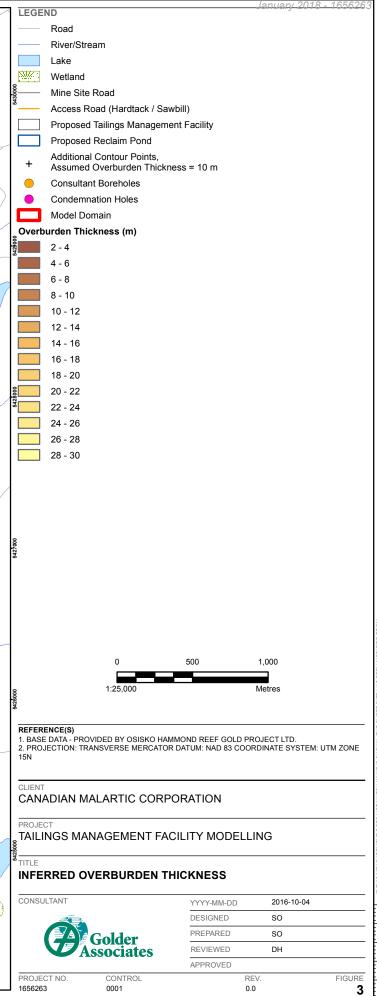

Table 6: Recharge Rates (Singer and Cheng, 2002)

Geologic Deposit	Recharge Rate (mm/yr)
Precambrian Rock	3 – 5
Silty Clay Till	10 – 25
Sand to Silty Sand Till	50 – 75
Silt and Clay	5 – 10
Peat, muck and marl	2-5
Sands and Gravels	300 – 350

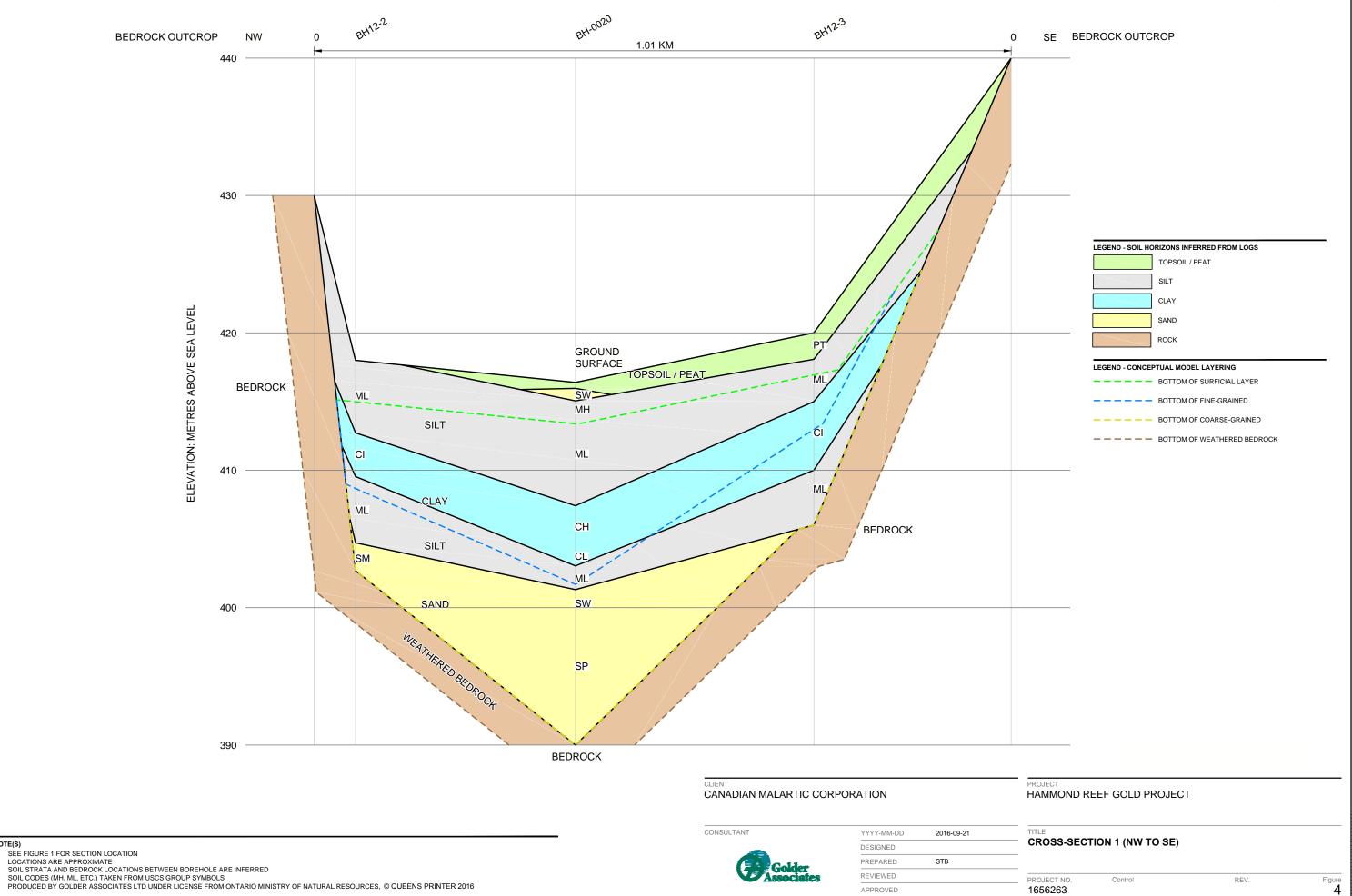

FIGURES

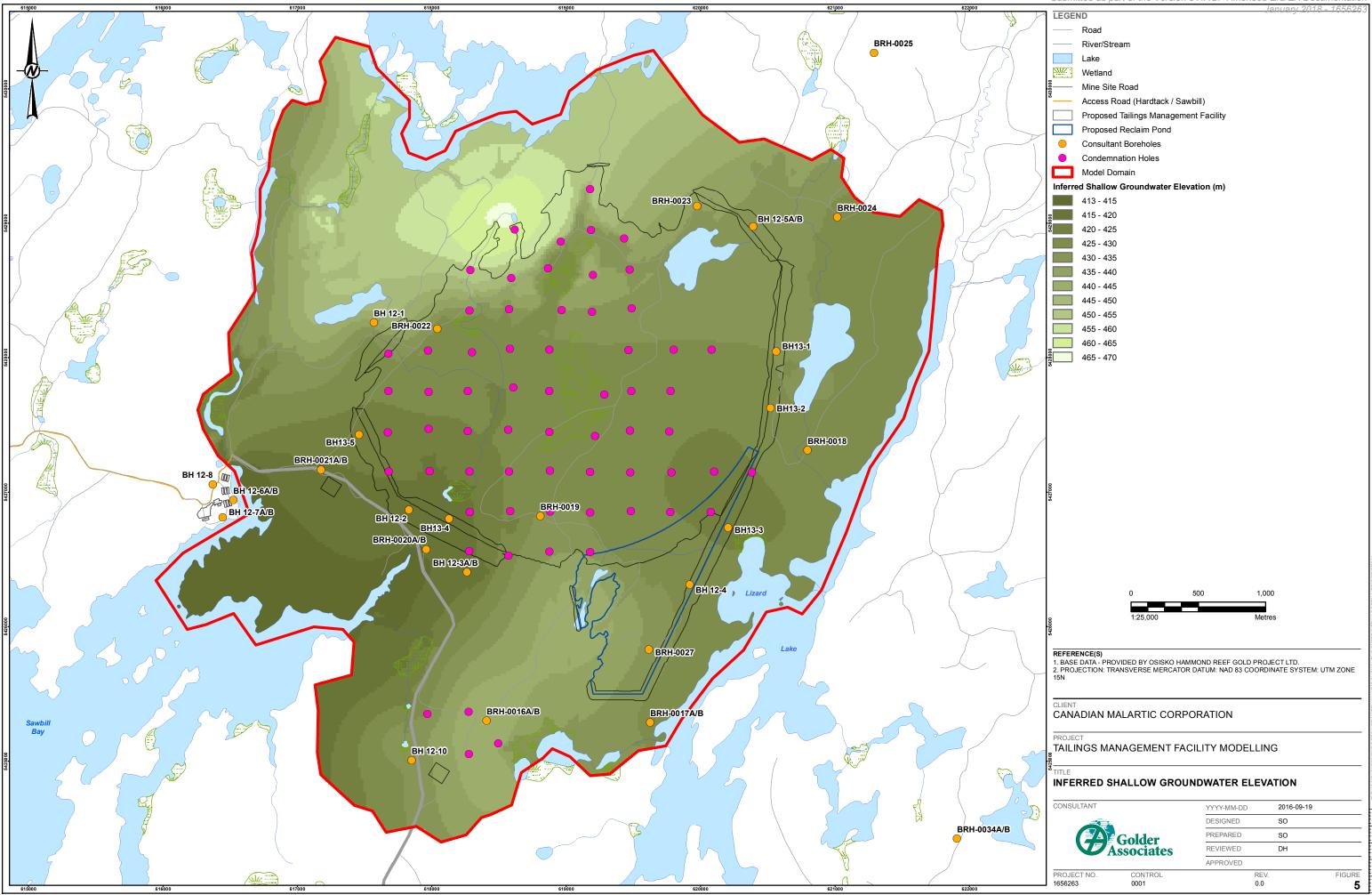





YYYY-MM-DD	2016-09-13	
DESIGNED	SO	
PREPARED	SO	
REVIEWED	DH	
APPROVED		
RE	V.	FIGUR

1,000




55mm F THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODI

NOTE(S)

1.

- 5.

25, The second second match what is shown, the sheet size has been mo

APPENDIX A Borehole logs

METHOD OF SOIL CLASSIFICATION

Organic or Inorganic	Soil Group	Ту	pe of Soil	Gradation or Plasticity	Cu =	$\frac{D_{60}}{D_{10}}$	Cc	$=\frac{D_{30}^2}{D_{10}xD_{60}}$	Organic Content	USCS Group Symbol	Group Name		
		s (Gravels with	Poorly Graded	<,	4	5	≤1 or ≥3		GP	GRAVEL		
(s	(mm)	ELS mass i 4.75 m	<12% fines (by mass)	Well Graded	≥4	≥4 1 to 3				GW	GRAVEL		
oy mas	30ILS	STEW SCALE S		Below A Line			n/a			GM	SILTY GRAVEL		
ANIC <30% I	INED S	(>5 large	>12% fines (by mass)	Above A Line			n/a			GC	CLAYEY GRAVEL		
NORG. ontent	E GRA s is larç	ر آھ	Sands with	Poorly Graded				≤1 or ≥3	<30%	SP	SAND		
Janic C	INORGANIC (Organic Content <30% by mass) COARSE GRAINED SOILS (>50% by mass is larger than 0.075 mm)		<12% fines (by mass)	Well Graded		≥6		1 to 3		sw	SAND		
0îO)	C >50% I	SANDS (>50% by mass is smaller than 4.75 mm)	Sands with	Below A Line			n/a		1	SM	SILTY SAND		
	0	(>5 small	>12% fines (by mass)	Above A Line			n/a		1	SC	CLAYEY SAND		
Organic or	Soil					Field	I Indicators		Organic	USCS			
Inorganic	Group	Ту	pe of Soil	Laboratory Tests	Dilatancy	Dry Strength	Thread Diameter	Toughness (of 3 mm thread)	Content	Group Symbol	Group Name		
					Rapid	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(s	5 mm)		olot ne thart)	Liquid Limit <50	Slow	None to Low	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT		
INORGANIC (Organic Content <30% by mass)	an 0.07		FINE GRAINED SOILS (>50% by mass is smaller than 0.075 mm)	ULS Ian 0.07 SILTS	(PI and LL plot below A-Line on Plasticity Chart)		Slow to very slow	Low to medium	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT
BANIC t <30%	NED S naller tt	(P1 a below			Slow to very slow	Low to medium	3mm to 6 mm	Low to medium	<5%	мн	CLAYEY SILT		
INOR	Conten GRAII s is sm			Liquid Limit >50	None	Medium to High	1 mm to 3 mm	Medium to High	5% to 30%	ОН	ORGANIC SILT		
ganic - FINE by mas	FINE by mas		plot ine	Liquid Limit <35	None	Low to medium	~ 3 mm	Low to medium	0%	CL	SILTY CLAY		
Q	(>50%	CLAYS CLAYS (PI and LL plot above A-Line on Plasticity Chart)		Liquid Limit 35 to 50	None	Medium to High	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY		
			(PI abo on	Liquid Limit >50	None	High	<1 mm	High		СН	CLAY		
≻ S S S	~30% ss)		nd mineral soil mixtures					30% to 75%	SILTY PEAT, SANDY PEAT				
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	contair soi	nantly peat, may n some mineral l, fibrous or						>75%	PT	PEAT		
		amo	rphous peat	PLASTICITY CHART									
40 30 - 20 - 10 -	Dual Symbol — A dual symbol two symbols separated by a hyphen, for example, GP-GM, SW-SC, CL-ML used when the has between 5 and 12% fines (<i>i.e.</i> between "clean" sand and "dirty" sand) or when the liquid and plasticity index values plot the CL-ML area of the plasticity chart. Borderline Symbol — A border symbol is two symbols separated by a slash, for example, CL/CL								d by a GP-GM, when the soil % fines and and ne liquid limit lues plot in plasticity A borderline separated				
0		(Non-plas 10	tic - see Note 1) 20	30 40 Liquid Limit (Ll	50 L)	60	70	80	βM/SM, CL/	IVIL.			
Note 1 – Fine	grained m	aterials w	hich are Non-plas	stic (i.e. a PL cannot be		named SII T							

SYMBOLS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICLE SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)				
BOULDERS	Not Applicable	>300	>12				
COBBLES	Not Applicable	75 to 300	3 to 12				
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75				
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)				
SILT/CLAY	Classified by plasticity	<0.075	< (200)				

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
≤ 5	trace
5 to 12	some
12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL, SAND and CLAY)

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) drive open sampler for a distance of 300 mm (12 in.).

Piezo-Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q₁), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance; Nd:

N

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- **PM:** Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

may feel cool.

when handled.

5

	Compa	ictness		
	Term	SPT 'N' (blows/0.3m) *		
,	Very Loose	0 - 4		
	Loose	4 to 10		
	Compact	10 to 30		
	Dense	30 to 50		
١	Very Dense	>50		
	i and Peck (1967) and co	scriptions based on SPT 'N' range prrespond to typical average N ₆₀ value re Condition		
Term	I	Description		
Dry	Soil flows freely through fingers.			
Moist	Soils are darker tha	an in the dry condition and		

As moist, but with free water forming on hands

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
SS	Split-spoon
DS	Denison type sample
FS	Foil sample
RC	Rock core
SC	Soil core
ST	Slotted tube
ТО	Thin-walled, open
TP	Thin-walled, piston

Wash sample

SOIL TEST

WS

SOIL TESTS	
w	water content
PL	plastic limit
LL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Note: ¹ Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

COHESIVE SOILS

	Consistency	
Term	Undrained Shear Strength (kPa)	SPT 'N' (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

 SPT 'N' in accordance with ASTM D 1586, uncorrected for overburden pressure effects or energy transfer.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Wet

			Г: 10-1118-0020 PH 4000 N: N ;E	RI	ECO	RD	0	FC										1-000	1A					,	Jan	SH	y 2018 - 1636263 - IEET 1 OF 2 .TUM: Geodetic
			ion: -90° Azimuth:	1			,		D D	RILL RILL	RIG	6: C CO	ME (55 T	rack TOR	kmo R:	ount										
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	ELLISH COLOUR	03⊒ % RETU 83⊒ 0.≤ ø	N - Ji LT - F HR- S N - V J - C RECO DTAL RECO DTAL RE %	hear ein onjug	/ ID 5 %	FI C	MET	liatio ntaci thogo eavaç EX RES	'n	gle	CU- UN- ST - IR -	DESCRI	SURFACE	ickens nooth ough	ided ical Bi H COI	reak YDRA	NOTE: abbrev of abbr symbol ULIC CTIVIT	Diam	ditional efer to s & etral Load ex ex a)	list	NOTES WATER LEVELS INSTRUMENTATION
— o			TOP OF BEDROCK																								
- 0 			Slightly weathered coarse grained grey crystalline rock Pink intrusive quartz from 0.6 m to 0.9 m depth.		0.0	1									• • •			JIR Partiall JIR JIR JIR JUSM	y Healed								
						2									•			JIR JPLSM JIR Broken JIR MB. JPLSP Broken	Core								
- 2 - 2 						3									•			JIR JIR JUR JIR Broken	•••••••••								
- 3 - 3 						4									•			JUS JIR MB JIR? M JIR? M	IB?								-
- 4 - - - - - - 5 - 5	CME 55	NQ Core				5		· .						••••	•			JIR Weath Zone JPLSM JUSM MB JIR									-
- - - - - - - - - - - - - - - - -	;				·····	6									•			JIR MB JRR? M MB MB JIR	MB?								-
- - - - - - - -						7									•			JIR JUR JUSM MB JPLSM Broken	l I Core								-
11 22/06/11 DATA INPU			Pink coarse grained slightly weathered crystalline rock, quartz crystals Pink quartz intrusion from 7.6 m to 9.0 m depth.		7.8	8									•			JIR JIR MB JIR									-
SUD-RCK 10-1118-0020 (4000) GPJ GAL-MISS GDT 22/06/11 DATA INPUT:		-	Coarse grained greenish grey rock with pink quartz in varying amounts		9.0	9		~<							•			JIR JIR JIR JIRSM JIR JIR JIR JIR JIR	1								
- 10 - 10 - 10		L		Ň	∮	\vdash				╉┼┥		$\parallel \mid$	╋	┤┼	. +	╢	₩-			┨┿┝	+	┝┝		╊ <u>┣</u> ┥	·H	+	
SUD-RCK 10-11	EP1 : 50		CONTINUED NEXT PAGE	1	<u> </u>				Ĩ	ý	G	ol	 de cia	III r ute	 :::::::::::::::::::::::::::::::::												IGGED: MO ECKED: BG?

		CT: 10-1118-0020 PH 4000 ON: N ;E	REC	ORD	OF						E oril 26,		1-000 [,]	1A				- 0	SI	Ary 2018 - 1030203 - HEET 2 OF 2 ATUM: Geodetic
	CLINA	TION: -90° AZIMUTH:				D	RILL	RIG:		E 55 TRAC	Trackr TOR:	nount								
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG DED (m)	TH S	USH COLOUR	JN - J FLT - F SHR- S VN - V CJ - C RECC TOTAL CORE %	ault Shear /ein Conjuga /VERY SOLIE CORE	R.C	FO- CO- OR- CL-	Beddin Foliatio Contac Orthog Cleava RACT. INDEX IETRES	on ct jonal ige	CU- C UN- L ST - S IR - II DISC DIP w.r.t	Planar Curved Undulating Stepped Irregular CONTINUITY t. TYPE AND S DESCRIF		ckensid nooth lugh	al Break HYDF CONDU k, o	NOTE abbrev of abb	eviations ls.	etral .oad RMC a) AVG.	NOTES WATER LEVELS INSTRUMENTATION
10 	F	CONTINUED FROM PREVIOUS PAGE Coarse grained greenish grey rock with		+									мв						₽	
- - - - - - - - - - - - - - - - - - -		pink quartz in varying amounts		10							•		JSTR JPLSM MB JPLR MB							
		Pink QUARTZ intrusion		2.2 11							•		JIR JIR JIR JIR JIR	·						
- 13 - 13 		pink quartz in varying amounts Medium grained grey from 12.7 m to 13.7 m depth.											JUSM JUSM JPLSM JPLSM JIR							
- - - - - - - -	CME 55 NQ Core	Coarse grained grey with pink quartz intrusions Quartz intrusion coarse grey from 13.9 m to 14.1 m depth.		12			••••		· · ·		•		JIR Broken JIR	Core						
- - - - - - - - - - - - - - - - - - -	CME 55 NQ Core	Quartz interbeded into coarse gravel grey from 14.9 m to 17.6 m depth.		13			· · · · ·				•		MB JIR JPLSM							-
16 				14							•		MB FPLSM							
		Coarse grained grey from 14.9 m to 17.6 m depth.									•		JPLSM JIR JIR JUSM MB							-
				15							•		JPLSM JPLSM JISM MB							
		END OF DRILLHOLE		9.1																
DE		SCALE	<u> </u>			Ĩ		G		ler	es	<u></u>						111		I OGGED: MO IECKED: BG?

LO	CATIO	т: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	R	ECO	RD) OF	D	DR DR	RILLI RILL I	NG I RIG	DAT : CN	Е: ЛЕ 5	Apri 5 Tr	l 26, acki	, 20 moi	11	1-0	0001	B						jai	Sł	ny 2018 - 1030 HEET 1 OF 1 ATUM: Geodetic	7203
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>		- Joi - Fai - Shi - Vei - Coi COV	ear in njugai	e R.	BD FO CO OR CL Q.D.	- Beo - Fol	Iding ation itact nogor avage CT. EX ES		F C U S I I	ST - S R - Ir	Curve Undu Stepp Irregi CONT	ed Jating		ickens	iical B	reak YDR/ NDU0 k, cr	NOTE abbre of abb symbo	E: For a viation previati ols. Poir Ir (N	ken R addition s refer ions & metral nt Load ndex WPa)	ial to list	NOTES WATER LEVE INSTRUMENTAT	
	CME 55 NA Core	TOP OF BEDROCK FOR CORING DETAILS SEE RECORD OF DRILLHOLE BRH-0001A		0.0																							G/1/2011 Bentonite Holeplug Riser Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
- 10 - 10 DE	EPTH S	SCALE					Ĝ		À	 Ge	olc oc	lle:	r te	s													DGGED: MO ECKED: BG?	

LOCAT	ECT: 10-1118-0020 PH 4000 FION: N ;E IATION: -90° AZIMUTH:	RE	ECO	RD			DR DR DR	ILLIN ILL R ILLIN	g da Ig: (g cc	TE: / CME 5 ONTR/	April 3 5 Tra ACTO	30, 2 ckm	2011 Iount								SHEET 1 OF 3 DATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD		SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SHF VN CJ	AL S	ar ijugate ERY 60LID DRE %	(METR	tact logonal avage CT. ES B A	180 alb	UN- ST- IR-	Planar Curved Undulating Stepped Irregular CONTINUITY rt. E S DESCRI	SM- Sr Ro - Ro MB- M DATA	ickensio nooth ough	al Brea HYDF CONDI k,	NOTE abbrev of abb	Diam YPoint Ind	iditional refer to ns & netral Load R lex Pa) A	list NOTES
- 0	TOP OF BEDROCK Coarse grained grey crystalline rock		0.0	1						-											6/1/2011
- 2				2							•			Broker Broker MB JIR JIR JIR		<u>.</u>					_
- 3				3			- <u>·</u>	····.	• • • •					JIR JPLSN JIR JIR JIR JIR MB JPLSN							
CME 55	ND COG			4							•			JPLSW JPLR JPLR Broker JUSM JPLSM Broker	Core						Bentonite Holeplug Riser
- 6				5							•			JIR JIR JIR JPLR MB							
- 8				6							• • •			JPLSM JIR JIR JIR JPLR JIR JIR JIR MB	I						
- 9				7		-					• • •			JIR JIR JIR JPLSM JPLSM							
DEPTH 1 : 50	I SCALE								Gol	lde cia	r tes			11			<u> </u>	_ []			LOGGED: MO CHECKED: BG?

10 CONTINUED FROM PREVIOUS PAGE 10 Coarse grained grey crystalline rock 11 11	ELEV. DEPTH (B) SAWBORIC FOG SAWBORIC FOG	KUN No.	-USH <u>COLO</u> 8≓ _ ∩≤∞	RECOV OTAL DRE % C	ear in njugate ERY SOLID CORE %	CO- OR- CL - R.Q.D. F	al B Angle		a) SM-Smu Ro-Rou ID SURFACE ID SURFACE RIPITION	kensided ooth ugh chanical E	NOT	C Diamel ITYPoint Lo Index	tional fer to list tral Dad RMC (-Q') AVG.	NOTES WATER LEVELS INSTRUMENTATIC
Coarse grained grey crystalline rock 11		8					•	JIR	ken Core					
13 I 14 I 15 I 16 I 17 I 18 I 19 I		10						JIR JIR JIR JIR JIR JIR JIR JIR JIR JIR	R					Bentonite Holeplug Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
	19.3		_					MB						<u></u>
CONTINUED NEXT PAGE					 3	Gold Soci								

PF	ROJEC	CT: 10-1118-0020 PH 4000	R	ECO	RD	0	FC	DR	RIL	Lŀ	HC)L	E:		B	R⊦	1-	0002	2A						Jan		y 2018 - 1050203 - EET 3 OF 3
		DN: N ;E TION: -90° AZIMUTH:							RILL																	DA	TUM: Geodetic
				1		۲	z JN	D 1 - J _T - F	oint	ING	E	DNTI	eddin	a		PL - F CU- (Plan	nar	PO-P	plished					en Ro		
SCALE RES	RECOF	DESCRIPTION	SYMBOLIC LOG	ELEV.	RUN No.	COLOUR		HR-S N -V	hear	ate	0	-0- F CO- C OR- O CL - C	ontac	:t		UN-L	Und	dulating pped gular	K - S SM- S Ro - R MB- M	nooth ough		eak	NOTE: abbrev of abbr symbol	For ac iations reviatio ls.	dditional refer to ns &	al D list	NOTES WATER LEVELS
DEPTH SCALE METRES	DRILLING RECORD		SYMBO	DEPTH (m)	RUN	FLUSH	TC CO	DTAL RE %	SOL CORE	ID E %	R.Q.D %	' IN ME	ACT. DEX TRES	B Ang	gle	OIP w.r. CORE AXIS	t. T	TYPE AND SU		Jr Ja J	CON			Dian Point Inc (M	ns & netral Load dex Pa)	RMC -Q' AVG.	INSTRUMENTATION
- 20		CONTINUED FROM PREVIOUS PAGE					88	848	800	20	3848	22 50	50	-96 ⁶	52	-888	6				1	55	[]	~ ~	4.0		
- - 21																											-
-																		Broken	Core								
-																											
- - 22 -																		· · · · · · · · ·	·								-
-																· ·. ·		··	•••••								
-															.												
- 23 - -														• •													-
-													1.	·													
- - - 24										·	•••																· · ·
-											•																
-																											
- - 25																											-
-									····																		
-						•••																					
- - 26 -																											
-				·····																							
-		· · · · ·																									
27 - -				 																							-
5																											
1 1 D/																											
3DT 22/																											
0. 29																											
GPJ GA																											
1 (4000).(
10-1118-0020 (4000) GPJ GAL-MISS.GDT 2206/11 DATA INPUT: 0 6 66 67 67 10-111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -																											-
	I Ертн (I SCALE	1	1				$\overline{\gamma}$				<u> </u>					11							11			GGED: MO
Ϋ́	50						K	ľ	1	G	i0] 50	ide Cia	er ato	es													CKED: BG?

LO	CATIO	т: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	R	ECO	RD	OF		DRII DRII	LLIN LL R	G D IG:		: N E 55	/lay ⁻ 5 Tra	1, 20 ickm	011		-000	2B					J.	S	ary 2018 - 105 HEET 1 OF 1 DATUM: Geodetic	0203
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION TOP OF BEDROCK	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	JN FLT SHR VN CJ	- Joint - Fault - Shea - Vein - Conj COVE	t t ar jugate		BD-I FO- OR- CL- LD. FI	Bedd Foliat Conta	ling tion act ogona vage T. T. S B /		CL UN ST IR	ISCC	anar urved adulating epped egular DNTINUITY TYPE AND DESCR	K - SM- Ro - MB- TDATA	 enside oth h anica	I Brea HYD COND k,	NO abbi of a ik sym	TE: Fo reviati bbrev bols. CE /ITYP	or additi ions ref iations i	ral bad RMC (-Q') AVG		
	CME 55 CME 56 CME 55 CME 56 CM	FOR CORING DETAILS SEE RECORD OF DRILLHOLE BRH-0002A		0.0 5.7																					G/1/2011 Bentonite Holeplug Riser Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
	PTH	SCALE					Ć	Ì) As	G 0 50	old oci	er	tes	5											ogged: Mo Hecked: Bg?	

		N: N ;E FION: -90° AZIMUTH:						DF DF	RILL RILLI	RIG	CM CON	E 55 TRA	opril 2 Trac CTOF	kmo R:	ount										M: Geodetic
METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH VN CJ	ECOV	ear in njuga	- R.(CO- OR- CL- Q.D. F	Bedd Folial Conta Ortho Cleav RACT NDE2	act ogonal vage T. K B An	igle	UN-I ST-S IR-I	Planar Curved Jndulating Stepped rregular CONTINUIT t. TYPE AND DESCF	K - SM- SM- Ro - I MB- I Y DATA	Polishe Slicken Smooth Rough Mecha	nical E	Break HYDR/ NDU(k, cr	NOTE abbrev of abbrev symbo	: For add itations r reviation ls.	efer to lis s & etral Load RM ex -C Pa) AVI	it IC	NOTES WATER LEVE NSTRUMENTAT
0 -		TOP OF BEDROCK Coarse grained crystalline rock, slightly weathered pyrite crystals, greenish grey speckled		0.0	1											JIR X JIR JIR JIR JIR JIR JIR JIR Broke JPLS	n Core								
2	CME 55 NQ Core	Coarse grained pink and grey with pyrite crystals.			2											JIR JISM JPLR JPLS JPLR JPLR JPLR JPLR JPLR JPLR JPLR JPLR	M 							Bent	onite Holeplug r
3	NO				3				•••••	•						JIR JISM JISM JISM JISM JIR JIR JIR JIR JIR JIRS JISM JPLS JPLS JPLS JPLS	M M M M							_	
5		END OF DRILLHOLE			4			· · · ·					, 10 [°] el m ît			JIR JIR JIR JIR JIP JIP JIP JIP JIP JIP JIP JIP JIP JIP	M M M M M M							31.8	⊻ 6/1/2011 mm Diam. #10 Slot en
7													•			JIR JPLS JISM JISM JPLR									
8																									
9																									

		CT: 10-1118-0020 PH 4000 ON: N ;E .TION: -90° AZIMUTH:					1	DF DF	RILLI RILL RILLI	NG RIG	DAT : CN CON	E: /	Apri 5 Tr ACT	l 24, ackr OR:	201 nour	1 nt	anar ırved	P	0- Pa	lished	1		BR			D	HEET 1 OF 1 ATUM: Geodetic
METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	RE TOT COR	R-Sh -Ve -Co ECOV	iear in onjuga /ERY SOLID CORE S	R.	CC OR CL Q.D. %	- Con - Orth - Clea FRAC INDE	tact nogor avage CT. EX RES	nal		N-Un T-Ste ISCC W.r.t. DRE KIS	Irved Indulating epped egular INTINUIT TYPE AN DESC	S R M TY DA		nooth lugh	ical E	Break HYDR/ DNDU k, ci	AULIC AULIC TIVIT m/s 01	viation: previati pls. Dia YPoir Ir (N	metra metra t Loa dex VPa)	r to list	NOTES WATER LEVEI INSTRUMENTAT
0		TOP OF BEDROCK Grey coarse grained crystalline rock, slightly weathered		0.0	1		88	22	8884		200	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04		\$ •		88	JIR JIR JIR JIR JIR JIR	MB?						2	4 0		 6/1/2011 Bentonite Holeplug
2	CME 55 NO Core				2									•			JIR JIR JIR	•••••									Riser
3					3						••••			•• • • •	•		JIR JIR JIR Largeint JIR JIR JIR JIR JIR JIR JIR	e clay	filled								Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
5		END OF DRILLHOLE		4.1									····				— MB-										
6																											
8																											
9																											
DEI 1::		SCALE		1			Ć	7		G	olo	le:	r	s	111	111											I OGGED: MO IECKED: BG?

			Г: 10-1118-0020 PH 4000 N: N ;E	RI		ΓL	,								Л	-000	5 A						HEET 1 OF 2 ATUM: Geodetic
A	ΛPL	LEF	R HAMMER, 63.5 kg; DROP, 760 mm					I	INCLIN	IATIC	ON:	-90 de	grees	i			PENE	TRATI	ON TI	EST H	IAMME	ER, 63	5.5 kg; DROP, 760 r
	ДОН		SOIL PROFILE	1.	1	SA	MPL		DYNA RESIS	MIC I	PENE	TRATI	ON 5/0.3m))		HYDRA	ULIC C k, cm/s	ONDU	CTIVIT	Ύ,	T	NG	PIEZOMETE
	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	SHEA Cu, kł	20 IR ST Pa 20	40 REN0	GTH	60 nat V. rem V	80 + Q - ⊕ U - 80	` 0	10 WA Wp 16	ATER C			10 ⁻³ RCENT 		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATIC
5	_	<u>.</u>	GROUND SURFACE Boulders, clay and ORGANICS, moist to	222	0.0														_				
	Power Auger	n. (Hollow Stem Auger)	wet, brown		0.0		50 DO	50/															
1		200 mm Diam.	Moderately weathered, greenish grey, medium grained, crystalline rock		0.9		DO	0.2															
2									80		43	33						· · · · · ·					
3			Slightly weathered						100	5	20	20											
4									92					**• • • • • •	···								
5	CME 55	VQ Core							(%) 100	(%)	47	. (%)											Bentonite Holeplug Riser
6	CM	Ø					•••••	· · · ·	T.C.R.	S.C.R. (%)		R.Q.D.	-										
7									100	D	80	88											
в									98	-	87	87											
9			Quartz Intrusion, coarse grained						95		76	69											
0		_				 							-+-			-		 					
			CONTINUED NEXT PAGE																				

		IN: N ;E R HAMMER, 63.5 kg; DROP, 760 mm					INCLIN/	ATION	: -90	deg								t ham		UM: Geodetic kg; DROP, 760	
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT (m) (add (add) (ad	UMBER	AMPL J	BLOWS/0.3m	SHEAF Cu, kP	20 R STRE a	40	60) 8(at V. + m V. ⊕	Q - ● U - O	1 V W	AULIC k, cm 0 ⁻⁶ /ATER p	/s 10 ⁻⁵ CONT	10 ENT) ⁴ PERCI	10 ⁻³ I ENT I WI 64	LAB. TESTING	PIEZOMETE OR STANDPIP INSTALLATI	ΡĒ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CONTINUED FROM PREVIOUS PAGE Moderately weathered, greenish grey, medium grained, crystalline rock Slightly weathered, coarse grained, grey and white tonalite					2 95 100 97 103 (%) 27 103 103 103 103 103 103 103 103 103 103	9. 9. 9. 10 10 11 10	6 6 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7	66 69 98 95 100					32	4	8		Si 31	entonite Holeplug 6/1/2011 lica Sand 1.8 mm Diam. VC #10 Slot creen	
- 19 - 20		END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0005A.		9.1																	ĿĒ

LC	CA	TIC	T: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	RECORD OF DRILLHOLE: BRH-0005A DRILLING DATE: April 25, 2011 DRILL RIG: CME 55 Trackmount DRILLING CONTRACTOR:	<i>January 2018 - 1050203</i> SHEET 1 OF 2 DATUM: Geodetic
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	0 0 101 FLT - Fault FO - Foliation CU - Curved K - Slickensided Not 0 SHR - Shear CO - Contact UN - Undulating SM - Smooth abr 0 ELEV. 2 C - Conjugate CL - Cleavage IR - Irregular MB- Mechanical Break symbol 0 ELEV. 2 - Conjugate CL - Cleavage IR - Irregular MB- Mechanical Break symbol	Diametral INSTRUMENTATION
			TOP OF BEDROCK Moderately weathered, greenish grey,		
			Slightly weathered	1 Broken Core IRT Top of Rock? 1 JIR JUSM FOIR Broken Core JIR VIR JISM JISM JIR JIR JIR JIR JIR JIR JIR JIR JIR JIR	
	CME 55	NQ Core		3 3 4 4 5 5 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Riser Bentonite Holeplug
			Quartz Intrusion, coarse grained	6 JUSM 6 JIR JIR JIR JUSM JIR JUSM JIR JUSM JIR JUS JUS JUS J	
	EP1 : 50		SCALE	Golder	LOGGED: MO CHECKED: BG?

			ECT: 10-1118-0020 PH 4000	REC	ORI) OF									1-00	05	A						Ja	SH	ry 2018 - 16562 IEET 2 OF 2	263
			ion: N ;E Iation: -90° azimuth:					DRIL DRIL	l Ric	G: C CO	TE: A ME 5: NTRA	5 Tra CTO	ckm											UA	ATUM: Geodetic	
	DEPTH SCALE METRES		DESCRIPTION	SYMBOLIC LOG	тн 2	FLUSH <u>COLOUR</u>	VN - CJ -	Shear Vein Conju OVER	igate XY LID RE %	C	D- Bedi D- Folia D- Conth - Orth - Clea FRAC INDE METR	act ogonal vage T. X ES B A		CU- UN- ST - IR -	Planar Curved Undulatir Stepped Irregular CONTINU	ng	K - SI SM- Si Ro - Ri MB- M ATA	Jr Ja	ided cal B H COI	reak	NOTE abbrev of abb symbo ULIC TIVIT	: For a viations reviations ols. Diar Diar Poin In (N	ken R additior s refer ons & metrai tt Load ndex MPa) + co		NOTES WATER LEVEL: INSTRUMENTATI	
	11		CONTINUED FROM PREVIOUS PAGE Moderately weathered, greenish grey,																		$\left \right $	╂	+	$\left \right $		-
	- II - - - - - - -		medium grained, crystalline rock		8										ME ME	3										
	— 12 — 12 — 13				9							•			JIF		····.									
	- - - - - - - - - - - - - - - - - - -				10	~		<						••••			•••••••								Bentonite Holeplug	
	- - - - - - - - - - - - - - - - - - -	CME 55	A C O O		11				•		····	· · · · ·	•		ME	3										
	- 16 - 16 				12			••••	• • • .			• • •	•		JIS JP JS	R? MB? SM LSM TSM LSM									∑ 6/1/2011 Silica Sand 31.8 mm Diam.	
DATA INPUT:	- - - - - - - - - - - - - - - - - - -				13	~		¢	~<		-	•	•		JIF JIF JIF	2								1 1	PVC #10 Slot	
10-1118-0020 (4000).GPJ GAL-MISS.GDT 22/06/11	- 20		END OF DRILLHOLE		19.1										ME	3										
SUD-RCK 10-	DE 1 :		I SCALE	-			G	Ŋ	G	ol	der der	tes													DGGED: MO ECKED: BG?	

LOCATIC	T: 10-1118-0020 PH 4000 DN: N ;E	RECC	RD	OF	BORING	DATE: April	25, 2011	RH	I-0005B		DA	IEET 1 OF 1 TUM: Geodetic
SAMPLE	R HAMMER, 63.5 kg; DROP, 760 mm					FION: -90 de					R, 63.	5 kg; DROP, 760 mm
METRES BORING METHOD	SOIL PROFILE	(m) (m) (m) (m) (m)	~	PLOWS/0.3m		STRENGTH	ION \$/0.3m 60 80 nat V. + Q rem V. ⊕ U 60 80	`	HYDRAULIC CONDUCT k, cm/s 10 ⁻⁶ 10 ⁻⁵ 11 WATER CONTENT Wp IW 16 32 4	IVITY, 0 ⁴ 10 ³ PERCENT WI 8 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	GROUND SURFACE Clay and ORGANICS, brown, moist to wet	0.										
1 20 3 4 20 20 mm Diam. (Hollow Stem Auger)	Cobbles and CLAY											Riser Bentonite Holeplug 2 6/1/2011
7			•									Silica Sand
9	END OF BOREHOLE	8.	5									Screen
DEPTH S	SCALE				(Å	Gold					LC	OGGED: MO

	CT: 10-1118-0020 PH 4000 DN: N ;E	RE	CO	R	0				_ E: 23, 2011		H-00	006			3	SI	ny 2018 - 105020. HEET 1 OF 1 ATUM: Geodetic
Sample	ER HAMMER, 63.5 kg; DROP, 760 mm					INCLIN	ATION:	-90 de	egrees			PENE	TRATIO	NTEST	HAMME	ER, 63	.5 kg; DROP, 760 mm
g	SOIL PROFILE			SAM	PLES	DYNA	MIC PEN		ION S/0.3m	<u>}</u>	HYDR	AULIC C k, cm/s	ONDUCT	IVITY,	Т	0	
BORING METHOD	DESCRIPTION	Z DE	LEV. EPTH (m)	NUMBER	BLOWS/0.3m	SHEA Cu, kF	20 R STREI Pa	40 I NGTH	60 8 nat V. + rem V. ⊕		w w	0 ⁻⁶ 1 ATER C	0 ⁻⁵ 10 ONTENT <u>OW</u> 32 4		NT MI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	GROUND SURFACE																
Power Auger 200 mm Diam. (Hollow Stem Auger)	Firm moist brown clay and ORGANICS		0.0	1 D	+	-											Bentonite Holeplug
2			0.9	2 D	0 25	92	53	14									Riser
CME 55 NQ Core						100 T.C.R. (%)	S.C					· ···.		2			Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
4 5 7 7 8 8	1. For coring details see Record of Drillhole BRH-0006.																
	SCALE					Â			er ates							LC	DGGED: MO

	LOCA	ATIC	T: 10-1118-0020 PH 4000 N: N ;E	R	RECC	DR	DO	F	D	RILL		G D	ATE	: A	April	23	, 20	11		-000	6							Ja	S	SHE	72018 - 10 ET 1 OF 1 WM: Geode	
DEPTH SCALE		DRILLING RECORD	rion: -90° Azimuth: description	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	S⊢ CJ R TO COF	D - Jo T - Fa IR- SI I - V - C ECO TAL	RILL oint ault hear ein onjug		G C	DNT FO- CO- OR- CL- D.	TRA Bedo Folia Cont	ding ation tact ogon vage	OR Ial		PL - I CU- (JN- I ST - 1 R - I	Plar Cur Und Step Irreg	nar ved Julating pped gular NTINUITY I NTINUITY I DESCRIP	URFACE	Slicke Smoo Rougi Mech	ensid ith	al Bri HY CON	eak DRA IDUC k, cn	NOTE abbre of abl symb	E: For viatio previa ols. Di: TYPo (additi ns refe tions a	ad RMI -Q	t	NOTE WATER LI INSTRUMEN	EVELS
	1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NQ Core	TOP OF BEDROCK Slightly weathered pink coarse grained crystalline rock		0.9	2														JIR JIR JIR JIR Broken JIR JIR JIR JIR Broken JIR Broken JIR JIR JIR JIR JIR JIR JIR JIR JIR JIR	Core Core Core	· · ·								Bi Si 31 P	iser entonite Holeplu 6/1/20 llica Sand 1.8 mm Diam. VC #10 Slot creen	
MISS.GDT 22/06/11 DATA INPUT:	4 5 6 7 8 9 10		END OF DRILLHOLE		3.6															JIR												
Ľ,	DEP1 1 : 50		SCALE					C	Ĩ		G	io 50	ld oci	er	te	5															GGED: MO CKED: BG?	

			: 10-1118-0020 PH 4000	R	ECO	RD) (I-0007A					HEET 1 OF 2
			N: N ;E R HAMMER, 63.5 kg; DROP, 760 mm									22, 2011		DENI	TDATIC				ATUM: Geodetic
SAP			R HAMMER, 63.5 Kg; DROP, 760 mm			_			VCLINAT	IION:	-90 de	grees		PENE		JN TEST	HAIVIIVIE	=R, 03	.5 kg; DROP, 760 mm
	DOH		SOIL PROFILE	_	1	SAN	MPLE	s	DYNAMI RESISTA	C PENE ANCE, I	ETRATI BLOWS	ON /0.3m	ì	HYDRAULIC (k, cm/		TIVITY,	Т	4G	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 SHEAR Cu, kPa 20		GTH I	⊥ nat V. + rem V. ⊕	Q - • U - O	WATER (0 ⁻³ ⊥ INT WI 64	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			GROUND SURFACE						Ī										
	Power Auger	llow Stem Auger)	Cobbles and clay (FILL)		0.0														
1		200 mm Diam. (Hpllow Stem Auger)	Slightly weathered grey medium graines crystalline rock, lots of healed joints		0.7	-			98	50	30	_							
3			QUARTZ, coarse grained, pink		3.0	-			100	85	64								
4			Quartz coars grained pink from 3.8 m to 4.0 m depth.									····.	·····						
			Brown, highly weathered from 4.3 m to 4.4 m depth. Coarse to medium grained, grey crystalline rock, healed joints/										11111						
5	CME 55	NQ Core	Pink quartz with occasional grey bands from 4.9 m to 7.5 m depth.							82 (%) 	87 (%) 								Bentonite Holeplug
6						· · · · · .			100	80	90								∑ 6/1/2011
8			Green and pink quartz.						100	92	90								
9			Highly weathered zone, brown Coarse grained, greenish grey, crystalline rock. Quartz, green and pink from 8.8 m to 8.9 m depth. Coarse grained, greenish grey crystalline rock from 8.9 m to 9.6 m depth.						97	78	69	-							
			Green quartz from 9.6 m from 10.1 m depth.																
10	_ L	-	— — — — — — — — — — — — — — — — — — —		$\uparrow^{}$	F†			+			†	<u> </u>		†	-	+		

SAN	/IPL	LEF	R HAMMER, 63.5 kg; DROP, 760 mm						INCLIN		DN:	-90 de	grees			PENE	TRATI	ON TES	ST HAI	MMER, 6	3.5 kg; DROP,	760 r
	ДОН		SOIL PROFILE	1.	1	SA	MPL		DYNA RESIS	MIC F	PENE CE, E	TRATI	ON 5/0.3m	~.	HYDR	AULIC C k, cm/s	ONDUC	TIVITY	,	T	PIEZON	ЛЕТЕ
IVIE I NEO	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEA Cu, kF	20 AR ST Pa 20	40 REN0 40	GTH	60 I nat V rem V. 6 60	80 ⊢ Q - ● ● U - O 80	w w				10 ⁻³ CENT - WI 64			OPIPE
10	_		CONTINUED FROM PREVIOUS PAGE																			
11			QUARTZ, coarse grained, pink Alternating greenish grey and pink green quartz from 10.1 m to 12.0 m depth.						97		87	77	-									
12			Greenish grey from 12.0 m to 12.4 m depth.														···.	·				
			Quartz from 12.4 m to 13.0 m depth.						98	5	98	98					· · ·					
13			Greenish grey with quartz feldspar bands.																		Riser Bentonite Holep	lug
14	CME 55	NQ Core	Pink qyartz from 14.2 m to 14.4 m depth. Grey coarse grained crystalline rock from 14.4 m to 14.5 m depth. Pink quartz Brown weathering from 14.6 m to 15.4 m depth.						100 T.C.R. (%)	S.C.R. (%)	82	R.Q.D (%)										
16			Quartz and feldspar from 15.4 m to 17.8 m depth				••••		98	· ·	75	58										
17						····.	· · · ·		98	5	84	67									Silica Sand	
			Grey with pink viens from 17.8 m to 18.4						89)	78	78									31.8 mm Diam. PVC #10 Slot Screen	
18			m depth.						100	D	100	10	þ									
F			END OF BOREHOLE		18.4				1			1										
19			Note: 1. For coring details see Record of Drillhole BRH-0007A.																			
20																						

LO	CATIC	:T: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	RECC	ORD	OF		DRIL DRIL	LINC	G DA		Apri 55 Tr	l 22, ackr	2011		007A	1					Jar		y 2018 - 1050203 - EET 1 OF 2 TUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	ELEV. DEPTH (m)		-USH COLO	SHR VN CJ	% COF	r ugate RY DLID RE %	C	METE	ntact nogor avage CT. EX RES	nal	CU UN ST IR	.r.t. E TYF	d K ating SM ed Ro		enside oth Ih	HYDF CONDU	NOTE abbre of abb	Dian TYPoint	dditiona refer to ons & netral	a	NOTES WATER LEVELS INSTRUMENTATION
-		TOP OF BEDROCK Slightly weathered grey medium graines	0.	7								•		╢	Broken Core	_				╫		\vdash	
		crystalline rock, lots of healed joints		2								•			JCR Healed Joint Broken Core Healed Joint Healed Joint Healed Joint Broken Core JIR JIR JIR JIR JIR JIR JIR JIR JIR JIR								
		QUARTZ, coarse grained, pink Quartz coars grained pink from 3.8 m to 4.0 m depth.	3.	3						-		•			JIR MB JIR JIR JSTR MB JIR MB Broken Core								
	e S	Brown, highly weathered from 4.3 m to 4.4 m depth. Coarse to medium grained, grey crystalline rock, healed joints/ Pink quartz with occasional grey bands from 4.9 m to 7.5 m depth.		4				•••			•••••	•			MB JIR JIR JUSM JIR								
- - 6 - 7	CME 55 NQ Core			5				••••				•			MB JISM JSTR JUR							E	3entonite Holeplug ∑ 6/1/2011
		Green and pink quartz.		6								•			JIR JIR JIR								
		Highly weathered zone, brown Coarse grained, greenish grey, crystalline rock. Quartz, green and pink from 8.8 m to 8.9 m depth. Coarse grained, greenish grey crystalline rock from 8.9 m to 9.6 m depth.										•			Broken Core MB JIR JIR JIR								
		Green quartz from 9.6 m from 10.1 m depth.		7								•			JIR JIR JIR JIR JIR JIR JIR JIR								
		Alternating greenish grey and pink green quartz from 10.1 m to 12.0 m depth.	Ø	8						₽ ┥ ┥ ↓					MB								
		CONTINUED NEXT PAGE																					
DE		SCALE			(Ĵ	Ś	G	iol	de cia	r te:	6											GGED: MO CKED: BG?

	LC	CATI	CT: 10-1118-0020 PH 4000 DN: N ;E .TION: -90° AZIMUTH:	R	ECO	RD) Of		D D	rill Rill	LING	G DA	DLI ATE: CME	Ар 55 ⁻	oril 22 Trac	2, 2(kmc	011		000	7 A							ja		a ry 2018 – 1 HEET 2 OF 2 ATUM: Geode		-
	DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	S⊢ VCJ R CŎ	I - Jo T - Fi HR- Si N - Vo I - C RECO TAL RE %	oint ault hear ein onjug	jate <u> /</u> ID 10 10 10	E F ()	3D - B =0 - Fr CO - C OR - O CL - C D. FR INI ME [*]	eddin oliatic ontac rthog	ig on ct onal	gle	ST - IR -	Cun Und Step Irreg CON	ved ulating oped	K SM Ro MB	- Smo - Rou - Mec	kensid	al Br HY CON	1	NOTE: abbrev of abbr symbo ULIC TIVIT /s	: For a viation reviati ls. Dia YPoir Ir (N	ken F additio s refer ions & metra nt Loa ndex VIPa)	nal	NOT WATER I INSTRUME	EVELS	
	-	\vdash	CONTINUED FROM PREVIOUS PAGE	~//		\square		$\parallel \mid$						\parallel	Щ								\parallel			Ħ	\parallel				
GDT 22/06/11 DATA INPUT:	- 19 -	CMIE 55 CONTENT OF CONTENT.	QUARTZ, coarse grained, pink Greenish grey from 12.0 m to 12.4 m depth. Quartz from 12.4 m to 13.0 m depth. Greenish grey with quartz feldspar bands. Pink qyartz from 14.2 m to 14.4 m depth.			8 9 10 11 11 12 13 14																							Riser Bentonite Holep Silica Sand 31.8 mm Diam. PVC #10 Slot Screen		
10-1118-0020 (4000).GPJ GAL-MISS.GDT	- 20 - -																														
SUD-RCK 1	DE	PTH 50	SCALE					6	Ĩ		G	io] 50	lde cia	er ate	es														ogged: Mo Iecked: Bg?		

PF	ROJEC	CT: 10-1118-0020 PH 4000	R	ECO	R	5 0	DF	во	RE	HOL	E:	BRH	1-000)7B			J		ny 2018 - 1656263 - HEET 1 OF 1
LOCATION: N ;E				BORING DATE: April 23, 2011													DATUM: Geodetic		
SA	SAMPLER HAMMER, 63.5 kg; DROP, 760 mm INCLINATION: -90 degrees PENETRATION TEST HAMMER,											ER, 63	.5 kg; DROP, 760 mm						
	9	SOIL PROFILE			SA	MPL	ES	DYNA		NETRAT	ION	<u>``</u>	HYDR		ONDUCT	TIVITY,	Т		
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	2 SHEAI Cu, kP	20 R STRE a	40 I NGTH	60	80 + Q - ● ₱ U - O 80	w wr		D ⁻⁵ 1 ONTENT		0 ⁻³ ⊥ NT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
— o		GROUND SURFACE FOR STRATIGRAPHY DETAILS SEE		0.0															
	Power Auger 200 mm Diam. (Hollow Stem Auger)	RECORD OF BOREHOLE BRH-0007.																	Bentonite Holeplug Riser
SUD-BOREHOLE 10-1118-0020 (4000).6PJ GLDR_CAN GDT 22/06/11 DATA INPUT: 0 0 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		END OF BOREHOLE		6:8															
DE DE	DEPTH SCALE LOGGED: MO 1:50 CHECKED: BG?																		

£ + L 3 HRCP A ittod

			Г: 10-1118-0020 PH 4000 N: N ;E	R	ECO	RD	0 0						E: 29, 2		RH	1-000	08A						HEET 1 OF 3 ATUM: Geodetic
SA	MP	PLEF	R HAMMER, 63.5 kg; DROP, 760 mm					I	NCLI	NATIC	DN:	-90 de	egrees				PENE	TRAT	ION	TES	t ham	MER, 63	3.5 kg; DROP, 760 m
METRES	BORING METHOD	פ אבו בסח	SOIL PROFILE	A PLOT	ELEV.		MPL		RESI	AMIC I ISTAN 20 AR ST	ICE, E 40)	S/0.3m 60	80	, , •	1	AULIC C k, cm/s 0 ⁻⁶	s 10 ⁻⁵	10 ⁻⁴	ډ ،	- 10 ⁻³ -	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
- W	RORIN		DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	түре	BLOWS/0.3m	Cu, k		40		rem V	+ Q ⊕ U 80	0	w	p		W 48		WI 64	ADD LAB.	INSTALLATION
0	Power Auger	Stem Auger)	GROUND SURFACE Wet, silty clay ORGANICS		0.0																		6/1/2011
1		200 mm Diam. (Hollow St	Highly weathered, coarse grained, pink and grey crystalline rock		0.5			-	3:	3	13	0											
2		-	TONALITE, grey, coarse grained crystalline rock, slitly weathered.		2.6				10	00	70	6	3		····				•				
3			crystalline rock, slitly weathered.						98	8	73	68	3										
5			Coarse grained, grey crystaline rock																				Bentonite Holeplug
	CME 55	NQ Core					•		T.C.R. (%)		83	R.O.D. (%)	3										
7						•••••			10	0	88	8	3										
8			Coarse grained, grey rock						98	8	97	9!	5										
9			Pink feldspar and quartz vein Tonalite, pink grey black, coarse grained								0.2	-											
			Coarse grained, grey crystalline rock with quartz and tonalite intrusions						10	U	93	7											
10	I				1	$\left\lceil 1 \right\rceil$				†-	· — -		†-				<u> </u>	†-	_ -		†	_	

		N: N ;E										9, 2011				TDAT				ATUM: Geodetic
		R HAMMER, 63.5 kg; DROP, 760 mm											<u></u>	10/25					ı⊨R, 63 T	8.5 kg; DROP, 760
NETRES BORING METHOD		SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	MPL JAL	BLOWS/0.3m) STRE	40 I NGTH	60 I na re) 80 at V. + m V. ⊕	Q - ● U - O	1 W	ATER C	0 ⁻⁵ ONTEN 	10 ⁻⁴ T PERC		ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI INSTALLATIO
+	-	CONTINUED FROM PREVIOUS PAGE					_	20) .	40	60) 80)	1	6	32	48	64		
10 11 11 12 12 13 13 14 93 BWO 15 16 17 18 18	NG Core	TONALITE, grey, coarse grained crystalline rock, slitly weathered.						100 100 100 (%) 201 100 100 100 100 100 97	93 85 98 98 98 98 98 98 98 98 98 98 98 98 98	RaD.(%)	·									Riser Bentonite Holeplug
19		END OF BOREHOLE		19.5				100	64		61									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
		END OF BOREHOLE		19.5																
20			-	+	╞┥	$\left - \right $	_				-+	· — —		+	·	+	-	+	-	

LC	CATI	CT: 10-1118-0020 PH 4000 DN: N ;E	ECORD OF BOREHOLE: BORING DATE: April 29, 2011	BRH-0008A	<i>January 2018 - 1630263</i> SHEET 3 OF 3 DATUM: Geodetic
S/	AMPLE	ER HAMMER, 63.5 kg; DROP, 760 mm	INCLINATION: -90 degrees	PENETRATION TEST HAMM	1ER, 63.5 kg; DROP, 760 mm
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m LELEV. DEPTH (m) CALL DEPTH (m) CALL DEPTH	Q - WATER CONTENT PERCENT	PIEZOMETER OR USE EIGE GP INSTALLATION
DEP	BORIN		$ \begin{array}{c c} DEPTH \\ (m) \end{array} \xrightarrow{P} \begin{array}{c} L \\ \hline \\ \end{array} \xrightarrow{P} \begin{array}{c} B \\ \hline \\ \\ \hline \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} Cu, kPa \\ \hline \\ \\ \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} Cu, kPa \\ \hline \\ \\ \\ \\ \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} rem V. \oplus \\ \\ \\ \\ \\ \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} Cu, kPa \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} Cu, kPa \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \xrightarrow{P} \begin{array}{c} Cu, kPa \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	wp wi	
- 20		CONTINUED FROM PREVIOUS PAGE		0 16 32 48 64	
-		1. For coring details see Record of Drillhole BRH-0008A.			
Ē					
Ē					
- 21					-
F					
-					
-					
- 22 -					-
-					
-					
- - - 23					-
E					
Ē					
F					
- 24					-
-					
-					
-					
- 25 - -	'				
-					
-					
- 26					-
-					
Ë					
- 27					-
1 1					
ZAN - 28					-
GLDR					
).GPJ					
14000					
0700-29					-
10-111					
OKE)					
Ŭ - - 0] − 30					
DI OKEH	EPTH	SCALE			LOGGED: MO
Ë,	: 50		Golder		CHECKED: BG?

LO	CATIO	:Т: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	RECORD	DRILLING DRILL RI	HOLE: BRH G DATE: April 29, 2011 G: CME 55 Trackmount G CONTRACTOR:		January 2018 - 1050203 SHEET 1 OF 2 DATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG EFEAN No. RUN No.	CORE % CORE %	FO- Foliation CU- CO- Contact UN- OR- Orthogonal ST - CL - Cleavage IR -	Curved K - Slickensided NOTE: For Stepped Ro. Rough at abreviation Irregular MB- Mechanical Break symbols. SCONTINUITY DATA HYDRAULIC Dir CONDUCTIVITYPo TH PAND SUFFACE July Jajun 9, 9, 7, 7, 9, 100	ns refer to list
-		TOP OF BEDROCK	0.5				
		Highly weathered, coarse grained, pink and grey crystalline rock TONALITE, grey, coarse grained crystalline rock, slitty weathered.	0.5 1 2.6 3			JIR JIR JIR JIR JIR JIR JIR JIR JIR JIR	
	CME 55 NQ Core	Coarse grained, grey crystaline rock	4 5 5			JIR JUR JISM JIR JIR JUSM JIR JUR JIR	Bentonite Holeplug
9 - 9 - 10 - 10		Pink feldspar and quartz vein Tonalite, pink grey black, coarse grained Coarse grained, grey crystalline rock with quartz and tonalite intrusions	7			JPLSM JISM JPLSM JUSM JIR JISM	Riser
DE 1:		I			older sociates		LOGGED: MO CHECKED: BG?

LC	CATIC	:Т: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	RECORD OF DRILLHOLE: BRH-0008A DRILLING DATE: April 29, 2011 DRILL RIG: CME 55 Trackmount	<i>Santrary 2018 - 1030203</i> SHEET 2 OF 2 DATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	O D D FLT - Fault FO - Foliation CU - Curved K - Slickensided NOTE: 1 O O O O CO- Contact UN - Undulating SM - Smooth abbrevia	Broken Rock For additional tions refer to list wations & Diametral Dimetral Point LoagRay (MPa) NG V T P 0
- - - - - - - - - - - - - - - - - - -		CONTINUED FROM PREVIOUS PAGE TONALITE, grey, coarse grained crystalline rock, slitly weathered.	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- - - - - - - - - - - - - - - - - - -		Green, coarse grained crystalline rock with quartz intrusions	9 10	Bentonite Holeplug
- - - - - - - - - - - - - - - - - - -	CME 55 NQ Core		JIR JIR JUSM 11. JPLSM 11. JPLR JIR	
- - - - - - - - - - - - - - - - - - -		Coarse grained, grey crystalline rock	HIR HIR HIR HIR HIR HIR HIR HIR HIR HIR	
		END OF DRILLHOLE	13 13 13 13 13 13 13 13 13 13	Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
- DE		SCALE	Golder	LOGGED: MO CHECKED: BG?

DD		T: 10-1118-0020 PH 4000	R	FCO	R)F	BO					I-0008B				anua	<i>HEA DOCUMENTATION 19 2018 - 1656263 1EET 1 OF 1</i>
		DN: N ;E		200				BORING										ATUM: Geodetic
		R HAMMER, 63.5 kg; DROP, 760 mm						INCLINA					PENI	ETRATIO	N TEST	HAMME		.5 kg; DROP, 760 mm
	1	······																
Ш	ПОН	SOIL PROFILE			SA	MPLI		DYNAN RESIST	IIC PEN FANCE,	ETRAT BLOWS	ION 5/0.3m	Ì.	HYDRAULIC (k, cm/	CONDUCT s	IVITY,	T	Rg⊾	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	Cu, kPa	R STREN	IGTH	nat V. – rem V. 6	80 + Q - ● ● U - O	WATER (I V		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	0,					20	0 4	0	60	80	16	32 4	8 6	4		
- 0 		FOR STRATIGRAPHY DETAILS SEE RECORD OF BOREHOLE BRH-0008A.		0.0														∑ 6/1/2011 -
- - - - - - - - - - - - - - - - - - -	Power Auger 200 mm Diam. (Hollow Stem Auger)																	Bentonite Holeplug Riser
		END OF BOREHOLE		5.7					· · · · · · · · · · · · · · · · · · ·									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
																		-
	EPTH S	SCALE					(Î	G	old	er ates							DGGED: MO ECKED: BG?

	CT: 10-1118-0020 PH 4000	RECORD OF BOREHOL	E: BRH-0009	SHEET 1 OF 1 DATUM: Geodetic
	ER HAMMER, 63.5 kg; DROP, 760 mm	INCLINATION: -90 degi		
8	SOIL PROFILE	SAMPLES DYNAMIC PENETRATIO RESISTANCE, BLOWS/C	N Y HYDRAULIC CONDUCTIVITY, .3m K, cm/s	()
BORING METHOD	DESCRIPTION	ELEV.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PIEZOMETER OR STANDPIPE INSTALLATION
0	GROUND SURFACE Loose, wet, brown clay and ORGANICS	E 0.0		
	some cobbles	1 50 9		
7 Power Auger mm Diam. (Hollow Stem Auger)	Boulders?			⊊ 6/1/2011
200 mm Diam.	Broken core?	2.7		Bentonite Holeplug Riser
4		T C.R. (%) S.C.R. (%) S.C.R. (%) S.C.R. (%)		
5	Grey, coarse grained, slightly weathered porous metamorphozed Pink, coarse grained, crystalline rock QUARTZ and feldspar, metamorphozed	4.6 35 28 17 5.2 5.2 17 17		
9 CME 55 NO Core				
7	-	100 80 72		Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
		100 88 71		
8	END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0009.	7.6		
10				
DEPTH	SCALE	Golder		LOGGED: MO CHECKED: BG?

Submitted as part of the Ver	sion 3 HRGP Amended	EIS/EA Documentation
------------------------------	---------------------	----------------------

				T: 10-1118-0020 PH 4000 N: N ;E	R	ECC	DR	DC)F	DF	RILLI	NG I	DATI	E: A	pril 2	23, 2	201	1	1-000)9						Ĵ	S	a ry 2018 - 1030 SHEET 1 OF 1 DATUM: Geodetic	0203
	INC			FION: -90° AZIMUTH:						DF	RILLI		CON	IE 55 TRA	сто														
	METRES		עוררואפ אברסאח	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR	231 <u>2</u> 2549	RE %	iear bin onjuga /ERY SOLID CORE S	R.0	CO- OR- CL-	- Bedd - Foliat - Conta - Ortho - Cleav - RACT INDE>	act ogona vage T. X S B A	ungle	UN ST IR DIP CO AX	I-Ur - St - Im ISCC W.r.t. RE US	anar urved ndulating epped egular DNTINUITY TYPE AND S DESCRII	SM-	Slicke Smool Rough Mecha	nside h inical	Brea HYDI ONDI k,	NC abl of a ik syr RAUL UCTIV cm/s	DTE: F breviat abbrev nbols.	or addit ions rel riations	fer to list	WATERIEVE	
-		č	5	TOP OF BEDROCK					89	348	884%	89	348	3330	8	239	080 		DESCIVI	non	+		10 ⁶	201	₽ 	0.4			
-	5			Grey, coarse grained, slightly weathered, porous metamorphozed		4.6	4								•				JIR JIR Broker									Bentonite Holeplug	-
-				Pink, coarse grained, crystalline rock QUARTZ and feldspar, metamorphozed		5.2									 				Broker JIR JIR JIR JIR JIR	Core									
-	6	CME 55	NQ Core												•				JIR JIR										
-	-						5								8 8 9				JIR JIR JIR Broker JIR	Core								Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
-	7						6								•	:	·		JIR JIR JIR Broker JIR JIR	Core									
	8			END OF DRILLHOLE		7.6						•••.	••••••																-
	9								•																				-
	10					:				 	••••	•																	-
	11					·····.		•																					-
	12				· · · ·																								-
22/06/11 DATA INPUT:	10																												
GAL-MISS.GDI 22/(13																												_
118-0020 (4000).GPJ GA	14																												-
SUD-RCK 10-1		РТ 50	нs	CALE	I	1	1		C	Ż	Å	Ge	old oc	ler iat	tes	, I I		11				11			<u> </u>			LOGGED: MO HECKED: BG?	

		T: 10-1118-0020 PH 4000 N: N ;E	R	ECC	DR	D	ΟF	I	DRI	LLIN	IG I	DAT	E: A	April	1 20,	, 20	11		-001	0							Ja	SI	ny 2018 - 1036. HEET 1 OF 1 ATUM: Geodetic	203
DEPTH SCALE METRES	 DRILLING RECORD AI	fion: -90° Azimuth: description	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.		USH RETU	JN - FLT - SHR- /N - CJ - REC TOTAL	DRI Join Faul Shea Vein Conj	LLIN t ar jugate RY OLID RE %	R.(BD FO CO OR CL	- Bedd - Folia - Cont - Clea FRAC INDE METRI	ding tion act ogon vage T.			PL - I CU- 0 JN- I ST - 1 R - I DISC P w.r. CORE	Plana Curve Undu Stepj Irregi CONT	ed Jating		Slicke Smoo Rougi Mech	nside th า	I Bre HYI CON	ak	NOTE: abbrev of abbi symbo JLIC TIVIT /s	: For a iation: reviati ls.	ken F additio s refer ions & metra nt Loa ndex VIPa)	nal to list	NOTES WATER LEVEL INSTRUMENTATI	
0 1		TOP OF BEDROCK Moderately weathered, medium grained, greenish grey crystalline rock		0.0	1				20	2460	80	206	15	•	• •				Broken JIR JIR JIR JIR Broken JIR Broken JIR	Core Core Core			10				4 0		Bentonite Holeplug Riser	
- - - - - - - - - - - - - -	NQ Core				2														- Void > Broken JIR Broken - JIR - JIR - JIR - JIR NBroken - FSTSM	Core									Screen Silica Sand	
- 3 - 4 - 5 - 7 - 7 - 7 - 8 - 9 - 10		END OF DRILLHOLE		2.7																										
DE		SCALE						Ĵ			G		ler iat	ill te:	 S														DGGED: MO ECKED: BG?	

		T: 10-1118-0020 PH 4000 DN: N ;E	REC	OR	D						E: 21, 2011	BR	H-001 [,]	1					HEET 1 OF 1 ATUM: Geodetic
		יאי: וא ;ב R HAMMER, 63.5 kg; DROP, 760 mm					INCLIN						PF	NFT	RATIO	N TEST			.5 kg; DROP, 760 m
<i>,</i>																			
	BORING METHOD	SOIL PROFILE	STRATA PLOT (W) (W) (W)	IBER	MPL 3d/L	BLOWS/0.3m	SHEA Cu, kł	MIC PI STANC 20 R STR Pa 20	40	E TH r r	ON 10.3m 0 80 at V. + em V. ⊕ 0 80	Q - ● U - O	10 ⁻⁶	cm/s 10	^{r5} 10 NTENT ⊖ ^W) ⁻⁴ 1 PERCE	10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE										<i>.</i>							
O Power Auger	Diam. (Hollow Stem Auger)	Wet SAND, some clay, some organics, trace boulder		0	50 DO	-													
1		GRAVEL and COBBLES	0.		DO	-													
2	200 mm	Slightly weathered, coarse crystalline rock (Tonalite)	1.	1			100		63 97	38 91									Bentonite Holeplug Riser
2 CME 55 8	NQ Core	Slightly weathered, medium grained crystalline rock, grey					T.C.R. (%)	S.C.R. (%)	63 	57									
5		Pink QUARTZ, coarse grained	4.				10)	93	84									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
6 7 8		Note: 1. For coring details see Record of Drillhole BRH-0011.																	
0 DEPT	ΉS	CALE					Â			14-	r ites							LC	DGGED: MO

Submitted as part of the Versi	n 3 HRGP Amended	EIS/EA Documentation
--------------------------------	------------------	----------------------

PROJEC	T: 10-1118-0020 PH 4000	RECORD		HOLE: BRH-00)11	<i>rary 2018 - 1050203</i> SHEET 1 OF 1 DATUM: Geodetic
	FION: -90° AZIMUTH:		DRILL RIG	: CME 55 Trackmount CONTRACTOR:		
DEPTH SCALE METRES DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG SYMBOLIC LOG RUN No.	S CORE % CORE %	BD - Bedding PL - Planar FO - Foliation CU - Curved CO - Contact UN - Unduating OR - Orthogonal ST - Stepped CL - Cleavage IR - Irregular , DL FRACT. DISCONTINUI INDEX BANG CORE INTERS BANG CORE UN 10 CORE TYPE AN DESC OR STRATT	Ro - Rough of abbreviations & MB- Mechanical Break symbols.	st NOTES WATER LEVELS INSTRUMENTATION
	TOP OF BEDROCK Slightly weathered, coarse crystalline rock (Tonalite)	1.1 1 2		● JIR ● JIR ● JIR ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0 ↓ 0	ken Core	Bentonite Holeplug Riser
- L	Slightly weathered, medium grained crystalline rock, grey	3		jr J.R J.R J.S.R.R.S.R J.S.R.R.S.R J.S.R.R.S.R J.S.R.R.S.R J.S.R.R J.S.R.R J.S.R.R J.S.R.R J.S.R		
	Pink QUARTZ, coarse grained	4.5 4				Silica Sand
						-
						-
DEPTH S	CALE		G ASS	older		LOGGED: MO :HECKED: BG?

		T: 10-1118-0020 PH 4000	F	RECO	DR	D							H-0012					HEET 1 OF 1
		DN: N ;E						BORING				1				=		ATUM: Geodetic
SAN	1PLE	R HAMMER, 63.5 kg; DROP, 760 mm						INCLINA	ATION:	-90 de	grees		PENE	TRATION	I TEST H	IAMME	R, 63	.5 kg; DROP, 760 m
	ДQ	SOIL PROFILE			SAI	MPL	ES	DYNAM RESIST	/IC PEN TANCE,	ETRATI BLOWS	ON 5/0.3m	Ì	HYDRAULIC C k, cm/		VITY,	T	L G	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR Cu, kPa 20	R STREN a	IGTH	⊥ nat V. + rem V. €	30 Q - ● U - ○ 30	WATER C	10 ⁻⁵ 10 CONTENT I OW 32 48			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE		0.0														
1	ger)	Compact, wet, brown SAND, some gravel, trace silt		0.0		50 DO	12											Bentonite Holeplug
	uger ow Stem Au																	Silica Sand
2	Power Auger 200 mm Diam. (Hollow Stem Auger)				2	50 DO	50							•				31.8 mm Diam, PVC #10 Stel1/2011 Screen
3	5	Gravel, Boulders, Cobbles and Sand		2.5	3	50 DO	71								2			 Bentonite Holeplug
4	0 0	Slightly weathered, coarse grained, greenish grey with pink and white sheared VOLCANICS		3.4				100	100	10). 							
5	CME 55 NQ Core	Slightly weathered, white and pink with grey sheared VOLCANICS, metal pockets		5.0	-			Т.С.R. (%) 100		R.O.D. (%)								Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
-		END OF BOREHOLE		5.7		•	· · ·			· · · ·	-							
6		Note:		5.7														
		1. For coring details see Record of Drillhole BRH-0012.				····.		•										
7				·.	·	· ·												
8																		
9																		
10																		
L DEF	PTH S	I		1	1			Ĵ	G	olda	er	<u> </u>	1		I	1	LC	DGGED: MO

	PI	ROJE	CT: 10-1118-0020 PH 4000	F	RECO	DRI	0 0	F١	DF	SIL	L	Н	ЭL	E		В	R	H	-001	12							0			y 2018 - 1050 EET 1 OF 1	0203	
			ON: N ;E ATION: -90° AZIMUTH:						DF	RILL	RIG	6: C	TE: ME	55 T	Fracl	kmo													DA	TUM: Geodetic		
	DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	SH COLOUR	SH VN CJ R	- Jo T - Fa IR- Sh I - Ve - Co ECO\	int iult iear ein onjug	ate	B F C	INL	dding liatio ntac thogo eavag	g n t	D	ST - : IR - I	Curv Und Step Irreg CON	ved ulating oped gular ITINUITY	K SM Ro MB DAT/	`	konci	ded cal B H COI	YDR/ NDU k, ci	NOT abbro of ab symb AULIC CTIVI m/s	E: Fo eviatio brevia cols.	roken r addit ons ref ations iamet bint Lo Index (MPa	ional er to li &	ist	NOTES WATER LEVE INSTRUMENTA		_
		DRI	TOP OF BEDROCK Slightly weathered, coarse grained, greenish grey with pink and white sheared VOLCANICS	s)	3.4		FLUSH	COF 2020		CORE 889		0.64 0.0	MET				AXIS	: I '	PPE AND S DESCRIF	PTION		r Ja .	10-9 10-9	10	104	2	(MPa		/G.			
	— 4 - - - - - - - - 5	CME 55	Slightly weathered, white and pink with		5.0	2									•			1/ 1/	BIR JIR JIR JIR JIR JIR JIR JIR											Silica Sand 31.8 mm Diam. ₽VC #10 Slot Screen		
	-		grey sheared VOLCANICS, metal pockets		5.0														<u> </u>													
10-118-0020 (4000).GPJ GAL-MISS.GDT 22/06/11 DATA INPUT:	- 6 - 7 - 7 - 10 - 11 - 11		END OF DRILLHOLE		5.7																											
SUD-RCK		EPTH : 50	SCALE					G	Ď	Å	G	ol 300	de cia	r ute	<u>es</u>															GGED: MO ECKED: BG?		

OCAT	'ION:		F	RECO	DRI) (BORIN							H-00							Sł D/	ry 2018 - 10502 HEET 1 OF 1 ATUM: Geodetic	
Sampl	ER F	IAMMER, 63.5 kg; DROP, 760 mm					I	NCLIN	ATIC	ON:	-90 (legre	ees								AMME	R, 63	.5 kg; DROP, 760 mr	n
BORING METHOD		SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	- 1	.3m	SHEA Cu, kF	20	4	0 GTH	60	8 t V. + n V. ⊕		1 V W	AULIC k, cm	1/s 10 ⁻¹	⁵ 1 NTEN O ^W	0 ⁻⁴	10 ⁻³	I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
0	-			0.0																				
Power Auger	0 mm Diam. (Hollow Stem Aug	ense, wet, brown SAND, little gravel lightly weathered, medium, crystalline ock, pink, feldspar, quartz, pyrite cubes		1.3	1	50 20	37	82		82		32											∑ 6/1/2011 Bentonite Holeplug	
5 CME 55	NO COLE NO COLE NO COLE	lightly weathered, medium, crystalline sck, grey / pink, feldspar, quartz		3.0				T.C.R. (%)	S.C.R. (%)		R.Q.D. (%)					··· ··.	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·					Riser Silica Sand 31.8 mm Diam. PVC #10 Slot	
4	N	ND OF BOREHOLE lote: . For coring details see Record of rillhole BRH-0013.		4.3					· · · · · · · · · · · · · · · · · · ·	98		00		· · · · · · · · · · · · · · · · · · ·		· · ·							Screen	
6					••••••					·····														
8																								
9																								
DEPTH	I SCA	ιE		<u> </u>				Ĵ		G	old	ler	tes						<u> </u>				DGGED: MO ECKED: BG?	_

	LO	CATIO	T: 10-1118-0020 PH 4000 DN: N ;E	R	RECO	DRI	DO	FI	DF		NG E	DATE	E: A	April 2	20, 2	2011	I	I-00 ⁻	13					Je	S	#<i>y</i> 2018 - 1636 HEET 1 OF 1 ATUM: Geodetic	203
DEPTH SCALE	METRES	DRILLING RECORD	TION: -90° AZIMUTH: DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR	SHI VN CJ RE	DF - Joi - Fa R- Sh - Ve - Co ECOV	RILLI nt ult ear in njugat		BD- FO- CO- OR- CL-	Bedo Folia	ACTC ding tition act ogona vage T. X ES B A	IR:	PL CU UN ST	- Pla - Cu - Un - Ste - Irre SCO v.r.t. RE	anar rved dulating pped egular NTINUITY TYPE AND DESCR	K - SM- Ro - MB- (DATA	 nside th anical	Break	NOT abbr of at syml AULIO JCTIVI cm/s	E: For eviatio obrevia bols.	amotr	al ad AVG	I INISTRUMENTAT	
	2	CME 55 NQ Core	Slightly weathered, medium, crystalline rock, pink, feldspar, quartz, pyrite cubes		3.0	1								4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•			Broke JIR JIR JIR JIR JIR JIR JIR JIR JIR Broke	oken							Bentonite Holeplug Riser	
	4		Slightly weathered, medium, crystalline rock, grey / pink, feldspar, quartz		3.0	2								•				JIR JIR JIR JIR	·							Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
00).GPJ GAL-MISS.(5 6 7 8 9 10		END OF DRILLHOLE		4.3																						-
SUD-RCK	DE		SCALE				(G		Ă	Go	old	er	tes	;											ogged: Mo Iecked: Bg?	

SAI	ЛР	LEF	R HAMMER, 63.5 kg; DROP, 760 mm						INCLI	NAT	ION:	-90) deg	rees			PENE	FRATIC	ON TES	T HAMM	IER, 63	.5 kg; DROP, 760
┓	ç		SOIL PROFILE			SA	MPL	ES	DYN	AMI	C PEN	NETR	RATIC)N	>	HYDR		ONDUC	TIVITY,	т		
	RORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m		20 AR \$	STRE	40	6 H n	0 8 at V. + em V. ⊕	Q - ● U - O	w w		D ⁻⁵ 1 DNTEN OW	T PERC	10 ⁻³ ENT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIP INSTALLATI
0			GROUND SURFACE																			
0			Loose, wet, brown PEAT		0.0	1	50 DO	8														
1		-	Firm, moist, light brown SILTY CLAY (Varved)		0.8	2	50 DO	5														6/1/2011 Bentonite Holeplug
2		m Auger)				3	50 DO	5										··				
	Power Auger	200 mm Diam. (Hollow Stem Auger)	Loose, wet, grey SILT and SAND		2.6												· · ·	· · · · ·				Riser
3		200 mm				4	50 DO	3														
4		-	Compact, wet, grey SILTY SAND, some gravel		3.8	5	50 DO	21						· · · · · · · · · · · · · · · · · · ·	·····							Silica Sand
5			Compact, wet, grey, coarse SILTY SAND, some gravel		4.6	6	50 DO	30		• • • • •	·.											
			Slightly weathered, grey, medium to coarse crystalline medium to strong rock		5.1				1(50	. 28	 	36									Bentonite Holeplug
6						···.	••••				53		57									
7	CME 55	NQ Core										R.Q.D. (%)										Silica Sand
8									10	00	62	2	68									31.8 mm Diam. PVC #10 Slot Screen
9			END OF BOREHOLE Note:		8.8																	
10			1. For coring details see Record of Drillhole BRH-0014.																			

LOCAT	JECT: 10-1118-0020 PH 4000 Ation: N ;E INATION: -90° Azimuth:	REC	ORD) OF	DRIL DRIL	LING DA LING CO LING CO	ATE: A CME 55	opril 8, 5 Track	2011 mount	RH-00 1	4			J	S	ary 2018 - 10502 1 HEET 1 OF 1 ATUM: Geodetic
DEPTH SCALE METRES DRILLING RECORD	อม OS DESCRIPTION DESCRIPTION	SXMBOLIC LOG SYMBOLIC LOG (m)	TH S	USH COLOU	JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conju RECOVER TOTAL SOI CORE % COR 8009 8 800	gate C Y R.Q.D E %	3D - Bedd FO - Foliat CO - Conta DR - Ortho CL - Cleav INDE> METRE	ling tion act ogonal vage T. S B Angl	PL - CU- UN- ST - IR - DIS DIS e DIPw. AVIS	S TYPE AND S	DATA	kensided ooth gh hanical E	NOT	Diame TYPoint L Inde	ttional efer to list s & etral oad RMC x -Q' a) AVG.	NOTES WATER LEVELS INSTRUMENTATIC
- 6 53 WO - 7 7 9 - 10 - 11 - 11 - 12 - 13	TOP OF BEDROCK Slightly weathered, grey, medium to coarse crystalline medium to strong root B B B END OF DRILLHOLE	ck	5.1 1 2 3 8.8 							Crushe clay in clay in	seams d with seams d with seams d with seams seams ed ed ed					Bentonite Holeplug
- 15 DEPTH 1 : 50	TH SCALE				Ĩ	Gol	lder									OGGED: MO IECKED: BG?

Submitted as part of the Version 3 HRCP Amended EIS/EA D

		CT: 10-1118-0020 PH 4000 DN: N ;E	ſ	RECO	713	J							G . 9, 2011	אט	1-00	,13						HEET 1 OF 1 ATUM: Geodetic	ic
		R HAMMER, 63.5 kg; DROP, 760 mm						INCLI								PENE	TRAT	ION T	EST	HAMMI		.5 kg; DROP, 760	
Т	0	SOIL PROFILE			SA	MPL	.ES	DYN	AMIC	D PEN	ETRA		N	<u>}</u>	HYDR			CTIVIT	ΓY,	т			
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m		20	4 STREN	0	60) 8 at V. + em V. ⊕	Q - ● U - O	w w	/ATER C			-1	NT	ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPIF INSTALLAT	IP
0		GROUND SURFACE							Ĩ														_
		Firm, moist, reddish brown CLAY, trace silt		0.0	1	50 DO	-																
1					2	50 DO	6															<u>5</u> 6/2/2017	∑ 11
					3	50 DO	7															Bentonite Holeplug	~
2	ger)				4	50 DO 50 DO	2											·				Demonite Holepidg	,
	er Stem Au																^{`.} .						
3	Power Auger am. (Hollow S																					Riser	
3	200 mm Diam. (Hollow Stem Auger)	Very soft, wet, grey SILT and CLAY		3.0	5	50 DO	wн						· · · ·	···									
	20				F																		
4					6	50 DO	3			÷			····	·····:									
		Compact, grey, wet, fine to coarse SAND some gravel, trace silt		4.6	7	50 DO	13		·													Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
5									. . .	· ·····	••••• ••••	.:·											ļ
6		Slightly weathered, medium crystalline rock		5.8		•••	· · .	·	00. 	57	ŀ	100										Bentonite Holeplug	ł
					···.		·. ·.																
		Coarse, white vein						: 1(00	62		60											
7		Coarse, white vein Coarse grained, grey, slightly weathered		× ···		·.· [·]																	
	CME 55 NQ Core					••		T.C.R. (%)	SCR (%)	2000	R.Q.D. (%)											Silica Sand	
8		Pink feldspar and quartz vein, slightly weathered Grey, coarse grained, slightly weathered						10	00	82		72										31.8 mm Diam. PVC #10 Slot Screen	
		Pink feldspar and quartz	\mathbb{N}																				
9		END OF BOREHOLE Note:		8.7																			
		1. For coring details see Record of																					
		Drillhole BRH-0015.																					
10				1																			

	PF	ROJE	ECT: 10-1118-0020 PH 4000	R	ECC	RD	0 (FI	DR	RIL	Lŀ	10	LE	Ξ:		В	R	H-0	01	5						J			y 2018 - 165 EET 1 OF 1	0203
			.TION: N ;E NATION: -90° AZIMUTH:									DATE CM															I	DA	TUM: Geodetic	
			- I	<u> </u>				JN			NG (OR:	F	PL - F	Planar		PO- P	olishe	d		BR	- B	roker	n Rock	k		
	DEPTH SCALE METRES	DRILLING RECORD			ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH VN CJ		ear n njugat	- R.C	CO- OR- CL-	RAC	tact logon avage CT. ES B	Angle		CU- (JN- L ST - S R - I	Curved Undulatin Stepped Irregular CONTINU	g : I	< - S SM- S Ro - R MB- M ATA	icken	nical I	Break HYDF DNDL k, c	NOT abbr of al sym	re: Fe reviati bbrev bols. C E TTYP	or addi ions re iations Diame 'oint Li linde: (MPa	tional fer to lis & tral oad RN X -C	st	NOTES WATER LEVI INSTRUMENTA	
Ľ			TOP OF BEDROCK												<u></u>	10	~~~						\square			0.4	۰ ۱	1		
	- 6	E 55	Slightly weathered, medium crystalline rock Coarse, white vein Coarse, white vein Coarse grained, grey, slightly weathered crystalline rock		5.8	2													R IR IR IR	ore								5	Silica Sand	م میں میں میں میں میں میں میں میں میں می
	- 8		Pink feldspar and quartz vein, slightly weathered Grey, coarse grained, slightly weathered Pink feldspar and quartz END OF BOREHOLE		8.7	3									•			JIR JIR JIR JIR JIR JIR JIR	IR	••••••								F	31.8 mm Diam. PVC #10 Slot Screen	
4.10-1118-020 (4000);64J GAL-MISS GDT 2206/11 DATA INPUT:	- 9 - 10 - 11 - 12 - 13 - 14 - 15																													
SUD-RUN		EPT⊦ : 50	'H SCALE					G		Â	Go sso	old oc	leı iat	r tes	5														GGED: MO CKED: BG?	

LO	CA	TIO	T: 10-1118-0020 PH 4000 N: N ;E	RE	CC	R	D		BORIN	g da	TE:	April	7, 2011		H-0016			SI D/	HEET 1 OF 1 ATUM: Geodetic
SA	.MF	PLEF	R HAMMER, 63.5 kg; DROP, 760 mm						INCLIN				-		PENE	TRATION TEST I	HAMME	ER, 63	.5 kg; DROP, 760 mm
DEPTH SCALE METRES		BURING METHUD	SOIL PROFILE DESCRIPTION	TA DEI	EV. PTH n)	NUMBER	- 1	BLOWS/0.3m	SHEAI Cu, kP	20 I R STF	40) GTH	60 ⊥ nat V. rem V. ∉	80 - Q - ● - U - O	k, cm/s 10 ⁻⁶ 1 WATER C Wp I	ONDUCTIVITY, 0 ⁻⁵ 10 ⁻⁴ 10 ⁻ ONTENT PERCEN 		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 0			GROUND SURFACE Loose, moist, brown SILTY SAND, trace	010	0.0		_				_								
- - - - - - -	Power Auger	200 mm Diam. (Hollow Stem Auger)	Loose, moist, prown SILTY SAND, trace organics		0.0	1	50	PL											Bentonite Holeplug Riser Silica Sand
-		um C	Dense, wet, brownish grey, medium to coarse SAND, some gravel, trace silt		1.1		DO	57											
2		200	Slightly weathered, bedding, grey, coarsely crystalline, medium stron rock (Tonalite)		1.5				100		76	76	-						Bentonite Holeplug
- 3	CME 55	NQ Core							T.C.R. (%)		47 	(%) 81 100 100							Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
-	_		END OF BOREHOLE		5.7						:								
- 6 - 7 - 7			Note: 1. For coring details see Record of Drillhole BRH-0016.			·····													
— 8 — 9 — 10																			
DE 1 :			CALE	<u>ı I</u>		<u> </u>		(Î		G	old	er	1	I I	<u> </u>			DGGED: MO ECKED: BG?

LO	CA	ECT: 10 TION: N NATION:		R	RECO	DRI	DO	F١	DF DF	RILL RILL	ING RIC	i DA G: C	TE: ME	Ар 55 Т	ril 7, Tracl	20 ⁻ kmc	11	H-(001	16							Je	S	HEET 1	OF 1 Geodetic	
DEPTH SCALE METRES		_	DESCRIPTION OF BEDROCK	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH VN CJ RI TOT	- Jo T - Fa R- Sh - Ve - Co ECOV	RILL int ault hear in onjuga VERY SOLIE CORE 888 T	ate	B F C	D - B O - Fi O - C DR - O L - C FR ME	eddin oliatio ontac rthoge eava	g n t onal	gle C	UN-1 ST-5 IR-1	t. TYP	atina	K - SM- Ro - MB- DATA	Smo Rou Mecl	ensid oth Ih	al Bri HY CON	eak DRA IDUC k, crr	NOTE abbre of abb	E: For viatior previat ols. Dia YPoi I (additions refe	al ad RMC ad RMC AVG	W. INST	NOTES ATER LEV RUMENT	'ELS
- - - - - - - - - - - - -		Sligi coai	alite)		1.5	1									•				JSTR JIR JUR JIR JPLR JIR										Bentonit	e Holeplug <u>_</u> 6/2/2017	
- 3 	CME 55	NQ Core				2									•			1111/1	Intense Fractur Intense Fractur JUR JIR JPLR JPLR JPLR JPLR	ly	•••••								Silica Sa 31.8 mm PVC #10 Screen	Diam.	
- - - - - - - - - - - - - - - - - - -						3				· · · ·	····	····		· · · · ·	· · · · · · · · · · · · · · · · · · ·																
- - - - - - - - - - - - - - - - - - -		ENL) OF DRILLHOLE		5.7					· · · · ·				••••																	
- - - - - - - - - - - - - - - - - - -									•																						
- - - - - - - - - - - - - - - - - - -																															
9 																															
		H SCALE	<u>.</u>			1		G			G S	 	u de cia	n T	:::: 25														OGGED IECKED		

		Т: 10-1118-0020 PH 4000 N: N ;E	F		JK	יט		F BORE			BK	H-U(17					HEET 1 OF 1 ATUM: Geodetic
		R HAMMER, 63.5 kg; DROP, 760 mm						INCLINATION					PENE	TRATIC	ON TEST	Г НАММ		5.5 kg; DROP, 760
		SOIL PROFILE			SA	MPLE	ES	DYNAMIC PEI RESISTANCE	NETRATIC	N	1	HYDR	AULIC C	ONDUC	TIVITY,	т		
BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	IBER		BLOWS/0.3m	20 J SHEAR STRE Cu, kPa	40 6 NGTH n	0 8 atV.+ emV.⊕	30 Q - • U - O 30	w w	ATER C	0 ⁻⁵ I ONTEN O ^W		10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI INSTALLATIO
0 -		GROUND SURFACE Loose, moist to wet, brown SILTY	J	0.0														
		SAND, some organics			1	50 DO	-											Bentonite Holeplug Riser
1 Jee	w Stern Auger)			- - - - -	2	50 DO	55											6/2/2011 6/2/2011
Power Auger	200 mm Diam. (Hollow Stem Auger)	Loose to compact, wet, brown SILTY SAND		1.5	3	50 DO	20											Silica Sand
	2	Compact, wet, brown, medium to coarse SAND, trace to some gravel, trace silt		2.3	4	50 DO	18											
3		Fresh bedding, trey, very coarse crystalline strong rock (Tonalite)		3.1	5	50 DO	50/ 0.1				·							
2 CME 55	NQ Core							100 11 C.R. (%). 										Bentonite Holeplug
6	~								·····									Silica Sand
7								98 8	85									31.8 mm Diam. PVC #10 Slot Screen
8		END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0017.		7.2														
9																		
0																		
DEPTH	нs	CALE							lde	r							L	OGGED: MO

INCLINATION: -90° AZIMUTH: DRILL RIG: CME 55 Trackmount DRILLING CONTRACTOR:	NUMBATION: -0° AZIMUTH: DRELER: CME85 Trackmout DRELING CONTRACTOR UNDERTON: -0° AZIMUTH: 0 <td< th=""><th></th><th></th><th>CT: 10-1118-0020 PH 4000</th><th>R</th><th>ECC</th><th>DR</th><th>D O</th><th>F</th><th></th><th></th><th></th><th></th><th></th><th></th><th> il 7, 2</th><th></th><th></th><th>1-00[,]</th><th>17</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Je</th><th>S</th><th>HEET 1 OF 1 ATUM: Geodetic</th><th></th></td<>			CT: 10-1118-0020 PH 4000	R	ECC	DR	D O	F							 il 7, 2			1-00 [,]	17							Je	S	HEET 1 OF 1 ATUM: Geodetic	
Image: Second	Organization O		CLIN	ATION: -90° AZIMUTH:				, ,		DI DI	RILL RILL	RIG	6: CI CON	ME 5 NTRA	5 T 4CT	rackn 'OR:	nour	nt											1	
TOP OF BEDROCK Silica Sand	TOP OF BEDROCK State	DEPTH SCALE METRES	RILLING RECORD	DESCRIPTION	SYMBOLIC LOG	DEPTH	RUN No.			HR-SH N - Ve I - Co RECO TAL RE %	hear ein onjuga VERY SOLII CORE	R. D %	CC OF CL .Q.D. %	- Con R- Orth - Clea FRAC INDE METR	TT.	nal e B Angle		J- Cu N- Un F - Ste - Ime ISCC W.r.t. DRE (IS	irved idulating epped egular INTINUITY	K SM Ro MB ′ DAT/	- Slic - Sm - Rou - Mea	kensi ooth ugh chanie	ded cal B H CO	Break HYDR/ NDU k, ci	NOTI abbre of ab symb AULIC CTIVI m/s	E: For eviatio brevia ols. Dia TYPo	additions refe	onal er to list		
rystalline strong rock (Tonalite) 1 JPLR	s b b b b b b b b b b b b b b b b b b b		ā	TOP OF BEDROCK					89	365	884	80	848	292	28	-9 <u>65</u>	08	88	DESCR	FION			5	⊇ ₽ 	<u>5</u> 5	,	4 4 0			
6 JIR JIR 3 JIR JIR JIR JIR	6 Julia Sand Julia Julia Juli		= 55	crystalline strong rock (Tonalite)		3.1	1									•			JPLR JPLSN JPLSN JPLSN	Л										
	7 Image: Contract of the second s	- 6	CW	σ z			3									•			JIR JIR JPLR JPLR JPLR JPLR JPLR JPLR JIR	· · · · · ·	••••								31.8 mm Diam. PVC #10 Slot	
	9	7		END OF DRILLHOLE		7.2					••••		· · · · .		••••	•														
		12																												
	12			I SCALE	L	<u> </u>	1	<u> </u>	C	Ĩ		G	ol	der	r te	::::: : S	111						1		11				I OGGED: MO IECKED: BG?	

Submitted as part of the Versio 2 4000 1 tatic

VICUN 1 DOUBLE 10012 DUITURE 0001000000000000000000000000000000000			T: 10-1118-0020 PH 4000	F	RECO	DR	D								H-00)18					HEET 1 OF 1	
BUILD DURATION SOLUTION TOPOLOGIC PROFILIATION MODIFICIAL CONDUCTIVITY X cm PERCENT DESCRIPTION Interview <														1			τρλτιά		тылли			
Bit Description Bit Descri			R HAWINER, 03.5 kg, DROP, 700 HIII													PENE		JN TES		IER, 03	.5 Kg, DROP, 700 I	1
OPENADO SUPPORT OPENADO		P P	SOIL PROFILE		-i	SA	MPL	ES	DYNAI RESIS	MIC PE	ENETR E, BLO	RATIO OWS/	0N 0.3m	Ś	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	T	- - - - - - - - - - - - - - - - - - -	PIEZOMETE	F
OPENAD SUPFACE OPENADE	MEIKES	MET		PLOT		ER		0.3m								1		1	1		OR	
OPENAD SUPFACE OPENADE	Σ	RING	DESCRIPTION	ATA	DEPTH	UMBI	TΥΡΕ	//S//C	SHEAI Cu, kP	R STRE 'a	ENGT	"Hn r	at V. + em V. ⊕	Q - ● U - O	W M					ADDI AB. T		
Totale, most, brown SE, TY SAND Signature Sig		BO		STR	(m)	z		BL(2	20	40	6	0 8	0								
Note of a second dealer Note of a seco	0	_									_									_		1
and of the series of		er)	LOOSE, MOISI, DIOWN SILTY SAIND				50	пц														
END OF BOREHOLE 6.7 Name: 1.50 construction 6.7		m Aug				'	DO															
END OF BOREHOLE 6.7 Name: 1.10 1.10 100<	Jaer	ow Ste																				
END OF BOREHOLE 6.7 Name: 1.50 construction 6.7	Mer Al	(Holld					50															
END OF BOREHOLE 6.7 Name: 1.50 construction 6.7	Po	Diam				2	DO	15														
United table and a set of the se		00 mm	Compact, moist, brown to grey SILTY		1.4																	
atong iok (grante Quertz) 100 78 09 Bentonie #didoit 100 93 100 93 100 Riser 100 93 100 93 100 Riser 100 93 100 100 100 Riser 100 93 100 100 100 Riser 100 100 100 100 100 Riser 100 100 100 100 100 Riser Riser Non: 100 81 88 Riser Riser Riser Noi: 1. 1.00 81 88 Riser Riser		3	-			3	50 DO	50/ 0.28														
Bit of Sort House 00 72 09 00 72 09 100 00 93 100 0 100 Rate 100 00 03 100 0 100 Rate 100 00 100 0 100 0 100 Rate 100 00 100 <	2		Fresh, grey, very coarse crystalline, strong rock (granite Quartz)		1.8	5																
Image: State Send 100 93 100 100 93 100				K					100	7	8	69				· · · · · ·						
Image: Sile Sind Sind Sind Sind Sind Sind Sind Sind					Ŕ													:				-
100 100 <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											_	-			:							
100 100 <td>3</td> <td></td> <td></td> <td></td> <td>3</td> <td></td>	3				3																	
100 100 <td></td> <td>··</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														··								
Image: Stress Sand Stre									100	9	13	100			· · · · ·						Riser	
90 90 <td< td=""><td></td><td></td><td></td><td>Ž</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				Ž												1						
90 90 <td< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· ·</td><td>· · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4											· ·	· · · · ·									
90 90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>••••</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											-		••••									
90 90 <td< td=""><td></td><td></td><td></td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · . ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				X										· · · . ·								
90 90 <td< td=""><td></td><td></td><td></td><td>Ň</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				Ň								.										
gg gg<	5									·. 9	13	100										
END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0018.	555	Core							(%)	(%)	. (%)											ł
END OF BOREHOLE Note: 1. For coring details see Record of Drillipole BRH-0018.	CM	Ŋ							L.C.F.	S.C.F												ŀ
END OF BOREHOLE Note: 1. For coring details see Record of Drillipole BRH-0018.								· · ·		ŀ.												ŀ
Image: Note: 100	6				2				···.													ŀ
END OF BOREHOLE 8.7 9.7	0						··.,	·.														ł
END OF BOREHOLE 8.7 8.7 8.7 1.00 8.1 8.8 1.00							· · .		. 100	1(00	100										ł
END OF BOREHOLE 8.7 8.7 8.7 1.00 8.1 8.8 1.00									:													ŀ
END OF BOREHOLE 8.7 8.7 8.7 1.00 8.1 8.8 1.00	_				··.		•														Silica Sand	ŀ
END OF BOREHOLE 8.7 8.7 8.7 1.10 8.1 8.8 1.10	7			K			· . · ·			$\downarrow \downarrow$											PVC #10 Slot Screen	$\left \right $
END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0018.				Ň	Ŕ																	$\left \right $
END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0018.				\otimes																		ŀ
END OF BOREHOLE Note: 1. For coring details see Record of Drillhole BRH-0018.				- X	3				100	8	1	88										ŀ
Note: 1. For coring details see Record of Drillhole BRH-0018.	8			Ň	Ŕ																	ŀ
Note: 1. For coring details see Record of Drillhole BRH-0018.				\mathbb{K}																		ļ
Note: 1. For coring details see Record of Drillhole BRH-0018.					1																	ł
1. For coring details see Record of Drillhole BRH-0018. Image: Correct of Drillhole BRH-0018.					8.7																	
Drilhole BRH-0018.	9																					
			Drillhole BRH-0018.																			
PTH SCALE																						
TH SCALE	10																					
PTH SCALE LOGGED: MO					1	1		<u> </u>	Ā						1	<u> </u>	1	1		1		-
50 CHECKED: BG?	DEP1 : 50		SCALE)) (Gol	lde	r									

	LOC	CATIO	T: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	R	ECC	DRI	DO	F	DF DF	RILLI RILL	NG RIG	DA ⁻ S: C	TE: ME {	Ма 55 Т	rch 2 Track	28, 2 imoi	2011		18					Ja	S	ary 2018 - 1050 HEET 1 OF 1 ATUM: Geodetic	5263
DEPTH SCALE	METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	R TO CJ	- Joi T - Fa R- Sh - Ve - Co ECOV	int ult iear in onjuga	nte R.	BI FC	D- Be D- Fol D- Co R- Ort L - Cle	dding liatior ntact thogo eavag .CT. EX RES) 1	F (I e O	UN-L ST-S IR-II	Planar Curved Jndulating Stepped rregular CONTINUIT	K SM Ro MB	ensid oth 1h	I Brea HYD COND k,	NOT abbr	re: Foi bbreviatio bbrevia bols. C Di ITYPC	r additions refeations &	nal r to list al RMC -Q' AVG	WATER LEVE	
T-MISS.GDT 2206/11 DATA INPUT:	2 3 3 4	CME 55 CME 56 DR	TOP OF BEDROCK Fresh, grey, very coarse crystalline, strong rock (granite Quartz)		1.8	1 2 3 4												JIR Clos Frac Clos Frac JIR	ely lured ly ed Joint ?	Ja Jn			וכ			∑ 5/31/2011 Bentonite Holeplug Riser	
Ϋ́	DEF 1:5		SCALE					G	ネ レ		 G	 ole soc	 de cia	r ite	 :s											OGGED: MO IECKED: BG?	

	CT: 10-1118-0020 PH 4000 DN: N ;E	R	ECC	R	DO		BOREHOLE		H-0019		HEET 1 OF 1 ATUM: Geodetic
	ER HAMMER, 63.5 kg; DROP, 760 mm						NCLINATION: -90 degre		PENETRATION TEST HAMM		
							_				
METRES BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	JAPE	S/0.3m	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.2 20 40 60 SHEAR STRENGTH nat Cu, kPa net rem 20 40 60	80	HYDRAULIC CONDUCTIVITY, k, cm/s 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp - WI 16 32 48 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	GROUND SURFACE										
	Dark brown peat (ORGANICS)		0.0								Silica Sand
	Dark brown sandy silt and organics (TOPSOIL)		0.3	1	50 DO	3					Hole Plug
	Grey brown to brown, layered SILTY		0.6								<u>√</u> 6/2/2011
1	SAND, trace to little clay, oxidized mottling			2	50 DO	5					
2	Brown, layered CLAYEY SILT, trace to some sand, oxidized mottling		1.5		50 DO	25					6/2/2011 Riser
				4	50 DO	28					Cuttings
co der)	Grey, layered SILT, little to some clay, trace sand		3.0		50 DO	26					
tem Au					-	_					×
Power Auger 200 mm Diam. (Hollow Stem Auger)				6	50 DO	22					Hole Plug
5 5				7	50 DO	27					
				8	50 DO	15					
6				· · · .	50	•					Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
				9	50 DO	15					Silica Sand 31.8 mm Diam. PVC #10 Slot
				••••		_					Screen
7				 10	'50 ['] DO	11					
				\vdash	+	-					
8				11	50 DO	2					
				\vdash	+						Cave
	END OF BOREHOLE PROBABLE BEDROCK REFUSAL		8.4			╡					K
9											
10											
DEPTH	SCALE									10	DGGED: MO
1 : 50							Golder				ECKED: BG?

			T: 10-1118-0020 PH 4000	F	RECO	DR	D							H-00	20					HEET 1 OF 3
									BORING				11					T		ATUM: Geodetic
SA	MF	LEF	R HAMMER, 63.5 kg; DROP, 760 mm						INCLINA	TION:	-90 de	grees			PENE	TRATIC	ON TES	T HAMM	ER, 63	8.5 kg; DROP, 760 r
METRES			SOIL PROFILE	STRATA PLOT	ELEV.	NUMBER S	TYPE 34V	BLOWS/0.3m	20) 4	1		v, a-●	1(AULIC C k, cm/s) ⁻⁶ 1 ATER C	0 ⁻⁵	10 ⁻⁴ T PERC		ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIO
~				STRA7	DEPTH (m)	NU	ŕ	BLOW						VV P		O ^W		WI	LAE	
			GROUND SURFACE	0)					20) 2	10 (50 E	0	1	6 3	32	48	64		
0			TOPSOIL		0.0															Cement 6/2/2011
			Reddish brown SAND, little silt, trace organics		0.2	1	50 DO	4												
1			Layered, greyish brown CLAYEY SILT, trace sand		0.8		50 DO	5												Hole Plug
2						3	50 DO	4								·				Riser
			Layered, greyish SILTY CLAY, trace sand		2.3		50 DO	3							··.		•			
3						5	50 DO	4												
4		er)				6	50 DO	3		÷			·····							Riser
5	Power Auger	mm Diam. (Hollow Stem Auger)				7	50 DO	2		·										
	Po	200 mm Diam				8	50 DO	2		4 	·····									
6						· · · . 9	50 DO	3		· • . •										
7						10	50 DO	3												
8						11	50 DO	3												
9			Reddish brown CLAY, some silty clay layers, trace to little sand		9.1															Backfill Cuttings
						12	50 DO	wн												
10	F		— — — — — — — — — — — — — — — — — — —		1			1-	-+			†		†	<u> </u>	+	-	+		<i>-</i> *

ິງ 1 : 50

	CT: 10-1118-0020 PH 4000 DN: N ;E	RECORD OF BOREHOLE: BRH-0020 BORING DATE: March 19, 2011	SHEET 2 OF 3 DATUM: Geodetic
SAMPLE	ER HAMMER, 63.5 kg; DROP, 760 mm	INCLINATION: -90 degrees PENETRATION TEST HAMMER	R, 63.5 kg; DROP, 760 mm
METRES BORING METHOD	SOIL PROFILE	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s Image: Constraint of the second se	PIEZOMETER OR STANDPIPE INSTALLATION
10	CONTINUED FROM PREVIOUS PAGE Reddish brown CLAY, some silty clay layers, trace to little sand		Backfill Cuttings
12	Layered, grey SILTY CLAY, trace sand		Backfill Cuttings
11 Power Auger Power Auger 200 mm Diam. (Hollow Stem Auger)	sand		Backfill Cuttings
16 17	Bouldery SAND		Hole Plug
18			Silica Sand 31.8 mm Diam. PVC #10 Slot
19			31.8 mm Diam. PVC #10 Slot Screen
20	CONTINUED NEXT PAGE	┷╁╾─┝┼┤╌ ┣╼┼╼┝╼┼╼┝╼┼╼┝	
DEPTH \$	SCALE	Golder	LOGGED: MO CHECKED: BG?

	DN: N ;E ER HAMMER, 63.5 kg; DROP, 760 mm								March 90 dec	n 19, 20 [.] jrees	11		PEN	ETRA	TION	I TEST	HAMN			Geodetic DROP, 760 m
BORING METHOD	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH	BER	BLOWS/0.3m		20	40		0 ε	Q - O	1	AULIC k, cm 0 ⁻⁶ / /ATER	/s 10 ⁻⁵ CONT	10 ENT I	4 1 PERCE		ADDITIONAL LAB. TESTING		PIEZOMETEF OR STANDPIPE INSTALLATIO
BOR		STRA	(m)	ך '	BLO		20	40			0		р —— 16	32	Э ^W 48		WI 54	LAA		
20	CONTINUED FROM PREVIOUS PAGE Bouldery SAND		;		+			_							-					×
5 5 5 5 5 5 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14																			Cave	
00 Core 22 00 Core 23 00 Core 20 00 Core 20	Greyish green, fresh, porphrite TONALITE, with quartz / feldspar veins		25.6			T.C.R. (%)	000 000 000 000 000 000 000 000 000 00	93												

RECORD OF DRILLHOLE: BRH-0020 PROJECT: 10-1118-0020 PH 4000 SHEET 1 OF 1 DRILLING DATE: March 19, 2011 DATUM: Geodetic LOCATION: N ;E DRILL RIG: CME 55 Trackmount INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Cleavage JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugate PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Break symbols. COLOUR % RETURN DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG NOTES WATER LEVELS Ś ELEV. DESCRIPTION RUN HYDRAULIC CONDUCTIVITY k, cm/s DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION R.Q.D. FRACT. % INDEX METRES Diametra oint Loa Index (MPa) DIP w.r.t. CORE AXIS (m) RMC -Q' AVG FLUSH TOTAL SOLID CORE % CORE % B Angle TYPE AND SURFACE DESCRIPTION 010⁶ 2888 8898 86650 8848 ,<u>2</u>22 N 4 TOP OF BEDROCK Greyish green, fresh, porphrite TONALITE, with quartz / feldspar veins $\overline{\langle}$ 25.6 JUER 26 JPLR JPLR • 1 JPLR JNPLR 27 CME 55 NQ Core 2 JPLR 28 Broken Core Broken Core JPLR JPLR 3 END OF DRILLHOLE 28.9 29 30 31 32 33 10-1118-0020 (4000).GPJ GAL-MISS.GDT 22/06/11 DATA INPUT: 34 35 **Golder** Associates SUD-RCK DEPTH SCALE LOGGED: MO 1:50 CHECKED: BG?

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation

January 2018

LOCATION: N ;E											20C					HEET 1 OF 2
SAMPLER HAMMER, 63.5 kg; DROP, 760 m	ım						E: May 2 -90 deg				PENET	RATIO	N TEST	HAMMI		ATUM: Geodetic .5 kg; DROP, 760 mm
G SOIL PROFILE			SAMF	PLES	DYNA RESIS	MIC PEN	NETRATIO	DN /0.3m		HYDRA	ULIC CO k, cm/s	ONDUCT	IVITY,	T	ں _	
SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	SHEA Cu, kF	20 L R STRE Pa	40 6 L NGTH r r	i0 8 ⊔ nat V. + em V. ⊕	Q - • U - O		ATER CO		PERCE	0 ⁻³ ⊥ NT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0 GROUND SURFACE		0.0		_												
1 1 2 1 3 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1																
		†	- + ·	1-		+	·	+		+			<u> </u>	+		

		T: 10-1118-0020 PH 4000	R	ECO	RD	O						I-0020	С			SH	y 2018 - 103020 EET 2 OF 2
		DN: N ;E R HAMMER, 63.5 kg; DROP, 760 mm						ig date Iation:	-			P			ST HAMM		TUM: Geodetic 5 kg; DROP, 760 mm
		-															
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	SAMI NUMBER	Зш	SHEA Cu, kł	I IR STREI Pa	40 0 NGTH	60 I nat V rem V. 6	80 + Q - ● Đ U - O	Wp 🛏	10 ⁻⁵ ER CONTE	10 ⁻⁴ ENT PERG	10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
· 10	_	CONTINUED FROM PREVIOUS PAGE						20 4	40 (60	80	16	32	48	64		
	Power Auger	END OF BOREHOLE		10.7													
12																	
13 -																	
14								·									
15									••••••								
17																	
18																	
19																	
20							-										
DEF 1 : {		CALE					Â	G	olde	er							GGED: MO :CKED: BG?

Submitted as part of the Version 3 HRCP Amended EIS/EA D

OCATI	10	Γ: 10-1118-0020 PH 4000 N: N ;E R HAMMER, 63.5 kg; DROP, 760 mm	F	RECO	DR	D		BORIN	G DA	ATE:	Marc	n 17, 20		H-002		רסאדיר			D	HEET 1 OF 1 ATUM: Geodetic
	. EF	R HAMMER, 63.5 Kg; DROP, 760 mm						INCLIN	ATIC	DN:	-90 de	grees			PENE	RATIC	IN TES		ER, 63	.5 kg; DROP, 760 mn
BORING METHOD	-	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)		MPL	BLOWS/0.3m	RESIS SHEA Cu, kF	TAN 20 L R ST	CE, E 41	GTH I	/0.3m 60 8 1 nat V. + em V. ⊕	20 Q - ● U - ○	10 ⁻⁶	k, cm/s 3 10 TER C0) ⁻⁵ 1 ONTENT 	0 ⁻⁴	10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE Topsoil (HUMUS/ORGANICS)		0.0																Cement Hole Plug
uger ww. Stem Auror)	ow Stem Auger)	SILTY SAND and ORGANICS Layered sandy SILT and silty sand, oxidization throughout		0.6	1	50 DO	13													Cuttings
Power Auger 200 mm Diam (Hollow, Stam Austra)	200 mm Diam. (Holk				2	50 DO	29									••••				Riser Hole Plug
		Grey brown SILT, trace sand SAND, some gravel, little silt, trace		2.3	,	50 DO	48							··	· · .					
3	_	Light to dark green and grey, fresh porphyritic TONALITE, pinkish alteration		3.0																
A CME 55 A MO Crea	NQ Core	porphyritic TONALITE, pinkish alteration zones (hematite) and quartz / feldspar veins throughout						T.C.R. (%)	S.C.R. (%)	60	R.Q.D. (%)									Silica Sand
5	~							93	·		≌ 60									Cave 31.8 mm Diam. PVC #10 Slot Screen
7		END OF BOREHOLE BEDROCK REFUSAL	· · · · ·	5.9	····.															
8																				
9																				
0																				
DEPTH	IS	CALE						Â		G	olde	er ates							L	DGGED: MO

January 2018 RECORD OF DRILLHOLE: **BRH-0021** PROJECT: 10-1118-0020 PH 4000 SHEET 1 OF 1 DRILLING DATE: March 17, 2011 DATUM: Geodetic LOCATION: N ;E DRILL RIG: CME 55 Trackmount INCLINATION: -90° AZIMUTH: ---DRILLING CONTRACTOR: JN - Joint FLT - Fault SHR- Shear VN - Vein CJ - Conjugat BD-Bedding FO-Foliation CO-Contact OR-Orthogonal CL-Cleavage PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular PO- Polished K - Slickensided SM- Smooth Ro - Rough MB- Mechanical Break symbols. COLOUR % RETURN DRILLING RECORD DEPTH SCALE METRES SYMBOLIC LOG NOTES WATER LEVELS Ś ELEV. DESCRIPTION RUN HYDRAULIC CONDUCTIVITY k, cm/s DEPTH RECOVERY DISCONTINUITY DATA INSTRUMENTATION FRACT. INDEX METRES Diametra oint Loa Index (MPa) R.Q.D. % DIP w.r.t CORE AXIS (m) RMC -Q' 4VG FLUSH TOTAL CORE % SOLID CORE % B Angle TYPE AND SURFACE DESCRIPTION 10⁴ 288,2 2855 86650 8848 220 TOP OF BEDROCK 3 Light to dark green and grey, fresh porphyritic TONALITE, pinkish alteration zones (hematite) and quartz / feldspar \langle 3.0 Hole Plug veins throughout Silica Sand JUER JPLSM - JPLSM - JPLSM • • 4 JPLSM CME 55 NO . JPLSM JPLSM Cave 31.8 mm Diam. PVC #10 Slot Screen JPLSM Broken Core 5 2 JUER JPLSM JPLSM JCSM END OF BOREHOLE BEDROCK REFUSAL 5.9 6 7 8 9 10 10-1118-0020 (4000).GPJ GAL-MISS.GDT 22/06/11 DATA INPUT 11 12 13 Golder SUD-RCK DEPTH SCALE LOGGED: MO 1:50 CHECKED: BG? ssociates

		T: 10-1118-0020 PH 4000 N: N ;E	RECO	DR	D						E: BR	H-002	22			5		HEET 1 OF 1 ATUM: Geodetic
		R HAMMER, 63.5 kg; DROP, 760 mm					INCLIN					F	PENET	FRATIO	N TEST	HAMME		.5 kg; DROP, 760 mm
Т	ДC	SOIL PROFILE		SA	MPL	ES	DYNA	MIC PEN			۷ ۱ 3m	HYDRAU	ILIC CO	ONDUCT	IVITY,	Т	0	
MEIKES	BORING METHOD	DESCRIPTION	(m) (m) (m)	NUMBER	TYPE	BLOWS/0.3m	2 SHEAI Cu, kP	R STRE	40	60	80 t V. + Q - ● m V. ⊕ U - O	10-6	10 FER CO	0 ⁻⁵ 10 ONTENT 	PERCE	NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	er er)	GROUND SURFACE Brown GRAVELLY SAND, some	e e e . 0.0	1	50 DO	50/												1.1
1	Power Auger 200 mm Diam. (Hollow Stem Auger)	Cobbles / boulders, trace sit Greyish green, fresh porphyritic TONALITE, with pinkish alteration zones (hematite) throughout and trace quartz / feldspar veins			DO	0.1	98	70		83								Silica Sand
2	CME 55 NQ Core						T.C.R. (%)	S.C.R. (%)	R.Q.D. (%)					· · · · · · · · · · · · · · · · · · ·				6/2/2011
3	O Z						0:F			82								Silica Sand
5							100	81		78								
6		END OF BOREHOLE BEDROCK REFUSAL	5.4			····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • •	<u>.</u>								N
7				···.			•											
8																		
9																		
10																		
DEF 1:5		CALE	1 1				Î	G	ol	de	t	11						DGGED: MO ECKED: BG?

a present of the second sec	PROJEC	CT: 10-1118-0020 PH 4000	R	ECC	DR	D	OF			IL	∟ŀ	Ю)LI	E:	-	В	Rł	-1-(an	ua. S⊦	EA Document ry 2018 - 163 IEET 1 OF 1	020
									DRI DRI	ILL F	RIG	: CN CON	/IE 5	5 T 4CT	rack TOR	moi :	unt												DA	ATUM: Geodetic	
Import 9.8876/21 0 Import 9.8876/21 0 Import 9.8876/21 Import 9.8766/21 Import 9.8766	DEPTH SCALE METRES ILLING RECORD	DESCRIPTION	YMBOLIC LOG	DEPTH	RUN No.		<u>COLO % RETU</u>	SHR VN CJ RE(- She - Veir - Con COVE	ar ijugate ERY	R.0	FC CC OF CL Q.D.	- Folia - Con - Orth - Clea FRAC	ation ntact nogo avag CT.	nal e		CU-C JN-U ST-S R - Ir DISC Pw.r.t. CORE	Curveo Indula Iteppe regul ONTI	d ating ad ar NUITY	K SN Ro ME Y DAT	- Sli vi- Sri o - Ro B- Me	cken	nical I	Breal HYDF DNDL k, i	NOT abb of a k sym RAULI JCTIV cm/s	re: Fo reviati bbrev bols. C E 'ITYP	or addi ions re iations	itional fer to &	list	WATER LEV	
Image: 10	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8	Greyish green, fresh porphyritic TONALITE, with pinkish alteration zones (hematite) throughout and trace quartz / feldspar veins		0.1	3												AXIS		JSMP JUER JUER JUER JJPLSI JPLSI JPLSI JPLSI JPLSI JPLSI JUER JUER JUER	ц ц ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч										Riser Hole Plug <u>5</u> 6/2/2011 Silica Sand 31.8 mm Diam. PVC #10 Slot	

OCATI	CT: 10-1118-0020 PH 4000 ON: N ;E	REC	OR	DO		F BOREHOLE: BORING DATE: March 26, 2			D	HEET 1 OF 1 ATUM: Geodetic
SAMPLE	ER HAMMER, 63.5 kg; DROP, 760 mm				I	INCLINATION: -90 degrees		PENETRATION TEST HAMN	/IER, 63	3.5 kg; DROP, 760 mr
BORING METHOD	SOIL PROFILE	(m) STRATA PLOT (m) ATATA (m)	r	NPLE BAL	BLOWS/0.3m	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m 20 40 60 1 SHEAR STRENGTH nat V. Cu, kPa nat V.	80 + Q-● ⊕ U- O	$\left \begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,}\\ \text{k, cm/s}\\ 10^6 & 10^5 & 10^4 & 10^3\\ \text{WATER CONTENT PERCENT}\\ \text{Wp} \qquad \qquad$	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
B	GROUND SURFACE	S (m)		- 1	Ш	20 40 60	80	16 32 48 64	-	
0	Boulders and TOPSOIL	0.1)							
1	SILT and SAND, trace organics			50 DO	11					Hole Plug Riser ▽
m Aug	Gravelly SILT and SAND		3	_	_					5/31/2011
R Power Auger 200 mm Diam. (Hollow Stem Auger)	SAND and BOULDERS, some gravel, trace silt			50 DO	21					
2001	Gravelly SILT and SAND, some boulders, some cobbles, trace clay	2.		50 DO	32					Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
			4	50 DO	8					Cave In
5 6 7 8 8 9										
0										
)EPTH : : 50	SCALE				(Golder				OGGED: MO IECKED: BG?

		CT: 10-1118-0020 PH 4000	F	RECO	DR	D		F B(H-00)24			c		ny 2018 - 165 HEET 1 OF 1 ATUM: Geodetic	5263
		ER HAMMER, 63.5 kg; DROP, 760 mm						INCLIN							PEN	ETRATI	ON TES	ot hamm		.5 kg; DROP, 760	mm
Щ	ПОН	SOIL PROFILE	_		SA	MPL	ES	DYNA RESIS	MIC P	ENE CE, B	TRATI	DN /0.3m	\mathbf{x}	HYDR	AULIC k, cm		CTIVITY,	T	-Q	PIEZOMETE	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEA Cu, kł	20 IR STF Pa 20	40 RENG 40	STH I	u natV.⊣ remV.€	80 - Q - ● Ə U - O 80	w w	1		IT PERC	10 ⁻³ ÆNT -∎ WI 64	ADDITIONAL LAB. TESTING	OR STANDPIP INSTALLATIO	E
— o	_	GROUND SURFACE GRAVELLY SAND and boulders, trace	0.0	2 0.0													_	_		Organita	a a
	Power Auger	Slightly weathered, greenish grey porphyritic TONALITE, hematite and fledspar veins throughout			1	50 DO	50/ 0.2	81		30	30	-								Concrete Riser Hole Plug	
	CME 55				·····			10(%) 2'	S.C.R. (%)	50 50 41	76 (%) gov 									∑ 5/31/2011 Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	ىخى تىخى تىخى تىخى تىخى تىخى تىخى تىخى
- - 7 -					· · · .																
		END OF BOREHOLE		7.2																	-
	EPTH : 50	SCALE						Â		Go	olde	er ates								OGGED: MO IECKED: BG?	

										00	1011	inteo	a u	s pe	<i></i>	01 11		51011 0			7.0	1101	100			EA Documentation ry 2018 - 1656263 -
PF	ROJEC	T: 10-1118-0020 PH 4000	F	RECO	DRI	DO	DF	D	RI	LL	.H(OL	E	:	В	R	H-002	24								IEET 1 OF 1
		DN: N ;E												arch 2 Track											DA	ATUM: Geodetic
IN	CLINA	TION: -90° AZIMUTH:												TOR		uni										
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.		-USH <u>% RETU</u> R∃ O < Ø	N - J LT - F HR- S N - V J - C RECC OTAL DRE % 898	Shear /ein Conju OVER SOI COR	Igate	F	MET	liatio ontac thog eava ACT. DEX	on st	le D	UN-U ST-S IR-Ir	lanar Surved Indulating Itepped regular ONTINUITY TYPE AND : DESCRI		lickens mooth ough	ical B	reak YDR/ NDU0 k, cr	NOTE abbrev of abb symbo	E: For a viation previation s. Dia Poir Ir (N	metral	al to list	NOTES WATER LEVELS INSTRUMENTATION
- 1		TOP OF BEDROCK					Ĩ			4.4										Ì	Ì	ÌÌ	Ĩ	Ĩ		
	CME 55 NG Core	Slightly weathered, greenish grey porphyritic TONALITE, hematite and fledspar veins throughout		1.0	2												JPLR JPLR JPLR JPLR JPLR JPLR Void Void JUER JVLR Void JUER JUER JUER JPLR Broker JPLR JPLR Void	· · · · · · · · · · · · · · · · · · ·								Riser Hole Plug
		END OF DRILLHOLE																								-
DE	EPTH S	SCALE					(Ĵ		G	io] so	lde cia	r	es												DGGED: MO ECKED: BG?

Submitted as part of the Version 3 HPCP A ded EIS/EA D

Γ	PRO	OJEC	T: 10-1118-0020 PH 4000	F	RECO	DR	D		F BO	RE	HOL	E:	BR						<i>Janua</i> Sł	HEET 1 OF 1
			DN: N ;E						BORING				11							ATUM: Geodetic
	SAN	MPLE	R HAMMER, 63.5 kg; DROP, 760 mm						INCLINA	FION:	-90 deg	grees			PENE	TRATI	ON TES	T Hamn	IER, 63.	5 kg; DROP, 760 mm
щ		ДŎ	SOIL PROFILE			SAI	MPL	ES	DYNAMI RESIST/	C PEN ANCE,	ETRATIC BLOWS	DN 10.3m	$\overline{)}$	HYDR	AULIC C k, cm/s		TIVITY,	T	<u> </u>	PIEZOMETER
DEPTH SCALE	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STREN	IGTH r r	iat V. + em V. ∉	30 Q - ● U - ○ 30	w w	ATER C		T PERC	10 ⁻³ ENT WI 64	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_	0	_	GROUND SURFACE																	
		Power Auger mm Diam. (Hollow Stem Auger)	Peat (ORGANICS)		0.0		50													-
-		m Dia	ORGANICS, and silty SAND, little gravel		1.2	1	50 DO	3												
F		200 m	Silty SAND and COBBLES		1.5		50													
Ē	╞		END OF BOREHOLE		1.0	2	50 DO	50											$\left \right $	
SUD-BOREHOLE 10-1118-0020 (4000) GPJ GLDR_CAN.GDT 22/06/11 DATA NPUT:	2 3 4 5 6 7 8 9		PROBABLE BEDROCK REFUSAL																	
HOLE																				
SUD-BORE	DEF 1 : 5		SCALE						Ð	G Ass	olde ocia	r ites								DGGED: MO ECKED: BG?

LO	CA	TIO	T: 10-1118-0020 PH 4000 N: N ;E R HAMMER, 63.5 kg; DROP, 760 mm	F	RECO	DR	D		BORI INCLI	ing d Inatio	ATE: ON:	: Ma -90 (arch deg	29, 201 rees		H-0(RATIO	ON TE	EST H/	AMME	D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 mm
DEPTH SCALE METRES		BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	MPL JAKE	BLOWS/0.3m		AMIC SISTAN 20 L AR ST kPa 20	4	0 IGTH	60) 8 at V. + m V. ⊕	Q - ● U - O	1 V W	AULIC k, cr 10 ⁻⁶ VATER VATER	n/s 10 ⁻	₅ NTEN	10 ⁻⁴ 	Y, <u>10⁻³</u> RCEINT <u>1</u> WI <u>64</u>	I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
• 0	uger	low Stem Auger)	GROUND SURFACE ORGANICS Loose to compact, moist, light brown SILTY SAND, trace organics		0.0		50 DO	11																र, स्ट्रा इ.स. <u>स्</u> रस्
• 1	Power Auger	200 mm Diam. (Hollow Stem Auger)	Cobbles and Boulders Slightly weathered, grey, fine crystalline,		1.2		50 DO	28																Silica Sand
2			Slightly weathered, grey, fine crystalline, medium strong rock		2.2	-			g	98	48	:	38						· · · · · ·	••••				Bentonite Holeplug V 5/31/2011
- 3 - 4 - 5	CME 55	NQ Core							(%)	20 20 20 20 20 20 20 20	51	Q.D. (%)	90 											Silica Sand
7			Noto:		87					00	63		98											31.8 mm Diam. PVC #10 Slot
9 10			Note: 1. For coring details see Record of Drillhole BRH-0026.		8.7																			
DE 1:			CALE		1	1	<u> </u>		Ĝ		G	olo	le:	r tes			<u> </u>							DGGED: MO ECKED: BG?

Submitted as part of the Ver	sion 3 HRGP Amended	EIS/EA Documentation
------------------------------	---------------------	----------------------

LC	CATIO	2T: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	R	RECC	ORD) OF	[ORILI	LING L RIC	G DA ⁻ G: C		Marc 5 Tra	h 29, ckma	2011)26						ary 2018 SHEET 1 C DATUM: G	
DEPTH SCALE METRES	DRILLING RECORD		SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	USH <u>COLO</u>	JN - FLT - SHR- VN - CJ -	Joint Fault Shear Vein Conju OVER	gate Y ID E %	BI FC CC	D- Bed D- Folia D- Cont R- Orth - Clea	ding ation tact ogona avage T X ES	I vngle	UN-L ST-S IR-II	TYPE AN	K SM- Ro- MB-	nsided h inical E	Break	NOTE: abbrevi of abbr symbol AULIC CTIVITY	For add ations re eviations s.	_oad _{RN} ex _C a) д∨	wAT	NOTES ER LEVELS UMENTATION
	CME 55 MIZ Core	TOP OF BEDROCK Slightly weathered, grey, fine crystalline, weak rock Slightly weathered, grey, fine crystalline, medium strong rock Sheared volcanics		2.2	3 3 4											ely tured ely tured ely tured ely tured ely tured ely tured M M			10-10-10-10-10-10-10-10-10-10-10-10-10-1			Bentonite H	y /31/2011 x x x x x x x x x x x x x
010 000/16PJ (542-0185-0501 220/6711 DATA INPUT: 01 0 11 11 11 11 11 11 11 11 11 11 11 11		END OF DRILLHOLE		8.7											JIR JIR JIR JIR JIR JIR								
ř.	EPTH : 50	SCALE					Ĵ	Ì	G	ol soc	deı ciat	tes										Logged: Hecked:	

OC	ATI	CT: 10-1118-0020 PH 4000 ION: N ;E .ER HAMMER, 63.5 kg; DROP, 760 mm	F	REC	OR	D		F BORE BORING DAT	E: April	8, 2011	BR	H-00		TRATI			D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 mm
		-			64	MPL				-	<u> </u>	HYDR						
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	1BER	ЗЧХ	3m	DYNAMIC PE RESISTANCE 20 SHEAR STRE Cu, kPa 20	40 I NGTH	60 8 L nat V. + rem V. ⊕	Q - ● U - O 30	1 W W	k, cm/s 0 ⁻⁶ 1 /ATER C	0 ⁻⁵ ONTEN	10 ⁻⁴ T PERC	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	_	GROUND SURFACE							40						40			
		PEAT Loose, wet, dark brown PEAT, some		0.0	,	50												
		sand, some silt			1	50 DO	PL											Bentonite Holeplug Riser
1 2	er Stem Auroer	Loose to compact, wet, grey, SITLY SAND, trace gravel		0.6		50												
- Doute Aug	200 mm Diam (Hollow Stam Auraer)	lam. (Hollow			2	50 DO	8											Silico Sond
	000 mm D	Compact, wet, grey coarse SAND and GRAVEL, trace silt	0.0	0. 1.7	3	50 DO	13											Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
2		END OF BOREHOLE	0.0.0.0	o.	4	50 DO	50/ 0.12								<u>.</u>			<u>, 445, 84</u>
3 4 5 7			~		· · · · ·													
9																		
)EP : 5(I SCALE					(fold	er								DGGED: MO ECKED: BG?

LOC	ATIO	CT: 10-1118-0020 PH 4000 DN: N ;E	REC		KD.		BORING DAT	E: April	3, 2011	БK	H-0028		D	HEET 1 OF 1 ATUM: Geodetic
SAN	1PLE	R HAMMER, 63.5 kg; DROP, 760 mm					INCLINATION				PENETRA	ATION TEST HAI	MMER, 63	8.5 kg; DROP, 760 m
METKES	BORING METHOD	SOIL PROFILE	STRATA PLOT (m) (jata	H	AMPL 3d/L	BLOWS/0.3m	DYNAMIC PE RESISTANC 20 SHEAR STR Cu, kPa 20	40 (ENGTH	i0 8 L nat V. + em V. ⊕	Q - • U - •		DUCTIVITY, 10^4 10^3 TENT PERCENT Θ^W WI 48 64	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
0	_	GROUND SURFACE												
0		PEAT Loose, wet SANDY SILT, trace clay	===:).0).2 1	50 DO	PL								
1	em Auger)			2	50 DO	10								Bentonite Holeplug
2	200 mm Diam. (Hollow Stem Auger)			3	50 DO	5								
3	2	Compact to dense, wet, light brown SILTY SAND, trace clay, trace gravel		2.9	50 DO	37								Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
4		Fresh, grey, coarsely grained crystalline, strong rock (Tonalite)		3.8			100	14 100		····				Bentonite Holeplug
5	CME 55 NQ Core						TCR (%) .0 	60 K.O.D. (%)						Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
6 7		Note: 1. For coring details see Record of Drillhole BRH-0028.		5.7 	· · · · · · · · · · · · · · · · · · ·									
8														
9														
10														
LL DEF	TH S	SCALE			1		Ø	Golde	r	<u> </u>				I OGGED: MO

LC	CAT	CT: 10-1118-0020 PH 4000 ION: N ;E ATION: -90° AZIMUTH:	R	ECC	DRI	d OI	FI	DF DF	RILL RILL	ING . RIG	DA G: C		Ap 55 ⊺	ril 3, Frac	, 20 kma	11		-002	8							 ;		SH	'y 2018 - 103 (IEET 1 OF 1 .TUM: Geodetic	8263 -
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION TOP OF BEDROCK	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH VN CJ RI	- Jo T - Fa IR- Sh I - Ve - Co ECOV	int iult iear ein onjug	ate - R %	B F C	D-Be O-Fo R-Or L-Cl FRA INE MET	eddin liatio ontac thoge eava	g n t	gle	ST - IR -	Cur Ste Irre	rved	K - SM- Ro - MB- DATA	Roug Mec	onei	al Bi	YDR/ NDU k, ci	NOT abbro of ab symb	E: Fo eviatio brevi cols.	r addit ons rel ations	tral badRi x -i	ist	NOTES WATER LEVE INSTRUMENTA	
- 4 - 4 	CME 55	Fresh, grey, coarsely grained crystalline, strong rock (Tonalite)		3.8	2									• • • • • •				JIR JUR Closely Fracture JSTR JPLR JPLR JPLSM JIR Intensle Fracture	v										Bentonite Holeplug Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
		END OF DRILLHOLE		5.7														Intensie	у											
DE		SCALE					G	Ì	Å	G	ol 300	de cia	r Ite	es															IGGED: MO ECKED: BG?	

		T: 10-1118-0020 PH 4000 DN: N ;E	R	ECO	R) (BORIN						3RF	1 -00	29A	1					HEET 1 OF 2 ATUM: Geodetic
SAN	1PLE	R HAMMER, 63.5 kg; DROP, 760 mm						INCLI	NATI	ON:	-90 d	egre	ees			PEN	ETRA	TION	I TEST	HAMM	ER, 63	.5 kg; DROP, 760 r
	Q	SOIL PROFILE			SA	MPL	ES	DYN			ETRAT BLOW		2m	<u>}</u>	HYDF	AULIC k, crr	COND	UCTI	VITY,	Т		
MEIRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m		20	4	0 GTH	60	80	Q - ● U - O	v v	10 ⁻⁶ VATER /p	10 ⁻⁵ CONT		PERCE	0 ⁻³ ⊥ NT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIC
0		GROUND SURFACE									<u> </u>			, 			Ī					
0		PEAT (Organics) Very loose, wet, dark brown SILTY SAND, some orgnics, some gravel		0.0	1	50 DO	PL															∑ 5/31/2011
1		Loose to compact, wet, brown, coarse SAND, some gravel, trace silt		0.8	2	50 DO	14															Bentonite Holeplug
2	5				3	50 DO	12										· .					Riser
	Power Auger 200 mm Diam. (Hollow Stem Auger)				4	50 DO	11										•. ••.	•••••	2			
3	200 mm Diam.				5	50 DO	20															
4					6	50 DO	26					••••••	· · · · · . · · · ·	· · · · · · · ·								Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
5					7	50 DO	10				·	·										
					8	50	· 50/			 	•••••											
6		Slightly weathered, grey, coarse to very coarse crystalline, medium strong rock (Tonalite)		5.6		DO	0.27	98	··	67	7.	2										
7		Fresh, grey, coarsely crystalline, strong rock		6:8																		Bentonite Holeplug
8	CME 55 NQ Core							T.C.R. (%) 0	00 S.C.R. (%)	100	R.Q.D. (%)	00										
9								10	10	97	10	00										Silica Sand
10									+-			+			 			-				
		CONTINUED NEXT PAGE																				

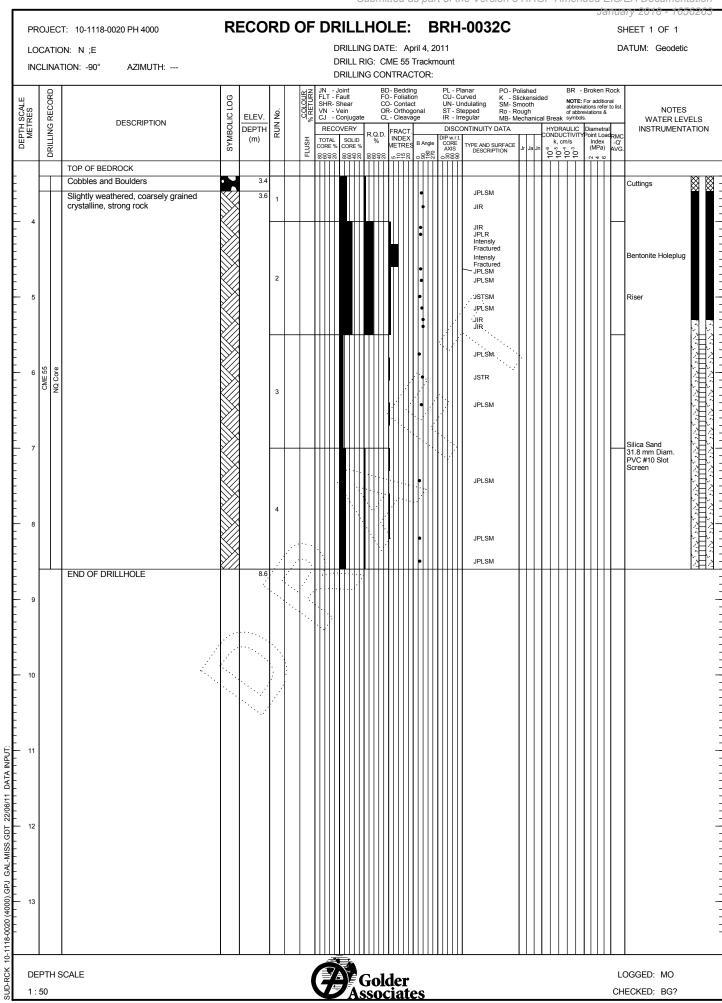
2 0000 Submitte t of the Ve

			∵ 10-1118-0020 PH 4000 N: N ;E	RECO	DRI	DO							2011	BRH	1-00	29A					HEET 2 OF 2 ATUM: Geodeti	50205
SA	MF	PLEF	R HAMMER, 63.5 kg; DROP, 760 mm					INCL	INAT	ION:	-90	degi	ees			PENE	ETRATI	ON TE	ST HAM	IMER, 63	.5 kg; DROP, 76	i0 mm
щ	G	n l	SOIL PROFILE		SA	AMPL	ES	DYN RES	IAMIC SISTA	PEN	IETRA BLO\	ATIO NS/0	N .3m	$\overline{\boldsymbol{\lambda}}$	HYDR	AULIC (k, cm/	CONDU	CTIVITY	,	TLo	PIEZOME	тер
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m)	-1 =	TYPE	BLOWS/0.3m	SHE Cu,	20 AR S kPa 20	TREN	10 NGTH	60 na re 60	it V. + m V. ⊕	Q - • U - O	w w	/ATER (p		10 ⁻⁴ IT PER(V 48		ADDITIONAL LAB. TESTING	STANDP INSTALLA	IPE
- 10			CONTINUED FROM PREVIOUS PAGE Fresh, grey, coarsely crystalline, strong															_	_	_		ाम्मन
- 11	CME 55	NQ Core	rock					C.R. (%)	00 (%) 8'C'B' (%)	97	R.Q.D. (%)	75									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen 31.8 mm Diam. PVC #10 Slot Screen	
- 12			Note: 1. For coring details see Record of Drillhole BRH-0029A.	11	.9												•	·				<u> </u>
- 13 - 14																						
- 16 - 17									·													
- 19 - 20																						
			CALE					Ó		G	ole	de	r tes								DGGED: MO IECKED: BG?	

LC	CAT	CT: 10-1118-0020 PH 4000 ON: N ;E ATION: -90° AZIMUTH:	RE	ECO	RD) Of		DF			IO DAT	LE TE:	Apr	-	3F	RH	-00								ian	S⊦	ry 2018 - 1030 IEET 1 OF 1 ATUM: Geodetic	8283 -
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	SH VN CJ	- Jo T - Fa IR- Sh I - Ve - Co ECOV	int iult iear ein onjuga	R.	BE FC CC	D- Be D- Fol D- Co R- Ort - Cle FRA IND METI	dding iatior ntact hogo avag CT. EX RES			JN-U ST-S R-In	anar urved ndulatin tepped egular DNTINU TYPE A DES	g S R N	ACE	ckensi looth ugh	cal Br H1 CON	N a o	IOTE: I bbrevia f abbre ymbols JLIC TVITY s	Broke For add ations reviations s: Diame Point L Inde (MP	iitional efer to s & etral _oadR ex , 'a) A	list	NOTES WATER LEVE INSTRUMENTA	
- - - 6 - -		TOP OF BEDROCK Slightly weathered, grey, coarse to very coarse crystalline, medium strong rock (Tonalite)		5.6	1									•			JIR JUS JIS JIR JIR JIR JIR	SM M									Silica Sand	- -
		Fresh, grey, coarsely crystalline, strong rock		6.8	2							-		•	••••		JIR		· . · · · · ·								Bentonite Holeplug	- مالىكى بىرىكى مىلى مالىكى بىرىكى مىلى
- 9 - 9 					3								••••	•			JIR JIR										Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
- - - - - - - - - - - - - - - - - - -		END OF DRILLHOLE			4			••••	•••	•••				•			Inte Fra JIR JIR JST JST	ISM ISM ISM										
																												-
																												-
	EPTH 50	SCALE					III G	Ż		 G	 ole oc	 de cia	r te	 :s													DGGED: MO ECKED: BG?	

		CT: 10-1118-0020 PH 400)	REC	OR	D(BRH	1-003	0 A				Sł	17 2018 - 10502 HEET 1 OF 1 ATUM: Geodetic
SAN	/IPL	ER HAMMER, 63.5 kg; DR	DP, 760 mm					INCLINA	TION:	-90 de	grees			PENE	[RATIO	N TEST I	HAMME	ER, 63	.5 kg; DROP, 760 mr
2	1ETHOD	SOI	PROFILE	LO D		AMPL	1	DYNAM RESIST		ETRATIO BLOWS		, 10		k, cm/s	ONDUCT		I	DNAL STING	PIEZOMETER OR
INFLINES	BORING METHOD	DESCRIPTI	ON	STRATA PLOT (m) (m)	FH S	ТҮРЕ	BLOWS/0.3m	SHEAR Cu, kPa 20			nat V. + em V.⊕	Q - • U - O		⊢	0 ^W			ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
0		GROUND SURFACE																	
0		PEAT (Organics)		= =:	0.0														
		Loose, wet, dark brown trace organics			0.2 1	50 DO	PL												Bentonite Holeplug
1	ger Stom Autoor/	Loose to compact, wet, I some sand, trace clay			2	50 DO	14												Riser 5/31/2011
2	Power Auger	Loose to compact, wet, i SILT, trace clay SILT, trace clay	prown to grey		3	50 DO	14								··.				
	000	807			4	50 DO	21							···.		•			Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
3		Loose, wet, coarse SAN	D some gravel		3.0														
		,trace silt, cobbles	D, some graver		5	50 DO	50/ 0.25				÷.,	· · · · ·							ž
		Slightly weathered, medi grey strong rock (sheare	um crystalline, d volcanics)		3.3			100	81	84		· · · · ·							Bentonite Holeplug
4	CME 55	5mm silt seam in joint						T.C.R. (%)	S.C.R. (%)	R.Q.D. (%)		······							
5		Fresh, coarse grained cr strong rock (Tonalite)	ystalline, grey		4.6			98	75 										Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
		Nata		×	5.6	<u> </u>	ŀ												
6		Note: 1. For coring details see Drillhole BRH-0030A.	Record of		5.6 	•			•										
7						·		•											
8																			
9																			
10																			
-																			
DEF 1:5		ISCALE					(Ð	G	olde	r ates								DGGED: MO ECKED: BG?

F	RO	JEC.	T: 10-1118-0020 PH 4000	R	ECO	R	0 0	ΓI	DF	RII		Η	0	LE			Bł	R۲	1-00	30	A							Ja		ry 2018 - 10502 HEET 1 OF 2	.03
			N: N ;E TION: -90° AZIMUTH:						0	DRI	LLIN LL R LLIN	lG:	C	NE 5	55 T	rack	kmo												D	ATUM: Geodetic	
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	COLOUR	% RETI 0 < 0	N - (ELT - I SHR- 5 /N - 1 CJ - 0 RECO	Shea Vein Conji OVEI	ar ugate	R.C	CC OF CL Q.D.	- Bec - Foli - Cor - Orti - Cle FRA	ntact hogo avag CT.	nal e		UN- I ST - S IR - I DISC	Planar Curved Undulatir Stepped Irregular CONTINU	JITY D		licker moot tough	nside :h	I Bre HYI CON	ak	NOTE: abbrev of abbr symbo ULIC TIVIT	: For a riation reviati ls. Dia YPoir	ken F addition s refer ons & metra nt Loa	nal to list	NOTES WATER LEVELS INSTRUMENTATIO	
DE		DRIL		SYI	(,			8	DRE %	CO	RE %		265 %	NETF ہون TT	RES	BAng S8€ TTT	270 al	IP w.r. CORE AXIS ଚଳଚ୍ଚିତ୍ର	TYPE A DES	ND SU SCRIPT	RFACE ION	Jr J	a Jn		(, cm		(1	ndex MPa)	GRMC -Q' AVG.		
-	4		TOP OF BEDROCK Slightly weathered, medium crystalline, grey strong rock (sheared volcanics)		3.3	1																								Bentonite Holeplug	
	CME 55	NQ Core	Fresh, coarse grained crystalline, grey strong rock (Tonalite)		4.6	2														· · · · ·	·									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	
	1		END OF DRILLHOLE		5.6														PL	LK											
K 10-111																															
Da-dus)EP : 50		CALE						Ĩ)		GC SS	olo oc	le ia	r te	S														DGGED: MO ECKED: BG?	


PR	OJEC	T: 10-1118-0020 PH 4000	R	ECO	RD	0	F C									H-	0030)A						Jai	SF	ry 2018 - 1030203 IEET 2 OF 2
		DN: N ;E TION: -90° AZIMUTH:						D	RILL	RIG	3: C	re: 7 Me 5 Ntra	5 Tra	ickm		t									DA	ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR	R CJ R CJ	ECO TAL RE %	hear ein onjug VERY SOLI CORE	, D %	CI CI 2.Q.D. %	D- Bed D- Folia D- Cont R- Orth - Clea FRAC INDE METR	tact ogona wage T. X ES B /	Angle	DIS DIP w. CORI AXIS	- Und - Step - Irreg GCON	nar ved dulating pped gular NTINUITY I TYPE AND SI DESCRIP		ickens nooth ough	ided cal Br	eak /DRA IDUC k, cm	BR abbrev of abbrev symbo ULIC TIVIT n/s	: For ar iations reviatio	ddition refer fons &	a	NOTES WATER LEVELS INSTRUMENTATION
_		CONTINUED FROM PREVIOUS PAGE					88	2040	884	8 20	848	3 ² 0	50 S	270	890					<u></u>		Ĭ	_ ∾ ·	4 9		
(4000)GPJ GAT-MISS.GDT 22006/11 DATA NPUUT: 11 12 13 14 14 15 16 17 18 19 20 21 21 22 23 23 24		CONTINUED FROM PREVIOUS PAGE															JIR JPLR JIR JIR JR JR JPLSM JPLSM JIR JIR									
10-1118-0020 (4000 1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1																										
DE DE DE		SCALE					G			G	ol soc	der der	tes	5												DGGED: MO ECKED: BG?

LOCAT	IECT: 10-1118-0020 PH 4000 ITION: N ;E PLER HAMMER, 63.5 kg; DROP, 760 mm	RE	ECC	RI	DC	BO	BORE PRING DATE	: April	2, 2011	BR	H-00		ΤΒΔΤΙΛ)N TES		D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 mn
	-										11/00					1 T	
METRES BORING METHOD	DO SOIL PROFILE	D I	ELEV. DEPTH (m)	~			HEAR STREM u, kPa	HO E I NGTH r r	60 8		1 W W		0 ⁻⁵ ONTEN O ^W	10 ⁻⁴ T PERC	10 ⁻³ ENT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0	GROUND SURFACE						20			0				40	04		
1	PEAT (Native)		0.0		50 1 50 1	_											∑ 5/31/2011
2	Loose, wet, grey SILT, trace sand SAND, dense Compact, wet, grey CLAYEY SILT, trace	e	1.7 <u>2.0</u> 2.1	3	50 DO 8	3							·				
vuger	sand The second			4	50 DO 11	в											Bentonite Holeplug
Power Auger	Very loose, wet, grey medium to coarse SAND Compact, wet, CLAYEY SILT, trace sand		3.0	5	50 DO 12	2											
4				-	50 DO 3	3				· · · · · ·							Riser
5				6	50 DO 1'	7 											
6																	31.8 mm Diam. PVC #10 Slot Screen Silica Sand
8	END OF BOREHOLE		6.2		50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 	77 											ľ>
10																	
DEPTH 1 : 50	H SCALE						D As	olde	r	L	<u> </u>	<u> </u>	I	<u> </u>			DGGED: MO IECKED: BG?

OCA	TIO	T: 10-1118-0020 PH 4000 N: N ;E R HAMMER, 63.5 kg; DROP, 760 mm	F	RECO	DR	D		F BOF BORING D INCLINATI	DATE:	April	3, 2011	BR	H-00		TRATIO	ON TES	ST HAMM	D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 mi
											-			AULIC C				1	I
		SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	MPL	BLOWS/0.3m	DYNAMIC RESISTAN 20 	4	0 0 GTH	60 8 L nat V. + rem V. ⊕	Q - ● U - ○	1 W	k, cm/s 0 ⁻⁶ 1 /ATER C	o ⁻⁵ ONTEN 	10 ⁻⁴ T PERC	10-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE Loose, moist, brown PEAT, trace cobble,	FSS	0.0													_		
1		trace gravel		0.0	1	50 DO	PL												Bentonite Holeplug
					2	50 DO	11												Riser 5/31/2011
N Power Auger	mm Diam. (Hollow Stem Auger	Loose to compact, wet, grey SILT, trace sand		1.5	3	50 DO	16												
3	200 mm Diar	Compact, wet, grey SILTY SAND		2.4	4	50 DO	22												Silica Sand 31.8 mm Diam. PVC #10 Slot
5		Loose, wet, grey, coarse SAND and GRAVEL, trace silt	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	3.0	5	50 DO	11												Screen
4 —		Fresh, grey, coarsley grained crystalline,	0.00	4.0	6	50 DO	50/ 0.2												
CME 55 C	NQ Core							T.C.R. (%).	-	R.O.D. (%): 83									Bentonite Holeplug
6			\mathbb{N}			· ·													Silica Sand
7								: 100	68	82									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
		Note: 1. For coring details see Record of Drillhole BRH-0032.		7.3															<u> </u>
8																			
9																			
0																			
DEPT	нs	CALE					(G	olde	r							L	DGGED: MO
EPTI 50	НS	CALE						Ð	G	olde ocia	er ates								DGGED: MO ECKED: BG?

LC	CATIO	:Т: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	R	RECO	DR	DO)F	D	RILL RILL	.ING . RIC	G DA G: C	TE: ME	Ар 55 ⁻	oril 3, Trac	20 [.] kmc	11	-003	32						Ja	Sł	ry 2018 - 103 HEET 1 OF 1 ATUM: Geodetic	
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION TOP OF BEDROCK	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR	S 4 10 2 4 10 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	I - Jo T - Fa HR- Si N - V J - C RECO	oint ault hear ein onjug	ate / R	B F	' INE MET	eddin oliatic ontac thog eava	g on tt onal ge	gle	ST - IR -	nar ved dulating pped gular NTINUITY TYPE AND S DESCRIF	K - SM- Ro - MB- DATA	1	ensic oth ah	al Br HY CON	NOTE abbrev of abbr symbo ULIC TIVIT	: For a viations reviations ols. Diar Poin In (N	ken R addition s refer ons & metrai t Load dex MPa)		NOTES WATER LEV INSTRUMENT,	'ELS
	CME 55 NQ Core	Fresh, grey, coarsley grained crystalline, strong rock (Tonalite)		4.0	2									• • •			MB JSTR JPLSM JPLSM JPLSM JPLSM JIR JPLSM JPLSM JPLSM JIR JPLSM JIR JPLSM JIR	·	· · · ·							Bentonite Holeplug Silica Sand 31.8 mm Diam. PVC #10 Slot Screen	للمرتمينية بمرتمينية المرتمينية المرتمينية المرتمينية المرتمينية المرتمينية المرتمينية المرتمينية المرتمينية ال مرتبع المرتبعة المرتبعة المرتبعة المرتبعة المرتبة المرتبة المرتبة المرتبعة المرتبة المرتبة المرتبة المرتبة المر
		END OF DRILLHOLE		7.3																							<u>L. T. J. T</u> - - - - - -
÷	EPTH S	SCALE					(Ĵ		G	ol 500	de cia	er ate	es												DGGED: MO ECKED: BG?	

LOCATIO	CT: 10-1118-0020 PH 4000 ION: N ;E ER HAMMER, 63.5 kg; DROP, 760 mm	R	ECO	R	00			g date	E: Ap	oril 4, 2	2011	BRH	1-003			TION	N TES	t hamm	D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 m
MELKES BORING METHOD	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	~	MPL 3d/L	BLOWS/0.3m	RESIS 2 SHEAF Cu, kP	R STRE	, BLO\ 40 NGTH	NS/0.3 60 nat rem	3m 8(V. + 1 V. ⊕	Q - ● U - O	w w	k, cm 0 ⁻⁶ /ATER /ATER	/s 10 ⁻⁵ CONT		PERCI	WI	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
2 Dower Auger mm Diam. (Hollow Stem Auger)	GROUND SURFACE FOR STRATIGRAPHY DETAILS SEE RECORD OF BOREHOLE BRH-0032.		0.0					0	40	60	80			<u>6</u>	32	48		64		∑ 5/31/2011 Cuttings
2 3 4 Power 20 200 mm Diam. (H	Cobbles and Boulders Slightly weathered, coarsely grained crystalline, strong rock		3.4 3.6	1 1			100			94										Bentonite Holeplug
2 CME 55 NO CORE	INA CALC			·····			T.C.R. (%)		_	100										Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
9	Note: 1. For coring details see Record of Drillhole BRH-0032C.		8.6	÷																- - - -

	CT: 10-1118-0020 PH 4000	RE	CO	RD	0					BR	H-0033				HEET 1 OF 1
	ON: N ;E ER HAMMER, 63.5 kg; DROP, 760 mm					BORING					PENE	TRATION	TEST HA		ATUM: Geodetic 3.5 kg; DROP, 760 m
	-									<u> </u>	-				1
BORING METHOD	DESCRIPTION	STRATA PLOT	_EV.	NUMBER TYPE	3m	DYNAMI RESISTA 20 SHEAR S Cu, kPa	40 I STRENG	6 TH n r	0 8 at V. + em V. ⊕		WATER C	0 ⁻⁵ 10 ⁻⁴ ONTENT F 0W	4 10 ⁻³ PERCEINT	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
_	GROUND SURFACE	0,				20	40	6	8 0	0	16 3	32 48	64		
0	Loose, wet, dark brown PEAT (Fibrous)		0.0	1 50 DC) PL										
1			:	2 50 DC	12										Bentonite Holeplug ∑ 5/31/2011
2	Loose, wet, grey, coarse SAND, trace gravel		2.0	3 50 DC	6	-						·			Riser
				4 50	0 10								2		
Power Auger mm Diam. (Hollow Stem Auger)				5 50	2 7										
Powe 0 mm Diam. (F			-	6 50	2 3			·····	·····.	·····;;					Silica Sand
200				7a 50	2 7	-				**•*					31.8 mm Diam. PVC #10 Slot Screen
5	Compact, wet, grey SILT, trace sand		5.0 7	7b	D		;	•••••							
6				····.			•••••								
7				8 DC		- - - -									Cave-In
	END OF BOREHOLE SPOON REFUSAL		7.3	····											
8															
9															
0															
DEPTH	I					Ð		ماراد	r		<u> </u>		I		OGGED: MO

LOCA	TIO	T: 10-1118-0020 PH 4000 N: N ;E R HAMMER, 63.5 kg; DROP, 760 mm	R	ECO	R	0 0		BORING	G DA	re: /	April 5	, 2011	BRH	1-003		TRATIO	ON TES		D	HEET 1 OF 1 ATUM: Geodetic .5 kg; DROP, 760 mm
	5	SOIL PROFILE			SA	MPL	FS	DYNA RESIS	MIC PI	ENETI	RATIC	N	<u>۱</u>	HYDR	AULIC C	ONDUC	TIVITY,	т		
METRES		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	ш	2 SHEAI Cu, kP	20 L R STR	40	6	0 8 atV.+ emV.⊕	Q - ● U - O	w w		0 ⁻⁵ ONTEN		10 ⁻³ ENT WI 64	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		GROUND SURFACE											-							
0		Loose, wet, dark brown, PEAT, trace sand Boulder		0.0	1	50 DO	3													
1		Loose, wet, dark brown PEAT, trace sand		1.0	2	RC	-	-												∑ 5/31/2011
N Power Auger	mm Diam. (Hollow Stem Auger)				3	50 DO	1	-												
Powe	iam. (F	Loose, wet, grey, SILT, trace sand	- FITT	2.4	4	50 DO	5													Bentonite Holeplug
3	200 mm D	Cobbles and Boulders		2.7		DO														
5		Compact, wet, grey, coarse, SAND and GRAVEL Fresh, grey, coarsely grained, crystalline, strong rock		4.3	5	50 DO	50/ 0.3						******							Riser
9 CME 55	NQ Core							T.C.R. (%)	S.C.R. (%)	91	100									Silica Sand
7					· · · .			100		72	93									Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
8		Note: 1. For coring details see Record of Drillhole BRH-0034A.		7.3																
9																				
10																				
DEPTI 1 : 50	нs	CALE	_1	1	1	<u>ı </u>	- - (Â		Gol	lde	r ites		1	1	1	<u> </u>			L DGGED: MO ECKED: BG?

LC	CATIO	:T: 10-1118-0020 PH 4000 DN: N ;E TION: -90° AZIMUTH:	RI	ECO	RD) of		DRII DRII		G: C	TE: ME 5	April 5 Tr	5, 2 ackr	2011 nou		-0034	4A					Ja		ny 2018 - 103 HEET 1 OF 1 ATUM: Geodetic	0203 -
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH <u>COLOUR</u>	JN FLT SHR VN CJ REC TOTA CORE	- Shea - Vein - Conj COVE	ar ugate RY DLID RE %	C O	METR	tact nogon avage CT. EX RES B	Angle		N-Ur T-Ste t-Irn	anar urved ndulating tepped egular DNTINUITY TYPE AND S DESCRIF		ickons	ical E	Break HYDR/ NDU k, ci	E For a viations previations ols. Diat YPoin In (N	addition s refer ons &	nal to list	NOTES WATER LEVI INSTRUMENTA	
	E 55 Core	TOP OF BEDROCK Fresh, grey, coarsely grained, crystalline, strong rock		4.6	1								•			JIR SPLR JIR MB								Riser Bentonite Holeplug Silica Sand	مر دیگر دیگر دیگر در ۱۹۱۱ میل دیگر دیگر در ۱۹۱۱ میل دیگر دیگر در
- - - - - - - - -		END OF DRILLHOLE		7.3	2								•			JPLSM JPL8M Intense Fractur Intense Fractur JPLSM JPLSM	ed ly ed							31.8 mm Diam. PVC #10 Slot Screen	
																									-
																									-
D	EPTH \$: 50	SCALE					Ĝ		G As	iol	dei	r te	6											DGGED: MO ECKED: BG?	

		ECT: 10-1118-0020 PH 4000 TION: N ;E	RE	CORD		BOREI			1-0034B	<i>Sanuary 2018 - 1050203</i> SHEET 1 OF 1 DATUM: Geodetic
SA	MPL	LER HAMMER, 63.5 kg; DROP,	760 mm			INCLINATION:	-90 degrees		PENETRATION TEST HAMM	IER, 63.5 kg; DROP, 760 mm
S	тнор	SOIL PR		SAMF	-		ETRATION BLOWS/0.3m),	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH (m)	BLOWS/0.3m	SHEAR STRE Cu, kPa	40 60 I I NGTH nat V. rem V. 40 60	80 + Q - ● ⊕ U - ○ 80	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ ⊥ WATER CONTENT PERCENT Wp ⊢ 0 ^W I WI 16 32 48 64	PIEZOMETER OR STANDPIPE GG B HISTALLATION
— o		GROUND SURFACE For stratigraphy refer to Bore	hole	0.0						
2	Power Auger	(1900 Straugraphy refer to Bore BRH-0034A	fiole							Bentonite Holeplug Riser 5/31/2011 Silica Sand 31.8 mm Diam. PVC #10 Slot Screen
	CME 55	To confirm Bedrock cored 0.	9 m depth.	3.4 R(4.3	c					
- - - - - - - -										
- 6 - 6 - 7										
- - - - - - - - - - - - - 8 -										
- 8 - 8 - 9 - 10 - 10 - 11 - 11										
- - - - - - - 10										
DE 1 :		H SCALE			(A s	older	8		LOGGED: MO CHECKED: BG?

RECORD OF BOREHOLE:	BH 12-1
----------------------------	---------

SHEET 1 OF 1

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

BORING DATE: August 17 and 19, 2012

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

ł	Ð		SOIL PROFILE			SA	MPL	ES	DYNAMIC PER RESISTANCE	IETRA1 BLOW	FION S/0.3m	Ì	HYDR	AULIC C k, cm/s	ONDUC	TIVITY,	Ţ	ں ـ	DIFTOLIE	
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m		40	60	80 - Q - ● 9 U - O	W	0 ⁻⁶ 1 / /ATER C		I PERCE		ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPE INSTALLATIO	E
	BOF			STR.	(m)	ž		BLC	20	40	60	80					40	~ ⊃		
0			GROUND SURFACE		436.84															
-		- I	PEAT (100 mm)		0.00 436.74 0.10															
	OWE	Stem Augers	(ML) SILT and SAND, trace gravel, zones of clayey silt; dark brown to brown, organic inclusions; moist, very loose		0.10	1	50 DO	3								D		MH/NP	50 mm Diameter Monitoring Well	
	JNTE	a. Hollow	(SM) SILTY SAND, some gravel; brown;		436.15															
	K MOI	nm Dia.	moist, compact		0.00	2A										0		мн		
	TRAC	500	(SP) SAND, medium grained, some fines, trace gravel; brown; wet, compact		<u>435.93</u> 0.91	2B	50 DO	19						0					Bentonite Seal $\ \underline{\nabla}$	
			For bedrock coring details refer to Record of Drillhole BH 12-1		435.62		-													
2																				N N
																				2%2%2%2%2%2%2
	NQ CORING																			NSNSNSNSN 111111 NSNSNSNSN
3																				
																			Silica Sand Filter	
4																				
		_	END OF BOREHOLE	Ē	432.65 4.19															
																			1. Water encounted during drilling at a of 1.1 m below gro surface, Aug. 17/1	depth ound
-																			2. Water level at a depth of 1.1 m bel ground surface up completion of drilli Aug. 19/12	ow on
5																				
	⊃T⊦	I SC	CALE							×.	0.11			-	-		-	L	DGGED: AM	
1:1									6	9 _A	Golde ssoci	er ates							ECKED: DCJ	
									-											

		T: 11-1118-0074 N: SEE FIGURE 2		REC	0	RI	0 0	DF										H 12-' d 19, 2012	1						SI	ry 2018 - 16 HEET 1 OF 1 ATUM: Geodetic	
IN	CLINA	TON: -90° AZIMUTH:							D	RIL		GC	ON.	TRAG	сто		TBT I	UNTED ENGINEER									
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE	FLUSH COLOUR RETURN	JN FL SH VC. F TCO 000	I - J T - F HR - S N - V J - C RECC DTAL RE %	Shear /ein Conju OVEF SO COF	gate RY LID RE %		FO- CO- OR- CL-	Bedd Folial Conta Ortho Cleav FRAC INDE 0.3 m	tion act ogona vage T. X DI C n /		CU UN ST IR	- Planar - Curved - Undulating - Stepped - Irregular NTINUITY DAT YPE AND SUR DESCRIPTIO	FACE	Slicker Smoot Rough Mecha H CO	nside th n inical	Break ULIC TIVITY 'sec	NOT	TE: Fo reviati bols. IC ex Pa)	roken Rock or additional ons refer to list ations & STRAIN E	NOTES WATER LE INSTRUMEN	VELS
GTA-RCK 008 1111180074.GPJ GAL-MISS.GDT 2/14/13 GPC AUG. 2012	NA CORING	BEDROCK SURFACE Fresh, fine to medium grained unaltered, green TONALITE (BEDROCK) END OF DRILLHOLE		435.62 1.22 432.65 4.19	2																					Bentonite Seal	
008 111180074.GPJ GAL-																											- - - -
DE DE 1 :	EPTH S 25	CALE									(Ì) A	Go	old oc	ler iat	tes									ogged: Am Ecked: DCJ	

RECORD OF BOREHOLE: BH 12-2

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

GTA-BHS 001 1

DEPTH SCALE

1 : 50

BORING DATE: August 12 and 13, 2012

SHEET 1 OF 2

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

METRES	THOL	┝	SOIL PROFILE	-		SA	MPL				NETRAT		Ľ,	k, cm/s			Ţ	NG	PIEZOMETER
TRE	BORING METHOD			STRATA PLOT	ELEV.	ER	ш	BLOWS/0.3m	2				80	1	í.	1	0 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ш	SING S		DESCRIPTION	ATA	DEPTH	NUMBER	TYPE	/S//	SHEAF Cu, kPa	R STRE	NGTH	nat V. ⊣ rem V. €	- Q - O					AB. T	INSTALLATION
	BO			STR	(m)	z		BLC	2	0	40	60	80				WI 40	1~2	
			GROUND SURFACE		418.40				_										
0			(ML) SILT, some sand; dark brown, organically stained, organic inclusions;		0.00														
			moist, loose to compact			1	50 DO	10						0					
																			50 mm Diameter Monitoring Well
		┟	(ML) sandy SILT; brown, zones of silt, zones of clayey silt; moist to wet,		417.71 0.69	-													_
1			zones of clayey silt; moist to wet, compact to very loose			2	50 DO	12							0				Ý
							00												
					2	3	50 DO	8							0				
2																			
						4	50 DO	2							0			мн	
							DO												
~		╞	(ML) CLAYEY SILT, trace sand; brown to		415.50														📕
3			grey, zones of sandy silt; cohesive, Wn>PL, soft to firm		2.00														
						5	50 DO	2							0				
4									⊕+										
	~									⊕	+								
	TRACK MOUNTED POWER AUGER	gers			1					•									
	/ER A	Dia. Hollow Stem Augers																	
	POV	w Ste				6	50 DO	2								0		мн	
5	NTEL	Ĕ																	Bentonite Seal
	MOU	n Dia			1														
	ACK	200 mm [412.84														
	Ë		(CI) SILTY CLAY, trace fine sand; medium plasticity; red-brown to grey; cohesive, Wn>PL, firm		5.56														
6			cohesive, Wn>PL, firm																
							50												
						7	50 DO	WH						F			H 0	мн	
7						8	75 TO										0		
						Ŭ	то												
8				Ħ					⊕		+								
ø																			
									Ð	+									
					409.79														
			(ML) SILT, trace to some fine sand; grey; wet, compact to loose		8.61														
9																			
						\square													
						9	50 DO	12							þ				
10												⊥			L		L		
			CONTINUED NEXT PAGE															1	
											1	1	1		1	1	1		

Golder Associates

LOGGED: AM CHECKED: DCJ

RECORD OF BOREHOLE:	BH 12-2
----------------------------	---------

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 12 and 13, 2012

SHEET 2 OF 2

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

ALE 9	DOH-		SOIL PROFILE			SA	MPL	_	DYNAMIC PENETRA RESISTANCE, BLOW	TION 'S/0.3m)			ONDUCTI		NG NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		ТҮРЕ	BLOWS/0.3m	20 40 HEAR STRENGTH Cu, kPa		g-● -0	Wp	ATER C			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CO (ML) S	NTINUED FROM PREVIOUS PAGE SILT, trace to some fine sand; grey; ompact to loose						20 40	60 80		1(0 2	20 30	40		
- 11						10	50 DO	13					0			мн	Bentonite Seal
- 12 - 13	TRACK MOUNTED POWER AUGER	200 mm Dia. Hollow Stem Augers			405.22	11	50 DO	5					0				und and and and and and a
- 14	TR	(SIVI) 3	SILTY SAND and GRAVEL, rock ents; grey; wet, compact		13.18		50 DO	14									Silica Sand Filter
15		For be Recon	drock coring details refer to d of Drillhole BH 12-2														
· 16	NQ CORING																
18		END	DF BOREHOLE		400.11 18.29												1. Water encountered during drilling at a dep of 2.1 m below grounc surface, Aug. 12/12
19 20																	2. Water level measured in monitorii well at a depth of 0.97 m (Elev. 417.49 m) below ground surface Aug. 28/12
		SCALE							<u> </u>	Golder	,						ogged: Am Iecked: DCJ

PF	ROJEC	T: 11-1118-0074		REC	OF	RD (OF	= D	R		H	OL	E	:	BH 12-	2					<i>ry 2018 - 1056263</i> HEET 1 OF 1
		N: SEE FIGURE 2 TON: -90° AZIMUTH:						DF	RILL	RIG	: CN	1E 5	5 TF	RACK	2 and 13, 2012 < MOUNTED TBT ENGINEEF					Di	ATUM: Geodetic
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FEINE IRVATION RATE (m/min) FLUSH <u>COLOUR</u>		I - Jo T - Fa HR- Sh N - Ve J - Co RECOV DTAL RE % 0 2982	iear in onjuga /ERY	R.9	CC OF	FRAG	tact logor avage CT. EX R m	ial 9	PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular DISCONTINUITY DA TYPE AND SUF DESCRIPTI	RFACE	lickens mooth ough lechani HYI CONE K,	ided	ak C TY	or additional ions refer to list iations & STRAIN	NOTES WATER LEVELS INSTRUMENTATION
- - - - - - - - - - - - - - - - - - -	NQ CORING	BEDROCK SURFACE Fine to medium grained, green, weathered to fresh TONALITE BEDROCK with Quartz vains		403.26																	
- - - - - - - - - - - - - - - - - - -		END OF DRILLHOLE		400.11																	
GTA-RCK 008 1111180074.GPJ GAL-MISS.GDT 2/14/13 GPC AUG. 2012 T = = = = = = = = = = = = = = = = = = =																					
DE DE 1 :	EPTH S	CALE		<u> </u>			11			Ĩ		G	 ole	der Liat	tes						OGGED: AM ECKED: DCJ

		2T: 11-1118-0074 DN: SEE FIGURE 2	F	REC	OR			F BC	RE	HOI	.E:	BH					j	anua Si D/	HEET 1 OF 2 ATUM: Geodetic
SP	T/DCI	PT HAMMER: MASS, 64kg; DROP, 760mm																PE: AU	JTOMATIC
DEPTH SCALE METRES	BORING METHOD	SOIL PROFILE	PLOT	ELEV.		MPL		DYNAM RESIST 20 SHEAR	ANCE,	1	/0.3m 50 8	30	1	AULIC C k, cm/s 0 ⁻⁶ 10	0 ⁻⁵ 10		I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
DEPT	BORIN	DESCRIPTION	STRATA PLOT	DEPTH (m) 419.69	z	TYPE	BLOWS/0.3m	Cu, kPa				Q - • U - ○	w	p		w	1	ADC LAB.	INSTALLATION
- - 0		GROUND SURFACE		-0.20															☑
- - - - - - - - - - -		(PT) PEAT; black, wood fragments; wet, very loose				50 DO 50 DO	WH										301 301 134.2		50 mm Diameter Monitoring Well
- - - - - - 2 -		(ML) SILT and SAND, trace gravel; grey; moist, loose (ML) SILT, some sand; grey; wet, loose		418.12 1.37 417.36 2.13	3	50 DO	6							0				мн	-
- - - - - - 3						50 DO	8								0			мн	
- - - - - - - - - -	R AUGER Augers	(CI) SILTY CLAY, medium plasticity, trace sand; red-brown to grey; cohesive,		415.22 4.27		50 DO	8	Ð	Ð	+		+			0			MH/NP	
- - - - - - - - - - - - - - - - - - -	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers	Wn>PL, soft to firm			6	50 DO	1	⊕	+	ŧ.					C				Bentonite Seal
					7	50 DO	wн	⊕	+ +					F			55.6) мн	
8		(ML) SILT, trace fine sand; grey; wet, compact to loose		<u>410.65</u> 8.84	<u> </u>	50 DO	1	⊕	++						F			р мн	
					9	50 DO	16								0			MH/NP	

GTA-BHS DEPTH SCALE 1 : 50

BAssociates

LOGGED: AM CHECKED: DCJ

				7: 11-1118-0074 N: SEE FIGURE 2	F	REC	OF	RD	0	F									BH 12-3 and 10, 2012	A				SH	ry 2018 - 163 IEET 1 OF 1 ATUM: Geodetic	6263
				ION: -90° AZIMUTH:							D	RIL	L RI	G:	CME	55	TR/	ACK	K MOUNTED TBT ENGINEEF	RING						
	DEPTH SCALE METRES		חעוררואפ אברטאח	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE (m/min)	FLUSH <u>COLOUR</u>	SH CJ R TO COF	RE %	hear ein onjuę	Y LID E %		D. I	Conta Orthog	act gona age T. V DIF C		PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular DISCONTINUITY DA TYPE AND SUF DESCRIPTI	K - SM- Ro- MB- TA	nside th anica MDR NDU K, cn	ak ; TY	For a nations reviations ls.	ken Rock dditional s refer to list ons & STRAIN £	NOTES WATER LEVE INSTRUMENTA	
		NQ CORING	100 mm Dia. Casing	BEDROCK SURFACE Fine to medium grained, green, slightly weathered to fresh TONALITE BEDROCK																					Bentonite Seal	
	- 17			END OF DRILLHOLE		403.03																				- <u> </u>
12	19 20 																									-
1111180074.GPJ GAL-MISS.GDT 2/14/13 GPC AUG. 2012	21																									
GTA-RCK 008		EPT : 50	нs	CALE	1	I	1	<u> </u>	<u> </u>	111		11	G			uu Go	old DC	er	tes		 	_1			DGGED: AM ECKED: DCJ	

RECORD OF BOREHOLE:	BH 12-3A
----------------------------	----------

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 9 and 10, 2012

SHEET 2 OF 2

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

L	дон.	SOIL PROFILE			S	AMPL	-	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV DEPTI (m)		TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - Q Cu, kPa rem V. ⊕ U - Q	Wp Vi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
10		CONTINUED FROM PREVIOUS PAGE (ML) SILT, trace fine sand; grey; wet, compact to loose	S III								
11	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers	(ML) SILT and SAND, some gravel; grey (TILL-LIKE), compact	2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	407.8 11.6		50 DO			0	мн	Bentonite Seal
13		For bedrock coring details refer to Record of Drillhole BH 12-3A			18						
15	NQ CORING 100 mm Dia. Casing										Silica Sand Filter
16 17		END OF BOREHOLE		<u>403.0</u> 16.4							1. Water encountere during drilling at a de of 2.3 m below grour surface, Aug. 9/12 2. Water level measured in monitor
18											well A at a height of 0.02 m (Elev. 419.51 above ground surfac Aug. 28/12
19											
DEF 1:5		SCALE	L	<u>I</u>	_		<u> </u>	Associates			DGGED: AM ECKED: DCJ

	PF	ROJE	ECT: 11-1118-0074	I	REC	OF	RD	0	F BOR	ehol	.E:	BH	12-3	BB		J		HEET 1 OF 1
	LC	CAT	TION: SEE FIGURE 2				E	BOR	ING DATE: A	August 14,	2012						D	ATUM: Geodetic
	SF	PT/DC	CPT HAMMER: MASS, 64kg; DROP, 760mm															
	ALE V	DOH	SOIL PROFILE		-	SA	MPL		DYNAMIC PE RESISTANC	ENETRATIO	0.3m	Ì,		k, cm/s	ONDUCI	T	RG ^R	PIEZOMETER
	DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 SHEAR STR Cu, kPa 20	ENGTH r	∟ natV.+ emV.⊕	B0 Q - ● U - ○ B0	W. Wr			 NT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
F	0		GROUND SURFACE		-0.20	1												
11 111180074.GPJ GAL-MIS.GDT 2/14/13 GPC AUG. 2012	- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 12 - DE 1 :	TRACK MOUNTED POWER AUGER	For soil details refer to Record of Borehole BH 12-3A		-0.20	1	75 TO									53.5		50 mm Diameter Monitoring Well Bentonite Seal Silica Sand Filter
GTA-BHS 0	DE 1 :	EPTH : 65	1 SCALE						(D AS	olde socia	er ates						ogged: Am Iecked: DCJ

RECORD OF BOREHOLE: BH 12-4

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 8 and 9, 2012

SHEET 1 OF 1

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

DEPTH SCALE	BORING METHOD	DESCRIPTION	PLO													IZE		R
· 0			STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	Cu, kPa	STRENGTH	nat V rem V. 6	80 + Q - ● Đ U - ○	Wp	ATER C			WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATIO	
0			S	428.77			20	40	60	80	10) 2	20	30 4	40			
	_	GROUND SURFACE (PT) Fibrous PEAT; black; wet, very	===	-0.20													<u>∑</u>	
		loose				50 DO 1									406.8		50 mm Diameter Monitoring Well	
1						50 DO 1									401.5	}		
2				426.44	3	50 DO 1									320.5	}		
	gers	(ML) CLAYEY SILT, trace fine sand; grey, zones of silt; Wn <pl to="" wn~pl,<br="">stiff</pl>		2.13 425.67	4	50 DO 10							œ⊣			мн	Bentonite Seal	
	mm Dia. Hollow Stem Auge	trace to some fine sand, zones of brown clay, zones of silt; brown to grey; cohesive, Wn>PL to Wn~PL, stiff to very stiff		2.90	5	50 DO 1	•	,		+					72	рмн		
5	200 m			423.39	6	50 DO 9					-		0					A. 20
		(ML) SILT, some fine sand; grey; wet, loose		5.18	7	50 DO 9						(Þ					2 2 2 2 2 2 2
6		(SM) SILTY SAND, trace gravel; brown to grey; wet, loose		5.94	8	50 DO 6						0				мн	Silica Sand Filter	
78		For bedrock coring details refer to Record of Drillhole BH 12-4		; 421.56 7.01														
10				418.41													1. Water encountered during drilling at a depth of 0.6 m below ground surface, Aug. 8/12	
11		END OF BOREHOLE		10.16													2. Water level at a depth of 2.7 m below ground surface upon completion of drilling, Aug. 9/12	
12																	3. Water level measured in monitoring well at a height of 0.02 m (Elev. 428.59 m) above ground surface, Aug. 28/12	
DEP	TH S	SCALE						<u>á</u>	Gold								OGGED: AM	

LC	00/	ATION	11-1118-0074 : SEE FIGURE 2 DN: -90° AZIMUTH:		REC	0	RD	0	I	DRII DRII	LLIN LL F	ng e Rig:	DATI CN	E: 1E 5	Aug i5 T	just 8 RAC	3 ar K M	BH 12-4 nd 9, 2012 MOUNTED BT ENGINEER							SH	ry 2018 - 1030203 - IEET 1 OF 1 ATUM: Geodetic
DEPTH SCALE METRES			DESCRIPTION BEDROCK SURFACE	SYMBOLIC LOG	ELEV. DEPTH (m) 421.56	RUN No.	PENETRATION RATE (m/min) COLOUR	PLUSH % RETURN		Joint Fault Shea Vein Conji OVE	ir ugate	- R.C	BD FO CC OR	FRA FRA O.3 FRA IND PE 0.3 S	dding iatior ntact hogo avag CT. EX R m	nal e		PL - Planar CU - Curved UN - Undulating ST - Stepped IR - Irregular CONTINUITY DAT TYPE AND SURI DESCRIPTIC	PO-P K -S SM-S Ro-R MB-M A	icken: nooth ough echan HY CON K	sided	Break LIC IVITY ec	NOT	TE: For reviat bbrev bols. NC lex Pa)	or additional ions refer to list iations & STRAIN	NOTES WATER LEVELS INSTRUMENTATION
			Medium grained, fresh TONALITE, dark grey		7.01	2																				
	2		END OF DRILLHOLE		10.16																					
- - - - - - - - - - - - - - - - - - -																										
13 GPC AUG. 2012																										
GTA-RCK 008 1111180074.GPJ GAL-MISS.GDT 2/14/13 GPC AUG. 2012																										
GTA-RCK 00 1	EP : 63	гн SC. 8.5	ALE		,						(Ĩ		G	ol so	de cia	r te	:5								DGGED: AM ECKED: DCJ

RECORD OF BOREHOLE:	BH 12-5
----------------------------	---------

SHEET 1 OF 1

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

BORING DATE: August 21, 2012

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

ALE			SOIL PROFILE	-		SA	AMPL	-	DYNAMIC PENETRAT RESISTANCE, BLOW	ION S/0.3m	HYDRAULIC CONDUCTIVI k, cm/s	TY, T	AL	PIEZOMETER
DEPTH SCALE METRES	BOPING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	Cu, kPa	60 80 nat V. + Q - € rem V. ⊕ U - €	Wp ┣────────────────────────────────────		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
			GROUND SURFACE	0	433.03			-	20 40	60 80	10 20 30	40		В
- 0			(SM) SAND, some fines, trace to some gravel; brown (FILL); moist to wet, very loose (PT) Fiberos (PEAT); black; wet, very loose		0.00 432.73 0.30	1A	50 DO				0	442.2	>	
- 2		-	(SP) SAND, medium grained, trace fines; brown and grey; wet, very loose		431.38 1.65	3						389.8		
-		-	(SM) SILTY SAND; grey; wet, loose		430.90 2.13	4	50 DO	7			0		МН	
- 3	TRACK MOUNTED POWER AUGER	200 mm Dia. Hollow Stem Augers				5	50 DO	9			•		МН	
- 4	TRACK MOUNT	200 mm Dia. Ht	(SP) SAND, some fines; grey; wet, very loose		428.99	64					0			
- 5		-	(ML) SILT, some sand; grey; wet, very loose		427.47	6B	50 DO	3			0			200000
- 6			(SW) SAND, trace gravel, some fines; grey; wet, compact		5.56	7	50 DO	23			0		МН	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 7		-	(SM) gravelly SILTY SAND; grey; wet, very dense		425.94 7.09 425.28 7.75	8	- 50 - DO	50/ .13			φ		МН	
- 8			For bedrock coring details refer to Record of Drillhole BH 12-5		1.15									Ş
- 9	NQ CORING													
- 10					422.34									
- 11			END OF BOREHOLE	<u></u>	10.69									1. Water encounter during drilling at a d of 0.1 m below grou surface, Aug. 21/12
- 12														2. Water level at a depth of 0.3 m belo ground surface upo completion of drillin Aug. 21/12
DE 1 :			CALE		I	1	<u> </u>		Â	Golder ssociates				ogged: Am Iecked: DCJ

			: 11-1118-0074		REC	0	RE	0 0)F			IL	Lł	Ю	C	E		BH 12-							<i>janua</i> Si	ny 2018 - 1656263 - HEET 1 OF 1
			N: SEE FIGURE 2 ION: -90° AZIMUTH:							D	RILL	RI	G: (CME	55	TR	ACK	1, 2012 K MOUNTED TBT ENGINEEF	RING						UI	ATUM: Geodetic
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION BEDROCK SURFACE	SYMBOLIC LOG	ELEV. DEPTH (m)		PENETRATION RATE (m/min)	FLUSH <u>COLOUR</u> % RETURN	JN FLT SHF VN CJ RE TOT. COR	ECO AL E %	near	Y ID E %).	Conta Ortho	act gona /age T. X DI C		DESCRIPTI	K - S SM- S Ro - F MB- N TA	imooth Rough flechan HM CON	ided ical E	Break ILIC IVITY ec	NC ab of: syr U In (N	DTE: F	Broken Rock or additional tions refer to list viations & STRAIN E	NOTES WATER LEVELS INSTRUMENTATION B A
- 8 - 9 - 10 - 10 - 11	NO CORING		EDDOCK SURFACE Weathered to fresh, green, fine to medium grained, TONALITE BEDROCK END OF DRILLHOLE		425.28 7.75 422.34 10.69	2																				
	2																									
GTA-RCK 008 1111180074.GPJ GAL-MISS.GDT 2/14/13 GPC AUG. 2012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3																									
DI DI DI	EP1 : 62		CALE								(G		À	Ga	olo	ler iat	tes								ogged: Am Ecked: DCJ

RECORD OF BOREHOLE:	BH 12-6
----------------------------	---------

LOCATION: SEE FIGURE 2

PROJECT: 11-1118-0074

BORING DATE: August 20, 2012

SHEET 1 OF 1

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

HOD		SOIL PROFILE	1.		SA	MPLE	s	DYNAM RESIST	IC PENE ANCE, B	TRATI	DN ⁄0.3m	2	HYDRA	AULIC C k, cm/s	ONDUC	TIVITY,	T	NG	PIEZOMETER	
DEPTH SCALE METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STRENG	GTH I	⊥ nat V. + rem V. ⊕	Q - ● U - ○ 80		ATER C			10 ⁻³ ⊥ ⊡ INT WI 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION	
. 1		GROUND SURFACE TOPSOIL (180 mm) (SM) SILTY SAND; brown, zones of medium sand (PROBABLE FILL); moist to wet, very loose		416.18 0.00 0.18	1 2 3 4	50 V DO V 50 DO	2 VH 2 3								0	0	0	мн		A
3 4 4		(ML) SILT, trace fine sand, zone of clayey silt; brown; wet, very loose (ML) CLAYEY SILT, trace sand; brown; Wn>PL, soft to stiff		413.28 2.90 412.83 3.35 411.91	5A 5B	50 DO	3	⊕ +	Ð	-	H-			0				MH/NP		
0UNTED P	200 mm Dia. Hollow Stem Augers	(CI) SILTY CLAY, trace to some sand; low to medium plasticity; brown to grey; cohesive, Wn>PL, firm		4.27	6 7	50 DO 75 TO	2		Ţ					F			0	мн		
7	-	(ML) SILT, trace sand; grey; moist to wet, compact		409.09 7.09	8	50 DO 1	11	⊕ ⊕		+					0					
9		END OF BOREHOLE DUE TO AUGER REFUSAL ON PROBABLE BEDROCK		406.27 9.91	9	50 1 DO 1	11								0			MH/NP	1. Water encountered during drilling at a depth of 0.9 m below ground surface, Aug. 20/12	
11																			2. Water level at a depth of 3.1 m below ground surface upon completion of drilling, Aug. 20/12 3. Water level measured in monitoring well A at a depth of 0.73 m (Elev. 415.45 m) below ground surface, Aug. 27/12	
13																			4. Water level measured in monitoring well B at a depth of 0.83 m (Elev. 415.35 m) below ground surface, Aug. 27/12	
DEPTH 1 : 69	- so	CALE							Â		Golde socia	r							.Ogged: Am Hecked: DCJ	

RECORD OF BOREHOLE:	BH 12-7
----------------------------	---------

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 14, 2012

SHEET 1 OF 1

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

ES			SOIL PROFILE	OT			MPL		RESISTANCE, BLOWS/0 20 40 60	`	11	k, cm/s) ⁻⁶ 1() ⁻⁵ 10 ⁻	₄ 10 ⁻³ ⊥	TING	PIEZOMETEF OR	R
METRES			DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m		tV. + Q- nV.⊕ U-	• w	ATER CO			ADDITIONAL LAB. TESTING	STANDPIPE	
-			GROUND SURFACE	STF	(m)			BL	20 40 60	80		0 2			· -	В	
0	┢		TOPSOIL (50 mm) (ML) SILT, some sand; brown; moist;	tīī	415.84 0:09		50								1		J
			compact		415.15	1	50 DO	12				0			мн	Σ	
1			(ML) CLAYEY SILT; trace to some sand; brown; Wn <pl, firm="" stiff<="" td="" to=""><td></td><td>0.69</td><td>2</td><td>50 DO</td><td>8</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>$\overline{\nabla}$</td><td></td></pl,>		0.69	2	50 DO	8					0			$\overline{\nabla}$	
·					414.47			-					Ũ				
			(CI) SILTY CLAY, trace sand; red brown to brown; cohesive, medium plasticity; Wn>PL, soft to very soft		1.37	3	50 DO	3				F			мн		
2												-				2.342 2.342	
						4	50 DO	3									
3	JGER	ers				5	50 DO	1						0			
	WER AL	tem Aug.				-											
4	TRACK MOUNTED POWER AUGER	follow St	(ML) SILT, trace sand; grey; wet,		411.80 4.04												
	NUOM	m Dia. F	compact to loose		-												
	TRACK	200 m				6	50 DO	13					0		MH/NP		
5																	
6																	
						7	50 DO	7					0				
			(GW) GRAVEL and SAND, some fines; brown; wet, dense		409.13 6.71												
7			brown, wet, dense														
				0. 0.													8
8				•	407.76 8.08		50 DO	47			0	þ			мн	1. Water encountered during drilling at a depth of 3.7 m below ground	×
			END OF BOREHOLE DUE TO AUGER REFUSAL ON PROBABLE BEDROCK		6.08											surface, Aug. 14/12	
																2. Water level at a depth of 2.7 m below ground surface upon	
9																completion of drilling, Aug. 14/12	
																3. Borehole caved to a depth of 7.3 m below ground	
10																surface upon completion of drilling, Aug. 14/12	
																4. Water level measured in	
																monitoring well A at a depth of 0.51 m (Elev. 415.33 m) below ground	
11																surface, Aug. 30/12 5. Water level	
																measured in monitoring well B at a depth of 0.94 m	
12																(Elev. 414.90 m) below ground surface, Aug. 27/12	
																	_
DE	PT	H SC	CALE						Â	older ociate:					L	OGGED: AM	

RECORD OF BOREHOLE:	BH 12-8
----------------------------	---------

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 15, 2012

SHEET 1 OF 1

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

SALE	THOD	SOIL PROFILE	5		AMPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	NAL	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m)	тн 🖏	ТҮРЕ	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q. ● rem V. ⊕ U - ○ 20 40 60 80		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			418	.49						
1		(SM/ML) SILTY SAND; dark brown to grey, organically stained; moist, loose (ML) SILT, trace sand; grey; damp to wet, dense to compact	417	1		9 20		0		50 mm Diameter Monitoring Well Bentonite Seal
2	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers			3		37 20		0	мн	
3	TRACK 200 mr			5		20		φ		
4										Silica Sand Filter
5		END OF BOREHOLE DUE TO AUGER REFUSAL ON PROBABLE BEDROCK	414	.07 .42						1. Water encountered during drilling at a dep of 2.6 m below ground surface, Aug. 15/12
										2. Water level at a depth of 3.1 m below ground surface upon completion of drilling, Aug. 15/12
6										3. Water level measured in monitori well at a depth of 3.23 m (Elev. 415.26 m) below ground surface Aug. 27/12
7										
8										
9										
10										
DEI	PTH S	SCALE			<u>. 1</u>		Golder	• · · · · · · ·		.ogged: AM Hecked: DCJ

RECORD OF BOREHOLE: BH 12-9

SHEET 1 OF 1

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

BORING DATE: August 16, 2012

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

ALE	гнор	SOIL PROFILE		1	SA	AMPL		DYNAMIC PE RESISTANCI			Ľ,		k, cm/s			Ţ	NG ^R	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	3ER	ш	BLOWS/0.3m	20 SHEAR STRI	40 		30 0 - •	10 W4		1		0 ^{.3 ⊥} L	ADDITIONAL LAB. TESTING	OR STANDPIPE
ME	ORIN	DESCRIPTION	'RATA	DEPTH (m)	- 2	ТҮРЕ	LOWS	Cu, kPa		nat V. + rem V. ⊕	Ŭ- Ŏ	Wp					ADD. LAB.	INSTALLATION
	В	GROUND SURFACE	ST		_		8	20	40	60 8	30	10	0	20	30 4	0		
0		(PT) PEAT; black, wood fragments; wet,		383.12						-								
		very loose			1	50 DO	1									498.1	þ	50 D: (
																		50 mm Diameter Monitoring Well
					2A												þ	\Box
1		(CL) SILTY CLAY, trace to some sand;		382.0	5	50	2								0	363.8	5	- <u>×</u> -
		dark brown, organically stained; Wn>PL, very soft to soft		381.75														
		(ML) SILT, trace sand; brown; wet, compact			3	50 DO	16							0			MH/NP	
2						- DO												
				380.82	2													
		(ML) CLAYEY SILT to SILT, trace sand; brown to grey; cohesive, Wn <pl td="" to<=""><td></td><td>2.30</td><td>4</td><td>50 DO</td><td>19</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></pl>		2.30	4	50 DO	19							0				
		Wn~PL, very stiff to stiff			-	-												
3																		
					5	50 DO	12							ы			мн	
					-													Bentonite Seal
	GER IS																	
4	ER AUGE																	
	TRACK MOUNTED POWER AUGER 200 mm Dia. Hollow Stem Augers																	
	Hollow				6	50 DO	10							⊢•			мн	
5	CK MOUN				0	DO	10											
	200 n																	
		(CL) SILTY CLAY, medium plasticity,		377.56	6													
		trace sand; brown to grey; cohesive, Wn>PL, firm		5.5														
6		VVIPT E, IIIII																
					7	50 DO	2						I		-0		мн	
7					8	75 TO	-									0		
-																		
								•	+									
8								⊕ -	-									
																		Silica Sand Filter
		(SM) gravelly SILTY SAND, some fines;		374.5														
		grey; wet, very dense																
9				010.00		50	50/ .08										мн	
		END OF BOREHOLE DUE TO AUGER REFUSAL ON		9.22	2													1. Water encounter during drilling at a d
		PROBABLE BEDROCK																of 0.6 m below grou surface, Aug. 16/12
10																		2. Water level at a
																		depth of 1.0 m belor ground surface upor
																		completion of drillin Aug. 16/12
			_	1							<u> </u>			1			L	
		SCALE						6	74	Golde	er							OGGED: AM
1:	53.5								D	Associa	ates						C⊦	IECKED: DCJ

RECORD OF BOREHOLE: BH 12-10

PROJECT: 11-1118-0074 LOCATION: SEE FIGURE 2

BORING DATE: August 15, 2012

SHEET 1 OF 1

DATUM: Geodetic HAMMER TYPE: AUTOMATIC

щ	g	₽	SOIL PROFILE			SAI	MPL	ES	DYNAMIC P RESISTANC	ENETRA ⁻ E, BLOW	FION S/0.3m	~ ~	HYDR.	AULIC C k, cm/s	ONDUC	TIVITY,	Т	_ <u>0</u>	PIEZOMETER
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	20 J SHEAR STF Cu, kPa	40 ENGTH	60 nat V. + rem V. €	80 - Q - • - U - O	w	L	0 ⁵ 1 ONTENT ⊖W	PERCE	I0 ⁻³ ⊥ INT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_		Mark 1		STF	(m)	~		BL	20	40	60	80					40		
0			GROUND SURFACE (PT) PEAT and TOPSOIL	EEE	433.11 0.00					_								<u> </u>	
		-	(SM) SILTY SAND; grey (PROBABLE FILL); moist, very loose		432.81 0.30	1A 1B	50 DO	2					0				787.	8	50 mm Diameter Monitoring Well
1	AUGER	Augers	(CL) SILTY CLAY, some sand, trace gravel, organically stained, peat and organic inclusions, dark brown to brown (PROBABLE FILL); moist, firm		432.42 0.69	2	50 DO	6						0					Bentonite Seal
	TED POWER	Hollow Stem A	(SM) SILTY SAND, trace to some gravel, containing cobbles and boulders, rock		431.74 1.37	3	50 DO	19											
2	TRACK MOUNTED POWER AUGER	200 mm Dia. H	fragments; grey; moist, compact			3	DO	19						Þ					
	TR	2				4	50 DO	50/ .15					0						Silica Sand Filter
3			END OF BOREHOLE		429.96	5	50 DO	50/ .10					С	,					
			DUE TO AUGER REFUSAL ON PROBABLE BEDROCK																1. Water encountered during drilling at a de of 2.3 m below groun surface, Aug. 15/12
4																			2. Water level at a depth of 1.8 m below ground surface upon completion of drilling.
																			Aug. 15/12
5																			
6																			
7																			
8																			
9																			
10																			
DEI	L PT	TH SI	CALE	1							Gold ssoci							L	OGGED: AM

RECORD OF BOREHOLE: BH13-1 DATUM: Geodetic LOCATION: East Dam BORING DATE: MARCH 17, 2013 SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING ш DEPTH SCALE METRES PIEZOMETER STRATA PLOT 20 40 60 80 10⁻⁶ 10-5 10-4 10⁻³ OR BLOWS/0.3m NUMBER STANDPIPE INSTALLATION ТҮРЕ ELEV. SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW - wi Wp (m) 10 40 60 80 20 30 40 GROUND SURFACE 431.00 0 (PT) PEAT; dark brown, wood fragments; 0.00 frozen, very loose 1 SS 21 <u>∑</u> Mar. 17, 2013 2 SS 1 3 SS W.H 2 4 SS 6 428.26 (SM) SILTY SAND, trace gravel; green to grey; wet, loose to compact 108mm I.D. HOLLOW STEMS 3 AUGER BORING SS 11 мн 5 0 w POWER 4 :... 6 SS 8 426.73 ٠., ·. ·. · . . .^{.:} ÷ (ML) Sandy CLAYEY SILT; green to brown; wet, loose SS 7 5 0 ΜН н •. 5 w A 425.82 5.18 (SM) SILTY SAND; green; wet, very Ìoose ÷ 2 SS 8 . . 6 ···· ۰. . SS 9 2 ÷., M 423.99 7 END OF BOREHOLE . . AUGER REFUSAL NOTE: 1. Water level measured in open borehole at a depth of 0.9 m below ground surface (Elev. 430.1 m) upon completion of drilling. GTA-BHS 001 11-1118-0074.GPJ GAL-MIS.GDT 6/7/13 JFC 8 9 10 DEPTH SCALE LOGGED: RM Golder

ssociates

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation

PROJECT: 11-1118-0074

1:50

SHEET 1 OF 1

January 2018

CHECKED:

Т		T HAMMER: MASS, 64kg; DROP, 760mm SOIL PROFILE			SA	MPL	ES	DYNAMIC PER RESISTANCE	IETRATI BLOWS	ON /0.3m		HYDRAU	JLIC CONDU	CTIVITY,	<u>م</u> [
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR STRE Cu, kPa	40 I NGTH	50 8 ⊥ nat V. + rem V. ⊕	Q - • U - O	10 ⁻¹ WA	⁵ 10 ⁵ TER CONTEN		ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPII INSTALLAT
-		GROUND SURFACE (PT) PEAT; dark brown		<u>431.14</u> 0.00		ss	W.H.									
		(ML) Sandy SILT, trace organics; brown; moist, very loose		<u>430.53</u> 0.61	2	SS	2								О МН 70 w	
:		(ML) SILT, trace sand; green; wet, compact		<u>429.31</u> 1.83	3	ss	14									
HOLLOW STEMS	POWER AUGER BORING				4	SS	14						···· ····· o		MH W	
108mm I	POWER A				5	SS	17									<u> </u>
					6	SS	23				•••••					Mar. 12, 201
		(SM) Gravelly SILTY SAND; green to grey; wet, compact		426.57 4.57	7	SS	18		···.			0			M	
;		END OF BOREHOLE AUGER REFUSAL NOTE: 1. Water level measured in open borehole at a depth of 3.6 m below ground surface (Elev. 427.5 m) upon completion of drilling.		<u>425.65</u> 5.49		ss 	6									
				· · · · · · · · · · · · · · · · · · ·	••••	••••										
1																

RECORD OF BOREHOLE: BH13-3 PROJECT: 11-1118-0074 SHEET 1 OF 2 LOCATION: Reclaim Pond Dam DATUM: Geodetic BORING DATE: MARCH 17, 2013 SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING ш DEPTH SCALE METRES PIEZOMETER STRATA PLOT 20 40 60 80 10⁻⁶ 10-5 10-4 10⁻³ OR BLOWS/0.3m NUMBER STANDPIPE ТҮРЕ ELEV. SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH OW - WI Wp (m) 40 60 80 10 20 30 40 GROUND SURFACE 427.01 0 (PT) PEAT; dark brown; frozen to moist, 0.00 very loose 1 SS W.H 2 SS W.H 2 424.42 (CL) SILTY CLAY; green; w>PL, cohesive, very soft 3 SS W.H 3 SS W.H 4 4 5 SS 0 ΜΗ ٠., w A ·. ·. . . . _____ Mar. 18, 2013 108mm I.D. HOLLOW STEMS /an 1 v ₿ POWER AUGER 5 6A ss 421.45 5.56 (CI) SILTY CLAY; green; w>PL, cohesive, soft 6B SS MH W A 64 • . 6 /ane 2 V + 420.15 (CH) CLAY; green; cohesive, firm to very stiff 7 55 56./ 7 то ΜΗ w A Vane 3 v GTA-BHS 001 11-1118-0074.GPJ GAL-MIS.GDT 6/7/13 JFC 8 8A SS 16 418.17 8.84 8B SS (ML) SILT, some sand; green; wet, 12 9 compact 9 SS 9 10 SS 10 15 CONTINUED NEXT PAGE DEPTH SCALE LOGGED: RM Golder

ssociates

1:50

CHECKED:

£ 41 4 2 4000 /

PF	ROJE	CT: 11-1118-0074		REC		R) (OF BOF							anual	=A Documentation ry 2018 - 1656263 - IEET 2 OF 2
LC	OCATI	ON: Reclaim Pond Dam				E	BOR	ING DATE: M	ARCH 17	, 2013					DA	TUM: Geodetic
SF	PT/DC	PT HAMMER: MASS, 64kg; DROP, 760mm														
ALE	DOH.	SOIL PROFILE			SAM			DYNAMIC PE RESISTANCE	NETRATI	ON /0.3m	$\boldsymbol{\lambda}$		CONDUCTIVITY,	T	AL NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR STRE Cu, kPa 20	NGTH	60 8 InatV. + remV.⊕ 60 8	Q - ● U - O	WATER C	10 ⁵ 10 ⁴ 10 ³ CONTENT PERCENT O ^W W 20 30 40	, <u> </u>	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
10 - - - -		CONTINUED FROM PREVIOUS PAGE (ML) SILT, some sand; green; wet, compact			10	SS	15						0		MH W	
- - - - - - -	OW STEMS				11	SS	13									
- - - - 12 - -	108mm I.D. HOLLOW STEMS POWER ALIGER RORING	BOULDER		414.82 12.19		SS	11						· · ·			
- - - - - - - - - - - - - - - - - - -		(SM) SILTY SAND, some gravel; green; wet, compact BOULDER (SM) SILTY SAND, some gravel; green;		12.34 414.36 12.65 414.01 13.00	13										м	
-	$\left \right $	wet, very dense END OF BOREHOLE AUGER REFUSAL		413.75 13.26						·	··.· [·]				w	
- - - - - - - - - - - - - - - - - - -		NOTE: 1. Water level measured in open borehole at a depth of 4.4 m below ground surface (Elev. 422.6 m) upon completion of drilling.									· · · · · · · · · · · · · · · · · · ·					
- - - - - - - - - - - - - - - - -																
- - - - - - - - - - - - - - -					· · .											
- 19 - 19 																
- 20																

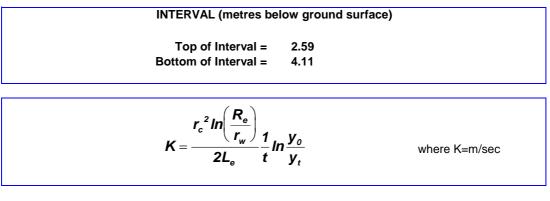
GTA-BHS (DEPTH SCALE 1 : 50

LOGGED: RM

CHECKED:

		T HAMMER: MASS, 64kg; DROP, 760mm SOIL PROFILE	_		SAI	MPLE	_	DYNAM RESIST	ic pen Ance,	ETRATI BLOWS	DN /0.3m	$\overline{\boldsymbol{\lambda}}$		k, cm/s	ONDUC	TIVITY,	T	AL NG	PIEZOMET
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STREM	IGTH	⊥ nat V. + rem V. ⊕	Q - • U - O	w w			0 ⁻⁴ 10 	IT VI	ADDITIONAL LAB. TESTING	OR STANDPII INSTALLAT
Ţ	_	GROUND SURFACE		418.50													,		
		TOPSOIL - (SM) SILTY SAND; brown, some organics (pieces of wood); loose		0.00	1	SS	5												
		(ML) Sandy SILT; green; moist, compact		417.97 0.53															
					2	SS	14								0			MH W	
				416.98															
		(CI) SILTY CLAY, some sand; green to brown; firm to stiff		1.52	3	SS	21												
					—								··	1 ···					
					4	SS	6						:	r			51.9) MH A	
																		w	
G P P P P P P P P P P P P P P P P P P P					Vane 1	v		⊕			+ •								
												···.							
									÷										
	10 FMS			413.93															
	BORIN	(ML) CLAYEY SILT, trace clay; green; moist; soft to stiff		4.57	5	то									0			мн	
	AUGEF				5													A (NP) w	
	POWER AUGER BORING				Vane	v					+								
	2				2		·		·		'								
				412,40	••••			·	••••										
		(ML) Sandy SILT, some clay; green; wet, very loose to compact		. 6.10	···. 6		·. NH								0			мн	
																		w	
,			1			·.·'													
					7	ss	14												
				410.88	\square														
		(SP) SAND; grey to light brown; moist, very loose		7.62	8	SS	4							0				м	
					3	55	7											w	
			22. 																
				409.36															
		(SW-SM) SAND, some gravel; light brown to grey; moist, compact		9.14															
				¦	Ll		_			L	<u> </u>	L	<u> </u>	L	<u> </u>				

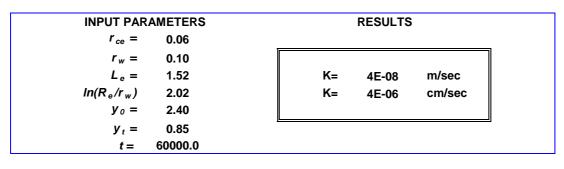
		T: 11-1118-0074 N: Southwest Dam		REC	:0			OF BOR			Bł	 13-	4					EET 2 OF 2 TUM: Geodetic
SPT/	DCF	T HAMMER: MASS, 64kg; DROP, 760mm																
щ	Ð	SOIL PROFILE			SA	MPL	ES	DYNAMIC PEN RESISTANCE	ETRATION	ON /0.3m	$\overline{\boldsymbol{\lambda}}$	HYDR/	AULIC C k, cm/s	ONDUCT	IVITY,	Т	Ľ۵	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR STREI Cu, kPa	40 6 L NGTH r r	60 8	Q - ● U - O	10 W Wp	ATER CO	0 ⁻⁵ 10) ⁴ 10 PERCEN W		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
State State State State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		END OF BOREHOLE AUGER REFUSAL NOTE: 1. Borehole was filled with water during drilling to balance flowing sand therefore water level could not be measured.		DEPTH	9 10 11 12 13 	SS	11 12 4	SHEAR STREI Cu, kPa	J NGTH r r	unat V. + rem V. ⊕	Q - ● U - O	w wr	ATER CO				sg sdDTTC LABTTC	STANDPIPE
20 20 DEP"		CALE								Golde	r							GGED: RM

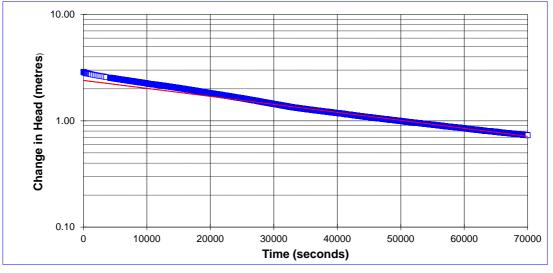

		PT HAMMER: MASS, 64kg; DROP, 760mm SOIL PROFILE	_		SAI	MPLE	S	DYNAMIC PENETR RESISTANCE, BLC	AMIC PENETRATION			HYDRAULIC CONDUCTIVITY, k, cm/s			PIEZOMETER
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 40 F F F F F F F F F F F F F F F F F F F	I nat V. + rem V. €	80 - Q - ● Ə U - ○ 80	10 ⁻⁶ WAT Wp I - 10	ER CONTEN		ADDITIONAL LAB. TESTING	OR STANDPIP INSTALLATI
0 -		GROUND SURFACE (PT) PEAT, trace gravel; brown, with pieces of wood, frozen; very loose		423.25 0.00	1	SS	29								
2		(CL) SILTY CLAY; green; w>PL, cohesive, soft		<u>421.57</u> 1.68	3		4							MH W A	
3					Vane 1 4	v ss	17					0		MH W	
5	108mm I.D. HOLLOW STEMS POWER AUGER BORING	(ML) Sandy SILT; green; wet, very loose		<u>418.83</u> 4.42		ss ss ss	3 4 			****** <u>*</u>		0		MH W	
6		(SM) SILTY SAND; green; wet, very loose		<u>415.78</u> 7.47		···· ··· ·SS	1								
9		(SM) SILTY SAND, some gravel; green; wet, compact		<u>414.11</u> 9.14		SS	2					0		MH W	
5	_L				┝╺		-	+	-+		├ -	+	+	- -	

		T: 11-1118-0074 DN: Southwest Dam	RE	COI						Bł	-113-5			5	SH	ry 2018 - 1656263 - IEET 2 OF 2 .TUM: Geodetic
	BORING DATE: MARCH 21, 2013 DATOM. Geodetic SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm															
	-	SOIL PROFILE		SAM	/IPLES	DYNA	MIC PEN STANCE,	ETRATIC	DN	1	HYDRAUL		JCTIVITY,	т		
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT (m) (m)	~	TYPE BLOWS/0.3m	SHEA Cu, kF	20 4 H R STREN Pa	IGTH r	0.3m 50 80 L I nat V. + em V. ⊕	Q - ● U - O	10 ⁻⁶			0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
- 10	, 🖵	CONTINUED FROM PREVIOUS PAGE								0						
		END OF BOREHOLE AUGER REFUSAL	413.0 10.2	4												
- - - - - 11		NOTE: 1. Borehole was filled with water during drilling to balance flowing sand therefore water level could not be measured.														
- - - - - - 12 -	2															
- - - - - - - - - - - - - - - - - - -	5															-
									···.	· · · · · · ·						
- 14 - - - - -	ł						:			·····						-
- 15 - 15 - - - -	5						· · · · · · · · · · · · · · · · · · ·	····., ·····	·							-
- - - 16 - - -	5			···· · · · ·		····	· · · · · · · · · · · · · · · · · · ·									-
- - - 17 - - -			····.													-
	5															-
	,															-
20																_
T d	EPTH : : 50	I		_1 _1		1	Q	D As	Golde socia	r utes	<u> </u>					DGGED: RM ECKED:

APPENDIX B Hydraulic Response Testing

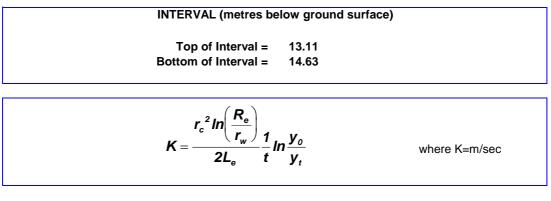
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-1


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

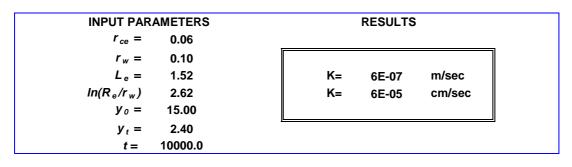
 r_w = radial distance to undisturbed aquifer (metres)

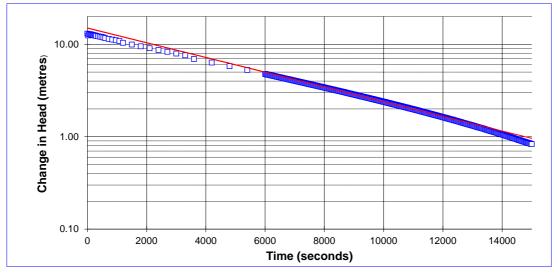
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/24/16

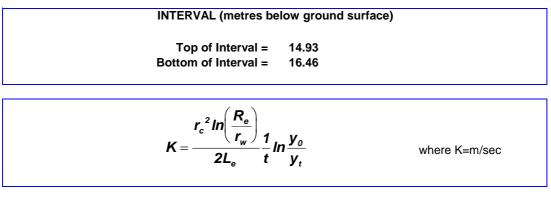
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-2


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

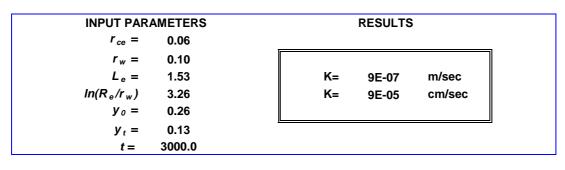
 r_w = radial distance to undisturbed aquifer (metres)

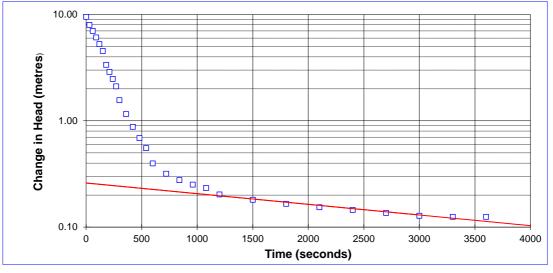
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/23/16

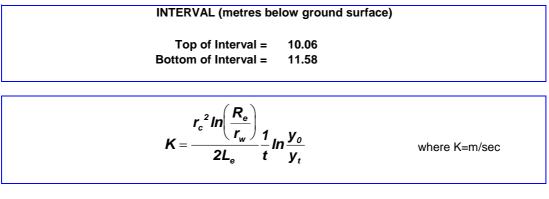
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-3A


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

 r_w = radial distance to undisturbed aquifer (metres)

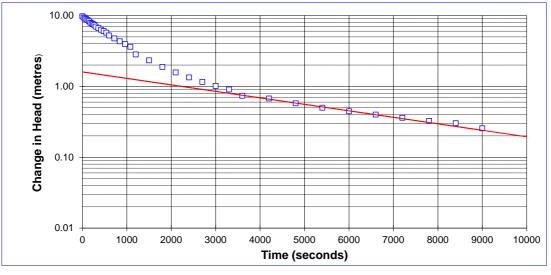
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/25/16

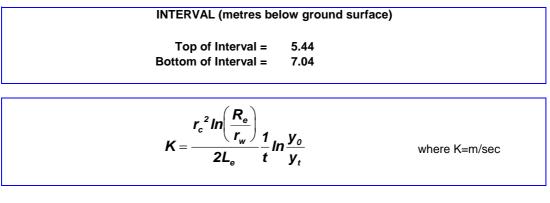
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-3B




where:

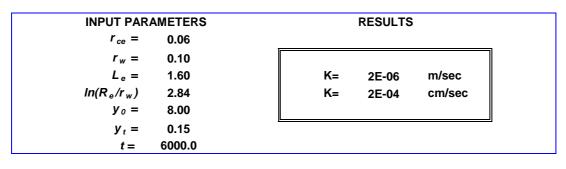
 r_{ce} = effective casing radius (metres) Given as $r_{ce} = r_c + S_y(r_w^{-2}r_c^{-2})$ (Bouwer, 1989); R_e = effective radius (metres); L_e = length of screened interval (metres); r_w = radial distance to undisturbed aquifer (metres)

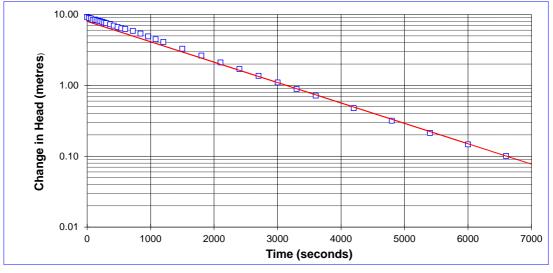
 y_0 = initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/25/16

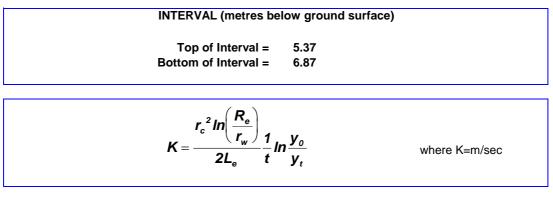
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-4




where:

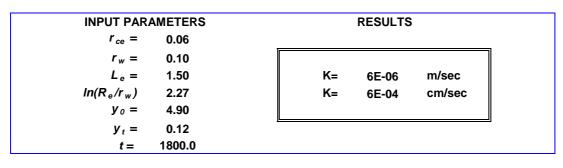
 r_{ce} = effective casing radius (metres) Given as $r_{ce} = r_c + S_y(r_w^2 r_c^2)$ (Bouwer, 1989); R_e = effective radius (metres); L_e = length of screened interval (metres); r_w = radial distance to undisturbed aquifer (metres)

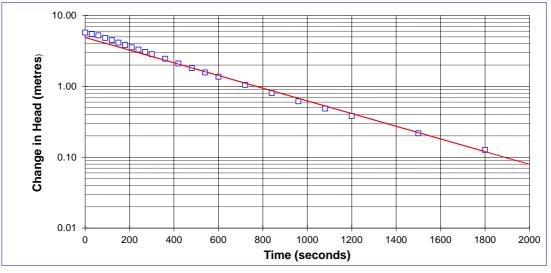
y₀ = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/24/16

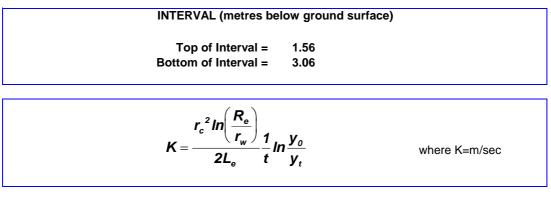
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-5B


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_{\gamma}(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

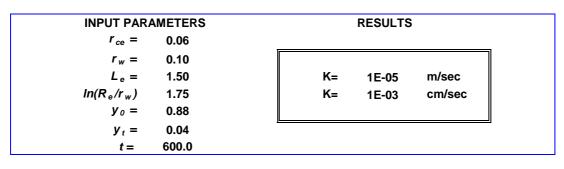
 r_w = radial distance to undisturbed aquifer (metres)

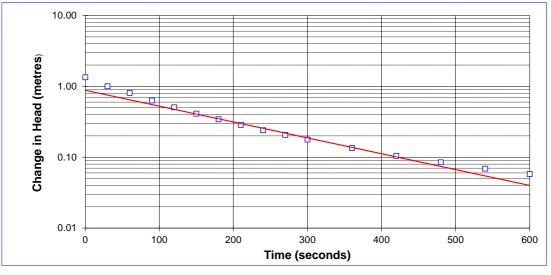
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/25/16

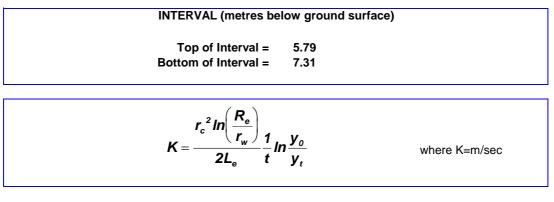
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-6B


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

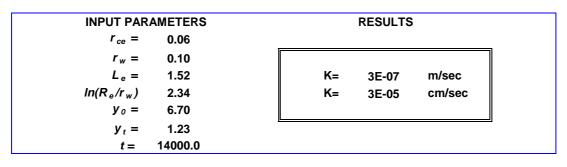
 r_w = radial distance to undisturbed aquifer (metres)

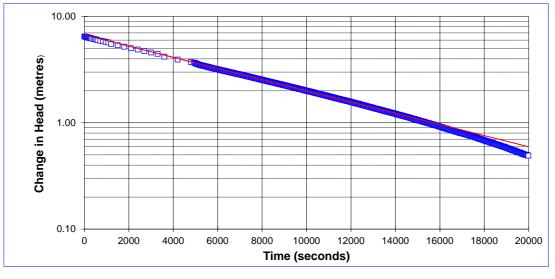
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/25/16

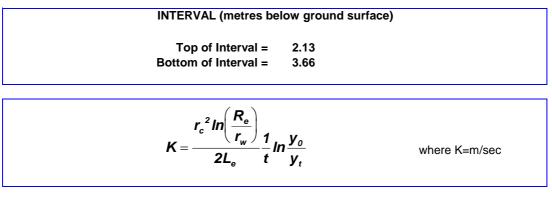
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-7A




where:

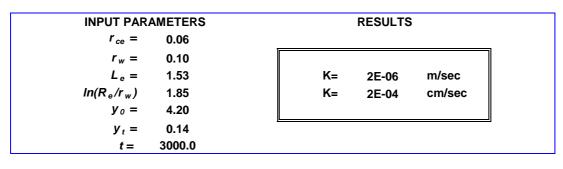
 r_{ce} = effective casing radius (metres) Given as $r_{ce} = r_c + S_y(r_w^{-2}r_c^{-2})$ (Bouwer, 1989); R_e = effective radius (metres); L_e = length of screened interval (metres); r_w = radial distance to undisturbed aquifer (metres)

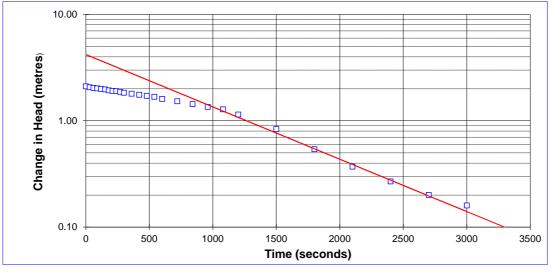
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/23/16

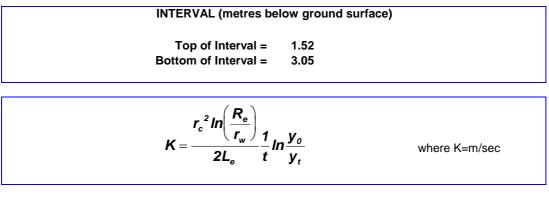
BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-7B


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

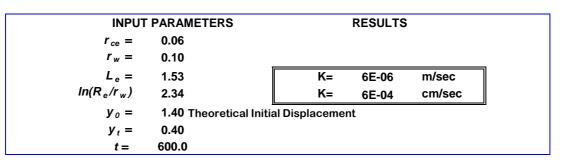
 r_w = radial distance to undisturbed aquifer (metres)

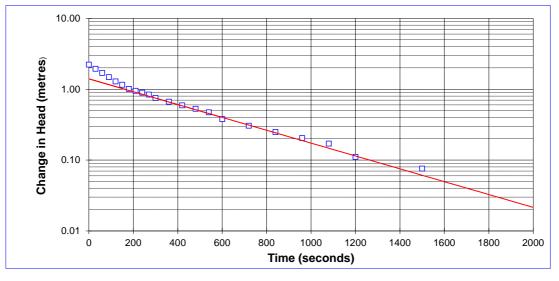
 y_0 = theoretical initial drawdown (metres)


 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/23/16

BOUWER AND RICE SLUG TEST ANALYSIS RISING HEAD TEST 12-10


where:


$$\begin{split} r_{ce} &= \text{effective casing radius (metres)} \\ \text{Given as } r_{ce} &= r_c + S_y(r_w^{-2}r_c^{-2}) \text{ (Bouwer, 1989)}; \\ R_e &= \text{effective radius (metres)}; \\ L_e &= \text{length of screened interval (metres)}; \end{split}$$

 r_w = radial distance to undisturbed aquifer (metres)

 y_0 = theoretical initial drawdown (metres)

 y_t = drawdown (metres) at time t (seconds)

Project Name: CMC EA Support/Hammond Reef Project No.: 1656263/1000/1001 Test Date: 08/23/16

PART D CEAA Comments on Conceptual Model Development

Canadian Environmental Assessment Agency

Ontario Regional Office 55 St. Clair Avenue East, Room 907 Toronto, ON M4T 1M2

Agence canadienne d'évaluation environnementale

Bureau régional de l'Ontario 55, avenue St-Clair est, bureau 907 Toronto (Ontario) M4T 1M2

November 22, 2016

ELECTRONIC MAIL

Ms. Sandra Pouliot, ing. Project Manager, Environment Canadian Malartic Corporation 100, chemin du Lac Mourier Malartic, QC JOY 120

SUBJECT: Federal Comments on the October 6, 2016 Updated Memorandum on the Tailings Management Facility Hydrogeological Fieldwork and Conceptual Model Development for the Federal Environmental Assessment of the Hammond Reef Gold Project

Dear Ms. Pouliot:

The Canadian Environmental Assessment Agency, along with Environment and Climate Change Canada and Natural Resources Canada, completed the review of the October 6, 2016 updated technical memorandum on the hydrogeological fieldwork and conceptual model development for the 3D groundwater modeling of the tailings management facility for the proposed Hammond Reef Gold Project.

Upon review of the September 21, 2016 memorandum and the October 6, 2016 updated memorandum, the Federal Review Team (FRT) is of the opinion that Canadian Malartic Corporation (CMC) can proceed with construction of the 3D groundwater model as discussed in the updated October 2016 memorandum. The FRT is also in agreement with CMC's proposal for next steps, as described in Section 4.0 of the September 2016 memorandum.

Comments and recommendations from the FRT on the October 2016 memorandum are included as an attachment to this letter. The FRT expects to review and approve the technical memorandum on the baseline modeling done for step one (i.e., model construction and calibration) prior to CMC proceeding with step two (i.e., simulation of tailings management facility). CMC is also expected to describe, in the technical memorandum on the baseline modeling of step one, the rationale behind how FRT comments and recommendations on the October 2016 memorandum are addressed.

-2-

Efforts by CMC and federal reviewers to resolve the issues are recognized by the Agency. The FRT awaits the results of step one of the 3D groundwater modeling for the tailings management facility, to provide further feedback.

Please contact me at (416) 952-1574 or send an email to <u>HammondReef@ceaa-acee.gc.ca</u> if clarification of this letter or its attachments is needed.

Sincerely, <Original signed by>

Loraine Cox Project Manager

Attachment:

- Review of Technical Memorandum "Hammond Reef Gold Project: Tailings Management Facility Hydrogeological Fieldwork and Conceptual Model Development" by Golder Associates Ltd., September 21, 2016, updated October 6, 2016 (nine pages)
- cc. Sheryl Lusk, Environment and Climate Change Canada Jennifer Dorr, Natural Resources Canada Antonia Testa, Ministry of the Environment and Climate Change

Review of Technical Memorandum "Hammond Reef Gold Project: Tailings Management Facility Hydrogeological Field Work and Conceptual Model Development" by Golder Associates Ltd., September 21, 2016, updated October 6, 2016.

October 17, 2016

Background

Golder Associates has provided a Technical Memorandum that builds on the technical correspondence between the proponent Canadian Malarctic Corporation (CMC), their consultant Golder Associates and the Federal Review Team which includes the Canadian Environmental Assessment Agency (CEAA), Environment and Climate Change Canada (ECCC) and Natural Resources Canada (NRCan). CEAA has previously communicated the FRT comments pertaining to hydrogeology in letters dated January 29, May 6 (CEAA, 2016b) and July 29, 2016 (CEAA, 2016a).

An initial Technical Memorandum was prepared by Golder Associates on September 21, 2016 to address the FRT comments and seek approval for the proposed groundwater modelling of baseline conditions. The Technical Memorandum was also presented to the FRT and discussed in a conference telephone call on September 27, 2016. Subsequently, the Technical Memorandum was updated by Golder Associates on October 6, 2016 (Golder Associates, 2016a) based on the feedback received during the teleconference. NRCan can has reviewed both the Technical Memorandum of September 21, 2016 and the updated Technical Memorandum of October 6, 2016 and has provided comments that pertain to its expertise in hydrogeology and groundwater flow.

References

- CEAA, 2016a. Federal Comments on the June 15, 2016 Supplementary Memorandum on the Scope of Work for the 3D Groundwater Modelling for the Federal Environmental Assessment of the Hammond Reef Gold Project. Letter from CEAA (Carl Johansson) to CMC (Sandra Pouliot), July 29, 2016.
- CEAA, 2016b. Federal Review of the Draft Technical Memorandum on the Additional 3D Groundwater Modelling for the Hammond Reef Gold Project Federal Environmental Assessment. Letter from CEAA (Loraine Cox) to CMC (Sandra Pouliot), May 6, 2016.
- Domenico, P.A. and Schwartz, F.W., 1990. Physical and Chemical Hydrogeology. John Wiley & Sons, Toronto, Ont., 824 pages.
- Golder Associates, 2016a. Technical Memorandum. Hammond Reef Gold Project: Tailings
 Management Facility, Hydrogeological Field Work and Conceptual Model Development. October
 6, 2016 (updated from September 21, 2016).

- Golder Associates, 2016b. Technical Memorandum. Hammond Reef Gold Project: Tailings Management Facility, Hydrogeological Field Work and Conceptual Model Development. September 21, 2016.
- Golder Associates, 2016c. Technical Memorandum. Hammond Reef Gold Project Tailings Management Facility, Additional stratigraphic information and proposed 3D groundwater modelling. June 15, 2016.
- Golder Associates, 2016d. Draft Technical Memorandum. Hammond Reef Gold Project Tailings Management Facility, Additional 3D Groundwater Modelling. March 1, 2016.
- Golder Associates, 2014. Technical Memorandum. Osisko Hammond Reef Gold Project, Tailings Management Facility 3D Groundwater Modelling, May 21, 2014, *in* Hammond Reef Gold Project, Addendum to the Final EIS/EA report, June 2015.
- Golder Associates, 2013. Hammond Reef Gold Project, Hydrogeology Technical Support Document, version 2, December 2013. (Note that this document also includes Technical Support Document (TSD) version 1 from February 2013 as Part C).
- Stea, R.R., 2010. Surficial Geology update of the Golden Winner area: sedimentology and stratigraphy of the glaciofluvial deposits and recommendations for recce sampling. Stea Geological Services, June 10, 2010 (part of Golder Associates (2016d) draft TM).

Comments on the technical memorandum

The Technical Memorandum is organized under four main headings: field data, conceptual model, proposed next steps and review comments address. NRCan's comments respond to each of these four areas directly.

Field Data

Data and results are presented for 10 new hydraulic tests (bail tests) on existing monitoring wells. In addition, two wells responded too quickly to manually measure the response, one well had a small depth of water in the casing and one well was damaged so there are no results for these four wells. The results were tabulated according to the geologic materials in the screened interval, summarized and combined with previous results at the Tailings Management Facility (TMF).

Comment 1: Wells with no results.

No hydraulic conductivities were reported for wells BH12-5 and BH12-6A in the September 21, 2016 Technical Memorandum because the piezometers recovered too quickly to be measured with a manual water level tape (Golder Associates, 2016b). Therefore, their higher values were not incorporated into the geometric means of the bedrock and silt units. This issue was addressed in the updated Technical Memorandum (Golder Associates, 2016a) by assuming relatively high hydraulic conductivity values of 1E-4 ($1X10^{-4}$) m/s. An assumed value of 1E-4 m/s is provided for BRH-0020A, which suggests that this

piezometer may also have had a rapid response. Rapid responses in wells screened in high hydraulic conductivity units can sometimes be measured using solid slugs and data loggers.

Comment 2: Wells not tested.

While reviewing the hydraulic conductivity results from all monitoring wells near the TMF, it appears that some monitoring wells have not been slug/bail tested. A list of potentially untested wells includes BRH-0020A and BRH-0024 in bedrock and BRH-0017B, BRH-0020B, BRH-0021B and BRH-0027 in unconsolidated sediments.

Comment 3: Data for BH13 series boreholes and condemnation boreholes.

Aside from the borehole locations that are shown on map figures, no logs or tabulated data could be found for the BH13 series and the condemnation boreholes in the September 21, 2016 Technical Memorandum. When asked during the September 27, 2016 teleconference whether the BH13 sites had been slug/bail tested, Golder Associates indicated that these boreholes did not have well completions. This comment was addressed in Table 1 and Appendix A of the updated Technical Memorandum (Golder Associates, 2016a) where the data and logs are presented.

Conceptual model

An updated conceptual model was presented including model domain, hydrologic boundaries, overburden thickness, hydrostratigraphic units, hydraulic conductivities, recharge and groundwater flow directions (Golder Associates, 2016a and 2016b).

Comment 4: Model domain and hydrologic boundaries.

The model domain encompasses the entire TMF and extends to the major hydrologic boundaries which are the eventual receiving waters. Between major water features, the model's boundary will correspond to topographic divides (and inferred groundwater divides). NRCan is in general agreement with the proposed model domain.

Comment 5: Sediment (overburden) thickness.

Golder (2016a, 2016b) has consolidated the results from the boreholes (test holes, wells and condemnation holes) with surficial mapping from Stea (2010) to interpolate sediment thickness across the modelling domain. It is also recognized that the bedrock valleys may be obscured by the interpolation process due to the preponderance of data from bedrock outcrops and the dearth of data from bedrock valleys. To overcome this issue, Golder (2016b) used "dummy points" at a depth of 10 m to help maintain the continuity of bedrock valleys.

NRCan recognizes that it is not practical to delineate the continuity of all buried bedrock valleys by drilling. NRCan is generally supportive of the approach used by Golder Associates to characterize sediment thickness. During the September 27, 2016 teleconference, NRCan expressed concern that the interpolated map presented by Golder Associates was not sufficiently conservative. NRCan is of the

Natural ResourcesRessources naturellesCanadaCanada

opinion that the bedrock valleys may be more continuous than suggested in Figure 3 (Golder Associates, 2016b); some of the wider bedrock troughs are more continuous and may be deeper than modeled, as demonstrated by the many NNE-SSW trending valleys and lakes in the area (e.g., Lizard Lake). These buried bedrock troughs are somewhat under-represented in the data set as their wide and flat valley bottoms are less accessible due to the presence of peat bogs (see Figure 2). Also, the delineation of the surficial mapped polygons from Stea's (2010) map would require many more data points than the number of boreholes and therefore would bias the interpolation to that dataset. NRCan proposed that the methodology would provide a more conservative interpolation if more "dummy points" were used to ensure continuity in potentially significant buried valleys.

The sediment thickness was re-interpolated (Figure 3) using more "dummy points" in the updated Technical Memorandum (Golder Associates, 2016a) with the result of having more continuity in potential buried valleys.

Comment 6: Hydrostratigraphy.

Golder Associates (2016a, 2016b, and 2016c) has revised the hydrostratigraphic conceptual model to include three sediment layers, as compared with the Addendum to the final EIS/EA report (Golder, 2014) where only one sediment layer was used. NRCan had previously expressed concern (CEAA, 2016a) that the layering of fine and coarse sediments may be important for the interpretation of groundwater flow and evaluation of the seepage collection system. NRCan is satisfied that the updated conceptual model includes a coarse-grained sediment unit buried beneath a fine-grained sediment unit.

Comment 7: Unit thickness.

The thicknesses of the layers will be generalized across the model domain in the interests of simplicity and conservatism. Where sediment is 3 m thick or less, it will be characterized as a coarse surficial deposit layer. Where it is more than 3 m, the excess will be subdivided equally between fine-grained and coarse-grained units. A uniform thickness of 3 m will be used for weathered bedrock although Golder noted in the conference call and documented in Table 5 (Golder Associates, 2016a) that the bedrock surface is not weathered everywhere. Where sediment is absent, tailings would lie directly on the weathered bedrock unit.

NRCan is generally satisfied that the simplifications used for the model would be generally conservative with respect to groundwater seepage (i.e. overestimating rather than underestimating seepage). A potential exception is where an overestimated permeable surficial deposit could result in more flow through this shallow unit (which would more likely discharge to a perimeter seepage collection system) compared to flow through a deeper confined coarse-grained unit that may be more difficult to capture in a perimeter seepage collection system.

Comment 8: Hydrostratigraphy at lake boundaries.

The model domain extends to major lakes in the area and also includes a few smaller lakes. It is not clear if the bathymetry of the major lakes will be used and how the hydrostratigraphy will be specified along

the margins of lakes. Hydrostratigraphy along the margin and beneath lakes could affect the hydraulic connectivity between aquifers and lakes and therefore the flow through the buried coarse grained and bedrock units and ultimately fluxes and flowpaths to the lakes in discharge areas.

Comment 9: Hydraulic conductivity.

At the request of the FRT during the teleconference, Golder Associates (2016a) has compiled the full list of hydraulic conductivity testing results in Table 2, organized according to hydrostratigraphic unit.

Table 2 includes hydraulic conductivity results from slug tests and estimates based on grain size. There appears to be some problems with the hydraulic conductivity estimates using the Hazen method which may be due to calculation errors. For example, the estimated hydraulic conductivity for BH12-4 at a depth of 6.10 to 6.55 m (sample 8) is shown as 2E-3 m/s in Table 2. However, the grain size curve in Appendix 2.III.3 of Golder Associates (2013) indicates a d₁₀ of about 0.022 mm which suggests a hydraulic conductivity of approximately 5E-6 m/s which is closer to the slug test value of 2E-6 m/s in the adjacent piezometer. Similarly, the value for BH12-5 at a depth of 2.29 to 2.74 m may be also in error. These erroneous values will slightly affect the geometric mean but more importantly will reduce the range of hydraulic conductivity estimates since these are the largest values in Table 2.

Comment 10: Grain size analyses data.

Hydraulic conductivity estimates are presented in Table 2 (Golder Associates, 2016a) for BH13 series boreholes based on grain size analyses, however, the grain size distributions for these boreholes were not found.

Comment 11: Hazen equation.

The equation for the Hazen method was not presented in the reports. It is generally used in the following form (Domenico and Schwartz, 1990):

$K = C d_{10}^{2}$

Where K is hydraulic conductivity in cm/s, C is a coefficient generally considered to vary from 100 to $150 \text{ (cm sec)}^{-1}$ and d_{10} is the 10^{th} percentile of the grain size distribution (10% finer) in cm. Table 1 in Appendix 2.VI (Golder Associates, 2013) appears to have the incorrect units for C and d_{10} but nonetheless have the correct result for K in that table. However, the values for the coefficient C vary from 40 to 120 without apparent justification. A brief discussion and reference should be provided that justifies the values of the C coefficient.

Comment 12: Groundwater levels.

A map of shallow groundwater elevations has been assembled based on surface water elevations and monitoring wells located mostly within the valleys and along the margins of the proposed TMF (Figure 5, Golder Associates, 2016a and 2016b). The map suggests the presence of a regional groundwater flow

pattern radiating outward from a small pond near BCN-105 (with another secondary high near BRH-0016A).

NRCan is of the opinion that Figure 5 may represent the shallow groundwater elevations in the valleys but the absence of data from the bedrock uplands does not allow groundwater levels in the uplands to be included. As a result, the map suggests a different conceptualization of groundwater flow than is likely the case. NRCan believes that groundwater levels in the uplands will also be a subdued replica of surface topography. This appears to be the case in the West Pit Area (e.g., Figure 2-10 in Golder Associates, 2013). Consequently, the map of shallow groundwater levels would resemble that of a muted surface topography; in other words it would resemble Figure 1 more than Figure 5. The result is that groundwater flow in the bedrock uplands is probably much more localized and directed towards the valleys and that groundwater flow in the valleys follows a more regional pattern similar to that of Figure 5. The presence of competent bedrock in the uplands at elevations above that of the valleys may form hydraulic barriers to the regional flow patterns implied in Figure 5 (e.g., bedrock ridges at BCN-076 and BCN-075, at BCN-095 and BCN-095, and BCN-093, and at BCN-087, BCN-089 and BCN-092 (and others) have competent bedrock above the ground elevations of the adjacent valleys).

NRCan is not suggesting that additional water level measurements are needed for the bedrock uplands since that would be onerous and may not add significantly to the modelling effort. Rather, NRCan would like to ensure that Golder Associates and the FRT agree on the conceptualization of groundwater flow, and the groundwater modelling should not attempt to replicate the groundwater flow patterns shown in Figure 5 as suggested by section 4.0 (item 1b). A pragmatic approach may be to make some assumptions about the depth of the water table in the uplands based on boreholes in the West Pit area and possibly using "dummy points" in upland areas for map interpolation.

Next steps

Comment 13: Proposed next steps.

Golder Associates (2016a and 2016b) proposed a two part approach to the modelling in which the first step would include a calibrated steady-state model for average background conditions, a sensitivity analysis, and a technical memorandum to summarize the work to date and more detailed plans of the next part for interim review by the FRT. The second part would include simulation of the TMF for all project phases to evaluate seepage, flowpaths, receptors and capture efficiency. NRCan is supportive of the proposed approach. As noted in the previous comment, model calibration to reproduce the flow pattern implied by Figure 5 may be misguided.

Natural Resources Ressources naturelles Canada Canada

Review comments address

Golder Associates has addressed the comments from Information Request #3 and the table of federal review findings (CEAA, 2016a).

Comment 14: Information request #3.

In response to the request for additional drilling, Golder Associates has indicated the additional information added from condemnation boreholes, surficial geology mapping and additional well tests. Where data is limited, conservative estimates will be used and uncertainty will be tested in the model using a sensitivity analysis. Golder Associates are of the opinion that additional drilling and hydraulic testing are not necessary. They acknowledge there may be permeable units at the base of the TMF. They have updated the model boundaries to include the entire TMF and plan to re-run the model, assess the potential residual impacts (with mitigation) and document the modelling and results in subsequent memorandums.

NRCan accepts that there will be uncertainty in hydraulic parameters and stratigraphy within the TMF footprint due to the variable nature of topography and geological processes. While additional drilling and testing would help characterize some of this variability, it should be possible to estimate of a range of groundwater seepage using conservative estimates of hydraulic parameters and hydrostratigraphic layering. NRCan is generally satisfied with the proposed approach to address issues pertaining to Information Request #3.

Comment 15: Table of Federal Review Findings, items 2, 3, 4, and 6.

Golder Associates (2016a) have updated both the conceptual model and the hydrostratigraphy within the flow model. NRCan is satisfied that the model will include distinct layering within the sediment, coarse sediment within bedrock valleys and tailings in direct contact with bedrock. Golder Associates also indicates that the current conceptual model allows for consideration of the concerns expressed by the FRT with respect to evaluating the effectiveness of the seepage collection system (which would be assessed in subsequent work). NRCan is satisfied the conceptual model allows for this evaluation.

Comment 16: Table of Federal Review Findings, item 5.

Golder Associates (2016a) indicate that they have sufficient data to characterize the hydraulic conductivity of various units. In the updated Technical Memorandum, they have tabulated and summarized their data according to hydrostratigraphic units. Although the number of hydraulic conductivity data from slug tests within the TMF is not extensive, there appears to be sufficient information to proceed with groundwater flow modelling. Sensitivity analysis will be an important component of the modelling to assess the potential implications of uncertainty in hydraulic conductivity.

Natural Resources Ressources naturelles Canada Canada

Recommendations

1) NRCan is supportive of the progress shown by Golder Associates in the development of a conceptual model and plan for groundwater modelling of the Tailings Management Facility. NRCan is satisfied and agrees that Golder Associates can proceed with numerical groundwater model construction as discussed in the updated Technical Memorandum.

2) Some calculation errors may be present in some of the hydraulic conductivity estimates. Calculations should be reviewed and Tables 2 and 4 (Golder Associates , 2016a) updated if necessary. Grain size data for BH13 boreholes should be reported. The use of the Hazen method and justification of the C coefficient should be documented. These updates need not be communicated back to the FRT prior to submitting the baseline conceptual model and may simply be included in the modelling report as part of the baseline conditions.

3) Although NRCan does not believe that additional hydraulic testing is required to proceed with groundwater modelling, testing of some existing piezometers could provide additional hydraulic conductivity data in strategic locations with relatively low effort. Several piezometers have not been slug tested (Comment 2) and actual measurements may be possible on high hydraulic conductivity piezometers BH12-5, BH12-6A and possibly BRH-0020A using solid slugs and data loggers (Comment 1). NRCan considers this additional data collection to be a suggestion as opposed to a strict requirement and notes that added site specific knowledge of hydraulic conductivities could help better characterize hydraulic conductivities, particularly the high values near the margin of the TMF.

4) In the report on groundwater modelling, it will be necessary to describe the hydrostratigraphic conceptualization near lakes in discharge areas and its implementation within the model. As discussed in Comment 8 above, the hydraulic connections with the lakes could affect flow rates and flowpaths from the TMF into the lakes. If lake sediments are added to the model, the sensitivity analysis should consider the influence of their hydraulic conductivity on the model results.

5) Although assumptions related to hydrostratigraphy are generally conservative with respect to seepage, it will be important, as part of the sensitivity analysis, to consider the potential effects of high hydraulic conductivity values in key locations where they have been measured. For example, the coarse sediments shown buried at depth in Figure 4 have higher hydraulic conductivity (Table 2) than the geometric mean (Table 4, Golder Associates, 2016a) and are strategically located between the TMF and Sawbill Bay.

6) NRCan is not convinced that the current map of inferred shallow groundwater elevations (Figure 5, Golder Associates, 2016a and 2016b) is valid (Comment 12) and therefore it may not be useful for baseline model calibration as suggested in section 4.0 of the Technical Memorandum. The groundwater elevation map could be updated to reflect the lack of data in the uplands and the interior of the TMF. Areas mapped as peat bogs by Stea (2010) could be included as areas where the water table is at or near the ground surface. Water level depths in bedrock uplands could be estimated based on data from borehole or piezometer data in the mine area and then used as "dummy points" in the interpolation. The actual groundwater elevations in the uplands would be of lesser importance than the conceptual

understanding of groundwater flow directions for baseline conditions in which flow is a muted replica of surface topography.

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART E Baseline Model Construction and Calibration

TO Sandra Pouliot, ing. Canadian Malartic Corporation

DATE March 30, 2017

CC Karen Besemann (Golder), Adam Auckland (Golder), Ken DeVos (Golder)

FROM Devin Hannan, P.Eng.

PROJECT No 1656263 1000 1001

DOC No. 007 (Rev 1) HAMMOND REEF GOLD PROJECT: BASELINE GROUNDWATER MODEL CONSTRUCTION AND CALIBRATION – REVISED MEMORANDUM

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) is pleased to present Canadian Malartic Corporation (CMC) with this revised technical memorandum describing numerical groundwater model construction and calibration pertaining to the proposed Hammond Reef Gold Project Tailings Management Facility (TMF) site near Atikokan, Ontario (Figure 1). The model described herein considers pre-TMF ("baseline") conditions. Golder seeks the Government Review Team's (GRT) approval on the work described herein prior to proceeding with subsequent predictive scenarios which will examine TMF operation, closure, and post-closure conditions.

1.1 Background

This memorandum builds upon prior technical correspondence between CMC, Golder and the GRT concerning the proposed TMF. Most recently, Golder submitted *Hammond Reef Gold Project: Baseline Groundwater Model Construction and Calibration* (Golder, January 25, 2017). Subsequently, the GRT provided feedback in *"Federal Comments on the January 25, 2017 Tailings Management Facility Baseline Groundwater Model Memorandum for the Federal Environmental Assessment of the Hammond Reef Gold Project* (CEAA, March 2, 2017). The work described herein revisits the original model construction and calibration with the intent of addressing GRT's recommendations. This current memorandum supersedes its predecessor dated January 25, 2017.

1.2 Document Structure

This memorandum is organized into four main sections:

- 1) **Model Construction**. The implementation of the baseline (pre-TMF) conceptual model within a numerical framework is detailed.
- 2) **Calibration**. A description of the model calibration process and results is provided.
- 3) **Sensitivity Analysis**. The results of a series of simulations to assess the model sensitivity to input parameters is presented.
- 4) **Proposed Next Steps**. The groundwork for next steps in model development, including TMF implementation, is set forth.
- 5) **Review Comment Address**. GRT comments from CEAA, March 2, 2017 are addressed.

2.0 MODEL CONSTRUCTION

2.1 General Assumptions

The following assumptions have been employed in realizing the conceptual model (Golder, 2016) within a numerical framework.

- Groundwater flow is three-dimensional (3D). The model construct allows for both lateral and vertical flow paths between adjacent hydrostratigraphic units. It follows that groundwater may flow from overburden to bedrock and vice versa within a continuous system.
- Groundwater flow, including that in the bedrock system, may be simulated as an equivalent porous medium (EPM). In this setting, groundwater flow is a function of the hydraulic gradient and the hydraulic conductivity of the medium. An EPM assumption is deemed sufficient for characterizing groundwater flow at the scale of this analysis.
- The groundwater flow system may be modelled on a steady-state basis considering average conditions.
- Lakes, streams and wetlands are considered potential groundwater discharge zones.
- Groundwater divides are approximately coincident with topographic highs.
- For a given overburden section of significant thickness, a 3 metre (m) layer of surficial deposit layer exists followed by a fine-grained layer and coarse-grained layer, the latter two having equally proportional thicknesses.
- Overburden is assumed to be a maximum of 10 m thick in areas where overburden is mapped as present at surface but no proximal thickness information exists to fully characterize the area.
- Bedrock surface is weathered to a minimum thickness of 3 m.

2.2 Code

Modelling is conducted using MODFLOW-NWT, a Newton formulation of MODFLOW-2005 (Niswonger et al., 2011). MODFLOW is a multi-purpose three dimensional groundwater flow code developed by the United States Geological Survey. It is modular in nature and uses the finite difference formulation of the groundwater flow equation in its solution. Visual MODFLOW[®] (Build 4.6.0.168) is the graphical user interface for the simulations presented in this report.

2.3 Model Domain and Grid

The model domain (Figure 1) is approximately centred on the planned TMF extents and is regional in scale (24 km²). The perimeter is delineated based on major hydrologic boundaries including Sawbill Bay to the south and its associated tributary to the west, Long Hike Lake to the north and Lizard Lake to the east. These regional features are considered primarily groundwater discharge zones and would be the eventual receptors of TMF seepage, should any seepage bypass the collection system. Elsewhere, the model perimeter is coincident with subwatershed boundaries or topographic highs.

Vertically, the top of the model is bounded by ground surface (Figure 1). The bottom of the model is set within competent bedrock at 335 masl, a depth of 90 m or greater below the base of the proposed TMF (Figure 4A/B).

The model domain is subdivided laterally using 20 m x 20 m finite-difference grid cells positioned in a north-south / west-east perspective. Vertically, the model grid is comprised of five numerical layers. In total the model is comprised of 301,240 active cells.

2.4 Layer Structure

The model is vertically subdivided into five numerical layers corresponding to the conceptual hydrostratigraphic units (Figures 4A/B), namely:

- 1) Surficial Deposit Layer (sand/gravel, peat/muck or till as per Figure 2)
- 2) Fine-Grained Layer (predominately silt and/or clay)
- 3) Coarse-Grained Layer (predominately sand and/or gravel)
- 4) Weathered Bedrock Layer
- 5) Competent Bedrock Layer

The numerical implementation of Layers 1 through 3 are guided through the inferred overburden thickness mapping (Figure 3). The overburden thickness shown in Figure 3 was developed from information obtained from condemnation drillholes, geotechnical and environmental borehole drilling and overburden mapping from Stea, 2010, as discussed in Golder, 2016. The Surficial Deposit Layer is assumed to have a minimum thickness of 3 m across the model domain wherever overburden exists. Where the total overburden thickness extends beyond 4 m, the upper 3 m is parametrized as the Layer 1 Surficial Deposits and the remaining thickness split equally between the underlying Layer 2 Fine-Grained and then Layer 3 Coarse-Grained. Thus, for example, if an overburden section is 10 m thick than Layer 1 would be 3 m thick, Layer 2 would be 3.5 m thick, and Layer 3 would be 3.5 m thick.

Weathered bedrock is prevalent everywhere within the model domain at a minimum thickness of 3 m. In areas of outcropping the total thickness of weathered bedrock in the model increases to a total 4 m as the weathered bedrock parameters are assigned up through the minimally thick ("pinched out" to 0.5 m) overburden layers.

Competent rock extends from beneath the weathered bedrock layer to the bottom of the model and terminates at an elevation of 335 masl (approximately 90 m or greater below the base of the TMF).

2.5 Boundary Conditions

There are three types of boundary condition cells in the model (Figure 5): 1) inactive cells; 2) constant head cells; and 3) drain cells. Note that all of the boundary conditions cells shown in Figure 5 are present from the precalibration to final calibration and sensitivity models. That is, in this current work (unlike the prior modelling analysis), all drain cells, including peat drains, remain constant throughout the model analysis.

- Inactive cells represent a hydraulic no-flow boundary, such as a groundwater divide at the model perimeter.
- Constant head cells have a fixed groundwater elevation and may add or remove water from the system depending on the calculated head of the adjoining active cell(s). Constant head cells are used to represent large lakes, including Lizard Lake, Sawbill Bay, and Long Hike Lake at the perimeter of the model (assigned lakes levels, inferred from the DEM, are noted on Figure 5). Lakes are implemented by assigning constant head cells within the lake volume in a manner that roughly approximates mapped bathymetry (Golder, 2013¹).

As illustrated in Figures 4A/B, this approach allows a given lake to be in direct contact with any hydrostratigraphic unit so long as the lake depth intersects the position of the unit's numerical layer. In the case of Long Hike Lake there is no bathymetry mapping; as such the lake depth is assumed to reach the bottom of the overburden for its entire volume within the model.

Drains cells are similar to constant head cells except they are constrained such that they may only remove groundwater from the system. Drain cells are used to represent the small mapped wetlands, streams and peat areas in the model and are assigned head values equivalent to ground surface. The application of drains within the peat unit – in essence implying a groundwater discharge zone – is consistent with the boggy conditions and near-surface water table observed in these areas (Figure 2). As drain cells represent shallow features they are input in the upper layer of the model only.

Drain cells are assigned a conductance of 1,000 m^2/d . This conductance value allows for an accurate correspondence between assigned versus calculated head within the drain cell while maintaining numerical solver stability. Note that assigning a low drain cell conductance may result in an impedance to outflow and cause the calculated head in the cell to increase above the originally assigned head value.

2.6 Hydraulic Conductivity and Recharge

Hydraulic conductivity and recharge inputs were initially based on the conceptual model (Golder, 2016) and then refined during calibration as described in Section 3. Table 1 summarizes the final calibrated baseline model assignment for each unit. Figure 6A to Figure 6E illustrates the modelled hydraulic conductivity distribution for each layer. Note that weathered bedrock is present in Layers 1 through 3, as well as its nominal Layer 4, as a result of surficial outcropping. Figure 7 illustrates the recharge distribution.

Nominal Layer	Unit	Material	Modelled K _H (m/s)	Modelled K _z (m/s)	Recharge (mm/yr)
	Surficial	Sand/Gravel	2E-5	2E-5	200
1	Deposit	Till	5E-6	5E-6	50 to 135
		Peat	1E-5	1E-5	5
2	Fine-Grained	Silt and/or Clay	3E-7	3E-7	-
3	Coarse-Grained	Sand and/or Gravel	1E-4	1E-4	-
4	Weathered Bedrock	Bedrock	2E-6	2E-6	50
5	Competent Bedrock	Bedrock	2E-7	2E-7	-

Table 1: Baseline Model Hydraulic Conductivity (K) and Recharge

3.0 CALIBRATION

Model calibration may be defined as: "the process of refining the model representation of the hydrogeologic framework, hydraulic properties, and boundary conditions to achieve a desired degree of correspondence between the model simulations and observation of the ground-water flow system" (ASTM, 2008). For this particular model, the focus of the calibration effort is primarily on finalizing hydraulic conductivity and recharge assignments.

3.1 General Methodology

Calibration begins with the model incorporating the conceptual inputs as described in Golder, 2016. The subsequent steps involve an iterative, "trial and error" approach to adjusting input parameters until model output satisfactorily matches observed water level data ("calibration targets") as listed in Table 2. Each progressive simulation is thusly referred to as an "iteration". Goodness-of-fit for each iteration is assessed via statistical and other quantitative or qualitative means including:

- Mean Residual: This term, expressed in units of metres herein, indicates the average difference between observed and simulated water levels. The mean residual may suggest the degree to which the model is, on average, predicting heads above or below the observed dataset. A mean residual approaching zero is usually desired.
- Mean Absolute Residual: This indicator, expressed in units of metres herein, represents the average absolute value of the difference between observed and simulated water levels. A mean absolute residual of 1 m or less is considered optimal given the scale of this analysis and the measured range in water levels (typically within 1 m as indicated in Table 2).
- *RMS Error*. This term reflects the average of the squared differences between observed and simulated water levels. RMS is akin to standard deviation and is a measure of the spread of error about the mean residual. This term must be used with some care as it does not account for the potential range of water levels. However, in a progressively improving calibration process, this value should decrease.
- NRMS: This indicator, expressed in percentage, is the RMS divided by (or normalized by) the range of observed values for the dataset multiplied by 100%. NRMS may be considered a better indicator of goodness of fit as it accounts for the scale of the potential range of water levels. In this assessment NRMS magnitude is subjective, and, aside from the expectation of a decreasing NRMS with a calibration improvement, there is not a set target value that may be quantitatively ascribed. Nonetheless, based on Golder's experience, a NRMS target of 10% or less is frequently employed as the minimum target in Ontario.
- Calibration Plot: Simulated versus observed head values are compared on a plot with a central 45 degree line. In an idealized result, each point will lie along the 45-degree line. However, this rarely occurs in practice. Instead, the calibration plot is used as a visual inspection tool to determine goodness-of-fit and to detect any simulation bias (too high or too low relative to measured data) in the output. A good calibration outcome will show most points spread somewhat closely and evenly about the 45-degree line.
- % of Simulated Water Table Above Ground Surface: In models that simulate a shallow water table it is common/acceptable for a small portion of the calculated heads to slightly breach ground surface. This may occur as a result of minor inaccuracies introduced by numerical approximation and do not indicate a poor calibration. However, large areas with significant head above ground surface may indicate a systemic issue. As such, we have included as a quasi-calibration measure the percent of simulated water table above ground surface.
- Regional Flow Directions: Simulated trends are visually compared to regional inferences (as described in Section 3.2).

3.2 Targets

The "calibration targets" are average water levels measured at 22 TMF area wells (see attached Table 2 and Figure 8). For the purposes of model calibration, the target water levels are calculated as DEM elevation minus depth to water as opposed to the actual measured groundwater elevation. This adjustment is undertaken to avoid introducing residual error that might occur as a result of minor discrepancies between the interpolated model DEM versus actual surveyed topography.

In addition to groundwater elevation, the direction of vertical gradients is assessed for nested wells. Gradients are calculated as follows:

Observed Vertical Gradient	=	<u>(Avg. Water Level Shallow Well) – (Avg. Water Level Deep Well)</u> Distance between Midpoint of Screens
Model Vertical Gradient	=	<u>(Calc. Water Level Shallow Well) – (Calc. Water Level Deep Well)</u> Distance between Midpoint of Model Layers

In this document a negative "-" gradient denotes an upward flow direction.

Note that the *magnitude* of vertical gradients, whereas reported on herein, do not provide a good calibration indicator in this setting because: 1) the observed vertical gradient magnitude is an averaging of water level difference measured over discrete screened intervals; whereas 2) the model calculates hydraulic head at the centroid of each cell which may then be applied across the entirety of the layer thickness. The difference between screen versus layer distances makes direct comparison of gradient magnitude unfeasible (as is often the case in regional scale modelling analysis).

Lastly, during calibration it is also common to compare simulated heads with inferred groundwater patterns based on the measured dataset. In the previous conceptual model development memorandum, an inferred water table map was presented (Golder, 2016 – Figure 5). However, this particular map is of limited value in calibration as a large portion of the mapped domain is not constrained by monitoring data. Nonetheless, the following general trends may be inferred:

- Groundwater flow patterns roughly mimic topographic trends.
- There is a regional trend of southwesterly flow towards Sawbill Bay or southeasterly flow towards Lizard Lake with localized divides occurring within the model domain.
- The water table is frequently at, or close to, ground surface, particularly in low-lying areas.

3.3 Calibration Adjustments and Results

3.3.1 Initial Iteration

Calibration results of the revised initial iteration utilizing the conceptual model inputs (Golder, 2016) are illustrated in Figure 8 and summarized in Table 2 (named "Run 0" for reporting purposes). A key aspect of this revised initial iteration relative to the previous model analysis (Golder, 2017) is that the boundary conditions, in particular the peat drain cells, are consistent with the final calibrated model. Whereas the revised initial iteration is no longer displaying a large bias towards over-estimating heads relative to the initial iteration in Golder, 2016, the results nonetheless still indicate a sub-optimal calibration in each statistical indicator.

The initial iteration does successfully match vertical gradient directions at five of six well nests, the one exception being BH12-5 which has a very small observed gradient.

3.3.2 Adjustments

In order to achieve a satisfactory calibration the following adjustments are made (these changes ultimately result in the inputs as described in Section 2 – Model Construction of this memorandum):

- The hydraulic conductivity distribution of the surficial deposits is differentiated material-wise as per Figure 2 to allow a more accurate portrayal of hydraulic properties and to align with the recharge rate distribution.
- The surficial sand hydraulic conductivity is slightly increased from 1E-5 m/s to 2E-5 m/s. This adjustment remains within the measured range of values for the surficial sand materials (Golder, 2016). In addition, the surficial sand recharge rate is reduced from 300 mm/yr to 200 mm/yr. This reduction in recharge is considered reasonable owing to the presence of fines in these sandy materials (i.e. the surficial sand is typically not a high-permeability, uniformly graded coarse sand or gravel which would be more conducive to a relatively high recharge rates of 300 mm/yr). These changes assist in depressurizing areas with an overestimation of hydraulic head.
- The surficial till hydraulic conductivity is slightly decreased from 1E-5 m/s to 5E-6 m/s. This update is considered a more reasonable reflection of the relatively lower hydraulic conductivities typically associated with till materials. Furthermore, the surficial till recharge was increased from 25 mm/yr to 50 mm/yr. These changes were required to raise water levels in the till closer to ground surface as observed in the monitoring data.
- A discrete recharge zone with a rate of 135 mm/yr is applied in the valley wherein BRH-0016B is situated to better match water levels at that monitor. This small, largely enclosed "basin" feature likely allows for a greater concentration of recharge than in other surficial till areas.
- The fine-grained unit hydraulic conductivity 10:1 anisotropy (in areas where overburden is greater than 10 m thick) is made isotropic. This adjustment further assists in depressurizing areas with an over-estimation of hydraulic head. In addition, we note that this update would promote vertical seepage to the underlying coarse-grained unit (the most transmissive unit in the model). This parameter adjustment is revisited during sensitivity analysis (Section 4).
- The coarse-grained unit hydraulic conductivity is increased from 1E-5 m/s to 1E-4 m/s. This adjustment remains within the measured range of values for the coarse-grained materials (Golder, 2016). The increase in coarse-grained hydraulic conductivity results in a beneficial near-global decrease in target water levels and mounding. In addition, we note that this update is conservative (relative to the conceptual inputs) in terms of seepage rates that may emanate from the TMF.
- The weathered bedrock recharge rate (where rock outcrops at surface) was increased from 5 mm/yr to 50 mm/yr to produce a local head increase to the surrounding surficial materials where water levels are observed to be close to ground surface.

3.3.3 Final Calibration Results

Calibration results of the final calibration iteration using the inputs described in Section 2 are illustrated in Figure 9 and summarized in Table 2 (named "Run 1" for reporting purposes). The results indicate a satisfactory calibration in each statistical indicator and no undue bias in global trends.

The calibrated model successfully matches vertical gradient directions at five of six well nests, the one exception being BH12-5 which has a very small observed gradient (Table 2).

Simulated groundwater patterns compare reasonably well with our understanding of shallow groundwater behaviour and display a subdued reflection of topographic trends – groundwater highs (divides) occur along topographic ridges whereas groundwater lows (discharge areas) occur within valleys and adjacent to drainage features. There is a groundwater divide running somewhat centrally through the model domain; groundwater west of this area reports to Sawbill Bay whereas groundwater east of this area reports to Lizard Lake drainage. Another groundwater divide occurs in the north of the model domain; groundwater north of this area discharges to Long Hike Lake whereas groundwater south of this area reports to either Sawbill Bay or Lizard Lake.

A map of simulated depth to water table is provided in Figure 10. Depth to water is greatest in the upland areas to the north and along topographic highs. Elsewhere, in the valley areas, depth to water is relatively shallow with a large portion of the valley areas having the water table within 1 m of ground surface. There are a few discrete areas where the groundwater table is above ground surface; this is a minor occurrence (under 2% of the total model area) and acceptable given the regional scale of the model.

3.4 Groundwater Flow Budgets

Flow budgeting for the pre-calibration and final (baseline) calibration models is provided in Table 3. A typical global flow budget is provided that accounts for total inflow and outflow through recharge and the hydrologic boundaries implemented in the model (Figure 5). Also provided is the flow through the coarse-grained unit. The purpose of this flow accounting is not only to report on the model water budget but also to gain further insight into the effect of sensitivity analysis permutations (Section 4).

With respect to the final (baseline) calibration model the following is noted:

- Total flow through the model is 5,271 m³/d.
- Recharge provides the majority of inflow (5,068 m³/d or 96%). A small amount of water (203 m³/d or 4%) enters the model from the lakes (mostly Long Hike Lake, owing to its higher water level elevation).
- The peat and internal wetland / stream features receive the majority of outflow (a combined 3,783 m³/d or 72%). The remainder of outflow (1,488 m³/d, or 28%) reports directly to the lakes.
- The coarse-grained layer receives a significant amount of flow-through (4,087 m³/d, or 77% of the model flow).

4.0 SENSITIVITY ANALYSIS

An additional set of simulations are performed to determine the model sensitivity to key input parameters. Sensitivity in this particular analysis is quantified on the basis of calibration statistics and changes to flow budgets. Whereas the approach at this stage is quantifying the effect on calibration, parameters expected to play a role in future TMF seepage rates are examined.

The sensitivity analysis scenarios involve varying recharge rates and hydraulic conductivity values within a reasonable range as follows (Table 4):

- Run 2: Recharge rates increased by 50%.
- Run 3: Recharge rates decreased by 50%.
- Run 4: Fine-grained material hydraulic conductivity multiplied by 10.
- Run 5: Fine-grained material hydraulic conductivity divided by 10.
- Run 6: Fine-grained material anisotropy changed to 1:0.1 (where overburden is greater than 10 m thick).
- Run 7: Coarse-grained material hydraulic conductivity multiplied by 10.
- Run 8: Coarse-grained material hydraulic conductivity divided by 10.
- Run 9: Weathered bedrock material hydraulic conductivity multiplied by 10.
- Run 10: Weathered bedrock material hydraulic conductivity divided by 10.

From a calibration statistics perspective, the model appears to be most sensitive to the applied changes in recharge and least sensitive to changes in the fine-grained unit hydraulic conductivity. Almost every permutation indicates a worsening in calibration relative to baseline. These sub-optimal outcomes suggest that the sensitivity scenarios are less likely to occur relative to the baseline inputs. One possible exception is Run 4, where the sensitivity results are practically the same as the baseline; as mentioned, the model exhibits a low sensitivity to changes in fine-grained unit hydraulic conductivity. In the face of a wide range of potential fine-grained unit hydraulic conductivity values providing similar outcomes, we have chosen a calibration value that reflects the central tendency of the measured dataset (3E-7 m/s).

5.0 PARAMETER INPUTS SCENARIOS FOR FUTURE TMF SEEPAGE ANALYSIS

The calibration results indicate that the baseline model provides a defensible set of input parameters to use in the forthcoming predictive modelling of TMF seepage.

However, the sensitivity analysis suggests that other credible input sets may exist. With the purview of establishing a conservative upper limit on potential seepage, we propose to utilize Run 11 (Fine-grained material hydraulic conductivity multiplied by 10 and Coarse-grained material hydraulic conductivity multiplied by 10) alongside the baseline model inputs in the evaluation of TMF seepage. Run 11, while providing slightly inferior calibration statistics relative to the baseline, is nonetheless a plausible variant and, importantly, is the scenario tested that is most likely to promote seepage external to the TMF (for example this Run provides the greatest coarse-grained unit flow-through as per Table 4). In our view this two-model approach will allow for a practical understanding of potential seepage ranges and will enforce a conservative seepage collection system design.

6.0 NEXT STEPS

Provided the model construction and calibration detailed herein is acceptable to the GRT, the next step of the model process will be simulation of the TMF, including:

- 1. The TMF will be implemented within the numerical model framework for the operation, closure and postclosure project phases including the application of conceptual design details of seepage collection system.
- Seepage quantities and environmental fate will be evaluated using zone budgeting and particle tracking in MODFLOW. This analysis will provide a base case estimate of capture efficiency, potential seepage bypass rates and the amount of discharge reporting to discrete receptors external to the TMF (for example, Lizard Lake, Sawbill Bay).
- 3. Both baseline (Run 1) and Run 11 inputs will be tested.
- 4. A report or technical memorandum summarizing the above will be provided for the GRT's review. This memorandum, amongst other items, will include conceptual details of seepage interception systems and contingency plans and an assessment of the residual impacts to the downstream receptors, thereby addressing Parts 7 and 8 of the Information Request T(3)-08.

7.0 REVIEW COMMENT ADDRESS

The following lists and provides initial address to GRT comments from CEAA., 2017. This address is not a final response to all GRT comments but rather seeks to resolve current modelling concerns so as to allow Golder to proceed to the next stage of modelling (TMF Simulation). We cannot fully address all of the GRTs concerns until the predictive TMF Simulation modelling is complete.

7.1 "Recommendations" from CEAA, 2017

1. Model details and results should be fully reported, in order to evaluate the validity of the model calibration and sensitivity analysis. Comments 2-5 identify minor corrections or additions that are requested to ensure accuracy of reporting that will assist with the evaluation of model results, including:

- a. Reporting of cell conductance for drain cells, and identification of any cells that were specified as drain cells for the pre-calibration model;
- b. Verification and correction of the identified "Screened Unit" in Table 2 that is incorrectly labelled for several wells;
- c. Tabulation and summary of water level data for the model calibration, and the average depth to water in each monitoring well, the range (and standard deviation if enough data are available) of measured water depths, and the DEM elevation of each well should also be reported. The range and standard deviations of water levels can then be compared with the magnitude of the residuals in the model calibration and sensitivity analysis.
- d. If data are available for monitoring well BRH-0020B, they should be added to the water level data summary requested above and then used to ensure all available data are incorporated into model calibration and sensitivity analysis.

Response:

- Recommendation 1a has been addressed in Section 2.5.
- Recommendations 1b, 1c and 1d have been addressed in Table 2.

2. To demonstrate the actual improvement in model calibration due to the adjustments in K and recharge values, the pre-calibration model should also include the drain cell boundary conditions as implemented for the calibrated model.

Response: The pre-calibration model now includes the peat drain cell boundary conditions (as per Section 2.5 and Section 3.3.1).

3. Anisotropy of the fine-grained unit should be included as a scenario in the sensitivity analysis as it may influence the assessment of the effectiveness of the perimeter seepage collection ditches.

Response: Anisotropy of the fine-grained unit is now included as scenario in the sensitivity analysis (Section 4). Please note that the baseline model considers the fine-grained unit as isotropic, which not only yields a superior calibration result but also better facilitates vertical flow to the underlying coarse-grained layer and thus increases the potential for seepage bypass underneath the collection ditches.

4. Vertical hydraulic gradients could be used as either a calibration target or for evaluation of results. Either way, matching hydraulic gradients in the model to measured gradients may help to constrain the model's parameters. At a minimum, the report should compare measured and modelled vertical hydraulic gradients.

Response: Vertical hydraulic gradients between observed and simulated water levels at calibration wells are compared in Table 2 and discussed in Section 3.

- 5. The report should present the results of the final calibrated model and their implications in more detail:
 - a. First, a map of depth to the water table (i.e. below ground surface) would be helpful to evaluate water levels (also showing areas where the water table is above ground surface).
 - b. Second, a map indicating boundary conditions (i.e. also indicating active drain cells) and boundary fluxes would provide insight into the distribution of groundwater discharge under baseline conditions.
 - c. Third, a summary of baseline seepage fluxes to various boundaries/receptors (Lizard Lake, Sawbill Bay, Sawbill Creek, Long Hike and Woody Lakes, and the drain cell boundaries) should be tabulated..

Response:

- Recommendation 5a is addressed in Section 3.3.3 (Figure 10).
- Recommendation 5b is addressed in Figure 5.
- Recommendation 5c is addressed in Table 3.

6. The most important issue is how to deal with the model's relative insensitivity to hydraulic conductivity (and to a lesser extent recharge). Table 3 indicates that other parameter sets may provide comparable calibrations to the final calibrated model. However, these parameter sets may not produce similar seepage results or respond similarly to the TMF and the perimeter seepage collection ditches. Therefore, NRCan recommends that Golder identify a few credible scenarios (i.e. sets of calibrated model parameters) that would represent the full range of possible seepage. Each of these credible scenarios would then be implemented for the TMF modelling to provide a potential range of results (e.g., seepage bypass rates and seepage collection capture efficiencies). Selection of

credible sets of model parameters should be based on more than just the calibration criteria based on hydraulic head in Table 3. It should consider some measure of seepage flux (e.g., total seepage from layer 3) that would indicate variable levels of confinement and permeability of the coarse-grained layer. Therefore, Table 3 should also report a relevant measure of seepage to allow comparison of the influence of parameters on both calibration and seepage.

Response: Model flow budgets, including baseline and sensitivity scenario flow-through within the coarse-grained unit, are provided in Table 4. Golder has proposed two credible scenarios that represent the expected and upper bound of possible seepage as described in Section 5.

8.0 CLOSURE

We thank CMC for retaining Golder on this project and look forward to the GRT's review of this current work. If you have any questions, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Adam Auckland Project Manager Devin Hannan, P.Eng. Associate, Environmental Engineer

9.0 **REFERENCES**

ASTM, 2008. Standard Guide for Comparing Groundwater Flow Model Simulations to Site-Specific Information. D5490-93 (Reapproved 2008).

Canadian Environmental Assessment Agency, 2016. Federal Comments on the October 6, 2016 Updated Memorandum on the Tailings Management Facility Hydrogeological Fieldwork and Conceptual Model Development for the Federal Environmental Assessment of the Hammond Reef Gold Project. Submitted to Canadian Malartic Corporation. November 22, 2016.

Fetter, C.W., 2001. Applied Hydrogeology, 4th Edition. Prentice Hall, Upper Saddle River, New Jersey.

Golder, 2016. Hammond Reef Gold Project: Tailings Management Facility Hydrogeological Field Work and Conceptual Model Development. Submitted to Canadian Malartic Corporation. October 6, 2016.

Golder, 2013¹. Hammond Reef Gold Project: Lake Water Quality Technical Support Document, Version 2. Document No. DOC019. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013². Hammond Reef Gold Project: Water and Sediment Quality Technical Support Document, Version 2. Document No. DOC019. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Niswonger, R.G., Panday, Sorab and Ibaraki, Motomu (2011). MODFLOW-NWT, A Newton formulation for MODFLOW-2005. U.S. Geological Survey Techniques and Methods 6–A37, 44 p.

Pandit, N.S. and R.F. Miner, 1986. Interpretation of Slug Test Data. Ground Water, 24(6), 743.

Singer, S.N. and C.K. Cheng, 2002. An Assessment of the Groundwater Resources of Northern Ontario, Areas Draining Into Hudson Bay, James Bay, and Upper Ottawa River. Hydrogeology of Ontario Series (Report 2). Environmental Reporting and Monitoring Branch. Ontario Ministry of the Environment. Toronto, Ontario.

Stea, 2010. Stratigraphy of glaciofluvial deposits and recommendations for recce sampling. Prepared for Brett Resources Inc.. June 2010.

Attachments:

Table 2: Water Level and Calibration Results Table 3: Groundwater Flow Budgets Table 4: Sensitivity Analysis Results Figure 1: Study Area and Model Domain Figure 2: Surficial Geology (STEA, 2010) Figure 3: Inferred Overburden Thickness Figure 4A: Model Cross Section A-A' Figure 4B: Model Cross Section B-B' Figure 5: Boundary Conditions Figure 6A: Hydraulic Conductivity Distribution Layer 1 Figure 6B: Hydraulic Conductivity Distribution Layer 2 Figure 6C: Hydraulic Conductivity Distribution Layer 3

Figure 6D: Hydraulic Conductivity Distribution Layer 4 Figure 6E: Hydraulic Conductivity Distribution Layer 5 Figure 7: Recharge Distribution Figure 8: Pre-Calibration Simulated Water Table and Calibration Results Figure 9: Final Calibration Simulated Water Table and Calibration Results Figure 10: Final Calibration Depth to Water Table

N:Active/2016/3 Proj/1656263 CMC_EA Support_Hammond Reef/3. Environment/1. TMF Seepage Assessment/Model Construction Calibration/Rev 1/1656263_DOC007_Rev 1_TMF Model Construction and Calibration_30Mar2017.docx

TABLE

TABLE 2 Water Levels and Calibration Results

		Model Screened Unit		Field Measurements								Pre-Calibration Model (Run 0)			Baseline Calibrated Model (Run 1)		
Well ID	Log Screened Unit		DEM Elevation (masl)	Depth to Water Avg. (mbgs)	Depth to Water Min (mbgs)	Depth to Water Max (mbgs)	Depth to Water Range (m)	Depth to Water Std. Dev. (m)	Avg. GW Elevation [Calib. Target] (masl)	Avg. Vertical Gradient (m/m)	GW Elevation (masl)	Residual (m)	Vertical Gradient (m/m)	GW Elevation (masl)	Residual (m)	Vertical Gradient (m/m)	
BH 12-1	Bedrock	Weathered Bedrock	439.6	0.49	0.18	0.80	0.62	0.44	439.1	-	440.0	0.9	-	440.0	0.9	-	
BH 12-10	Silty Sand (immediately below peat)	Peat	433.5	0.71	0.46	0.97	0.52	0.36	432.8	-	430.8	-2.0	-	433.1	0.3	-	
BH 12-2	Silt, Silty Sand and Gravel	Fine-Grained	418.4	0.40	0.03	0.78	0.75	0.53	418.0	-	418.8	0.8	-	417.7	-0.2	-	
BH 12-3A	Bedrock	Weathered Bedrock	418.8	-0.19	-0.67	0.29	0.96	0.68	419.0	-0.01	421.4	2.3	-0.001	419.1	0.0	0.01	
BH 12-3B	Silt	Fine-Grained	418.8	-0.14	-0.60	0.32	0.92	0.65	419.0	-0.01	421.4	2.4	-0.001	419.0	0.1	-0.01	
BH 12-4	Silt, Silty Sand	Fine-Grained	428.2	-0.08	-0.74	0.58	1.31	0.93	428.2	-	428.0	-0.3	-	427.9	-0.4	-	
BH 12-5A	Bedrock	Weathered Bedrock	432.9	-0.13	-0.62	0.36	0.98	0.69	433.0	0.005	433.0	-0.1	-0.002	433.0	0.0	-0.001	
BH 12-5B	Sand	Coarse-Grained	432.9	-0.15	-0.63	0.33	0.97	0.68	433.1	0.005	433.0	-0.1	-0.002	433.0	0.0		
BRH-0016A	Bedrock	Weathered Bedrock	446.3	1.37	1.19	1.57	0.38	0.16	444.9	0.13		-13.1	0.0	444.1	-0.8	0.01	
BRH-0016B	Sandy Clayey Silt (at bedrock contact)	Weathered Bedrock	446.3	0.95	0.77	1.14	0.38	0.27	445.3	0.13		-13.5	0.0	444.2	-1.2	0.01	
BRH-0017A	Bedrock	Weathered Bedrock	428.8	0.10	-0.08	0.26	0.34	0.17	428.7	-0.004	427.6	-1.1	-0.001	428.7	0.0	-0.001	
BRH-0017B	Compact Silty Sand / Sand (Till)	Till	428.8	0.12	0.02	0.19	0.17	0.09	428.7	-0.004	427.6	-1.1	-0.001	428.7	0.0		
BRH-0018	Bedrock	Weathered Bedrock	429.8	0.87	-1.04	1.93	2.97	1.23	428.9	-	429.7	0.8	-	428.7	-0.2	-	
BRH-0019	Silty Clay to Clay	Fine-Grained	430.8	0.03	-0.40	0.59	0.99	0.50	430.8	-	430.9	0.1	-	431.0	0.2	-	
BRH-0020A	Bedrock	Weathered Bedrock	415.9	-0.70	-0.87	-0.62	0.25	0.14	416.6	-0.08	418.4	1.8	-0.01	417.2	0.7	0.004	
BRH-0020B	Sand with Boulders	Coarse-Grained	415.9	-0.65	-0.65	-0.65	0.01	0.00	416.5	-0.08	418.4	1.9	-0.01	417.2	0.7	-0.004	
BRH-0021A	Bedrock	Weathered Bedrock	420.5	0.73	0.09	1.40	1.31	0.57	419.8	0.00	420.5	0.7	-0.004	420.5	0.7	0.004	
BRH-0021B	Organics, Sand, Sandy Clayey Silt	Peat	420.5	0.97	0.30	1.72	1.43	0.62	419.5	-0.08	420.5	1.0	-0.004	420.5	0.9	-0.001	
		Weathered Bedrock	431.7	1.21	1.06	1.38	0.33	0.14	430.5	-	432.6	2.1	-	431.4	0.9	-	
BRH-0023	Sand and Gravel, Boulders, Some Clay	Till	438.3	0.42	0.32	0.51	0.19	0.08	437.9	-	436.8	-1.1	-	439.8	1.9	-	
	Bedrock	Weathered Bedrock	433.6	4.39	4.18	4.54	0.36	0.17	429.2	-	433.2	4.0	-	432.0	2.7	-	
BRH-0027	Compact Sandy Silty Clay, Silty Sand	Till	437.0	0.08	0.08	0.08	0.00	n/a	437.0	-	431.4	-5.5	-	434.5	-2.5	-	
													Calibratio	n Statistics			
Note: A neg	ative "-" depth to water denotes a water	level above ground su	irface.						Residua	al Mean (m):		-0.9			0.2		
	·		Absolute Residual Mean (m):								2.6			0.7			
								Normalized	Root Mean	Square (%):	l	15.4%			3.6%		
						% of Mo	% of Model Domain with Heads Above Ground Surface:								2%		

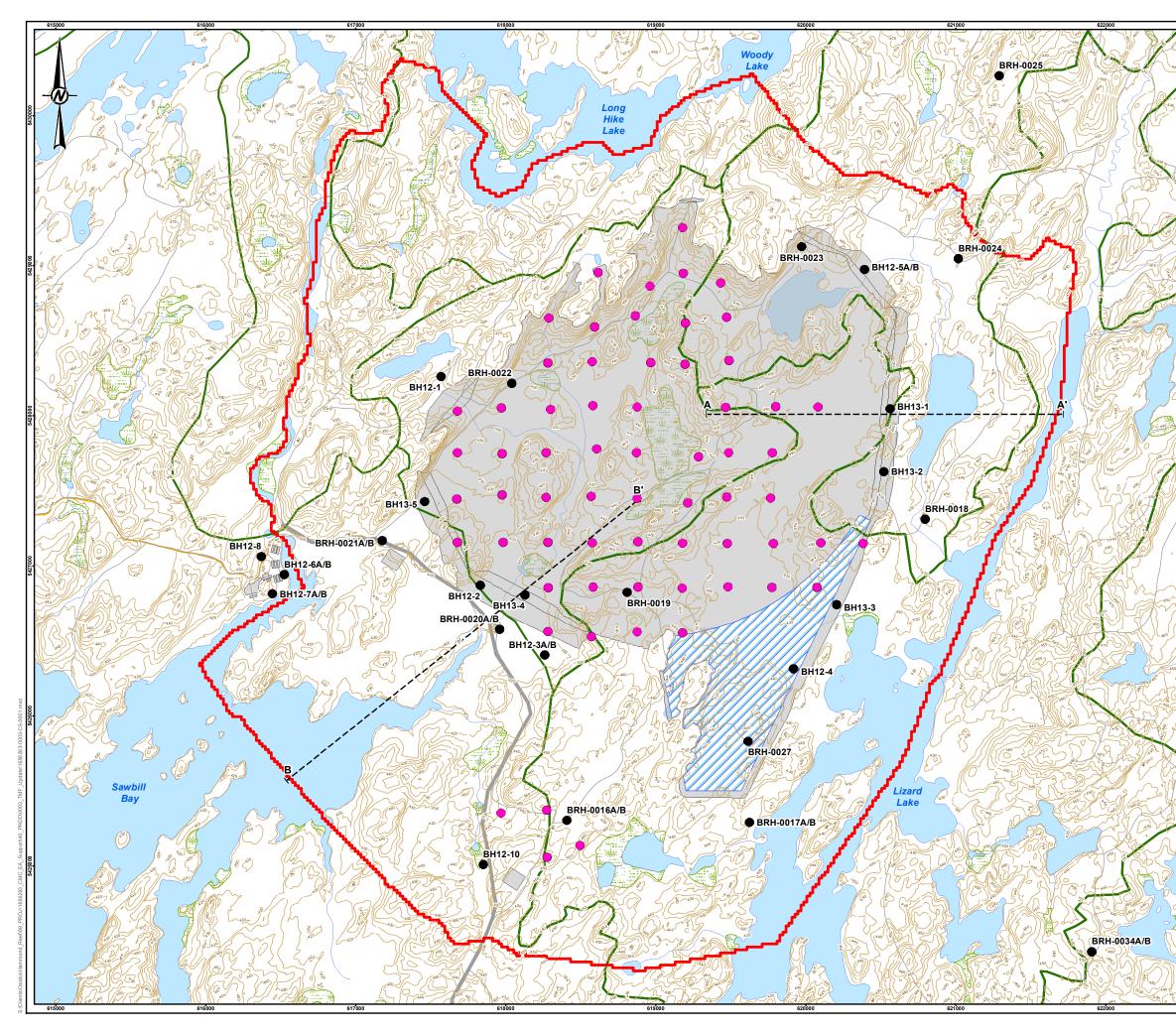
1656263

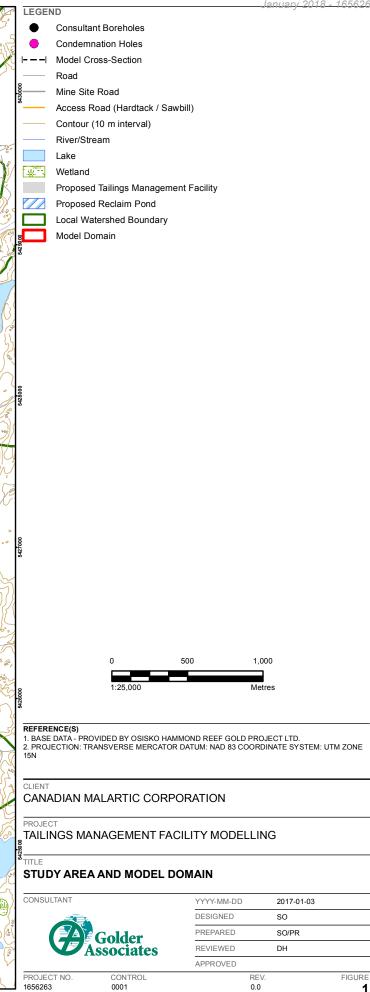
TABLE 3 Groundwater Flow Budgets

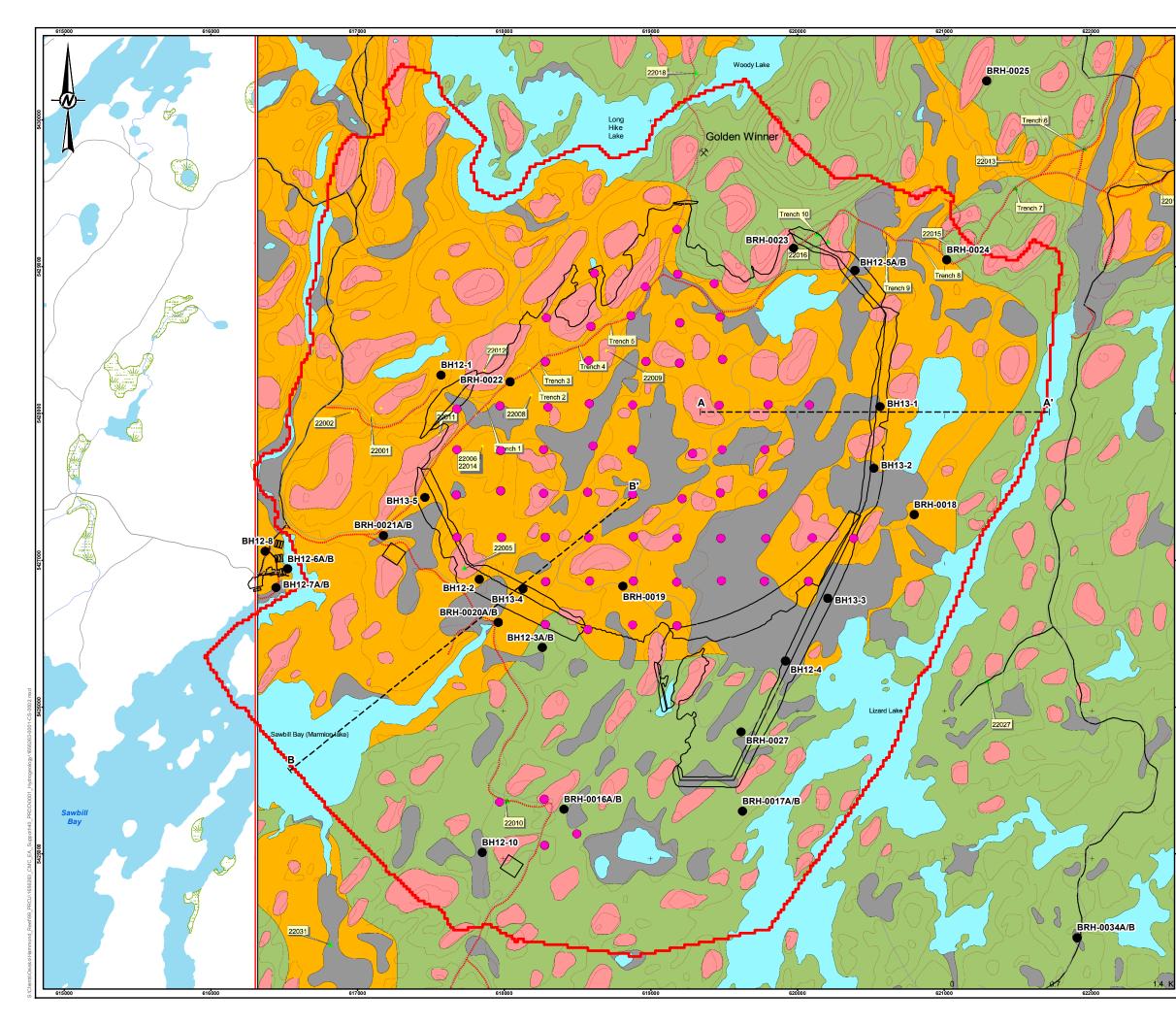
		Pre	-Calibration (Ru	n 0)	Baseline Calibration (Run 1)					
Feature	Boundary Type	ln (m3/d)	Out (m3/d)	Net (m3/d)	In (m3/d)	Out (m3/d)	Net (m3/d)			
Recharge	Recharge	5,513	0	5,513	5,068	0	5,068			
Sawbill Bay	Constant Head	4	665	-661	7	739	-732			
Long Hike Lake	Constant Head	63	201	-138	177	173	4			
Lizard Lake	Constant Head	0	242	-242	0	404	-404			
North Pond	Constant Head	7	224	-217	19	172	-153			
Internal Wetland / Streams	Drains	0	1,617	-1,617	0	1,752	-1,752			
Peat	Drains	0	2,639	-2,639	0	2,031	-2,031			
	Total:	5,587	5,587	0	5,271	5,271	0			
Flow Th	rough Coarse-Grained Unit:	3,217	3,217	0	4,087	4,087	0			

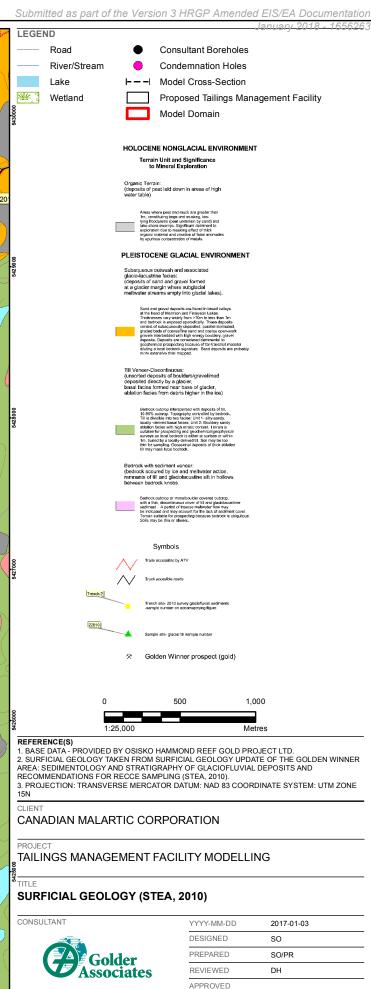
Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

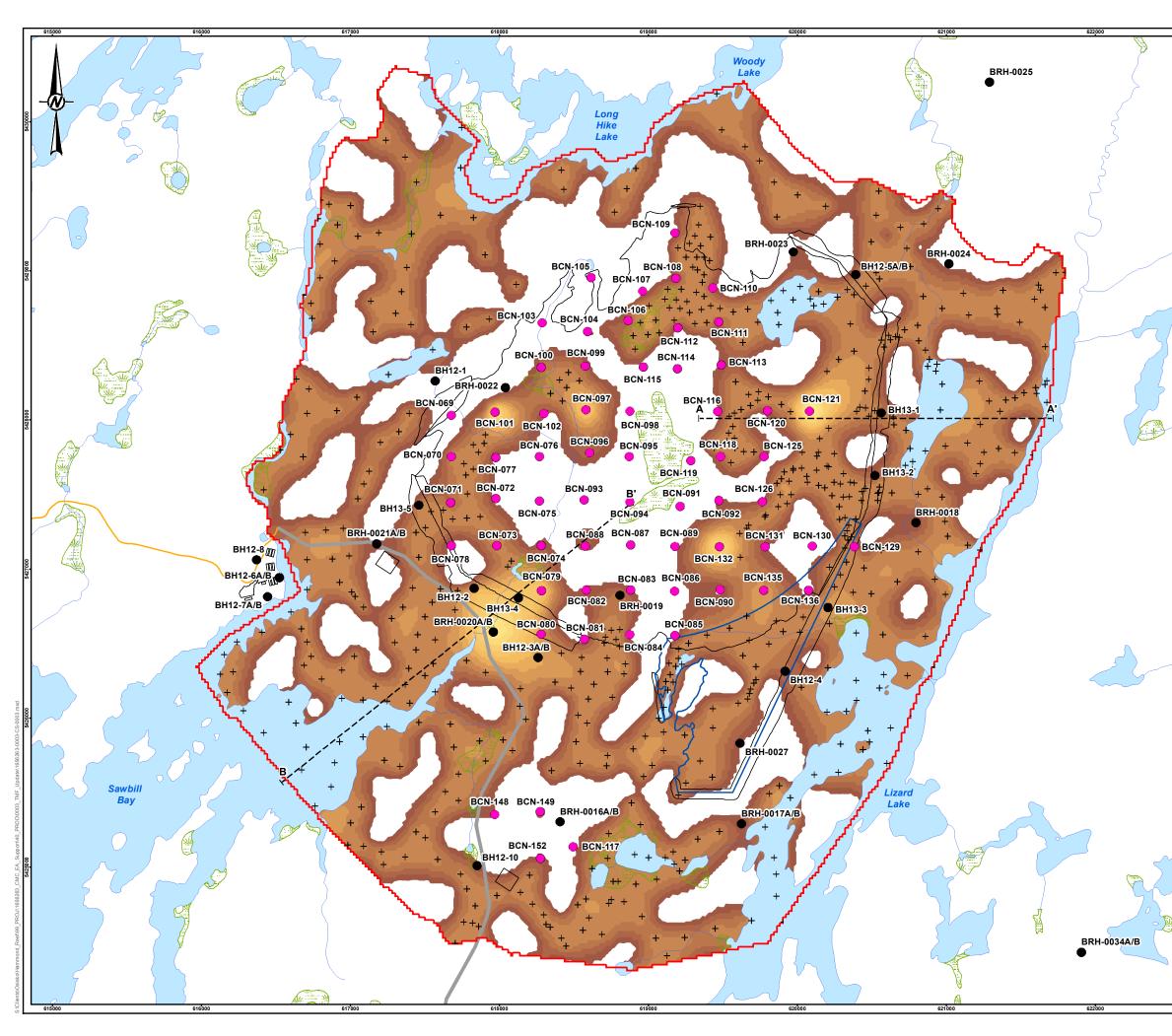
1656263

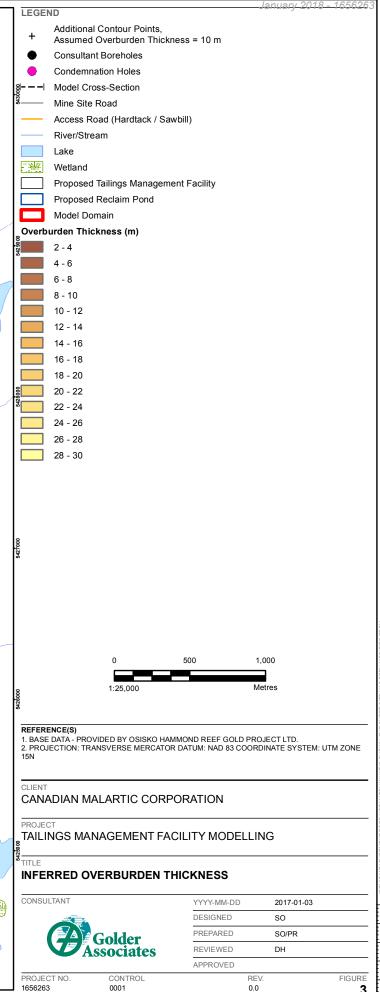

TABLE 4 Sensitivity Analysis Results

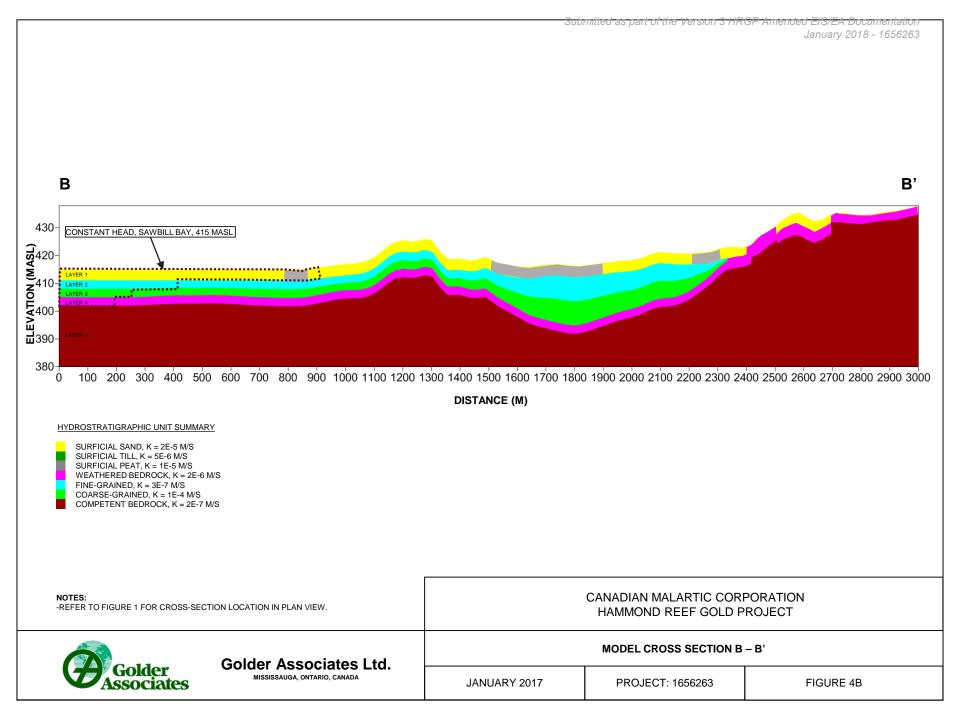

			<u> </u>		<u> </u>				<u> </u>	_			_	_			_				<u> </u>	
	R	un 1	-	ın 2	-	ın 3	Ru	ın 4	Ru	ın 5		n 6	-	ın 7		in 8	Ru	in 9	Ru	n 10		un 11
Description	Baseline	Calibration		Recharge 0%	Decrease Recharge 50%		Fine-Grained K x 10		Fine-Grained K / 10		Fine-Grained $K_H : K_V = 1 : 0.1$		Coarse-Grained K x 10		Coarse-Grained K / 10		W. Bedrock K x 10		W. Bedrock K / 10		Fine-Grained and Coarse-Grained K x	
											Calibratio	n Statistics										
Res. Mean (m)	().2	C).9	-1	1.0	C	0.0	C).6	0	0.4		-0.4		.5	-0.3		0.6		-0.8	
Abs. Res. Mean (m)	().7	1	.1	1	.3	C	.7	1	.0	0.9		1.0		0.7		0.8		0.9		1.2	
Normalized RMS (%)	:	3.6	5	5.5	8	3.5	3	.5	4	4.5 4.1		.1	5.0		3.6		4.3		4.8		5.6	
% Model Domain with Head Above Ground	2	2%	4	1%	1	%	2	:%	3	3% 3%		%	1%		4%		1%		3%		1%	
										Gr	roundwater	Flow Bud	get									
	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	In (m ³ /d)	Out (m ³ /d)
Recharge	5,068	0	7,601	0	2,534	0	5,068	0	5,068	0	5,068	0	5,068	0	5,068	0	5,068	0	5,068	0	5,068	0
Sawbill Bay Const. Heads	7	739	7	999	7	457	10	735	7	719	7	736	7	1,206	7	578	8	784	7	732	13	1,224
Long Hike Lake Const. Heads	177	173	150	322	216	35	204	169	132	186	171	176	823	151	81	192	260	155	133	180	1,287	142
Lizard Lake Const. Heads	0	404	0	498	0	293	0	410	0	388	0	385	0	971	0	287	0	477	0	390	0	1,042
North Pond Const. Heads	19	172	14	265	27	80	47	174	10	174	14	170	52	141	12	171	21	168	18	173	210	156
Internal Wetland/Stream Drains	0	1,752	0	2,545	0	951	0	1,895	0	1,624	0	1,719	0	2,112	0	1,711	0	1,757	0	1,748	0	2,907
Peat Drains	0	2,031	0	3,144	0	967	0	1,947	0	2,127	0	2,074	0	1,369	0	2,229	0	2,016	0	2,004	0	1,106
Total	5,271	5,271	7,772	7,773	2,784	2,784	5,329	5,329	5,217	5,218	5,260	5,260	5,950	5,949	5,169	5,169	5,357	5,357	5,227	5,227	6,577	6,577
Flow Through Coarse- Grained Unit	4,087	4,087	5,588	5,588	2,433	2,433	4,539	4,539	3,177	3,177	3,845	3,845	5,335	5,335	2,950	2,950	4,704	4,704	3,925	3,925	6,561	6,561

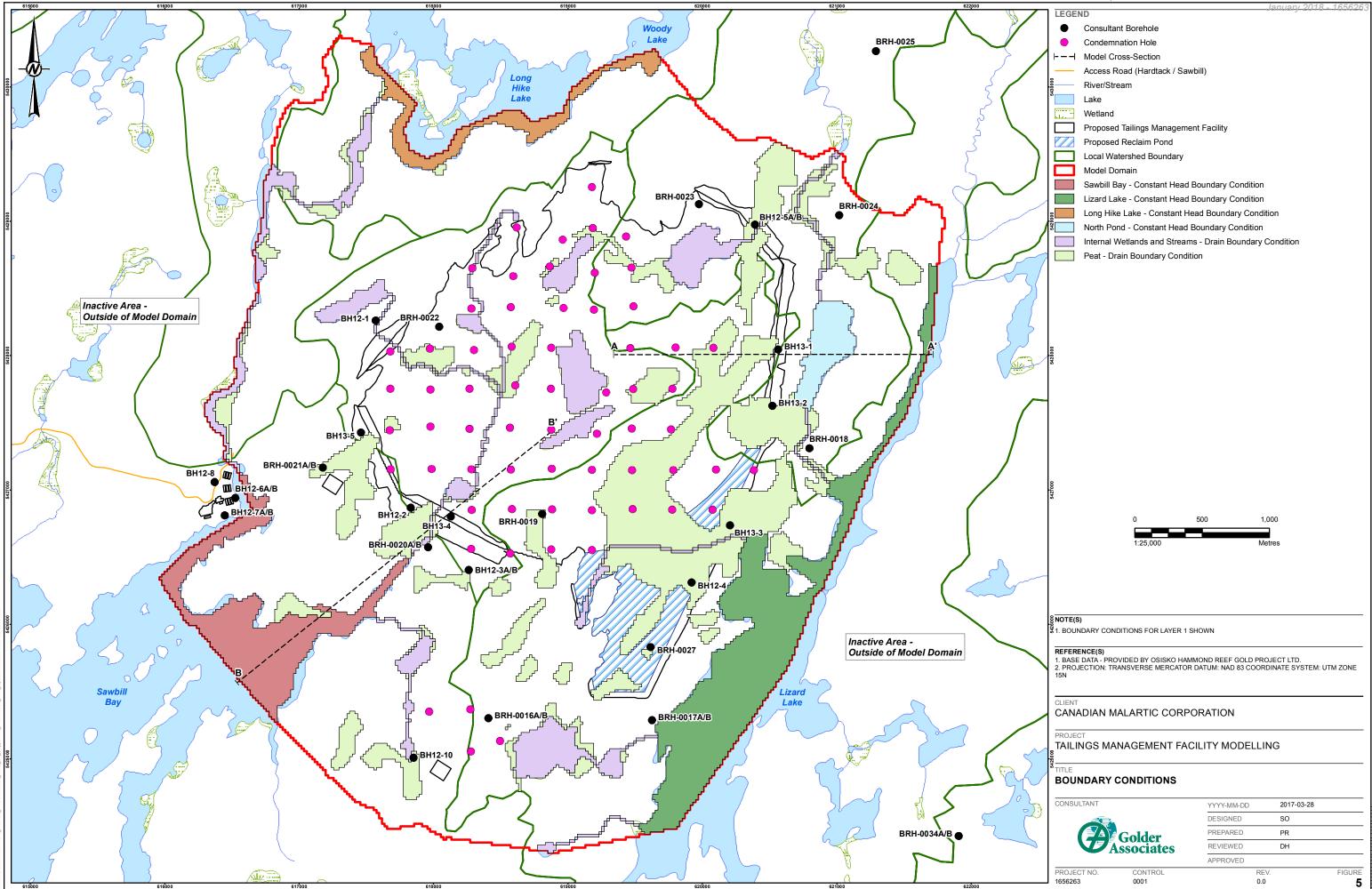


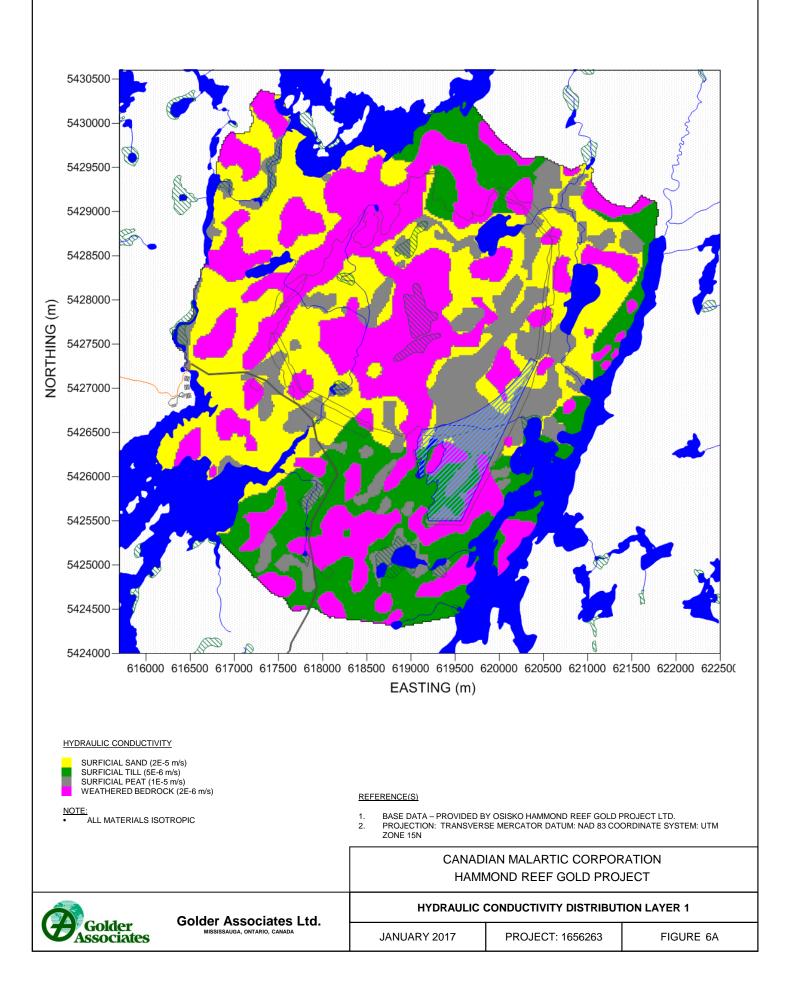

FIGURES

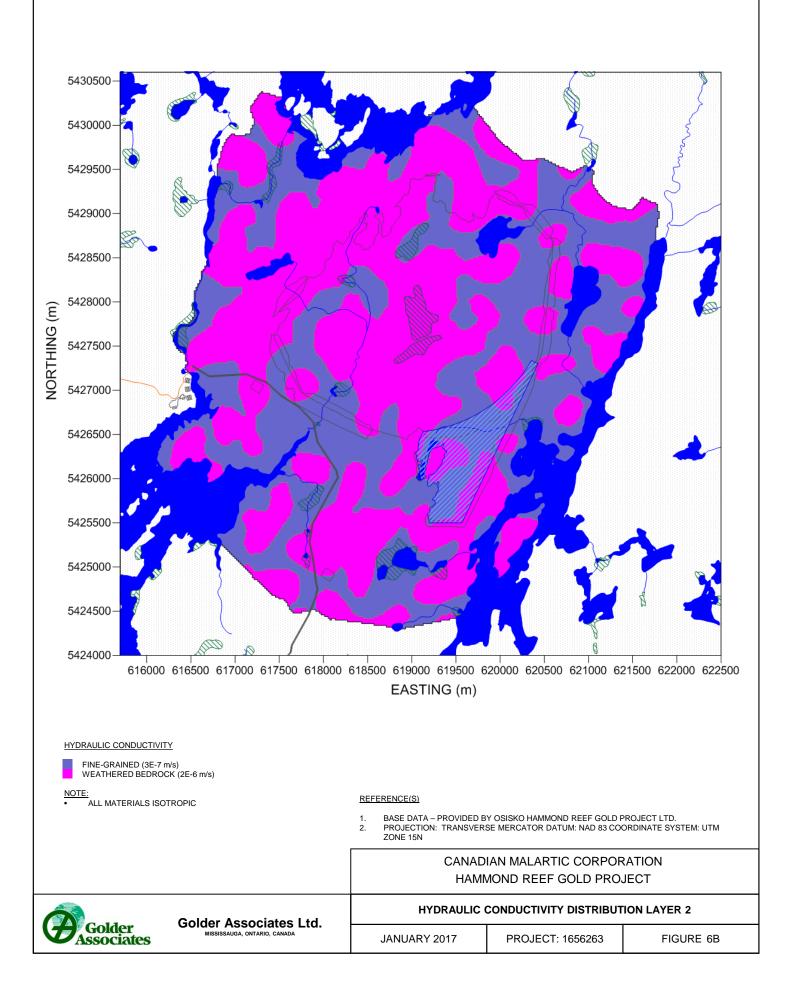


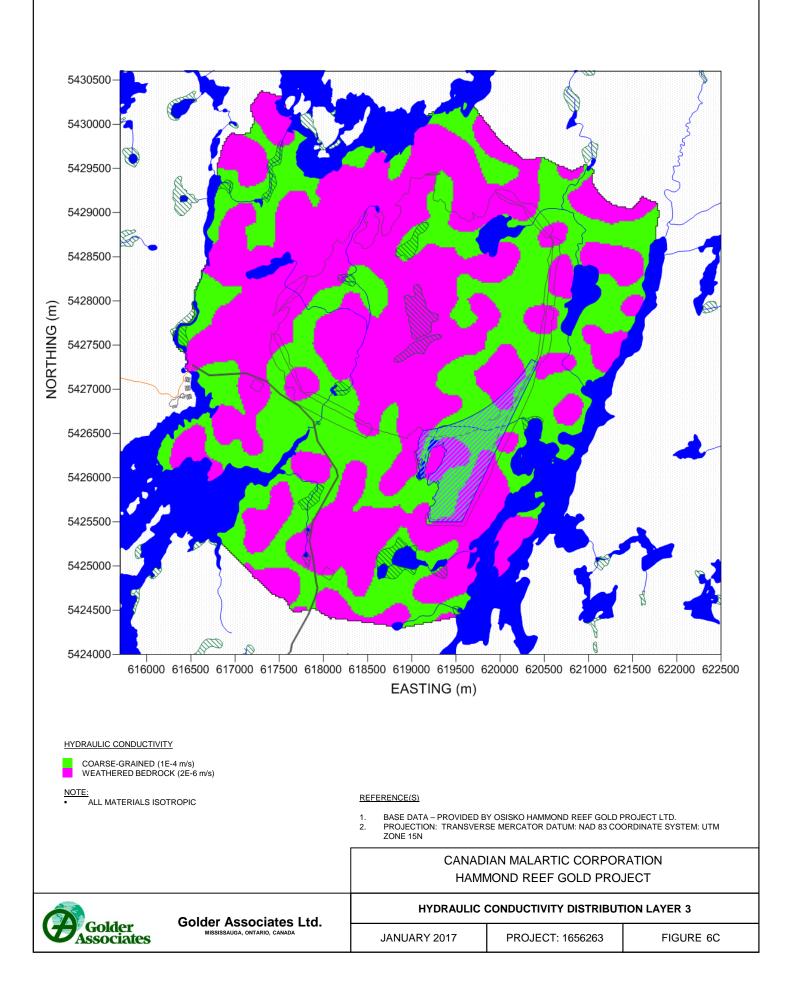


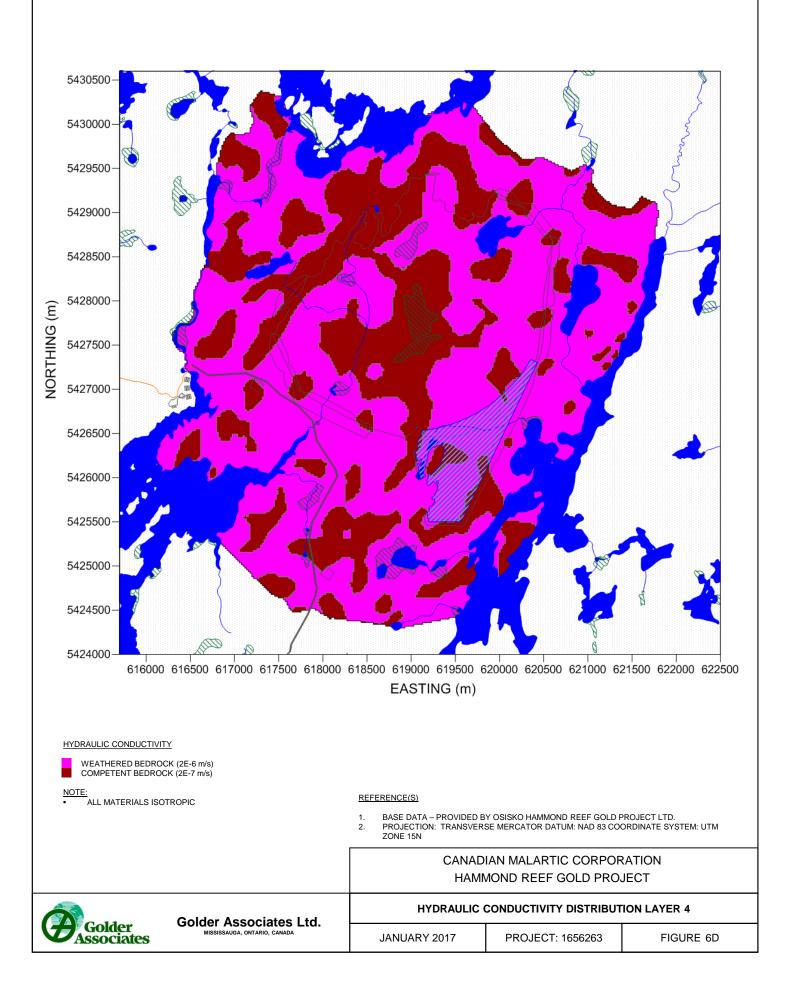

26.000 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIF

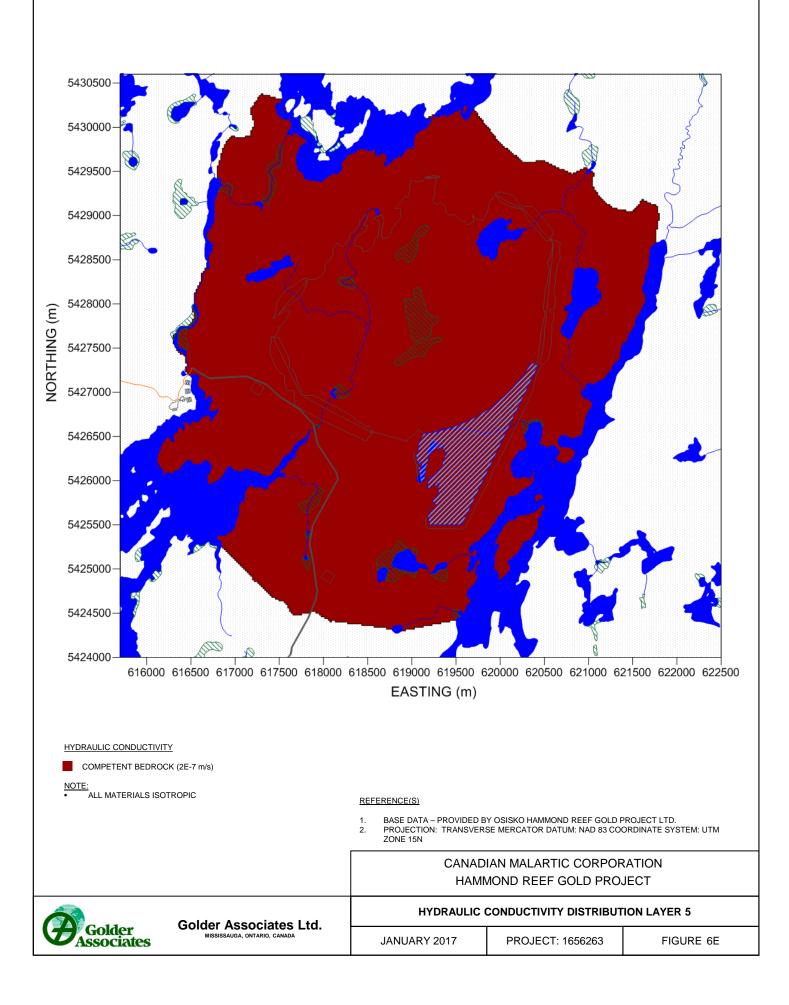

PROJECT NO. 1656263 CONTROL 0001

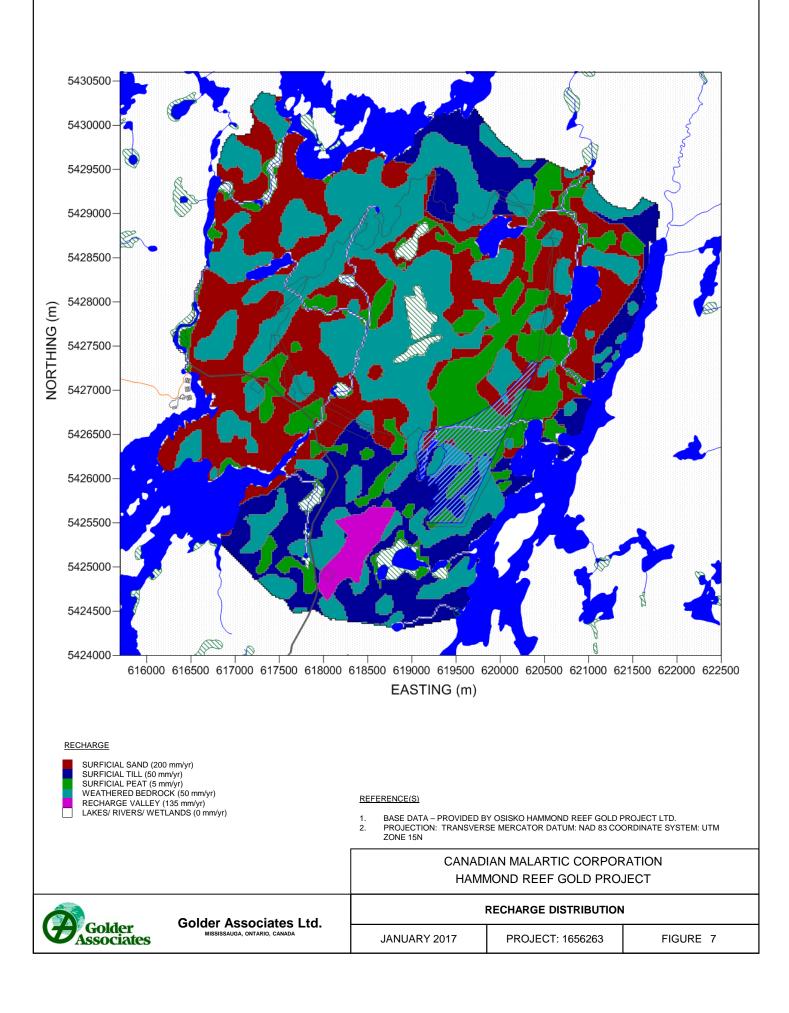


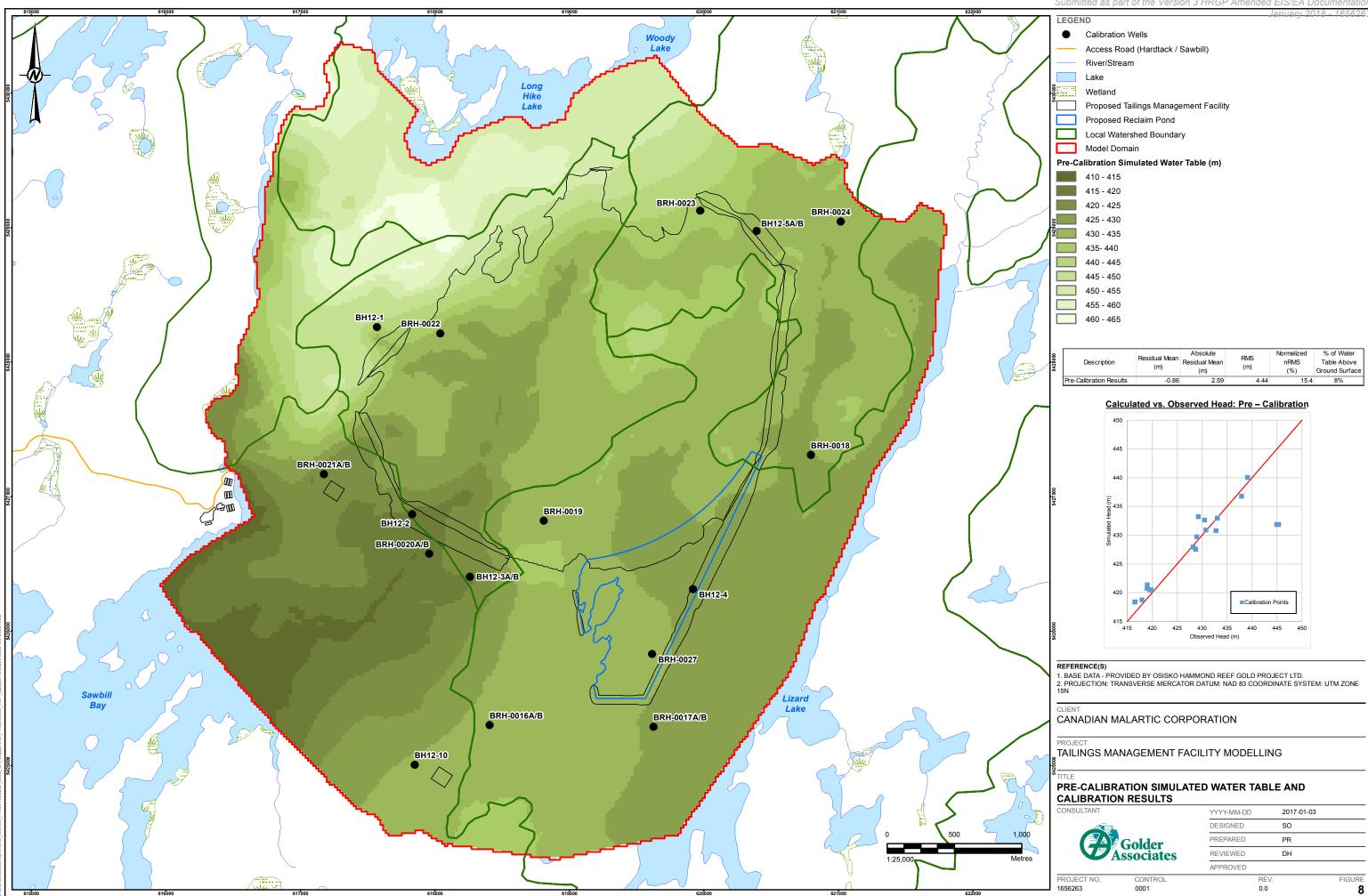


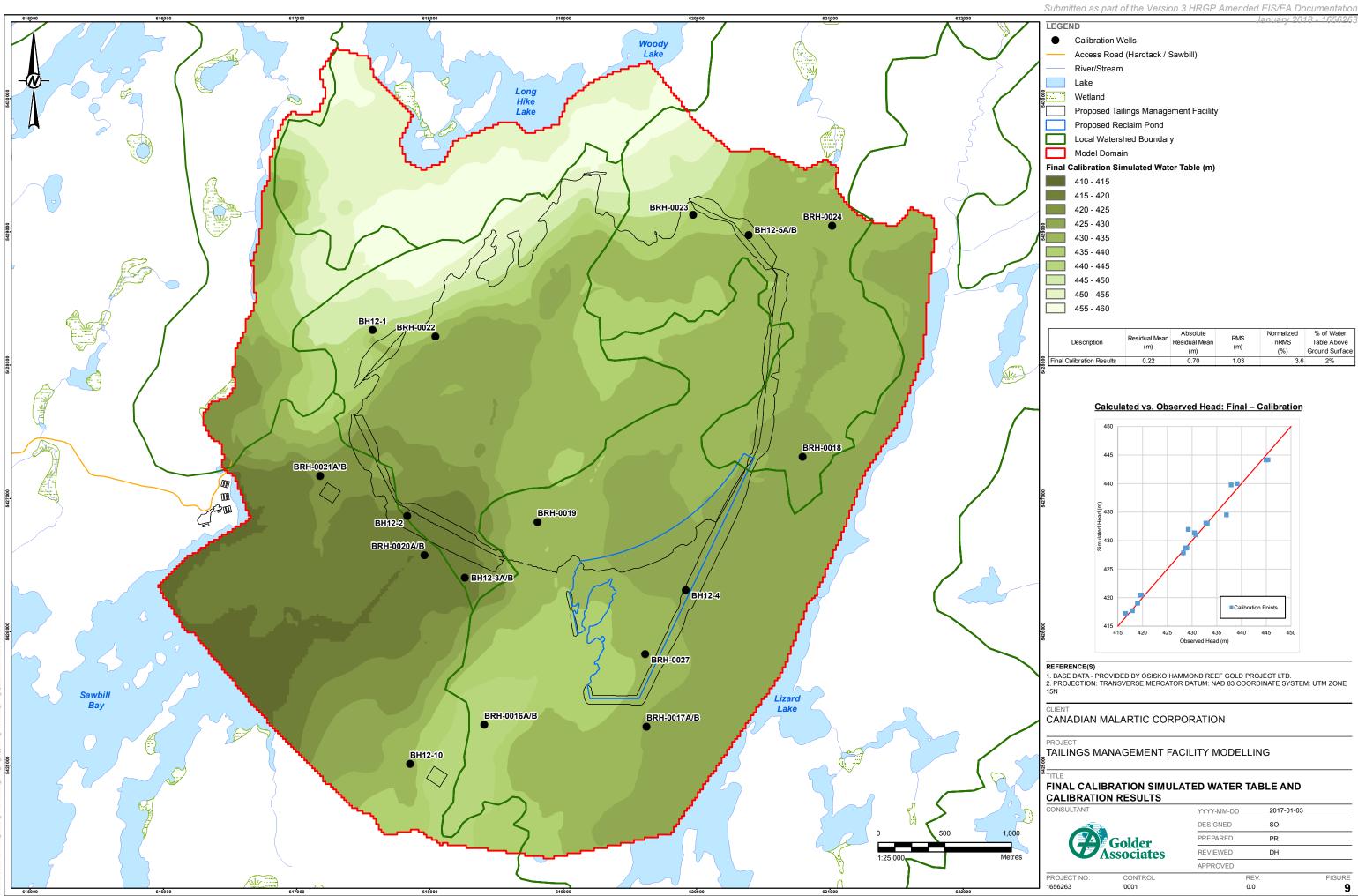


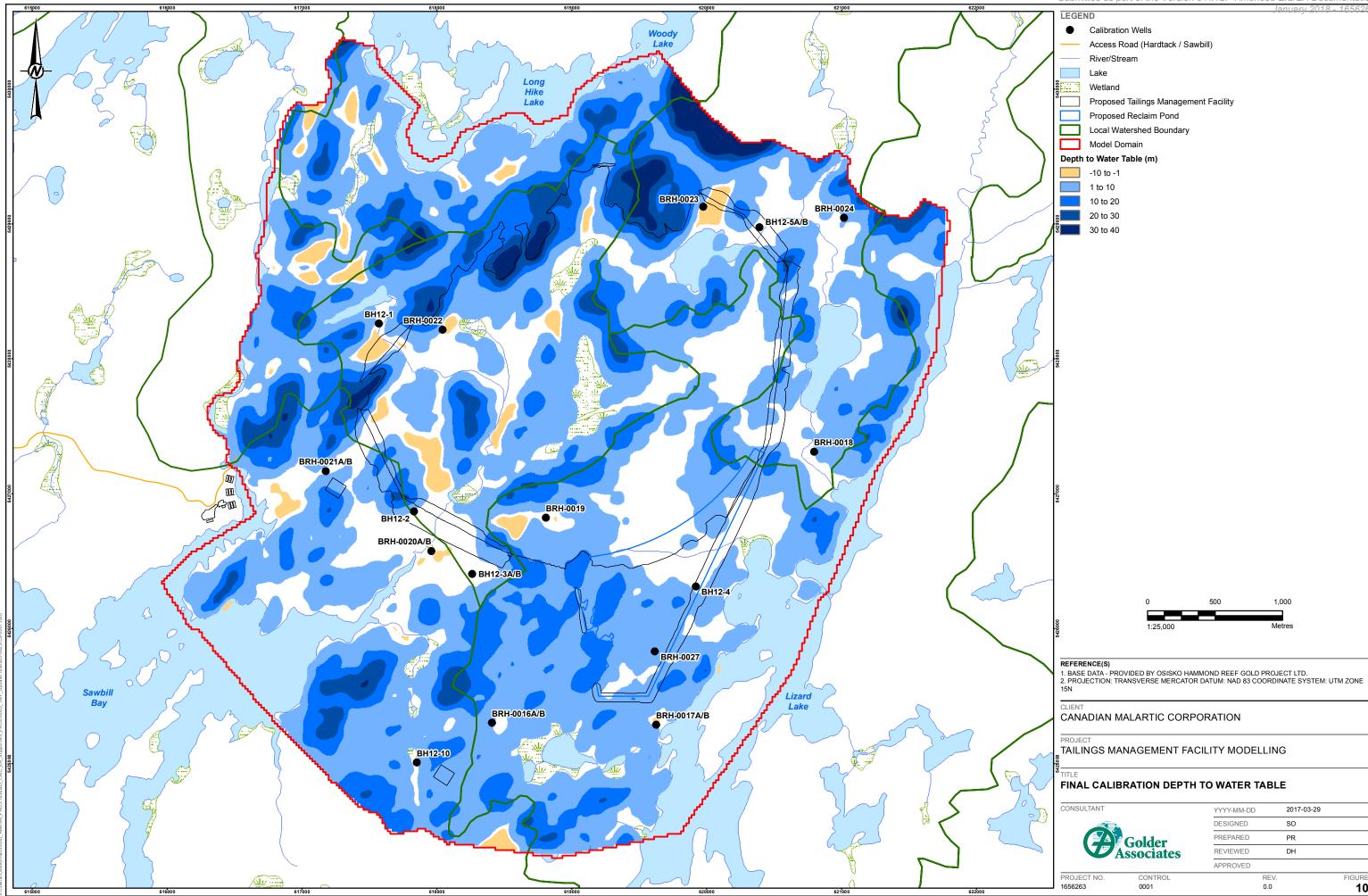












YYYY-MM-DD		2017-01-03	
DESIGNED		SO	
PREPARED		PR	
REVIEWED		DH	
APPROVED			
	REV. 0.0		FIGURE

PARED		PR	
IEWED		DH	
ROVED			
	REV.		FIGURE
	0.0		10

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART F

CEAA Comments on Baseline Model Construction and Calibration Canadian Environmental Assessment Agency

Ontario Regional Office 55 St. Clair Avenue East, Room 907 Toronto, ON M4T 1M2 Agence canadienne d'évaluation environnementale

Bureau régional de l'Ontario 55, avenue St-Clair est, bureau 907 Toronto (Ontario) M4T 1M2

April 27, 2017

ELECTRONIC MAIL

anada

Ms. Sandra Pouliot, ing. Environment Project Leader Canadian Malartic Corporation 100, chemin du Lac Mourier Malartic, QC JOY 120

SUBJECT: Federal Comments on the March 30, 2017 Hammond Reef Gold Project Baseline Groundwater Model Construction and Calibration – Revised Memorandum

Dear Ms. Pouliot:

The Canadian Environmental Assessment Agency and Natural Resources Canada completed the review of the March 30, 2017 revised memorandum on the groundwater baseline model construction and calibration for the proposed tailings management facility of the Hammond Reef Gold Project.

Upon review of the revised memorandum, the Federal Review Team (FRT) recommends proceeding to the next stage of the process, as briefly described in Section 6.0 of the memorandum. The stage two report is expected to have content that duly responds to all parts of Information Request T(3)-08.

The FRT recognizes the efforts by Canadian Malartic Corporation to resolve the issues and looks forward to receiving the stage two report for review.

Sincerely, <Original signed by>

Loraine Cox Project Manager

cc. Sheryl Lusk, Environment and Climate Change Canada
 Jennifer Dorr, Natural Resources Canada
 Sasha McLeod, Ministry of the Environment and Climate Change

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART G

Groundwater Modelling of TMF and Seepage Impact Assessment

TO Sandra Pouliot, ing. Canadian Malartic Corporation

CC Karen Besemann (Golder), Ken DeVos (Golder)

FROM Devin Hannan, P.Eng., and Adam Auckland, P. Eng.

DATE August 18, 2017

PROJECT No 1656263 1000 1001

DOC No. 010 (Rev 1)

HAMMOND REEF GOLD PROJECT: GROUNDWATER MODELLING OF TAILINGS MANAGEMENT FACILITY AND SEEPAGE IMPACT ASSESSMENT

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) is pleased to present Canadian Malartic Corporation (CMC) with this updated technical memorandum describing numerical groundwater modelling of the proposed Hammond Reef Gold Project Tailings Management Facility (TMF) site near Atikokan, Ontario (Figure 1). The model described herein considers TMF Operations, Closure, and Post-Closure phases and evaluates seepage rates to the TMF seepage collection system as well as bypass to receptors external to the TMF. This memorandum is provided to support and complete the response to Federal Information Request T(3)-08.

1.1 Background

This memorandum builds upon prior communications between CMC, Golder and the joint Federal-Provincial government review team (GRT) concerning the proposed TMF. Recent correspondence includes:

- Hammond Reef Gold Project: Baseline Groundwater Model Construction and Calibration Revised Memorandum (Golder, March 30 2017). In this memorandum Golder describes the baseline pre-TMF model construction and calibration to existing conditions.
- Federal Comments on the March 30, 2017 Hammond Reef Gold Project Baseline Groundwater Model Construction and Calibration – Revised Memorandum (CEAA, April 27 2017). In this memorandum the GRT indicates they are satisfied with the model conceptualization and calibration described in Golder, March 30 2017, and recommends proceeding to the TMF simulation stage described herein.
- Hammond Reef Gold Project: Groundwater Modelling of Tailings Management Facility and Seepage Impact Assessment (Golder, June 16 2017). In this memorandum Golder describes TMF model construction and simulated groundwater impacts under Operations, Closure and Post-Closure conditions.
- Federal Comments on the June 16, 2017 Technical Memorandum (Hammond Reef Gold Project: Groundwater Modeling of Tailings Management Facility and Seepage Impact Assessment) to address Information Request T(3)-08 (CEAA, July 21 2017). In this memorandum the GRT requests clarification of the TMF model parameters, mitigation and contingency measures, effects on Long Hike Lake, effects to Indigenous peoples, and proposed monitoring.

This current (Rev 1) memorandum supersedes the previous (Rev 0) Golder memorandum of the same title, dated June 16 2017, and is updated to address the review comments described in CEAA, July 21 2017.

2.0 TMF CONCEPTUAL DESIGN

The modelled TMF layout is based on the design framework put forth in the technical memorandum *Design Basis* for *Runoff and Seepage Collection Systems – Hammond Reef Gold Project* (Golder, 2013¹) included in the *Hydrogeology Technical Support Document (Version 2)* (Golder, 2013²). Figure 1 illustrates the conceptual design of the TMF at ultimate extents.

The TMF is proposed to store 165 Mm³ of thickened tailings over a footprint of approximately 800 hectares using a central slurry discharge point and a conical deposition method throughout five stages of tailings deposition and progressive dam raise construction.

The TMF containment system design includes a combination of naturally-occurring bedrock highs and rockfill dams with upstream geomembrane liners. The upstream rockfill dam shells will be lined on the lower (approximate) half of their upstream flank. The reclaim pond dams will be fully lined.

Surface water runoff and water released from the tailings due to consolidation/settlement will be collected in the reclaim pond. The majority of groundwater seepage emanating from the TMF will discharge to either the reclaim pond or a system of perimeter seepage collection ditches (Figure 2). During Operations, water collected in the ditches will be pumped back into the reclaim pond and recycled to the mill. During Closure, tailing deposition will cease and water collected in the ditches will continue to be pumped back into the reclaim pond until such time that water quality within the reclaim pond is acceptable for release to the external environment. During Post-Closure, after water quality has been determined to be acceptable for release, water collected in the perimeter ditches will be discharged to the external environment, the reclaim pond overflow spillway will be lowered and runoff will be conveyed from the reclaim pond eastward toward Sawbill Bay. A small amount of water will be permanently retained below the invert of the closure spillway.

3.0 TMF IMPLEMENTATION IN MODEL

The following subsections describe the model augmentation required to model the TMF. Unless otherwise specified, general comments regarding "the model" include reference to Operations, Closure, and Post-Closure phase models. The model parameterization described within this section is considered the Base Case scenario. Additional Sensitivity Analysis scenarios use modified parameters as described in Section 5.


3.1 General Approach

The TMF modelling builds upon the pre-TMF "baseline" calibrated groundwater model described in *Hammond Reef Gold Project: Baseline Groundwater Model Construction and Calibration – Revised Memorandum* (Golder, 2017). Hydraulic parameters and boundary conditions external to the TMF remain the same as previously described and are not revisited in detail herein.

The TMF is implemented in the pre-existing model by adjusting layering, boundary conditions and hydraulic properties to mimic the basic structure and hydraulic behaviour of the TMF as envisioned in the conceptual design. Three successive and separate models are used to simulate the major phases of the TMF lifespan, namely:

- 1. Operations
- 2. Closure
- 3. Post-Closure

A note regarding Construction phase:

During Construction, prior to Operations, no tailings placement will occur. At the end of the Construction phase, the reclaim pond will be filled with fresh water from Marmion Reservoir. Any seepage from the reclaim pond during construction will be fresh water (i.e., not impacted by mill processes) and will not result in adverse effects to water quality in the receiving environment.

The general approach to modelling Operations, Closure and Post-Closure phases is differentiated as follows:

- Operations: The TMF at its ultimate extents is considered as this configuration would produce the most seepage. During Operations, tailings slurry is actively deposited from the perimeter dams and to the centre of the tailings mound. Naturally-occurring precipitation provides a second source water entering the tailings deposit as potential recharge. As such, it is conservatively assumed that the tailings are fully saturated during this phase (i.e. the phreatic surface is coincident with the tailings surface), thus promoting the greatest amount of seepage. Groundwater seepage is intercepted by perimeter seepage collection ditches and pumped back to the reclaim pond (the pump back process is not explicitly simulated within the groundwater model). The reclaim pond water elevation is conservatively implemented at its maximum Operations design elevation of 444.5 masl.
- Closure: The end of Operations forms the initial conditions for the Closure phase. The primary difference between Operations and Closure is that tailings slurry is no longer deposited and thus naturally-occurring precipitation is the only source of potential recharge to the tailings deposit. As such, the phreatic surface within the tailings will decline over time and seepage will gradually reduce. In order to capture this process, the Closure phase is modelled transiently. Groundwater seepage continues to be intercepted by perimeter seepage collection ditches and pumped back to the reclaim pond. The reclaim pond water elevation continues to be held at its maximum of 444.5 masl.
- Post-Closure: The end of the Closure phase forms the initial condition for the Post-Closure phase. For the purpose of this modelling assessment, Post-Closure is defined as the period after the TMF groundwater level and flow conditions have reached a state of quasi-equilibrium, or in other words, are no longer affected but the preceding tailings deposition activities. During Post-Closure, the phreatic surface within the tailings has stabilized. As such, a steady-state approach may be utilized. Groundwater seepage continues to be intercepted by perimeter seepage collection ditches; however, this water is no longer pumped back to the reclaim pond but instead is released to the external environment. The reclaim pond water elevation is lowered to the elevation of the closure spillway at 440 masl.

3.2 Code

Flow modelling is conducted using MODFLOW-2005 (Harbaugh, 2005) with particle tracking (seepage pathway delineation) simulated using the companion code MODPATH (Pollock, 1989). MODFLOW is a multi-purpose three dimensional groundwater flow code developed by the United States Geological Survey. It is modular in nature and uses the finite difference formulation of the groundwater flow equation in its solution. Visual MODFLOW® (Build 4.6.0.168) is the graphical user interface for the simulations presented in this report. For the TMF scenarios, MODFLOW-2005 with the SAMG solver is selected instead of the previously utilized MODFLOW-NWT formulation (Golder, 2017). During testing the two approaches provided similar results; however, the SAMG solver was found to be more computationally efficient for this current analysis.

3.3 Temporal Setting

The temporal setting for each TMF phase is as follows:

- Operations: The continual application of both slurry and natural precipitation to the tailings mound provides for the (conservative) assumption that the tailings will remain entirely saturated for the duration of Operations. As such, water levels and groundwater flow within and external to the TMF will remain constant. A steady-state approach is appropriate to model these conditions.
- Closure: The application of slurry will cease during Closure leaving precipitation as the only source of recharge to the tailings deposit. As such, the phreatic surface within the tailings and associated seepage rates will decline over time. A transient approach is utilized to model this behaviour. A 100-year simulation is run in order to capture the amount of time required to reach a quasi-steady state condition. The stabilization of water levels is considered, within the context of this assessment, to be the beginning of the Post-Closure phase. Water collected within the perimeter seepage collection ditches will be pumped back to the reclaim pond until TMF reclaim pond water reaches a satisfactory quality for discharge to the external environment.
- Post-Closure: Water levels and flow rates within and external to the TMF will be relatively stable during Post-Closure and will continue as such long-term. A steady-state approach is appropriate to model these conditions.

3.4 Model Domain and Grid

The model domain (Figure 1) remains unchanged from the baseline calibrated model (Golder, 2017). The domain is approximately centred on the planned TMF extents and is regional in scale (24 km²). The perimeter is delineated based on major hydrologic boundaries including Sawbill Bay to the south and its associated tributary to the west, Long Hike Lake to the north and Lizard Lake to the east. These regional features are considered primarily groundwater discharge zones and would be the eventual receptors of TMF seepage should any seepage bypass the collection system. Elsewhere, the model perimeter is coincident with subwatershed boundaries or topographic highs.

Vertically, the top of the model is bounded by ground surface (Figure 1). Ground surface in the area of the TMF is dictated by the tailings mound, dams, and reclaim pond. The maximum elevation of the model coincides with the top of the tailings mound (492 masl). The bottom of the model is set within competent bedrock at 335 masl, a depth of 90 m or greater below the base of the TMF.

The model domain is subdivided laterally using finite-difference grid cells positioned in a north-south / west-east perspective. Regional cell size remains at 20 m x 20 m. However, for the current analysis, cell resolution in the area of the TMF is increased to 10 m x 10 m to allow for greater detail in implementing TMF features.

The current work includes five additional numerical layers posited on top of the prior five (Golder, 2017) for a total of 10 model layers.

In total the model is comprised of approximately 1,374,000 active cells.

3.5 Layer Structure

The model is vertically subdivided into ten numerical layers (Figures 3A/B). Layers 1 through 5 have been added in this current analysis in order to implement the TMF structures. Layers 6 through 10, previously Layers 1 through 5 in the pre-TMF baseline model, remain the same as previously modelled (Golder, 2017).

The nominal designation / purpose of each layer is as follows:

TMF Layers:

- 1) Top of Tailings. This thin (0.1 m) layer allows implementation of constant heads atop the tailing deposit, as described in Section 3.6, as well as the top surface of the reclaim pond.
- 2) Upper Tailings. This layer encompasses the approximate upper half of the tailings deposit. The tailings is subdivided to allow for greater hydraulic head resolution. The vertical thickness of this layer depends on the location within the tailings deposit. The maximum thickness of this layer is 30.5 m which coincides with the thickest portion of the tailings (a total of 61 m). The layer thins to 0.2 m where tailings are not present.
- 3) Lower Tailings. This layer encompasses the approximate lower half of the tailings deposit. The vertical thickness of this layer depends on the location within the tailings deposit. The maximum thickness of this layer is 30.5 m which coincides with the thickest portion of the tailings (a total of 61 m). The layer thins to 0.2 m where tailings are not present.
- 4) Upper Dam. This layer encompasses the approximate upper half of the rockfill dam. The vertical thickness of this layer depends on the location along the dam. The maximum thickness of this layer is 18.9 m which occurs within the maximum height of the dam (a total of 37.8 m). The layer thins to 0.5 m where the rockfill dam is not present.
- 5) Lower Dam. This layer encompasses the approximate lower half of the rockfill dam and allows for the implementation of the liner on the lower upstream flank of the dam. The vertical thickness of this layer depends on the location along the dam. The maximum thickness of this layer is 18.9 m which occurs within the maximum height of the dam (a total of 37.8 m). The layer thins to 0.5 m where the rockfill dam is not present.

Hydrostratigraphic Layers:

- 6) Surficial Deposit Layer (sand/gravel, peat/muck or till)
- 7) Fine-Grained Layer (predominately silt and/or clay)
- 8) Coarse-Grained Layer (predominately sand and/or gravel)
- 9) Weathered Bedrock Layer
- 10) Competent Bedrock Layer

MODFLOW requires each numerical layer to be continuous throughout the model domain; in other words, a layer cannot "pinch-out" to a zero thickness. In the case of the five new TMF layers:

Inside the TMF: where a material is not present its nominal layer thins to a minimum thickness and the appropriate material properties are assigned within this minimum thickness. For example, the rockfill dam material does not exist within the tailings deposit. As such, upstream of the dam footprint Layer 4 Upper Dam thins to 0.5 m underneath Layer 3 Lower Tailings. This minimally thick area is assigned the hydraulic properties of the overlying tailings.

Outside of the TMF: the layers thin to a minimum thickness of 0.5 m or less and are made inactive. Thus, the first instance of active cells external to the TMF is in Layer 6 (the Surficial Deposit Layer).

3.6 Boundary Conditions

A general illustration of model boundary conditions are shown in plan view on Figure 4 with additional cross-section illustration provided on Figure 3A/B/C. For illustration purposes, the Operations model boundary conditions are shown with Closure and Post-Closure variations noted where applicable. External to the TMF, model boundary conditions remain as previously described (Golder, 2017). The following subsections describe additional boundary conditions utilized to implement key TMF features during Operations, Closure and Post-Closure.

3.6.1 Tailings

- Operations: The Top of Tailings (Layer 1) is assigned constant head cells within the tailings footprint with values set coincident to the tailings surface elevation (as per Figure 1, tailings mound elevation ranges from 492 masl to just under 445 masl). This assignment is intended to conservatively simulate the water contributing to the tailings deposit via slurry application and, in effect, assumes that the tailings are fully saturated and the water table is coincident with the top of the tailings. This boundary condition is applied without consideration of actual precipitation and process water inflows and, particularly with the Sensitivity Scenarios, can result in an equivalent pseudo-recharge in excess of what would be physically possible. As such, this assumption is considered to be conservative with respect to potential seepage rates. Note that the underlying tailings layers, in effect almost the entirety of the tailings deposit thickness, do not have a boundary condition assignment and MODFLOW is free to calculate a resultant hydraulic head based on the surrounding gradient and material properties.
- Closure and Post-Closure: The tailings constant head cells are removed during Closure as tailings slurry is no longer being deposited. A recharge rate based on naturally-occurring precipitation is applied (Section 3.8.2).

3.6.2 Reclaim Pond

- Operations and Closure: The reclaim pond water is assigned constant head cells with a value of 444.5 masl according to the design water level. The reclaim pond exists in Layers 1 through 5 (the bottom of the reclaim pond is bound by pre-TMF topography, which is delineated by the top of Layer 6 see Figure 3C).
- **Post-Closure**: The reclaim pond water is assigned constant head cells with a value of 440 masl in accordance with the Post-Closure spillway elevation.

3.6.3 Liners

A geomembrane liner is modelled in two locations:

- Tailings Dams: A liner is modelled along the lower half of the upstream flank of the tailings dams (Figure 3A/B and Figure 4). The liner is implemented as a vertical "wall" of no-flow cells in Layer 5 Lower Dam, directly abutting the dam material. The height of the liner depends on the height of the dam at a given location; its maximum height is 18.9 m, which is half of the greatest total dam height (37.8 m).
- Reclaim Pond: A liner is modelled along the entire upstream flank of the reclaim pond dam (Figure 3C and Figure 4). The liner is implemented as a vertical "wall" of no-flow cells in Layers 1 through 5, directly abutting the dam material.

Additional notes on the modelled liner:

- In reality, the liner would be placed sub-vertically along the slope of the upstream dam shell; however, for the regional modelling purposes considered herein, a vertical approximation is considered reasonable.
- Horizontally (i.e. in plan view) the liner dimensions are 10 m x 10 m the minimum horizontal cell size in the model. Note that, "in reality", the liner would be much thinner. However, from a regional modelling perspective such as currently being examined, the 10 m thickness is acceptable as it does not introduce a significant amount of error in the seepage calculations to receptors. Also note that, whether the liner is modelled as, for instance, 0.01 m or 10 m, it would still act as a no-flow boundary with no gradient being calculated within the cell itself (in other words an increased thickness in liner does not result in a proportional increase in its efficacy the liner has zero transmissivity irrespective of its thickness).

3.6.4 Seepage Collection Ditches

The seepage collection ditching is implemented as a series of drain cells at the perimeter of the TMF (where they exist as per Figure 1) with drainage head values set at 5 m below ground surface. The ditch depth of 5 m is based on preliminary model testing that indicated suitable seepage capture efficiency could be achieved at this depth. The drain cells exist in Layer 6 (ground surface external to the TMF) down to Layer 9 depending on the thickness of the layering at their location. The drain cells are assigned a conductance of 1,000 m²/d. This conductance value allows for an accurate correspondence between assigned versus calculated head within the drain cell while maintaining numerical solver stability.

The approach to modelling drains is the same Operations, Closure and Post-Closure conditions. However, a distinction is made in how water reporting to these drains is accounted for in the seepage analysis. In Operations and Closure, all water reporting to the drains is assumed to be routed to the reclaim pond. During Post-Closure, water reporting to the drains is assumed to be routed to the ultimate receptor in the adjacent watershed. Thus, for example, Post-Closure seepage reporting to seepage collection ditches along the eastern flank of the TMF will be discharged towards Lizard Lake.

3.7 Hydraulic Parameters

Hydraulic parameters considered in the current work include hydraulic conductivity (K), specific yield (S_y), specific storage (S_s) and effective porosity (n_e) (Table 1). The hydraulic conductivity of native materials remain the same as previously modelled (Golder, 2017). Specific yield and specific storage are required input for the Closure transient simulation.

Several new materials are introduced as part of the TMF implementation:

- Tailings: Tailings hydraulic conductivity and porosity are derived from bench scale laboratory testing for the Hammond Reef project as described in Johnson et al., 2013. Specific yield and effective porosity are assumed to be equivalent to the tailings porosity. Specific storage is assumed to be equivalent to that of a fine sand.
- **Rockfill:** Rockfill dam properties are assumed to be equivalent to that of a coarse granular material.
- **Liner:** The liner is assumed to be impermeable (implemented using no-flow cells).

Reclaim Pond: In reality, the body of the reclaim pond consists solely of water (i.e. no porous media). However, the presence of water within the pond is implied in the model by assigning the pond cells with large hydraulic conductivity and storage values (care was taken to avoid numerical instability by assigning too large a hydraulic conductivity). As mentioned previously, the pond cells are also assigned as constant heads, so the hydraulic parameters within the pond will not alter the calculated head within the cell. However, as the MODFLOW package uses a block-centred approach to calculate flow between cells, there may be a minor influence of the reclaim pond parameter assignment on the head calculation in cells immediately external to the pond.

Nominal Layer	Unit	Material	terial K (m/s)		S _s (1/m)	n _e
1 – 3	Tailings	Tailings	6E-7 ⁽¹⁾	0.42 ⁽¹⁾	5E-4 ⁽⁴⁾	0.42 ⁽¹⁾
4 E	Dam	Rockfill	1E-4 ⁽⁷⁾	0.3(2)	5E-4 ⁽⁴⁾	0.25 ⁽²⁾
4 – 5	Dam	Liner	Impermeable	-	-	-
1 – 5	Reclaim Pond	"Water"	1E-2	0.99	1E-4	0.99
		Sand/Gravel	2E-5	0.3(2)	5E-4 ⁽⁴⁾	0.25 ⁽²⁾
6	6 Surficial Deposit	Till	5E-6	0.16 ⁽²⁾	2E-4 ⁽⁴⁾	0.15 ⁽⁵⁾
	Deposit	Peat	1E-5	0.44 ⁽²⁾	1E-4	0.5 ⁽⁶⁾
7	Fine-Grained	Silt and/or Clay	3E-7	0.20 ⁽²⁾	5E-4 ⁽⁴⁾	0.34 ⁽²⁾
8	Coarse- Grained	Sand and/or Gravel	1E-4	0.28 ⁽²⁾	5E-4 ⁽⁴⁾	0.24 ⁽²⁾
9	Weathered Bedrock	Bedrock	2E-6	1E-3 ⁽³⁾	5E-6 ⁽⁴⁾	0.05 ⁽⁷⁾
10	Competent Bedrock	Bedrock	2E-7	9E-4 ⁽³⁾	1E-6 ⁽⁴⁾	0.01 ⁽⁷⁾

Table 1: Hydraulic Parameters

1. Value derived from Johnson et al., 2013.

2. Value derived from Morris and Johnson, 1967.

3. Value derived from Heath, 1983.

4. Value derived from Batu, 1998.

5. Value derived from Fetter, 2003.

6. Value derived from Rezanezhad et al., 2016.

7. Value derived from Freeze and Cherry, 1979.

3.8 Recharge

The recharge distribution external to the TMF remains as previously modelled (Golder, 2017). Within the TMF only two materials are present at surface to receive recharge: the rockfill dams and the tailings; no recharge is applied over the reclaim pond or seepage collection ditches.

Rockfill dam recharge is assumed to be 250 mm/yr for all TMF phases; this recharge rate is chosen as it is moderately higher than the 200 mm/yr recharge applied to the native sand material at surface (Golder, 2017).

The approach to tailings recharge varies according to TMF phase as described below.

3.8.1 Operations Phase Tailings Recharge

Recharge water to the tailings during Operations is sourced via the tailings slurry application and naturally occurring precipitation, with the former providing the majority of water. However, strictly speaking, a recharge rate is not applied over the tailings during Operations modelling. Instead, the constant heads capping the top of the tailings provide a pseudo-recharge by applying enough water into the tailings to maintain a phreatic surface coincident with the tailings surface. On average, this results in a pseudo-recharge rate of approximately 574 mm/yr over the tailings footprint under Base Case conditions (Section 4.2.1).

However, it is important to note that there is no limit to the amount of water potentially generated by the constant head cells. This is a conservative approach, particularly in the Sensitivity Analyses (Section 5), where the amount of water generated within the TMF may exceed the amount of water actually available to the tailings "in reality".

Lastly, the amount of water applied by a given constant head cell (or cluster of cells) can vary considerably and is largely dependent on the native material that underlies (or underdrains) the tailings. For example, flow budget testing of the Base Case model indicates that the tailings area underlain by weathered bedrock outcropping comprises approximately 40% of the tailings footprint but receives only 20% of the total inflow from the constant head cells. This is a result of the weathered bedrock's relatively low hydraulic conductivity limiting potential underdrainage relative to the surrounding overburden.

3.8.2 Closure and Post-Closure Phase Tailings Recharge

Recharge water to the tailings during Closure and Post-Closure is sourced solely from precipitation. A considerable amount of this water is expected to either evaporate or runoff as surface water into the collection system. Thus, in order to estimate the proportion of precipitation that actually infiltrates the tailings, a water budget analysis has been conducted using the monthly precipitation and evaporation data presented in the Hydrology TSD (Golder 2013³) and the Environment Canada method (Johnstone and Louie, 1983). Based on this method the estimated tailings recharge is 85 mm/yr. This rate is applied to the tailings in both Closure and Post-Closure phase models.

4.0 SEEPAGE MODELLING

4.1 Approach

The general approach to evaluating TMF seepage rates is as follows:

- 1. Prior to running the <u>TMF</u> model:
 - a. Use MODFLOW's zone budget utility to define discrete flow budgets zones at the following sources/sinks: tailings constant head cells, reclaim pond constant head cells, seepage collection ditch drain cells, and Sawbill Bay, Lizard Lake, Long Hike Lake constant head cells and drains within their respective watershed areas external to the TMF and seepage collection system (Figure 4).
 - b. Input particles within the tailings and reclaim pond cells to allow for forward-tracking seepage pathway delineation from the TMF.

- 2. Run each TMF model phase successively and compile output heads, flow budgets, and forward-tracked particles from the TMF.
- 3. Seepage pathways are assessed by viewing the forward tracked particle pathlines.
- 4. Quantify Total TMF seepage. Total TMF seepage is the combined net inflow from both tailings constant heads and reclaim pond constant heads.
- 5. Determine the proportion of Total TMF seepage that discharges to:
 - a. Sawbill Bay watershed constant head and drain cells within the Sawbill Bay drainage area external to the TMF.
 - b. Lizard Lake watershed constant head and drain cells within the Lizard Lake drainage area external to the TMF.
 - c. Long Hike Lake watershed constant head and drain cells within the Long Hike Lake watershed external to the TMF.

The partitioning of Total TMF seepage to 5a and 5c is conducted by comparing pre-TMF to TMF model flows external to the TMF. As the model cells are not altered external to the TMF these model flows may be directly compared in this area.

The majority of flow increase within areas external to the TMF, where it occurs, is a result of TMF seepage that bypasses the collection system. An extremely small amount of water (less than 0.5% relative to seepage inflow) may leak from lake constant head cells as a result of the downgradient drawdown imposed by the collection ditches; however, this is considered insignificant in this analysis. As such, any increase in flow to features external to the TMF relative to pre-TMF conditions is attributed to tailings seepage and tallied as such in the seepage rate summary (Section 4.2).

In some instances flow at certain receptors external to the TMF has been reduced relative to pre-TMF conditions because the seepage collection drains now capture a portion of flow that would otherwise report to the receptor. However, TMF seepage may nonetheless contribute to this receptor (for example via deep bypass). In these cases, particle tracking pathways are closely examined alongside zone budgeting. Where a particle path from the TMF terminates at a given cell, the total inflow at that cell is assumed to originate from (or at least be impacted by) TMF seepage and is tallied as such in the seepage rate summary (Section 4.2).

- 6. After the flows in step 5 are accounted for, any remaining TMF seepage (i.e. the Total TMF seepage calculated in step 4 minus the "bypass" flows calculated in step 5) must be intercepted by the seepage collection drains as these cells are the only remaining point of TMF seepage discharge. Nonetheless, inflow to the seepage collection drains is independently determined via zone budget. Typically, a check will reveal that the total collection system discharge is close to the total amount of seepage minus the aforementioned bypass. Usually collection drain discharge is slightly greater because the collection drains will also capture some groundwater downgradient of the TMF.
- 7. A similar process as the above is repeated for the Sensitivity Analysis scenario, although the focus is primarily on Operations (as this phase provides the maximal upper bound on seepage rates).

4.2 Results

4.2.1 Operations

The Operations phase simulated water table and seepage pathlines are illustrated on Figure 5. As anticipated, the groundwater flow pattern is dominated by mounding within the tailings deposit. Flow within and from the TMF is radial; however, far-field regional flow patterns remain similar to those simulated for pre-TMF conditions (Golder, 2017).

The seepage pathlines travel radially from the TMF and indicate that bypass seepage may enter the Sawbill Bay, Lizard Lake and Long Hike Lake watersheds. Note that the number of pathlines exiting the TMF does not correlate to the magnitude of seepage.

A summary of the Operations phase TMF seepage rates is provided in Table 2.

Table 2: Operations TMF Seepage Rate Summary

Feature	Tailings Seepage (m³/d)					
Ν	let In					
Tailings	10,109					
Reclaim Pond	10,292					
TOTAL	20,401					
N	et Out					
Collection Ditches (pumped back to reclaim pond)	19,131					
Sawbill Bay Watershed External to TMF	608					
Lizard Lake Watershed External to TMF	505					
Long Hike Lake Watershed External to TMF	157					
TOTAL	20,401					

Based on the simulated results the conceptual collection system provides a capture efficiency of approximately 94%.

In addition, a "global" groundwater flow budget is provided in Appendix A. The purpose of this flow budget is to demonstrate that numerical error is acceptable (less than 1%) and to provide a general understanding of the flow distribution at the principal boundary conditions.

4.2.2 Closure

The Closure phase simulation is run transiently for 100 years with output generated every 10 years. Operations (Section 4.2.1) and Post-Closure (Section 4.2.3) provide the upper and lower bounds on groundwater levels and seepage rates; as such, model-wide water levels and seepage rates for every time step during Closure have not been reported. Instead, hydrographs demonstrating the decline in water level within select locations within the tailings deposit over time is provided (Figure 6). In the early years following the end of Operations a relatively rapid drop in water levels is observed. As time progresses, this decline becomes less dramatic.

The time required for water levels required to reach a quasi-equilibrium depends on the location within the tailings (Figure 6). Water levels near the edge of the tailings deposit stabilize relatively rapidly (within 10 years) whereas

water levels within the deep, central portion of the tailings may still be in slow decline after 100 years (although the majority of drawdown has occurred long before this period). The slow rate of depressurization within the central bulk of the tailings is in part because of their low hydraulic conductivity (6E-7 m/s), but also because they are assumed to be fully saturated during Operations and there is over 25 m of head available for potential drawdown.

4.2.3 Post-Closure

The Post-Closure phase simulated water table and seepage pathlines are illustrated on Figure 7. The reduction in head within the tailings is substantial – towards the centre of the mound more than 25 m of water level decline has occurred. Nonetheless, a small water table mound persists within the tailings and flow within and from the TMF continues to be roughly radial.

The seepage pathlines travel radially from the TMF and continue to indicate that some bypass seepage may enter Sawbill Bay, and Lizard Lake. No pathlines entered Long Hike Lake but the zone budgeting indicates that a small amount of seepage continues to report to this location.

A summary of the Post-Closure phase TMF seepage rates is provided in Table 3.

Feature	Tailings Seepage (m ³ /d)					
1	Net In					
Tailings	1,450					
Reclaim Pond	7,245					
TOTAL	8,695					
Ν	et Out					
Sawbill Bay Collection Ditches	989					
Sawbill Bay External Watershed External to TMF	33					
Lizard Lake Collection Ditches	7,531					
Lizard Lake Watershed External to TMF	46					
Long Hike Lake Watershed	96					
TOTAL	8,695					

Table 3: Post-Closure TMF Seepage Rate Summary

Total seepage production under Post-Closure is less than half of that under Operations owing to the exchange of constant heads at tailings surface with a relatively small fixed recharge rate and a reduction in the reclaim pond water level.

In addition, a "global" groundwater flow budget is provided in Appendix A. The purpose of this flow budget is to demonstrate that numerical error is acceptable (less than 1%) and to provide a general understanding of the flow distribution at the principal boundary conditions.

5.0 SENSITIVITY ANALYSIS

A sensitivity analysis is performed to put an upper bound on potential seepage rates. Two scenarios are examined as described below. As the purpose of the sensitivity scenarios is to define maximum potential seepage rates, only the Operations phase model is considered (as this model would produce the most seepage).

5.1 Scenario 1: Native Material Hydraulic Conductivity Increase

As first proposed in Golder, 2017, the first sensitivity scenario involves multiplying the modelled fine-grained material hydraulic conductivity by 10 and the coarse-grained material hydraulic conductivity by 10, running the model and re-assessing seepage.

A summary of the Operations phase, Sensitivity Analysis Scenario 1 seepage rates is provided in Table 4.

Table 4: Sensitivity Analysis Scenario 1 – Fine-Grained and Coarse-Grained Hydraulic Conductivity x 10 – Seepage Rates (Operations)

Feature	Tailings Seepage (m³/d)					
١	Net In					
Tailings	30,538					
Reclaim Pond	31,009					
TOTAL	61,548					
N	et Out					
Collection Ditches (pumped back to reclaim pond)	57,991					
Sawbill Bay Watershed	2,294					
Lizard Lake Watershed	1,088					
Long Hike Lake Watershed	175					
TOTAL	61,548					

Based on the simulated results the conceptual collection system provides a capture efficiency of approximately 95%.

In addition, a "global" groundwater flow budget is provided in Appendix A. The purpose of this flow budget is to demonstrate that numerical error is acceptable (less than 1%) and to provide a general understanding of the flow distribution at the principal boundary conditions.

5.2 Scenario 2: Tailings Material Hydraulic Conductivity Increase

As recommended by the GRT (CEAA, 2017), a second sensitivity scenario that examines increasing tailings hydraulic conductivity is conducted. For this assessment, the original tailings hydraulic conductivity (6E-7 m/s) is multiplied by an order of magnitude (6E-6 m/s). Note that this variant is not combined with Scenario 1 as the combined increases in both tailings and native material hydraulic conductivities would result in a tailings pseudo-recharge far in excess of what would be physically possible during Operations.

A summary of the Operations phase, Sensitivity Analysis Scenario 2 seepage rates is provided in Table 5.

Table 5: Sensitivity Analysis Scenario 2 – Tailings Hydraulic Conductivity x 10 – Seepage Rates (Operations)

Feature	Tailings Seepage (m³/d)
N	et In
Tailings	20,327
Reclaim Pond	10,329
TOTAL	30,656
Ne	t Out
Collection Ditches (pumped back to reclaim pond)	27,903
Sawbill Bay Watershed	1,732
Lizard Lake Watershed	863
Long Hike Lake Watershed	158
TOTAL	30,656

Based on the simulated results the conceptual collection system provides a capture efficiency of approximately 91%.

In addition, a "global" groundwater flow budget is provided in Appendix A. The purpose of this flow budget is to demonstrate that numerical error is acceptable (less than 1%) and to provide a general understanding of the flow distribution at the principal boundary conditions.

6.0 SEEPAGE IMPACT ASSESSMENT

A water quality evaluation was completed to assess the potential residual effects due to seepage to the downstream environment. This assessment focused on the following primary receivers:

- Upper Marmion Reservoir;
- Lizard Lake; and,
- Long Hike Lake.

Smaller streams and waterbodies located upstream of these primary receivers have been determined to be impacted through the Aquatic Environment assessment due to loss of watershed area and the associated reduction of inflow or loss of connectivity to larger bodies of water. Compensation for these smaller streams and waterbodies has been included in the No Net Loss/Habitat Offsetting Plan for the Project (see Part B of the Aquatic Environment TSD [Golder 2013⁴]) which has been approved in principal by Fisheries and Oceans Canada (DFO). No further assessment of potential for impact to these smaller streams and waterbodies is considered necessary because adequate compensation will be provided.

Water quality in Marmion Reservoir and Lizard Lake was evaluated using the lake-wide mixing models (i.e., boxmodel) developed and presented in the Lake Water Quality TSD (see Section 2.1 and 3.0 of the Lake Water

Quality TSD [Golder 2013⁵]). This hydrodynamic modelling assessment provides predictions of potential mixed lake water concentrations at key locations within Upper Marmion Reservoir and Lizard Lake based on the general flow distributions, volumes and mixing characteristics of the lakes. Within each lake, internal divisions were established based on lake bathymetry and were positioned at locations where shallow depths would tend to hydraulically separate the lake compartments. Each basin (or compartment) within in the model was assumed to be well-mixed with no vertical stratification. Upper Marmion Reservoir was divided into 13 compartments as shown on Figure 8. Lizard Lake was divided into three compartment as shown on Figure 9.

Potential lake water concentrations were calculated by mixing TMF seepage and mine effluent (for Upper Marmion Reservoir only) with the baseline concentrations in each receiver. Input baseline values were calculated using the average of the baseline data (see Water and Sediment Quality TSD [Golder 2013⁶]). Operational TMF seepage and mine effluent discharge input values were based on steady-state (average) water quality predictions as determined and presented in Appendix 4.II of the Site Water Quality TSD (Golder 2013⁷). Post-closure TMF seepage concentrations were based on post-closure water quality predictions as determined and presented in Table 4-14 of the Site Water Quality TSD (Golder 2013⁷). Table 6 provides the TMF seepage and mine effluent discharge input concentrations assumed. Tables 7 through 13 provide the baseline input data for the relevant receivers.

Baseline water quality data was not available for Long Hike Lake. To assess potential mixed concentrations in Long Hike Lake, a hydrologic assessment was completed to estimate the mean annual natural outflow from the lake and baseline water quality in Lizard Lake was assumed to be representative of water quality in Long Hike Lake. This assumption was considered reasonable because both Lizard Lake and Long Hike Lake are naturally occurring lakes, are of similar size and are located within the same geologic setting. Long Hike Lake has a drainage area of approximately 5 km² at its outlet and an estimated mean annual outflow of 0.036 m³/s (or 3,110 m³/day) based on the linear regression relationship between mean flow and drainage area established from regional flow data and described in Section 5.1.2.2.2 of the Hydrology TSD (Golder 2013³).

6.1 Construction Phase

As identified in Section 3.1, no tailings placement will occur during construction and only fresh water will be stored in the reclaim pond towards the end of construction. Factors that influence seepage discharge will be similar to pre-development conditions. Any seepage from the reclaim pond towards the end of the construction phase will be fresh water (i.e., not impacted by mill processes) and will have limited potential to result in adverse effects to water quality in the receiving environment.

6.2 Operations

During operations, a system of seepage collection ditches will be constructed as described in Section 3.6.4. Operation of this collection system is predicted to capture 94% of the seepage emanating from the TMF. Captured water will be pumped back to the reclaim pond and recycled to the mill. Water quality in the downstream receivers was assessed by mixing the seepage predicted to bypass the collection system (i.e., the remaining 6% or less that flows beneath the collection ditches) with the receiving water bodies. This assessment was completed using seepage bypass rates predicted by the Base Case (Table 2) and the Sensitivity (Tables 4 and 5) modelling scenarios. For Marmion Reservoir and Lizard Lake, the Base Case water quality assessment assumed average mixing proportions and is considered to be representative of typical expected conditions. The Sensitivity Scenarios conservatively assumed maximum mixing proportions within the receiver (i.e., maximum predicted concentrations

of mine effluent and seepage) based on a 28-year time series (see Section 3.0 of the Lake Water Quality TSD [Golder 2013⁵] for details). Sensitivity Scenario 1 provides an upper bound for potential impact to water quality due to seepage. The water quality assessment for Long Hike Lake considered only average conditions and assumed full mixing within the lake, due to the limited data available.

With reference to Figure 8, the Upper Marmion Reservoir assessment assumed seepage discharge to basin 7C, and mine effluent discharge to basin 6. Results are reported for basins 7C, 6 and 11, the downstream most basin above the Raft Lake Dam. With reference to Figure 9, seepage discharge was proportioned to basins 1, 2 and 3 (i.e., North, Central and South) of Lizard Lake based on the length of dam occurring within each subwatershed.

The results of the Operations phase water quality assessment are presented in Tables 7 through 13. No exceedances of Provincial Water Quality Objectives (PWQO) or Site Specific Water Quality Objectives (SSWQO) are predicted.

6.3 Closure

At Closure, the closure construction activities identified in the Conceptual Closure and Rehabilitation Plan TSD (Golder 2013⁸) will be implemented. During this time, tailings deposition will have ceased resulting in reduced inflow to the tailings deposit. The phreatic surface within the tailings will gradually lower and the seepage rate from the tailings deposit will gradually reduce towards Post-Closure conditions. For the purpose of this assessment, the Closure phase is considered to be the period in which the groundwater level and flow conditions are transitioning between Operations, which results in the highest seepage discharge rates, to Post-Closure, when the groundwater level and flow conditions have reached a state of quasi-equilibrium. As demonstrated in Tables 2 and 3, seepage rates will gradually decrease during the Closure phase and, as shown in Table 6 and explained in Section 6.4, the quality of the seepage emanating from the TMF will improve with time during Closure. Therefore, the potential impacts to water quality within the receivers will be bound by the Operations and Post-Closure phases with the Closure phase representing the period of transition. As no residual impacts are identified for the Operations and Post-Closure phases (see Section 6.4), a detailed, transient assessment of water quality during Closure is not considered necessary.

6.4 Post-Closure

At Post-Closure, natural precipitation is the only source of recharge to the TMF and groundwater level and flow conditions will have stabilized. Table 3 provide estimated seepage discharge rates for the Post-Closure phase. Compared to Operations, Post-Closure seepage is reduced by about 60%.

Seepage will continue to be collected and pumped back to the TMF reclaim pond until water quality has been determined through monitoring to be acceptable for discharge. The ultimate release of captured seepage will be subject to the requirements of the Environmental Compliance Approval (ECA) for the Project, issued by the Ontario Ministry of Environment and Climate Change (MOECC) and the Certified Closure Plan, submitted to and approved by the Ministry of Northern Development and Mines (MNDM). Release of captured seepage will only occur once it is determined that doing so will not impose unacceptable impact the receiving waterbodies.

As demonstrated by Table 6, TMF seepage water quality is predicted to improve at Post-Closure because discharge of process water will have ceased. Cyanide will not be discharged and residual cyanide within the TMF will have degraded. Nitrate and ammonia have also been excluded as it is assumed these soluble compounds will not remain on surfaces after prolonged weathering and exposure.

In consideration of the following factors, it can be concluded that there will be no residual impacts to water quality during Post-Closure:

- No exceedances of guideline values have been predicted for the Operations phase under the Base Case and Sensitivity Scenarios;
- Seepage discharge rates are predicted to reduce between Operations and Post-Closure by about 60%, as demonstrated by Tables 2 and ;
- Collected seepage will be retained until it is suitable for discharge (i.e., until it is determined that it will not cause unacceptable impacts to the receivers);
- Tailings deposition will have long ceased and seepage water quality will improve with time, as demonstrated by Table 5; and,
- Discharge of mine effluent, which is the primary mass load to Upper Marmion Reservoir, will have long ceased at Post-Closure.

Parameter	Unit	Mine Effluent (Reclaim Pond)	TMF Seepage (Operations)	TMF Seepage (Post-closure)
Physical-Chemical				
рН	—	7.8	7.8	7.3
Acidity	mg/L	_	_	—
Alkalinity	mg(CaCO₃)/L	104	_	—
Conductivity	µS/cm	_	_	—
Total Suspended Solids	mg/L	_	_	—
Total Dissolved Solids	mg/L	_	_	—
Major Ions			-	
Calcium	mg/L	21	28	5.8
Chloride	mg/L	21	31	—
Fluoride	mg/L	—	—	—
Magnesium	mg/L	11	16	3.1
Potassium	mg/L	28	40	2.5
Sodium	mg/L	73	106	0.32
Sulphate	mg/L	168	242	—
Hardness ^(a)	mg(CaCO ₃)/L	100	136	—
Cyanide (free) ^(b)	mg/L	0.19	0.028	—
Cyanide (total)	mg/L	0.19	0.028	—
Nutrients	-			I
Nitrate-N	mg/L	1.5	0.00004	—
Ammonia-N	mg/L	15.0	20	—
Un-ionized ammonia	mg/L	0.173	0.25	—
Phosphorus	mg/L	0.019	0.02	0.008
Dissolved Metals	-			
Aluminum	mg/L	0.013	0.02	0.01
Antimony	mg/L	0.0017	0.002	0.0002
Arsenic	mg/L	0.000041	0.0001	0.0002
Barium	mg/L	0.012	—	—
Beryllium	mg/L	—	—	—
Bismuth	mg/L	—	—	—
Boron	mg/L	0.0012	0.00002	0.0008
Cadmium	mg/L	0.000017	0.000017	0.00001
Chromium	mg/L	0.0002	0.0002	0.0005
Cobalt	mg/L	0.002	0.003	0.0001
Copper	mg/L	0.075	0.11	0.0007
ron	mg/L	0.000067	0.0001	0.003
.ead	mg/L	0.00012	0.0002	0.00003
langanese	mg/L	0.037	—	—
lercury	mg/L	0.000009	0.00001	0.00001
lolybdenum	mg/L	0.056	0.08	0.002
Nickel	mg/L	0.0077	0.01	0.0003
Selenium	mg/L	0.0007	0.0008	0.0005
Silver	mg/L	0.000016	0.00001	0.00001
Strontium	mg/L	0.22	—	—
Thallium	mg/L	0.00015	—	—
Tin	ma/l	0.022		

Table 6: Steady State (Average) TMF Seepage and Mine Effluent Water Quality - Operations and Post-Closure

Thailium	liig/∟	0.00015		
Tin	mg/L	0.023	—	—
Titanium	mg/L	—	—	—
Tungsten	mg/L	—	—	—
Uranium	mg/L	0.0051	0.007	0.0008
Vanadium	mg/L	0.000037	0.00004	0.00003
Zinc	mg/L	0.0019	0.002	0.002
Zirconium	mg/L	—	—	-

Notes:

Site water quality data was not modeled for this parameter. Hardness was calculated using the formula: Hardness, mg equivalent/L CaCO3 = ([Ca,mg/l]*2.497) + ([Mg,mg.l]*4.116). (REF: USEPA) Free cyanide was modeled using PHREEQC based on solution chemistry and the concentration of total cyanide. (a)

(b)

Table 7: Base Case Water Quality Predictions for Upper Marmion Reservoir - Operations Scenario

		Receiving WQ Guidelines ^(a)				Marmion	Basin 6	Basin 7c	Basin 11
Parameter	Unit	ССМЕ	<u>PWQO</u>	MISA	<u>SSWQO</u>	Reservoir Baseline	(near mine discharge)	(downstream of TMF)	(near Raft Lake Dam)
Physical-Chemical									
рН	—	6.5-9	6.5-8.5	—	—	6.5	6.5	6.5	6.5
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO ₃)/L	—	-25%	—	—	19	-	-	-
Conductivity	µS/cm	—	—	—	—	49	-	-	-
Total Suspended Solids	mg/L	+5-25	—	—	—	4.5	-	-	-
Total Dissolved Solids	mg/L	—	—	—	-	53	-	-	-
Major lons									
Calcium	mg/L	—	—	—	—	6.4	6.46	6.45	6.45
Chloride	mg/L	—	—	—	_	1.1	1.08	1.06	1.07
Fluoride	mg/L	—	—	—	—	0.031	-	-	-
Magnesium	mg/L	—	—	—	—	1.3	1.28	1.27	1.28
Potassium	mg/L	—	—	—	—	0.68	0.71	0.68	0.7
Sodium	mg/L	—	—	—	—	1.3	1.4	1.3	1.3
Sulphate	mg/L	—	—	—	—	1.6	1.8	1.7	1.7
Hardness	mg(CaCO ₃)/L	—	—	—	—	21	21	21	21
Cyanide (free)	mg/L	0.005	0.005	—	0.01	0.001	0.001	0.001	0.001
Cyanide (total)	mg/L	—	—	—	0.01	0.001	0.001	0.001	0.001
Nutrients									
Nitrate-N ^(a)	mg/L	13	—	—	—	0.063	0.065	0.063	0.064
Ammonia-N	mg/L	—	—	—	—	0.023	0.041	0.028	0.036
Un-ionized ammonia	mg/L	0.019	0.02	_	_	0.000067	0.00027	0.00012	0.00022
Phosphorus	mg/L	_	0.02	—	_	0.013	0.013	0.013	0.013
Dissolved Metals	<u> </u>								
Aluminum ^(b)	mg/L	0.005-0.1	0.015-0.075	—	_	0.03	0.03	0.03	0.03
Antimony	mg/L	_	0.02	_	_	0.00078	0.00078	0.00078	0.00078
Arsenic	mg/L	0.005	0.1	1	_	0.00049	0.00049	0.00049	0.00049
Barium	mg/L	_		_	_	0.0071	-	-	-
Beryllium ^(d)	mg/L	_	0.011-1.1	_	_	0.00028	-	-	-
Bismuth	mg/L	_	_	_	_	0.00054	-	-	-
Boron	mg/L	1.5	0.2	-	_	0.014	0.014	0.014	0.014
Cadmium ^(c)	mg/L	see notes	0.0001- 0.0005	_	_	0.000036	0.000036	0.000036	0.000036
Chromium (total)	mg/L	0.01	0.01	—	_	0.00048	0.00048	0.00048	0.00048
Cobalt	mg/L	_	0.0009	—	_	0.00017	0.00017	0.00017	0.00017
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.0011	0.0012	0.0012	0.0012
Iron (total)	mg/L	0.3	0.3	<u> </u>	_	0.24	0.24	0.24	0.24
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4	_	0.00029	0.00029	0.00029	0.00029
Manganese	mg/L	_	_	—	_	0.024	-	-	-
Mercury	mg/L	0.000026	0.0002	_	_	0.000005	0.000005	0.000005	0.000005
Molybdenum	mg/L	0.073	0.04	_	-	0.00036	0.00043	0.00038	0.00041
Nickel ^(d)	mg/L	0.025-0.15	0.025	1	_	0.00099	0.0010	0.00099	0.00099
Selenium	mg/L	0.001	0.020	<u> </u>	_	0.0005	0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001		_	0.000087	0.000087	0.000087	0.000087
Strontium	mg/L	_			_	0.013	-	-	-
Thallium	mg/L	0.0008	0.0003	_	_	0.000084	-	-	-
Tin	mg/L		<u> </u>	_	_	0.000084	-	-	-
Titanium						0.00071	-	-	
	mg/L	—	— 0.02	-	—			-	-
Tungsten	mg/L	—	0.03	-	—	0.0045	-	-	-
Uranium	mg/L	—	0.005	-	—	0.0022	0.0022	0.0022	0.0022
Vanadium	mg/L	—	0.006	—	-	0.0005	0.0005	0.0005	0.0005
Zinc	mg/L	0.03	0.02	1	-	0.0052	0.0052	0.0052	0.0052
Zirconium	mg/L	—	0.004	—	—	0.0015	-	-	-

 Underlined values exceed PWQO guidelines. Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines. Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium CCME CWQG is calculated using a formula (See Appendix 2.IV of Lake Water Quality TSD) that is hardness-dependent.

 (d)
 Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 8: Sensitivity Analysis Scenario 1 – Fine-Grained and Coarse-Grained Hydraulic Conductivity x 10 – Water Quality Predictions for Upper Marmion Reservoir – (Operations)

		Receiving WQ Guidelines ^(a)				Marmion	Basin 6	Basin 7c	Basin 11
Parameter	Unit	ССМЕ	<u>PWQO</u>	MISA	<u>SSWQO</u>	Reservoir Baseline	(near mine discharge)	(downstream of TMF)	(near Raft Lake Dam)
Physical-Chemical									
рН	—	6.5-9	6.5-8.5	—	—	6.5	6.5	6.5	6.5
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO ₃)/L	—	-25%	—	—	19	-	-	-
Conductivity	µS/cm	—	—	—	—	49	-	-	-
Total Suspended Solids	mg/L	+5-25	—	—	—	4.5	-	-	-
Total Dissolved Solids	mg/L	—	—	—	-	53	-	-	-
Major Ions									
Calcium	mg/L	—	—	—	—	6.4	6.66	6.49	6.58
Chloride	mg/L	—	—	—	-	1.1	1.79	1.16	1.52
Fluoride	mg/L	—	<u> </u>	—	—	0.031	-	-	-
Magnesium	mg/L	—	<u> </u>	—	—	1.3	1.41	1.30	1.36
Potassium	mg/L	—	—	—	—	0.68	1.23	0.75	1.03
Sodium	mg/L	—	—	—	—	1.3	2.7	1.5	2.2
Sulphate	mg/L	—	—	_	-	1.6	4.9	2.0	3.7
Hardness	mg(CaCO ₃)/L	_	_	_	-	21	22	22	22
Cyanide (free)	mg/L	0.005	0.005	_	0.01	0.001	0.004	0.001	0.003
Cyanide (total)	mg/L	_	_	-	0.01	0.001	0.004	0.001	0.003
Nutrients	····g,								
Nitrate-N ^(a)	mg/L	13	_	_	_	0.063	0.084	0.063	0.077
Ammonia-N	mg/L	_	_	_	_	0.023	0.255	0.054	0.171
Un-ionized ammonia	mg/L	0.019	0.02			0.000067	0.01	0.0005	0.0061
Phosphorus	mg/L		0.02	_	_	0.013	0.013	0.013	0.013
Dissolved Metals	iiig/ L		0.02	_		0.010	0.010	0.013	0.010
	mg/L	0.005-0.1	0.015-0.075	_		0.03	0.03	0.03	0.03
Antimony	mg/L	0.005-0.1	0.015-0.075	_		0.00078	0.0008	0.00078	0.00079
,		 0.005	0.02	1	<u> </u>	0.00078	0.0008	0.00049	0.00079
Arsenic	mg/L				<u> </u>		-		-
Barium	mg/L	—	— 0.011-1.1	-		0.0071		-	-
Beryllium ^(d)	mg/L	—		-		0.00028	-	-	-
Bismuth	mg/L	— 4 5	—	-	-	0.00054	-	-	-
Boron	mg/L	1.5	0.2	-	-	0.014	0.014	0.014	0.014
Cadmium ^(c)	mg/L	see notes	0.0001- 0.0005	-	-	0.000036	0.000038	0.000036	0.000038
Chromium (total)	mg/L	0.01	0.01	-	-	0.00048	0.00048	0.00048	0.00048
Cobalt	mg/L	—	0.0009		<u> </u>	0.00017	0.0002	0.00017	0.00019
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.0011	0.0028	0.0014	0.0022
Iron (total)	mg/L	0.3	0.3		<u> </u>	0.24	0.23	0.24	0.23
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4	-	0.00029	0.00029	0.00029	0.00029
Manganese	mg/L	—	—			0.024	-	-	-
Mercury	mg/L	0.000026	0.0002	—	—	0.000005	0.000005	0.000005	0.000005
Molybdenum	mg/L	0.073	0.04	—		0.00036	0.0014	0.0005	0.0010
Nickel ^(d)	mg/L	0.025-0.15	0.025	1	<u> </u>	0.00099	0.0011	0.0010	0.0011
Selenium	mg/L	0.001	0.1	—	—	0.0005	0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001	—	—	0.000087	0.000086	0.000087	0.000086
Strontium	mg/L	—		—	—	0.013	-	-	-
Thallium	mg/L	0.0008	0.0003	—	—	0.000084	-	-	-
Tin	mg/L	—	—	—	—	0.00071	-	-	-
Titanium	mg/L	—	_	—	—	0.0012	-	-	-
Tungsten	mg/L	—	0.03	—	—	0.0045	-	-	-
Uranium	mg/L	_	0.005	—	1_	0.0022	0.0023	0.0022	0.0023
Vanadium	mg/L	_	0.006	—	_	0.0005	0.00049	0.0005	0.00049
Zinc	mg/L	0.03	0.02	1	_	0.0052	0.0053	0.0052	0.0052
	<u> </u>		0.004	-	-	0.0015			

Notes:

 Underlined values exceed PWQO guidelines.
 Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines.
 Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.
 Site water quality guidelines do not exist for this parameter.
 Double underlined values exceed SSWQO.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium cCME CWQG is calculated using a formula (See Appendix 2.IV of Lake Water Quality TSD) that is hardness-dependent.

 (d)
 Renditive appendix and existing and exist guidelines are bardness dependent.

(d) Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 9: Sensitivity Analysis Scenario 2 – Tailings Hydraulic Conductivity x 10 – Water Quality Predictions for Upper Marmion Reservoir – (Operations)

		Receiving WQ Guidelines ^(a)				Marmion	Basin 6	Basin 7c	Basin 11
Parameter	Unit	ССМЕ	<u>PWQO</u>	MISA	<u>SSWQO</u>	Reservoir Baseline	(near mine discharge)	(downstream of TMF)	(near Raft Lake Dam)
Physical-Chemical									
рН	—	6.5-9	6.5-8.5	—	—	6.5	6.5	6.5	6.5
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO ₃)/L	—	-25%	—	—	19	-	-	-
Conductivity	µS/cm	_	—	—	—	49	-	-	-
Total Suspended Solids	mg/L	+5-25	—	—	—	4.5	-	-	-
Total Dissolved Solids	mg/L	—	—	—	-	53	-	-	-
Major Ions									
Calcium	mg/L	—	—	—	—	6.4	6.7	6.48	6.58
Chloride	mg/L	—	—	—	—	1.1	1.8	1.14	1.52
Fluoride	mg/L	—	—	—	—	0.031	-	-	-
Magnesium	mg/L	—	—	—	—	1.3	1.4	1.29	1.36
Potassium	mg/L	—	—	—	—	0.68	1.23	0.73	1.03
Sodium	mg/L	—	—	—	—	1.3	2.7	1.4	2.2
Sulphate	mg/L	—	—	—	—	1.6	4.9	2.0	3.7
Hardness	mg(CaCO₃)/L	—	—	—	—	21	22	22	22
Cyanide (free)	mg/L	0.005	0.005	_	0.01	0.001	0.0038	0.001	0.003
Cyanide (total)	mg/L	—	—	_	0.01	0.001	0.0038	0.001	0.003
Nutrients	<u> </u>								
Nitrate-N ^(a)	mg/L	13	_	_	_	0.063	0.084	0.063	0.077
Ammonia-N	mg/L	_	_	_	_	0.023	0.254	0.048	0.17
Un-ionized ammonia	mg/L	0.019	0.02	_	_	0.000067	0.0096	0.00044	0.0061
Phosphorus	mg/L	_	0.02	_	_	0.013	0.013	0.013	0.013
Dissolved Metals			0.0_						
Aluminum ^(b)	mg/L	0.005-0.1	0.015-0.075	_	_	0.03	0.03	0.03	0.03
Antimony	mg/L	_	0.02	_	_	0.00078	0.0008	0.00078	0.00079
Arsenic	mg/L	0.005	0.1	1	_	0.00049	0.00048	0.00049	0.00048
Barium	mg/L	_	—		<u> </u>	0.0071	-	-	-
Beryllium ^(d)	mg/L	_	0.011-1.1	_		0.00028	-	-	-
Bismuth	mg/L	_				0.00020	-	-	-
Boron	mg/L	1.5	0.2	_		0.00034	0.014	0.014	0.014
Cadmium ^(c)	mg/L	see notes	0.0001- 0.0005	_	_	0.000036	0.000039	0.000036	0.000038
Chromium (total)	mg/L	0.01	0.0005	_	-	0.00048	0.00048	0.00048	0.00048
Cobalt	mg/L	0.01	0.0009		-	0.00048	0.00040	0.00048	0.00048
	-	 0.002-0.004	0.0009	0.6	0.0079	0.00017	0.002	0.0013	0.0022
Copper ^(d) Iron (total)	mg/L mg/L	0.002-0.004	0.001-0.005	0.6		0.0011	0.0028	0.0013	0.0022
Lead ^(d)	mg/L	0.3	0.001-0.005	0.4		0.24	0.23	0.24	0.23
		0.001-0.007	GUU.001-0.000		+	0.00029	0.00029	-	0.00029
Manganese	mg/L mg/l	— 0.000026	— 0.0002	—	+	0.024	- 0.000005	- 0.000005	- 0.000005
Mercury	mg/L	0.000026	0.0002	—	+		0.000005	0.000005	0.000005
Molybdenum Nickel ^(d)	mg/L	0.073		1	+	0.00036	0.00137	0.00047	0.0010
	mg/L		0.025		+	0.00099 0.0005	0.0005	0.0010	0.00107
Selenium	mg/L	0.001	0.1	—			0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001	_	-	0.000087	-	-	-
Strontium	mg/L		— 0.0000	-		0.013			-
Thallium	mg/L	0.0008	0.0003	-		0.000084	-	-	
Tin Tite a iuwa	mg/L	—	—	-	<u> </u>	0.00071	-	-	-
Titanium	mg/L	—	—	<u> </u>		0.0012	-	-	-
Tungsten	mg/L	—	0.03			0.0045	-	-	-
Uranium	mg/L	—	0.005	—	-	0.0022	0.0023	0.0022	0.0023
Vanadium 	mg/L	—	0.006	—	<u> </u>	0.0005	0.00049	0.0005	0.00049
Zinc	mg/L	0.03	0.02	1	<u> </u>	0.0052	0.0053	0.0052	0.0052
Zirconium	mg/L	—	0.004	—	-	0.0015	-	-	-

Notes:

 Underlined values exceed PWQO guidelines.
 Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines.
 Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.
 Site water quality guidelines do not exist for this parameter.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium componer load and pickel guidelines are bardness dependent.

 (d)
 Rendulum componer load and not guidelines are bardness dependent.

(d) Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 10: Base Case Water Quality Predictions for Lizard Lake - Operations Scenario

		Receiving WQ Guidelines ^(a)				Lizard			
Parameter	Unit	ССМЕ	<u>PWQO</u>	MISA	<u>SSWQO</u>	Lake Baseline	Northern	Central	Southern
Physical-Chemical									
рН	—	6.5-9	6.5-8.5	—	-	7.0	7.0	7.0	7.0
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO₃)/L	—	-25%	—	—	27	-	-	-
Conductivity	µS/cm	—	—	—	—	63	-	-	-
Total Suspended Solids	mg/L	+5-25	—	—	-	2.1	-	-	-
Total Dissolved Solids	mg/L	—	—	—	—	55	-	-	-
Major Ions									
Calcium	mg/L	—	—	—	—	10	10.32	10.32	10.32
Chloride	mg/L	—	—	—	—	0.25	0.26	0.26	0.26
Fluoride	mg/L	—	—	—	—	0.03	-	-	-
Magnesium	mg/L	—	—	—	—	0.9	0.90	0.90	0.90
Potassium	mg/L	—	-	-	-	0.65	0.66	0.66	0.66
Sodium	mg/L	—	—	—	—	0.67	0.69	0.7	0.7
Sulphate	mg/L	—	—	—	—	1.9	1.9	1.9	1.9
Hardness	mg(CaCO ₃)/L	_	—	—	—	30	30	30	30
Cyanide (free)	mg/L	0.005	0.005	—	0.01	0.001	0.001	0.001	0.001
Cyanide (total)	mg/L	—	_	-	0.01	0.001	0.001	0.001	0.001
Nutrients									
Nitrate-N ^(a)	mg/L	13	_	_	_	0.034	0.034	0.034	0.034
Ammonia-N	mg/L	_	_	_	_	0.022	0.025	0.026	0.027
Un-ionized ammonia	mg/L	0.019	0.02	_	_	0.000047	0.00009	0.00011	0.0001
Phosphorus	mg/L	_	0.02	_	_	0.0082	0.008	0.008	0.008
Dissolved Metals			0.02			0.0002	0.000	0.000	0.000
Aluminum ^(b)	mg/L	0.005-0.1	0.015-0.075	_	_	0.018	0.018	0.018	0.018
Antimony	mg/L	_	0.02	_	_	0.00097	0.00097	0.00097	0.00097
Arsenic	mg/L	0.005	0.02	1	_	0.00043	0.00043	0.00043	0.00043
Barium	mg/L		—	- -	_	0.0069	0.00040	-	0.00040
Beryllium ^(d)	mg/L	_	0.011-1.1		_	0.00023	-	-	-
Bismuth	mg/L	_	—		_	0.00023	-	-	
	-			—					-
Boron	mg/L	1.5	0.2 0.0001-	-	—	0.011	0.011	0.011	0.011
Cadmium ^(c)	mg/L	see notes	0.0005	-	-	0.00003	0.00003	0.00003	0.00003
Chromium (total)	mg/L	0.01	0.01	-	-	0.00049	0.00049	0.00049	0.00049
Cobalt	mg/L	—	0.0009	—	—	0.00012	0.00012	0.00012	0.00012
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.00087	0.00089	0.0009	0.0009
Iron (total)	mg/L	0.3	0.3		-	0.053	0.05	0.05	0.05
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4	-	0.00024	0.00024	0.00024	0.00024
Manganese	mg/L	—	—		-	0.0094	-	-	-
Mercury	mg/L	0.000026	0.0002	-	-	0.000005	0.000005	0.000005	0.00008
Molybdenum	mg/L	0.073	0.04		-	0.00032	0.00033	0.00034	0.00034
Nickel ^(d)	mg/L	0.025-0.15	0.025	1	—	0.0008	0.0008	0.0008	0.0008
Selenium	mg/L	0.001	0.1	—	—	0.0005	0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001	—	—	0.0001	0.0001	0.0001	0.0001
Strontium	mg/L	—	—	—	—	0.015	-	-	-
Thallium	mg/L	0.0008	0.0003	—	—	0.000068	-	-	-
Tin	mg/L	—	—	—	—	0.00055	-	-	-
Titanium	mg/L	—	—	—	—	0.0013	-	-	-
Tungsten	mg/L	_	0.03	—	—	0.005	-	-	-
Uranium	mg/L	_	0.005	—	—	0.0025	0.0025	0.0025	0.0025
Vanadium	mg/L	_	0.006	—	—	0.00037	0.00037	0.00037	0.00037
Zinc	mg/L	0.03	0.02	1	-	0.0055	0.0055	0.0055	0.0055
Zirconium	mg/L	_	0.004	·	1	0.002	-	-	-

 Underlined values exceed PWQO guidelines. Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines. Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium CCME CWQG is calculated using a formula (See Appendix 2.IV of Lake Water Quality TSD) that is hardness-dependent.

 (d)
 Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 11: Sensitivity Analysis Scenario 1 – Fine-Grained and Coarse-Grained Hydraulic Conductivity x 10 – Water Quality Predictions for Lizard Lake – (Operations)

		Receiving WQ Guidelines ^(a)				Lizard			
Parameter	Unit	ССМЕ	<u>PWQO</u>	MISA	<u>SSWQO</u>	Lake Baseline	Northern	Central	Southern
Physical-Chemical									
рН	—	6.5-9	6.5-8.5	—	-	7.0	7.0	7.0	7.0
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO ₃)/L	—	-25%	—	—	27	-	-	-
Conductivity	µS/cm	—	_	—	—	63	-	-	-
Total Suspended Solids	mg/L	+5-25	—	—	—	2.1	-	-	-
Total Dissolved Solids	mg/L	—	—	—	—	55	-	-	-
Major Ions									
Calcium	mg/L	—	—	—	—	10	10.35	10.35	10.34
Chloride	mg/L	—	—	—	—	0.25	0.30	0.31	0.30
Fluoride	mg/L	—	—	—	-	0.03	-	-	-
Magnesium	mg/L	—	—	—	—	0.9	0.92	0.93	0.92
Potassium	mg/L	—	—	—	-	0.65	0.72	0.73	0.71
Sodium	mg/L	—	—	-	-	0.67	0.8	0.9	0.8
Sulphate	mg/L	_	_	1_	-	1.9	2.3	2.3	2.2
Hardness	mg(CaCO₃)/L	_	_	—	_	30	31	31	31
Cyanide (free)	mg/L	0.005	0.005	-	0.01	0.001	0.001	0.001	0.001
Cyanide (total)	mg/L	_	_	_	0.01	0.001	0.001	0.001	0.001
Nutrients	····g/ =								
Nitrate-N ^(a)	mg/L	13		_	_	0.034	0.034	0.034	0.034
Ammonia-N	mg/L	_	_	_	_	0.022	0.055	0.06	0.05
Un-ionized ammonia	mg/L	0.019	0.02			0.000047	0.00046	0.00053	0.00041
Phosphorus	mg/L	0.013	0.02	_	_	0.0082	0.008	0.008	0.008
Dissolved Metals	iiig/L		0.02			0.0002	0.000	0.000	0.000
Aluminum ^(b)	ma/l	0.005-0.1	0.015-0.075			0.018	0.018	0.018	0.018
	mg/L					0.018	0.00097	0.00097	0.018
Antimony	mg/L	— 0.005	0.02				0.00097	0.00097	0.00097
Arsenic	mg/L	0.005	0.1	1		0.00043			
Barium	mg/L	—	—		-	0.0069	-	-	-
Beryllium ^(d)	mg/L	—	0.011-1.1	-		0.00023	-	-	-
Bismuth -	mg/L		—	<u> -</u>	<u> -</u>	0.00058	-	-	-
Boron	mg/L	1.5	0.2	<u> </u>	-	0.011	0.011	0.011	0.011
Cadmium ^(c)	mg/L	see notes	0.0001- 0.0005		-	0.00003	0.00003	0.00003	0.00003
Chromium (total)	mg/L	0.01	0.01	<u> </u>	<u> </u>	0.00049	0.00049	0.00049	0.00049
Cobalt	mg/L	—	0.0009	—		0.00012	0.00013	0.00013	0.00013
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.00087	0.0011	0.0011	0.001
Iron (total)	mg/L	0.3	0.3			0.053	0.05	0.05	0.05
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4		0.00024	0.00024	0.00024	0.00024
Manganese	mg/L	—	—	—	—	0.0094	-	-	-
Mercury	mg/L	0.000026	0.0002	—	—	0.000005	0.000005	0.000005	0.00000
Molybdenum	mg/L	0.073	0.04	—	—	0.00032	0.00045	0.00047	0.00043
Nickel ^(d)	mg/L	0.025-0.15	0.025	1	—	0.0008	0.00082	0.00082	0.00081
Selenium	mg/L	0.001	0.1	—	—	0.0005	0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001	—	-	0.0001	0.0001	0.0001	0.0001
Strontium	mg/L	—	—	—	—	0.015	-	-	-
Thallium	mg/L	0.0008	0.0003	—	—	0.000068	-	-	-
Tin	mg/L	_	_	-	-	0.00055	-	-	-
Titanium	mg/L	_	_	-	-	0.0013	-	-	-
Tungsten	mg/L	_	0.03		-	0.005	-	-	-
Uranium	mg/L	_	0.005	_	_	0.0025	0.0025	0.0025	0.0025
Vanadium	mg/L	_	0.005	_	_	0.0023	0.00023	0.00023	0.00023
Zinc	mg/L	0.03	0.000	1		0.0055	0.0055	0.0055	0.0055
	iiig/L	0.00	0.02	1 1		0.0000	0.0000	0.0000	0.0000

Notes:

 Underlined values exceed PWQO guidelines.
 Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines.
 Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.
 Site water quality guidelines do not exist for this parameter.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium componer load and pickel guidelines are bardness dependent.

 (d)
 Rendulum componer load and not guidelines are bardness dependent.

(d) Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 12: Sensitivity Analysis Scenario 2 – Tailings Hydraulic Conductivity x 10 – Water Quality Predictions for Lizard Lake – (Operations)

Parameter	Unit	Receiving WQ Guidelines ^(a)							
		ССМЕ	PWQO	MISA	<u>SSWQO</u>	Lizard Lake Baseline	Northern	Central	Southern
Physical-Chemical									
pН	—	6.5-9	6.5-8.5	—	—	7.0	7.0	7.0	7.0
Acidity	mg/L	—	—	—	—	2.9	-	-	-
Alkalinity	mg(CaCO₃)/L	—	-25%	—	-	27	-	-	-
Conductivity	µS/cm	—	—	—	—	63	-	-	-
Total Suspended Solids	mg/L	+5-25	—	-	-	2.1	-	-	-
Total Dissolved Solids	mg/L	—	—	-	-	55	-	-	-
Major Ions									
Calcium	mg/L	—	—	—	—	10	10.34	10.35	10.34
Chloride	mg/L	—	—	—	—	0.25	0.30	0.31	0.29
Fluoride	mg/L	—	—	—	—	0.03	-	-	-
Magnesium	mg/L	—	—	—	—	0.9	0.92	0.93	0.92
Potassium	mg/L	—	—	—	—	0.65	0.71	0.73	0.71
Sodium	mg/L	—	_	—	—	0.67	0.8	0.9	0.8
Sulphate	mg/L	_	_	-	 _	1.9	2.3	2.3	2.2
Hardness	mg(CaCO ₃)/L	_	_	-	_	30	31	31	31
Cyanide (free)	mg/L	0.005	0.005	_	0.01	0.001	0.001	0.001	0.001
Cyanide (total)	mg/L	_	_	_	0.01	0.001	0.001	0.001	0.001
Nutrients	····g,								
Nitrate-N ^(a)	mg/L	13	_	—	_	0.034	0.034	0.034	0.034
Ammonia-N	mg/L	_	_	—	_	0.022	0.053	0.058	0.049
Un-ionized ammonia	mg/L	0.019	0.02			0.000047	0.000	0.001	0.000
Phosphorus	mg/L	0.013	0.02	-		0.0082	0.008	0.008	0.008
Dissolved Metals	iiig/∟	—	0.02	-	-	0.0002	0.000	0.000	0.000
Aluminum ^(b)	mall	0.005-0.1	0.015-0.075			0.018	0.018	0.018	0.018
	mg/L	0.005-0.1		-	—		0.00097	0.00097	0.00097
Antimony	mg/L		0.02	-		0.00097			
Arsenic	mg/L	0.005	0.1	1	—	0.00043	0.000	0.000	0.000
Barium	mg/L	—	—	-	-	0.0069	-	-	_
Beryllium ^(d)	mg/L	—	0.011-1.1	-	-	0.00023	-	-	-
Bismuth	mg/L	—	—	—	<u> -</u>	0.00058	-	-	-
Boron	mg/L	1.5	0.2	—	-	0.011	0.011	0.011	0.011
Cadmium ^(c)	mg/L	see notes	0.0001- 0.0005			0.00003	0.00003	0.00003	0.00003
Chromium (total)	mg/L	0.01	0.01	-	<u> </u>	0.00049	0.000	0.000	0.000
Cobalt	mg/L	—	0.0009	—	—	0.00012	0.00013	0.00013	0.00013
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.00087	0.001	0.001	0.001
Iron (total)	mg/L	0.3	0.3	—	—	0.053	0.05	0.05	0.05
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4	—	0.00024	0.0002	0.00024	0.00024
Manganese	mg/L	—	—	—	—	0.0094	-	-	-
Mercury	mg/L	0.000026	0.0002	—	—	0.000005	0.00001	0.00001	0.00001
Molybdenum	mg/L	0.073	0.04	—	—	0.00032	0.00044	0.00046	0.00043
Nickel ^(d)	mg/L	0.025-0.15	0.025	1	—	0.0008	0.00081	0.00082	0.00081
Selenium	mg/L	0.001	0.1	—	_	0.0005	0.0005	0.0005	0.0005
Silver	mg/L	0.0001	0.0001	—	—	0.0001	0.0001	0.0001	0.0001
Strontium	mg/L	—	—	—	—	0.015	-	-	-
Thallium	mg/L	0.0008	0.0003	—	—	0.000068	-	-	-
Tin	mg/L	_	_	-	 _	0.00055	-	-	-
Titanium	mg/L	_	_	_	_	0.0013	-	-	-
Tungsten	mg/L	_	0.03	_	_	0.005	-	-	-
Uranium	mg/L	_	0.005	—	<u> _</u>	0.0025	0.0025	0.0025	0.0025
		_	0.006	_	<u> </u>	0.00023	0.00037	0.00037	0.00037
Vanadium		-			1	0.00001	0.00001	0.00001	0.00007
Vanadium Zinc	mg/L mg/L	0.03	0.02	1	_	0.0055	0.0055	0.0055	0.0055

 Underlined values exceed PWQO guidelines. Bold values exceed CCME CWQG. Grey shaded value exceed MISA guidelines. Double underlined values exceed SSWQO.

 "-" =
 Site water quality data was not modelled for this parameter.

 "-" =
 Receiving water quality guidelines do not exist for this parameter.

 (a)
 See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

 (b)
 Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

 (c)
 Cadmium CCME CWQG is calculated using a formula (See Appendix 2.IV of Lake Water Quality TSD) that is hardness-dependent.

 (d)
 Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details.

Table 13: Upper Bound Water Quality Predictions for Long Hike Lake - Operations Scenario

	Unit	Receiving WC	ຊ Guidelines ^(a)	Baseline	Long Hike		
Parameter		ССМЕ	PWQO	MISA	<u>SSWQO</u>	Water Quality ^(e)	Lake Mixed Concentration
Physical-Chemical							
рН	—	6.5-9	6.5-8.5	6.0–9.5		6.9	6.9
Acidity	mg/L	—	—	—		2.9	-
Alkalinity	mg(CaCO3)/L	—	-25%	—		27	-
Conductivity	μS/cm	—	—	_		63	-
Total Suspended Solids	mg/L	+5-25	—	—		2.1	-
Total Dissolved Solids	mg/L	—	—	_		54.7	-
Major Ions						-	
Calcium	mg/L	—	—	—		10.3	11
Chloride	mg/L	120	—	-		0.25	1.9
Fluoride	mg/L	—	_	-		0.03	-
Magnesium	mg/L	—	_	-		0.90	1.7
Potassium	mg/L	—	_	-		0.65	2.8
Sodium	mg/L	_	_	_		0.67	6.3
Sulphate	mg/L	_	_	_	1	1.9	15
Hardness	mg(CaCO3)/L	_	_	-		30	36
Cyanide (free)	mg/L	0.005	0.005	_	0.01	0.001	0.002
Cyanide (total)	mg/L	_	_		0.01	0.001	0.002
Nutrients						-	0.002
Nitrate-N	mg/L	13				0.034	0.032
Ammonia-N		15	-	-		0.022	1.1
	mg/L		_				
Un-ionized ammonia	mg/L	0.019	0.02			5E-05	0.013
Phosphorus	mg/L	—	0.02			0.008	0.009
Dissolved Metals		0.005.0.4	0.045.0.075			-	0.040
Aluminum ^(b)	mg/L	0.005-0.1	0.015-0.075			0.018	0.018
Antimony	mg/L		0.02	<u> </u>		0.001	0.001
Arsenic	mg/L	0.005	0.1	1		0.0004	0.0004
Barium	mg/L	—	—	<u> -</u>		0.007	-
Beryllium ^(d)	mg/L	—	0.011-1.1			0.0002	-
Bismuth	mg/L	—	_			0.0006	-
Boron	mg/L	1.5	0.2			0.011	0.011
Cadmium ^(c)	mg/L	see notes	0.0001-0.0005		ļ	0.00003	0.000029
Chromium (total)	mg/L	0.01	0.01			0.0005	0.00048
Cobalt	mg/L	—	0.0009			0.0001	0.00028
Copper ^(d)	mg/L	0.002-0.004	0.001-0.005	0.6	0.0079	0.0009	0.0067
Iron (total)	mg/L	0.3	0.3			0.053	0.05
Lead ^(d)	mg/L	0.001-0.007	0.001-0.005	0.4		0.0002	0.00024
Manganese	mg/L	—	—			0.009	-
Mercury	mg/L	0.000026	0.0002			0.000005	0.000005
Molybdenum	mg/L	0.073	0.04			0.0003	0.0046
Selenium	mg/L	0.001	0.1			0.0005	0.0005
Silver	mg/L	0.0001	0.0001	—		0.0001	0.000097
Strontium	mg/L	—	—	—		0.015	-
Thallium	mg/L	0.0008	0.0003	—		7E-05	-
Tin	mg/L	—	—	—		0.001	-
Titanium	mg/L	—	—	—		0.001	-
Tungsten	mg/L	—	0.03	—		0.005	-
Uranium	mg/L	—	0.005	—		0.003	0.0028
Vanadium	mg/L	—	0.006	—		0.0004	0.00035
Zinc	mg/L	0.03	0.02	1		0.006	0.0053
Zirconium	mg/L	_	0.004	_	1	0.002	-

Notes:

<u>Underlined</u> values exceed PWQO guidelines. **Bold** values exceed CCME CWQG. Grey shaded value exceed MISA guidelines. <u>Double underlined</u> values exceed SSWQO. "-" = Site water quality data was not modelled for this parameter. "--" = Receiving water quality guidelines do not exist for this parameter. (a) See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes.

(b)

Receiving water quality guidelines do not exist for this parameter. See Appendix 2.IV of Lake Water Quality TSD for the list of all parameters, guidelines and notes. Aluminum CCME CWQG and PWQO guidelines range is pH dependent. See Appendix 2.IV of Lake Water Quality TSD for details. Cadmium CCME CWQG is calculated using a formula (See Appendix 2.IV of Lake Water Quality TSD) that is hardness-dependent. (c)

Beryllium, copper, lead and nickel guidelines are hardness dependent. See Appendix 2.IV of Lake Water Quality TSD for details. Baseline water quality of Lizard Lake assumed to be representative of baseline water quality of Long Hike Lake (d)

(e)

6.5 Conclusions and Contingency Measures

Seepage collection measures, as described in Section 3.6.4, will be implemented to mitigate impacts to the surrounding environment. The groundwater modelling and water quality assessment presented herein have demonstrated that there are no predicted exceedances of PWQO or SWWQO within the receivers as a result of seepage bypass. At present, the design of the collection system is conceptual. During detailed design, additional field data will be collected and the modeling of the TMF facility will be updated to support the design of both the TMF and the external seepage collection system. The final design of the collection ditches will be completed to allow for the capture efficiency required to mitigate adverse impacts to the downstream receiving environment. The modelling analysis presented in this memorandum indicates that implementation of a collection system with a capture efficiency of greater the 94% is technically feasible.

Monitoring wells will be installed between the seepage collection system and the downstream receivers to monitor both seepage flow and water quality to confirm predictions and the effectiveness of the seepage collection system. This monitoring system will be designed during the detailed design phase of the project and will adhere to the requirements of the applicable permits. Water quality in the receiving environment will also be monitored as part of the Environmental Effects Monitoring (EEM) program for the project. Should seepage bypass be greater than predicted and/or water quality be worse than predicted such that adverse impacts to the downstream environment are possible, appropriate contingency measures will be implemented. Available contingency measures include process adjustments (e.g., cyanide destruction efficacy), deepening the seepage collection ditches, installation of active pumping wells or construction of subsurface low permeability cut-off walls within the deeper overburden valleys. Should implementation of contingency measures be required, the appropriate measures will be evaluated and identified based on the conditions encountered.

Although the preliminary analysis presented in this memorandum suggests there will be no impacts to water quality, some uncertainty exists with respect to seepage release to Long Hike Lake. As a condition of EA approval, CMC will commit to collect additional subsurface data between the TMF and Long Hike Lake to re-evaluate and confirm the model results with respect to seepage discharge to Long Hike Lake. If required based on the results of this subsequent confirmatory analysis, CMC will collect the appropriate data to characterize baseline conditions in Long Hike Lake, including water quality, sediment quality, and hydrology data, and Long Hike Lake will be included in the EEM program for the project.

7.0 RESPONSES TO GRT COMMENTS

This section provides responses to the most recent set of comments made by the GRT in CEAA, July 2017. The comments are addressed sequentially as they appear in CEAA, July 2017. In some instances we have subdivided the original comment to allow for more direct response.

GRT Comment 1: Tailings Management Facility (TMF) Model Layers

GRT Comment 1a. Explain why separate model layers were implemented for the rockfill dam (layers 4 and 5) and the tailings (layers 1-3). It appears that layers 4 and 5 are only used for the dam and result in the distortion of tailings layers (layers 1-3) over the rockfill dams. Why not use different properties within the same layers to avoid layer distortion?

Response:

The current layer structure is the outcome of importing and updating an earlier TMF model construction (Golder, 2014) into the current work. In our 2014 analyses, the TMF structure consisted of three layers, namely:

Layer 1: Tailings (i.e. the tailings were represented by a single bulk layer)

Layer 2: Upper Dam (no liner)

Layer 3: Lower Dam (liner on upstream flank)

The 2014 layer structure and associated grids were used as the initial input for constructing the TMF within the current model. However, several modifications were eventually imposed to refine groundwater conditions within the TMF, including:

- A thin upper layer was introduced to posit the constant heads at the very top of the tailings mound (i.e. the current Layer 1), as opposed to applying a constant head through the entirety of the bulk tailings;
- The underlying bulk tailings were subdivided to more accurately characterize the vertical head distribution within the tailings (i.e. the current Layer 2 and 3).

The addition of current Layers 1, 2 and 3 were created by simply subdividing the aforementioned pre-existing layer structure within Visual MODFLOW itself (this process takes seconds).

We acknowledge the GRTs suggestion of having continuous tailings-to-dam layers as another valid layer construction approach. However, this method would have required the development of a new set of layers in an external pre-processor and hence would have been considerably more time consuming. Nonetheless, for the purpose of this response, we tested this suggested approach (i.e. in effect combined Layer 2 and Layer 4 into a new Layer 2, and Layer 3 and Layer 5 into a new Layer 3) and found that the model flow budget and TMF seepage rates were within 2% of the current model.

Lastly, please consider that the layers do not "distort" but instead simply thin to a minimal thickness where the nominal material is not present. This is a common approach to assigning numerical layer thicknesses in MODFLOW.

Based on the above arguments we do not consider it necessary to revise our current model approach and our reported method does not require further justification within this updated memorandum.

GRT Comment 1b. Report the properties and thickness of layers 4 and 5 under the tailings.

Response:

Please see revised Section 3.5.

GRT Comment 1c. Please clarify where the liner is implemented in the model. Since the liner is implemented as no flow cells, it implies that the liner height corresponds to the thickness (i.e. height) of these cells. Clearly state in which layer the liner on the rockfill dam has been implemented and specify liner thickness.

Response:

Please see revised Section 3.6.3.

GRT Comment 2: Reclaim Pond Hydraulic Parameters

Please specify how the reclaim pond is implemented in the model, in particular its hydraulic parameters and which cells are specified as no-flow cells.

Response:

Please see revised Sections 3.6.2, 3.6.3, and 3.7.

GRT Comment 3: Operations Phase Tailings Recharge

Please note that provided the hydraulic conductivity (K) of the tailings is appropriate, the constant head boundary condition at the tailings surface for the operations phase is accepted as a conservative approach that results in a high recharge rate to the tailings and therefore a high seepage rate.

Response:

Acknowledged.

GRT Comment 4: Seepage Proportioning to Receptors

The proportioning of seepage to the various receptors (section 4.1, bullet 4) is not clearly described and the comparison between pre-TMF and TMF models may not be appropriate. Changes in flow to external receptors (bullet 4a) can only be compared if the cells used to compile the fluxes for pre-TMF and TMF models are the same (since discharge from cells within the TMF boundary in the pre-TMF model are essentially meaningless for comparison to the TMF models). Based on the statement in bullet 4b, it appears that the cells that are included in the "Sawbill Bay drainages" and to the "Lizard Lake drainages" (Table A1) have changed between the pre-TMF (baseline) model and the TMF models. In order to compare pre-TMF and TMF models, the pre-TMF model discharge should use the same cells as the TMF models (i.e. compile discharge for cells outside the eventual TMF and collection ditches).

As a result of the proportioning of seepage to the various receptors, it is difficult to reconcile the summary values presented in Tables 2, 3 and 4 with the values presented in the Appendix A in Table A1. It is not apparent where the values for flow to the collection ditches and to the watersheds "External to the TMF" came from.

Describe how the values in Tables 2 through 4 were determined in a manner that clarifies the issues raised about seepage proportioning.

Response:

Section 4, and in particular sub-Section 4.1, have been revised to provide more clarity on the approach to determining TMF seepage rates and proportioning amongst receptors. We further emphasize the following:

Pre-TMF and TMF model flows to receptors are compared on the basis of zone budgeting external to the TMF. The two model results may be directly compared as they use the same zone budget cells.

- The above notwithstanding, the flow rates tallied in Table 2 through 5 cannot be calculated solely on the basis of zone budget partitioning additional steps, including particle tracking, are required to differentiate seepage-impacted flow versus non-impacted flow (Section 4.1). As such, there is not a straightforward way to link conventional zone budget (i.e. direct source / sink) reporting such as in Appendix A versus the more complex partitioning required to produce Tables 2 through 5.
- The intent of Appendix A was to demonstrate that the modelled numerical error was acceptable and to provide a general understanding of flow distribution through the entire model domain. In other words, Appendix A was a peripheral flow budget provided for reporting completeness. There was not, nor was there intended to be, a direct correspondence between Table 2 through 4 (and now Table 5), which isolate and tallies flow related solely to TMF seepage, versus Appendix A, which tallies the entire flow in the model (irrespective of tailings impact).
- The Appendix A reporting of global pre-TMF model flows alongside TMF model flows was simply for ease of reference and was not meant to engender direct comparison between the two. In fact, there cannot be a direct comparison between the <u>global</u> flow budgets of the two sets of models because the boundary conditions have substantially changed in the area of the TMF. We acknowledge that the inclusion of the pre-TMF flow budgets alongside the TMF flow budgets in Table A1 may have caused confusion and have thus removed the pre-TMF global flow budgets as they are not directly relevant to the current work (note the pre-TMF flow budgets may still be reviewed in Golder, 2017).

GRT Comment 5: Sensitivity Analysis

The sensitivity analysis considered the effect of 10-fold increases in K in coarse- and fine-grained material. These increases resulted in an approximately 3-fold increase in overall recharge and seepage rates and also to seepage flow bypassing the collector system to external receptors. One variable not considered was the K of the tailings. Although increasing the K of the tailings would most certainly increase the recharge rate (due to the constant head boundary condition), it is not clear what would be the effect on the seepage flow bypassing the collector system.

GRT Comment 5a. Explain the effect increasing the K of the tailings would have on the seepage flow bypassing the collection system, as well as the potential environmental effect on the water quality of the receiving waterbodies.

Response:

An additional sensitivity analysis scenario that examines a ten-fold increase in tailings hydraulic conductivity (Sensitivity Scenario 2) has been conducted as part of this updated memorandum (Section 5.2). This sensitivity scenario was imposed upon the base case model rather than combining it with Sensitivity Scenario 1 because the combined increases in both tailings and native material hydraulic conductivities together with the constant head boundary assumption would result in a tailings pseudo-recharge far in excess of what actual inflows to the TMF would be during Operations if precipitation and tailings discharge were added together. The predicted seepage bypass rates are provided in Table 5 and are less than the predicted seepage bypass rates for Sensitivity Scenario 1 (Table 4). It follows that the potential impacts to water quality would be less when compared to Sensitivity Scenario 1. Regardless, Sensitivity Scenario 2 water quality predictions are provided in Tables 9 and 12, respectively, for Upper Marmion reservoir and Lizard Lake. No exceedances of PWQO or SWWQO are predicted.

GRT Comment 5b. Describe the contingency measures that would be applied to address the change in seepage bypass flow and any potential environmental effect on the receiving waterbodies.

Response:

As Sensitivity Scenario 2 did not result in seepage bypass rates beyond what had already been predicted for Sensitivity Scenario 1 and presented in the previous version of this memorandum, the mitigation and contingency measures identified in Section 6.5 remain valid and are considered appropriate.

GRT Comment 6: Mitigation and Contingency Measures

GRT Comment 6a. Section 6.2 of the report states no exceedances of the Provincial Water Quality Objectives or Site Specific Water Quality Objectives are predicted. However, there is no indication that Site Specific Water Quality Objectives are applicable to this project.

Response:

Site Specific Water Quality Objectives (SSWQO) of 0.0079 mg/L for copper and 0.01 mg/L for cyanide are identified in Section 5.2.1.1.2 of the Human Health and Ecological Risk Assessment TSD (HHERA) (Golder 2013⁹). The HHERA explains the appropriateness and technical rationale for the application of these SSWQO to the surface waters in the Project area. These SSWQO are protective of aquatic life in the receiving waters downstream of the TMF.

GRT Comment 6b. The report indicates that the predicted concentration of copper in Long Hike Lake would exceed both the Canadian Water Quality Guideline for the Protection of Aquatic Life and the Provincial Water Quality Objective, yet no mitigation has been identified for segments of the northern perimeter of the TMF (i.e., area south of Long Hike Lake), as well as a segment of the perimeter immediately west of the reclaim pond. (Please see the figure on page 4 of this attachment.) Appropriate mitigation and contingency measures are expected, along with commitments to implement them. Further the report lists potential options as contingency measures for evaluation, if such measures are deemed necessary. It is unclear whether the mitigation, contingency and monitoring measures could be implemented based on the suitable geographic area available between the tailings management facility and the receiving waterbodies.

Describe appropriate mitigation and contingency measures for the segments shown in the attached figure (appearing as Sections A, B and C); otherwise, provide justification for not identifying measures. Include commitments to implement the appropriate mitigation and contingency measures around the perimeter of the tailings management facility in the Commitments Registry.

Response:

CMC has committed to implementing mitigation in the form seepage collection ditches. CMC will further commit to ensuring water quality guidelines/objectives (i.e., PWQO, CCME or SSWQO, where applicable) are not exceeded in Upper Marmion Reservoir, Lizard Lake and Long Hike Lake as a result of the Project. These commitments will be included in the Commitments Registry. The modelling presenting in this memorandum has demonstrated that seepage collection and compliance with the appropriate water quality guidelines/objectives can be achieved. Therefore, the mitigation measure presented in this memorandum (i.e., seepage collection ditches) are appropriate and sufficient. Further data collection and additional modelling analysis will be required to support

the detailed design of the TMF and the associated mitigation measures. During the detailed design process the TMF will be designed such that the receiving waters are protected and that commitments with respect to water quality are met.

The predicted upper bound copper concentration in Long Hike Lake is below the SSWQO of 0.079 mg/L for copper. This SSWQO has been determined through the HHERA to be protective of aquatic life in the surface waters in the Project area. Therefore, additional mitigation measures are not considered to be necessary at this time. As noted in Section 6.5, CMC will commit to confirmatory investigations to confirm the results presented in this evaluation with respect to seepage flow to Long Hike Lake. If required based on the results of this subsequent confirmatory analysis, CMC will collect the appropriate data to characterize baseline conditions in Long Hike Lake, including water quality, sediment quality, and hydrology data, and Long Hike Lake will be included in the EEM program for the Project. The applicability of the SSWQOs will also be confirmed for Long Hike Lake based on the baseline data characterization.

Contingency measures, by definition, are measures to be implemented in the event of unforeseen circumstances. Contingency measures would be considered necessary if, based on monitoring results, it is found that seepage bypass rates and/or reclaim pond water quality are beyond what was anticipated following detailed design and the potential exists for concentrations in Upper Marmion Reservoir, Lizard Lake or Long Hike Lake to exceed the above referenced water quality guidelines/objectives. It would not be appropriate for CMC to commit to specific contingency measures as part of the EIS/EA without fully understanding the final design of the facility, the mechanisms/processes that are causing in the potential water quality exceedances and the specific parameters of concern (e.g., copper, cyanide, etc.). Regardless, for sake of demonstration and to fulfill the request of the GRT, descriptions of feasible mitigation and contingency measures are provided below, with reference to Section A, B and C as shown in page 4 of the attachment to CEAA June 2017.

Section A

Extend the seepage collection ditch flowing west towards Sawbill Bay to approximately the toe of the TMF Reclaim Pond dam (see Figure 1). The depth of the ditch can be increased if necessary to increase capture efficiency.

Section C

Extend the seepage collection ditch flowing eastward within valley between bedrock outcrops to the Lizard Lake-Long Hike Lake sub-watershed divide. The depth of the ditch can be increased if necessary to increase capture efficiency.

All Sections (A, B, C)

- Identify and grout zones of higher permeability (e.g., coarser grained soils or fractured rock) between the TMF and the downstream receiving environment to reduce transmissivity of the subsurface.
- Install active pumping wells into overburden areas to intercept seepage flows and reduce seepage discharge to the downstream receiving environment.
- Modify mill processes, implement additional water treatment measures or modify existing water treatment measures (e.g., cyanide destruction) to improve TMF water quality.

Potential mitigation and contingency measures would be similar in terms of performance objectives (e.g., to either reduce seepage rates or improve seepage water quality) but differ in when they would be implemented. For clarity, mitigation measures would be incorporated into the design of the TMF (i.e. proactive measures). As the current predicted water quality in the receiving waters is protective of aquatic life, the presently planned mitigation in the form of seepage collection ditches is considered adequate. Further mitigation would only be required if through further engineering design and associated investigations, it becomes apparent that water quality may be adversely affected. Contingency measures would be implemented after construction if unforeseen circumstances arise and through monitoring it is determined that water quality in the receivers may be adversely impacted (i.e., reactive measures).

GRT Comment 7: Effects on Long Hike Lake

Prior to this report, the environmental impact statement documentation indicated that the water quality of Long Hike Lake would not be affected by the Hammond Reef Gold Project. As a result, Indigenous groups were advised as such (see Appendix 7.V of the EIS documentation). Given the report now predicts for Long Hike Lake copper concentrations that exceed both the Canadian Water Quality Guideline for the Protection of Aquatic Life and the Provincial Water Quality Objective, as well as elevated sulphate levels, effects on the use and access to the lake by Indigenous groups (which in part could relate to the physical presence of mitigation, contingency and monitoring measures in the area) are unclear.

For each Indigenous group, describe how the effects on the water quality of Long Hike Lake, including the implementation of any proposed mitigation, contingency and monitoring measures would affect the traditional use of and access to the lake. Please specify the traditional use(s), including timing and duration, as appropriate. Describe the mitigation measures to address the effects to access and on traditional use. Include the mitigation measures in the Commitments Registry, along with a commitment to seek and incorporate input from the Indigenous groups.

Response

With respect to predicted copper concentrations, please refer to the response to Comment 6 above. The predicted upper bound copper concentration in Long Hike Lake is below the SSWQO for copper that protective of aquatic life in the surface waters around the Project area and mitigation is not necessary at this time.

With respect to predicted sulphate concentrations, please refer to the technical memorandum *Response to Comment related to Sulphate Influence on Methylmercury Generation and Wild Rice Harvesting - Hammond Reef Gold Project* (Golder 2017). Wild rice harvesting is not known to occur in Long Hike Lake.

Direct access to Long Hike Lake is provided by the Premier Lake Road. Should the need for mitigation or contingency measures arise resulting from CMC's commitment to maintain water quality below PWQO and CCME guidelines or SSWQO where applicable, the measures will be designed and implemented such that access is not effected. Use of Long Hike Lake for fishing is primarily used by commercially guided trips for non-Aboriginal fishermen. Aboriginal communities are not known to frequent Long Hike Lake for fishing as there are productive lakes that are much easier to access (i.e., Upper Marmion Reservoir and Lizard Lake) (Pers. Comm., Bud Dickson, Aug. 2, 2017). At this time, no mitigation for Project related effects to Aboriginal access or use of Long Hike Lake are necessary.

GRT Comment 8: Monitoring

Section 6.5 of the report indicates monitoring wells would be installed between the seepage collection systems and downgradient receptors. Demonstrate that this concept could work appropriately, given the available land between the TMF and the receiving waterbodies. Describe any limitations to the installation and implementation of the proposed monitoring program, and explain how the limitations would be addressed.

It is implied that the water quality monitoring would include all parameters listed in Tables 5 through 10. However, the report does not specify. Add as commitments to the Commitments Registry, the inclusion of all parameters listed in Tables 5 through 10 in both the groundwater and surface water quality monitoring programs.

Response

The TMF seepage monitoring program will be selected based on more advanced groundwater modelling that includes additional subsurface investigation data to be collected in support of the detailed design of the TMF and on information obtained during construction. Monitoring wells will be located in areas where seepage flows are expected to be high (e.g., coarse grained overburden units). Shallow and deep wells will be installed where overburden units are deep. Water quality in surface creeks and streams around the perimeter of the TMF will be monitored regularly and the volumes and quality of seepage captured in the seepage collection ditches will be monitored.

The minimum offset from the toe of the TMF dams to the downstream receptors (i.e., Sawbill Bay and Lizard Lake) is about 100 m. This minimum offset is sufficient to install a seepage collection ditch and monitoring well(s) on the downstream side of the ditch to assess seepage bypass with.

Limitations would include the difficulty associated with monitoring seepage flow through deep bedrock and the impracticality of monitoring the entire perimeter of the TMF. The monitoring program will be developed such data collected can be used to confirm or refine the predictions of the updated groundwater model to be developed during detailed design. The operational groundwater model will be periodically refined and re-calibrated as necessary throughout the project and will be used to estimate and assess seepage bypass rates in areas where monitoring is either problematic or impractical.

The water quality monitoring program will include all parameters listed in Tables 6 through 13 (formerly Tables 5 through 10) and a commitment to this effect will be included in the Commitments Registry, however as chemical stability is demonstrated for certain parameters, the list of parameter may be refined through discussion and agreement by the appropriate regulatory agencies.

GRT Comment 9: Unclear References within the Report

Within the report, certain references to content from technical supporting documents appear incorrect. For example, the first paragraph on page 12 refers to Appendix 2.II of the Site Water Quality Technical Supporting Document (TSD); however the TSD does not have the appendix. Also, there is a reference to Figure 11 on page 12, as well as a reference to Figure 12 on page 13. These references appear to be typographic errors, where the correct figures are likely Figures 8 and 9, respectively.

Please clarify the referencing and make the appropriate amendments to the report.

Response

References have been corrected throughout this updated memorandum.

8.0 RESPONSES TO INFORMATION REQUEST T(3)-08

Building on the results presented in this memorandum, the following provides a comprehensive address of Information Request T(3)-08.

From Information Request #3 from the Technical Review of the Responses to Information Request #2 for the Hammond Reef Gold Project Environmental Assessment, T3-08 (CEAA, January 29 2016):

1. Drill additional boreholes to obtain borehole and stratigraphic logs to characterize the permeability of the base of the entire TMF. Perform additional single-well response tests and consider performing a pump test to better characterize hydraulic conductivity values and isotropy/anisotropy. Develop a plan for the additional boreholes and stratigraphic logs in discussion with relevant government agencies to ensure adequate characterization of baseline conditions within the proposed TMF footprint.

Response:

Subsequent to GRT providing this comment in January 2016, Golder has supplemented the already substantial historic dataset (Golder, 2013⁷) with the inclusion of detailed surficial geology mapping covering the entirety of the TMF footprint, 64 condemnation boreholes, and 10 additional single-well response tests within the overburden and bedrock units. In areas where data may be considered relatively limited, the conceptual model has employed conservative assumptions for unit thicknesses, hydraulic conductivity and anisotropy that will tend to promote tailings seepage. Uncertainty in model parameters and their effect on TMF seepage has been tested during model sensitivity analysis and upper bound estimates of seepage release have been assessed for impacts. CMC has worked closely with the GRT during the development of the TMF groundwater model construction and calibration and has received and incorporated review comments and input from the GRT technical reviewers to ensure that GRT expectations are met. As such, Golder feels the adopted approach to characterizing hydrogeologic conditions within the TMF footprint is adequate for this EA stage of the project and additional drilling and hydraulic testing are not necessary to support a decision with respect to potential environmental impacts.

2. If the results indicate that the base of the TMF is permeable (as compared to thick sequences of laterally continuous clay), provide responses to and action on questions 3-7.

Response:

We acknowledge that materials at the base of the TMF may include permeable units and these have been considered in the conceptual model where supported by the geological data (refer to Section 2 and Section 3 of the Conceptual Model Development memorandum [Golder 2016]).

3. Drill additional monitoring wells to obtain sufficient information to determine the groundwater flow paths and the fate of chemical constituents in the TMF seepage water. Develop a plan for the additional monitoring wells in

discussion with relevant government departments to ensure baseline information is gathered in regions where units with higher hydraulic conductivities are found within the proposed TMF footprint.

Response:

Please refer to the response to comment #1 above.

4. Using the data from the additional monitoring wells, model the entire TMF using the 3D numerical groundwater model.

Response:

The entire TMF and regional surrounds have been included in the 3D numerical groundwater model (refer to Section 3 and Section 4 of the Conceptual Model Development memorandum [Golder 2016]).

5. Re-run the 3D model based on the following:

a) Perform a more robust calibration using additional monitoring well data;

b) Presenting a detailed conceptual model using visual depictions to describe the baseline hydrogeological conditions;

c) Model all project phases including baseline, operations phase, closure (decommissioning), and postclosure (abandonment);

d) As described in 2., include information from the additional boreholes and stratigraphic logs for the entire TMF to determine if the overburden is isotropic or anisotropic, based on the absence or presence of laterally continuous horizontally bedded sedimentary deposits, and to determine if the assumption Khorizontal:Kvertical = 1:0.1 is valid. If it is not, update the model assumption for isotropy/anisotropy. The installation of additional monitoring wells and hydraulic testing will also help better define the Khorizontal:Kvertical relationship; and

e) Provide a sensitivity analysis for the model that considers possible extremes in such parameters as recharge and hydraulic conductivity.

Response:

- a) The numerical model has been calibrated to monitoring well data to form the "baseline" or "pre-TMF" condition, as documented in Golder 2017. The model calibration process included review of the calibration results by the GRT and revision of the model in response to comments and recommendations received. Subsequent to the final revision to the calibration of the baseline model, CMC received recommendation form the GRT to proceed to the predictive simulation stage of the modelling process, implying that they were adequately satisfied with the model calibration.
- b) The detailed conceptual model (Golder 2016), model calibration (Golder 2017) and predictive simulation memoranda have presented the model and relevant results using visual depictions.
- c) All project phases, including baseline, TMF operation, closure and post-closure, have been simulated. The baseline model results are provided in Golder 2017. TMF operation, closure and post-closure results have been provided in this memorandum.

- d) Please refer to the response to comment #1 above regarding collection of additional data. Overburden anisotropy has been selected through model calibration and evaluated through sensitivity analysis (Golder 2017)
- e) Sensitivity analyses has been conducted for both calibration and predictive simulations. During calibration (Golder 2017), 10 additional sensitivity scenarios were evaluated and consider possible extremes in recharge, anisotropy and hydraulic conductivity. Almost every permutation resulted in a worsening in calibration relative to baseline. Sensitivity Run 11, (Fine-grained material hydraulic conductivity multiplied by 10 and Coarse-grained material hydraulic conductivity multiplied by 10) has been carried through to predictive simulations to evaluate a baseline condition that is more conductive to seepage. Run 11, while providing slightly inferior calibration statistics relative to the baseline, is nonetheless a plausible variant and, importantly, is the scenario tested that is most likely to promote seepage external to the TMF. This two-model approach allows for a reasonable understanding of potential seepage ranges. Furthermore, in response to the recommendation of the GRT, a second sensitivity scenario has been simulated in which the hydraulic conductivity of the tailings is multiplied by 10.
- 6. Provide the methodology, analysis and model results.

Response:

The numerical modelling methodology, analysis and results have been documented and provided in Golder 2016, Golder 2017 and this memorandum.

7. Based on the results from question 1-6 above, provide a detailed description of the mitigation measures proposed to intercept seepage and contingency plans in the event seepage beneath the TMF would be greater than predicted.

Response:

Mitigation measures and contingency plans are described in Section 3.6.3, 3.6.4, Section 6.5 and Section 7.0 of this memorandum.

8. Describe the residual effects on water quality; the significance of those residual effects based on the Agency's methodology for assessing significance (including the criteria of magnitude, geographic extent, duration, frequency, reversibility, ecological/social/cultural context); and the follow-up program, including any monitoring measures, which will be implemented to evaluate the predictions of effects and the effectiveness of the proposed mitigation.

Response:

Section 6 of this memorandum provides an assessment of residual impacts due to seepage bypass and discharge to the downstream environment. No residual effects have been identified for the Operations, Closure or Post-Closure phases. The follow-up program, mitigation measures and contingency plans are described in Section 6.5 and Section 7.0 and are considered to be sufficient and adequate for the EA stage of the Project.

9.0 CLOSURE

We thank CMC for retaining Golder on this project and look forward to the GRT's review of this current work. If you have any questions, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

<Original signed by>

Adam Auckland, M.Sc., P.Eng. Water Resources Engineer, Project Manager Devin Hannan, P.Eng. Associate, Environmental Engineer

MEMORANDUM

10.0 REFERENCES

Batu, V., 1998. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis, John Wiley & Sons, New York, 727p.

Canadian Environmental Assessment Agency, 2017. Federal Comments on the June 16, 2017 Technical Memorandum (Hammond Reef Gold Project: Groundwater Modeling of Tailings Management Facility and Seepage Impact Assessment) to address Information Request T(3)-08. July 21, 2017.

Canadian Environmental Assessment Agency, 2016. Federal Comments on the October 6, 2016 Updated Memorandum on the Tailings Management Facility Hydrogeological Fieldwork and Conceptual Model Development for the Federal Environmental Assessment of the Hammond Reef Gold Project. Submitted to Canadian Malartic Corporation. November 22, 2016.

Fetter, C.W., 2001. Applied Hydrogeology, 4th Edition. Prentice Hall, Upper Saddle River, New Jersey.

Freeze, R.A. and J.A. Cherry, 1979. Groundwater, Prentice Hall, Englewood Cliffs, New Jersey, 604p.

Golder, 2017. Hammond Reef Gold Project: Baseline Groundwater Model Construction and Calibration – Revised Memorandum. Document No. 007 (Rev 1). Project No. 1656263. Submitted to Canadian Malartic Corporation. March 30, 2017.

Golder, 2016. Hammond Reef Gold Project: Tailings Management Facility Hydrogeological Field Work and Conceptual Model Development. Submitted to Canadian Malartic Corporation. October 6, 2016.

Golder, 2014. Osisko Hammond Reef Gold Project – Tailings Management Facility, 3D Groundwater Modelling. 13-1118-0010 (5008). Submitted to Osisko Hammond Reef Gold Ltd. May 27, 2014.

Golder, 2013¹. Design Basis for Runoff and Seepage Collection Systems – Hammond Reef Gold Project. Document No. 011 (Rev 0). Project No. 13-1118-0010 (2010). Submitted to Osisko Hammond Reef Gold Ltd. December 3, 2013.

Golder, 2013². Hammond Reef Gold Project, Hydrogeology Technical Support Document, Version 2. Document No. DOC017. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013³. Hammond Reef Gold Project: Hydrology Technical Support Document, Version 2. Document No. DOC018. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁴. Hammond Reef Gold Project: Aquatic Environment Technical Support Document, Version 2. Document No. DOC013. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁵. Hammond Reef Gold Project: Lake Water Quality Technical Support Document, Version 2. Document No. DOC021. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁶. Hammond Reef Gold Project: Water and Sediment Quality Technical Support Document, Version 2. Document No. DOC019. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁷. Hammond Reef Gold Project: Site Water Quality Technical Support Document, Version 2. Document No. DOC021. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁸. Hammond Reef Gold Project: Conceptual Closure and Rehabilitation Plan Technical Support Document, Version 2. Document No. DOC026. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Golder, 2013⁹. Hammond Reef Gold Project: Human Health and Ecological Risk Assessment Technical Support Document, Version 2. Project No. 13-1118-0010. Submitted to Osisko Hammond Reef Gold Ltd. December 2013.

Heath, R.C., 1983. Basic ground-water hydrology, U.S. Geological Survey Water-Supply Paper 2220, 86p

Johnson, D. et al. 2013. Comparative evaluation of surface disposal of thickened versus slurry tailings. Australian Centre for Geomechanics. Event 201x. March 2013.

Johnstone, K., and P.Y.T.Louie, 1983. Water Balance Tabulations for Canadian Climate Stations. Atmospheric Environment Service, DS-#8-83, 16pp.

Morris, D.A. and A.I. Johnson, 1967. Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey. U.S. Geological Survey Water-Supply Paper 1839-D, 42p.

Niswonger, R.G., Panday, Sorab and Ibaraki, Motomu. 2011. MODFLOW-NWT, A Newton formulation for MODFLOW-2005. U.S. Geological Survey Techniques and Methods 6–A37, 44 p.

Pandit, N.S. and R.F. Miner, 1986. Interpretation of Slug Test Data. Ground Water, 24(6), 743.

Pollock, David W. 1989. Documentation of Computer Programs to Compute and Display Pathlines using Results from the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-water Flow Model. USGS Open File Report 89-381.

Rezanezhad, F., et al. 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology. Volume 429, pp 75 – 84. July 1 2016.

Singer, S.N. and C.K. Cheng, 2002. An Assessment of the Groundwater Resources of Northern Ontario, Areas Draining Into Hudson Bay, James Bay, and Upper Ottawa River. Hydrogeology of Ontario Series (Report 2). Environmental Reporting and Monitoring Branch. Ontario Ministry of the Environment. Toronto, Ontario.

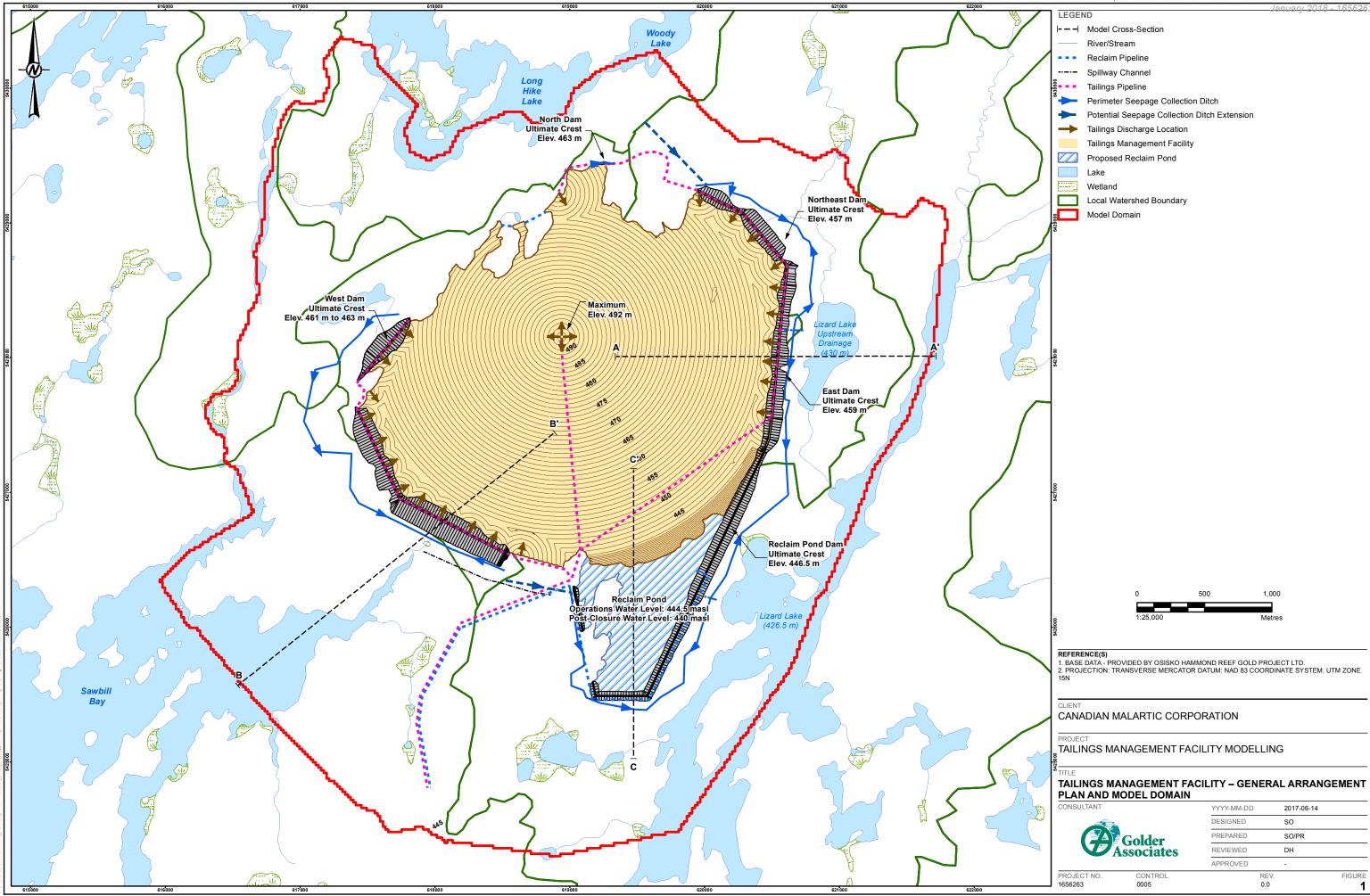
Stea, 2010. Stratigraphy of glaciofluvial deposits and recommendations for recce sampling. Prepared for Brett Resources Inc. June 2010.

MEMORANDUM

Attachments:

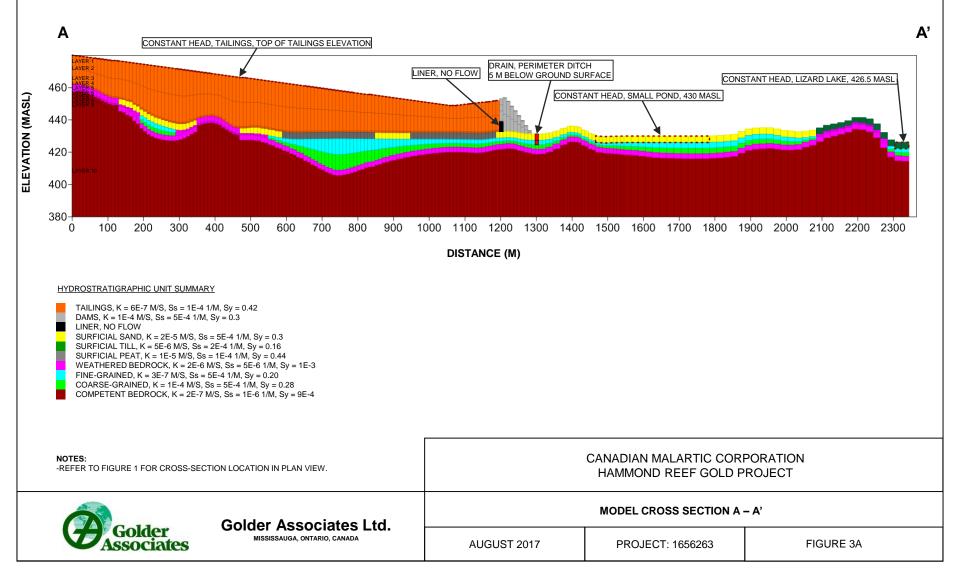
Figure 1: Tailings Management Facility – General Arrangement Plan and Model Domain Figure 2: Runoff / Seepage Collection Ditch Typical Cross-Section Figure 3A: Model Cross Section A-A' Figure 3B: Model Cross Section B-B' Figure 3C: Model Cross Section C-C' Figure 4: Boundary Conditions Figure 5: Operations Phase: Simulated Water Table and Pathlines from the TMF (Base Case) Figure 6: Closure Phase: Simulated Tailings Water Levels Figure 7: Post-closure Phase: Simulated Water Table and Pathlines from the TMF (Base Case) Figure 8: Model Compartments – Upper Marmion Reservoir Figure 9: Model Compartments – Lizard Lake Appendix A: Groundwater Model Flow Budgets

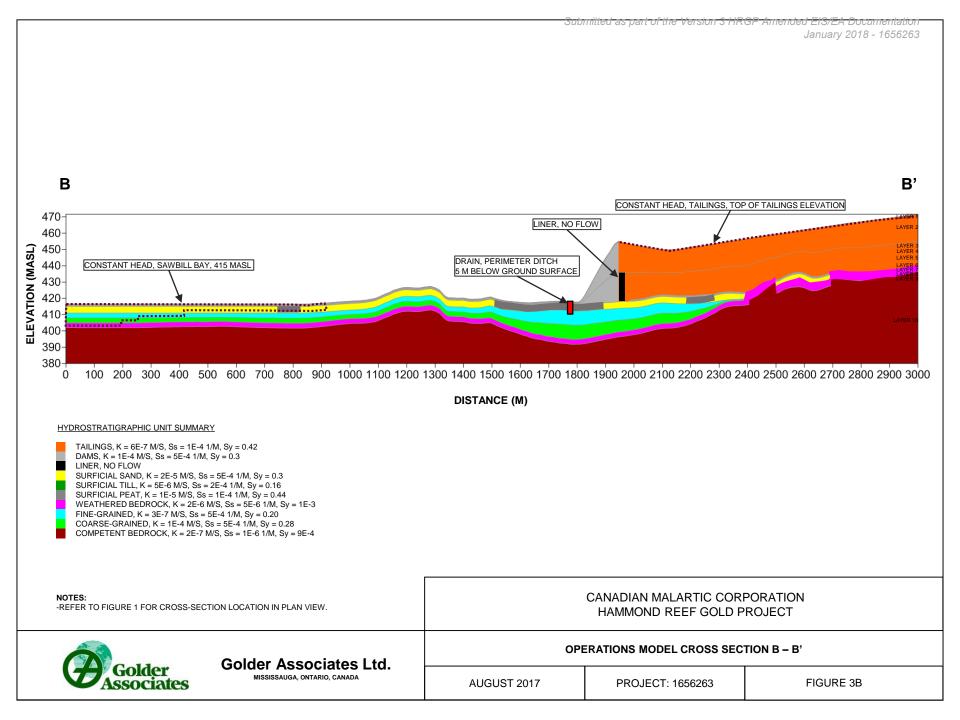
\\golder.gds\GAL\Mississauga\Active\2016\3 Proj\1656263 CMC_EA Support_Hammond Reef\3. Environment\1. TMF Seepage Assessment\DOC010_TMF Seepage Impact Assessment\Rev. 1\1656263_DOC010_Rev 1_CMC Hammond Reef Tailings Predictive Analysis_18Aug2017.docx

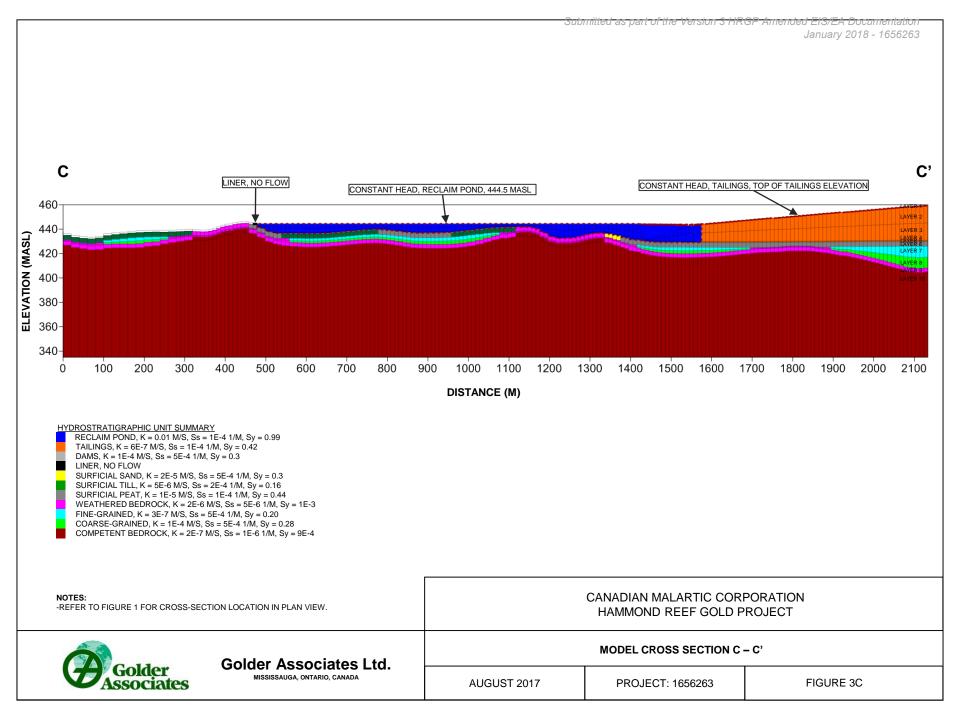


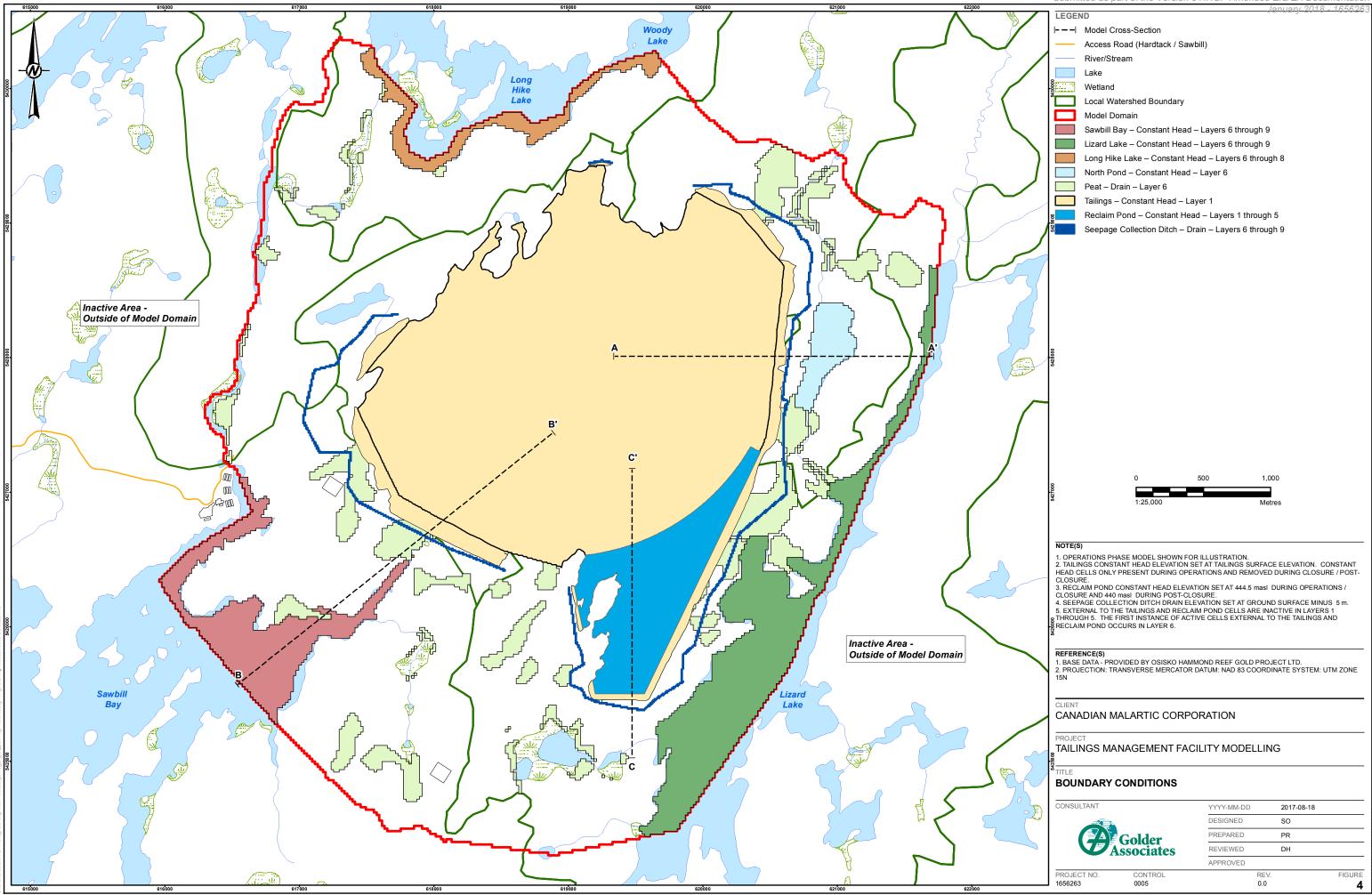
MEMORANDUM

FIGURES

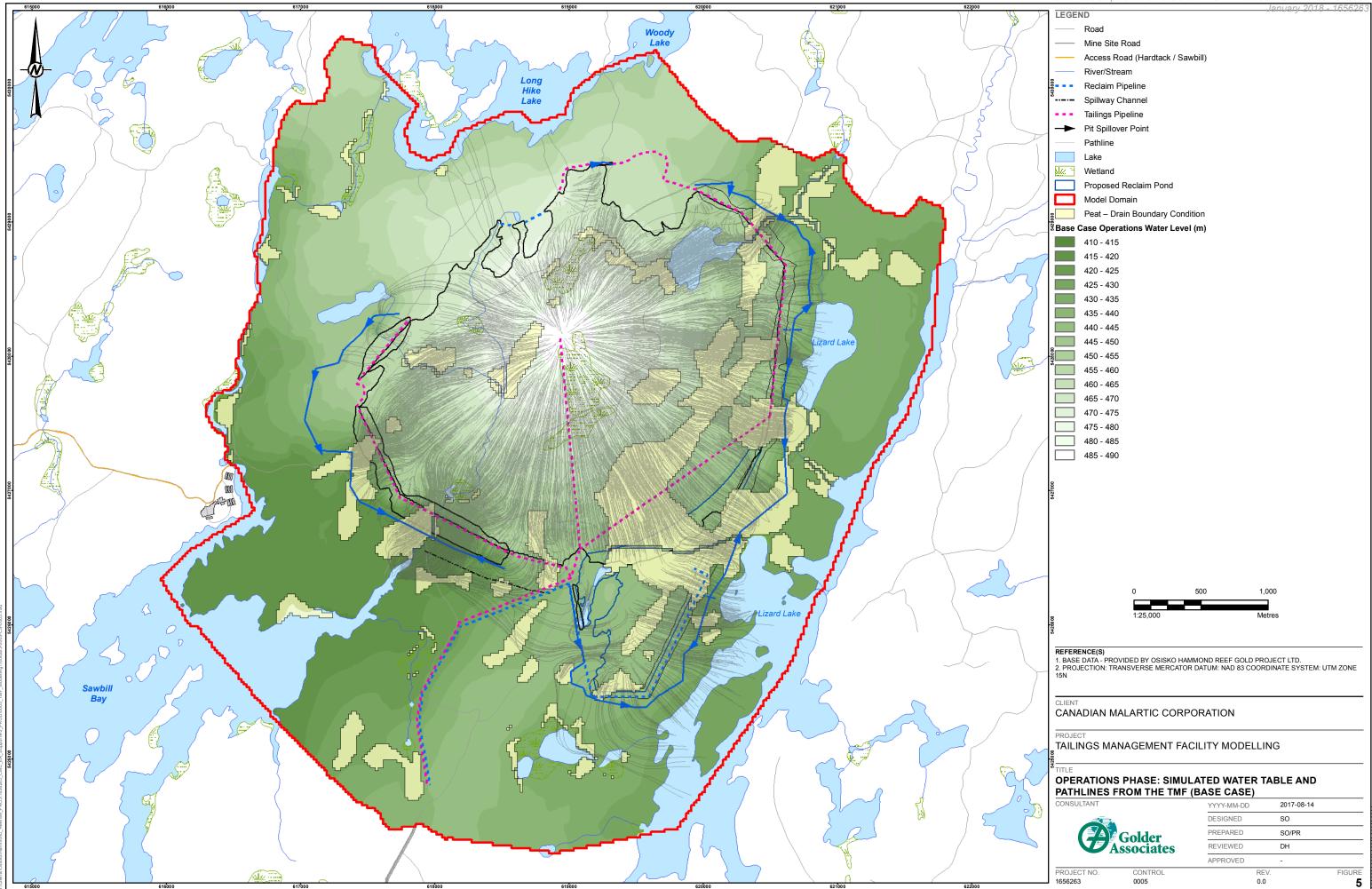


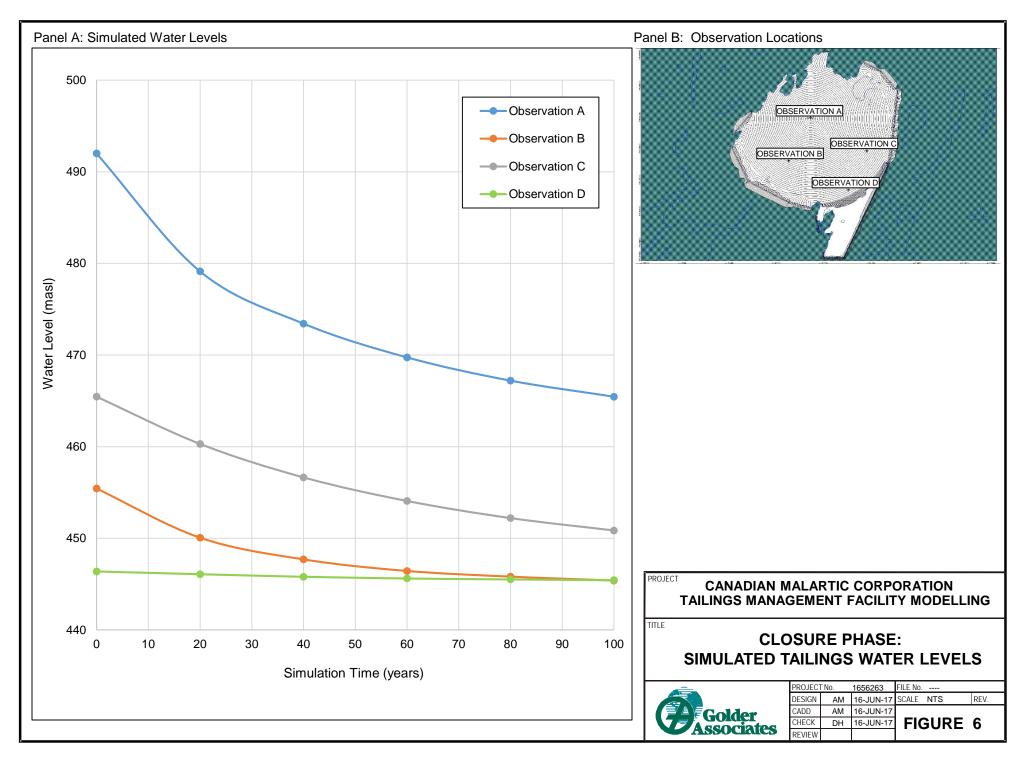


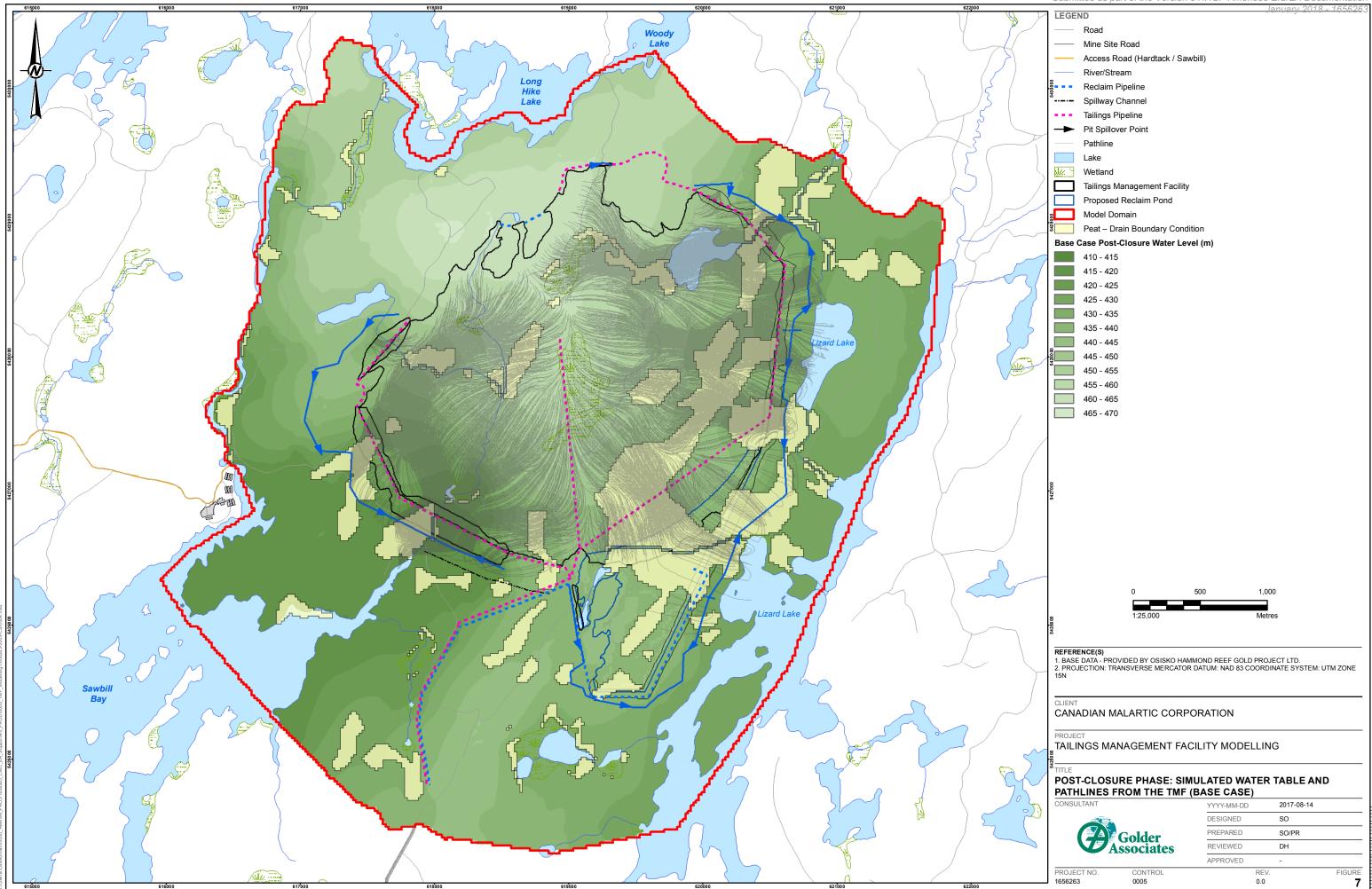

25mm IFTHIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIE


Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation

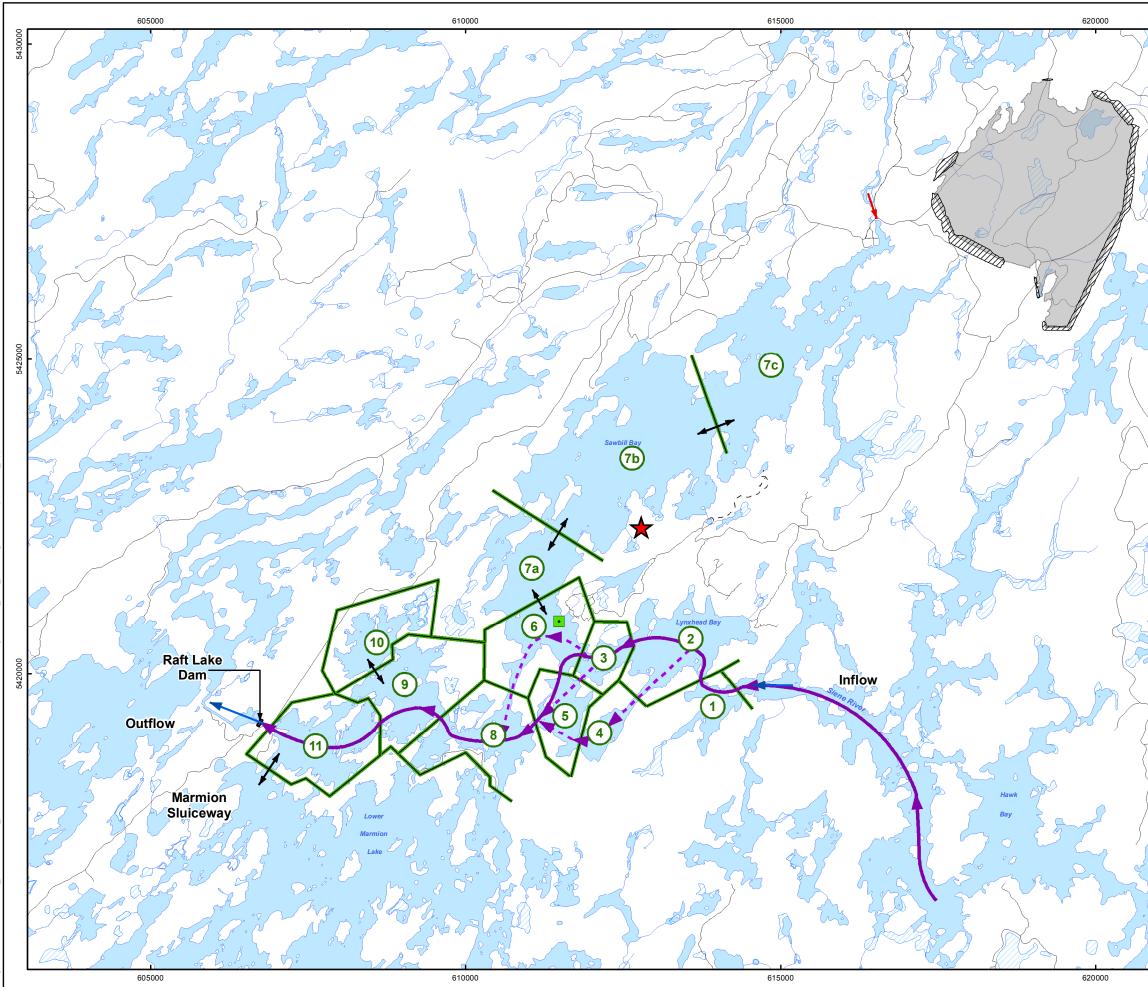
January 2018 - 1656263







25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED I



25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MOD

JETTIC THE SHOWN, THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS I

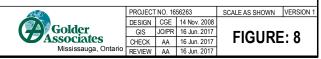
0

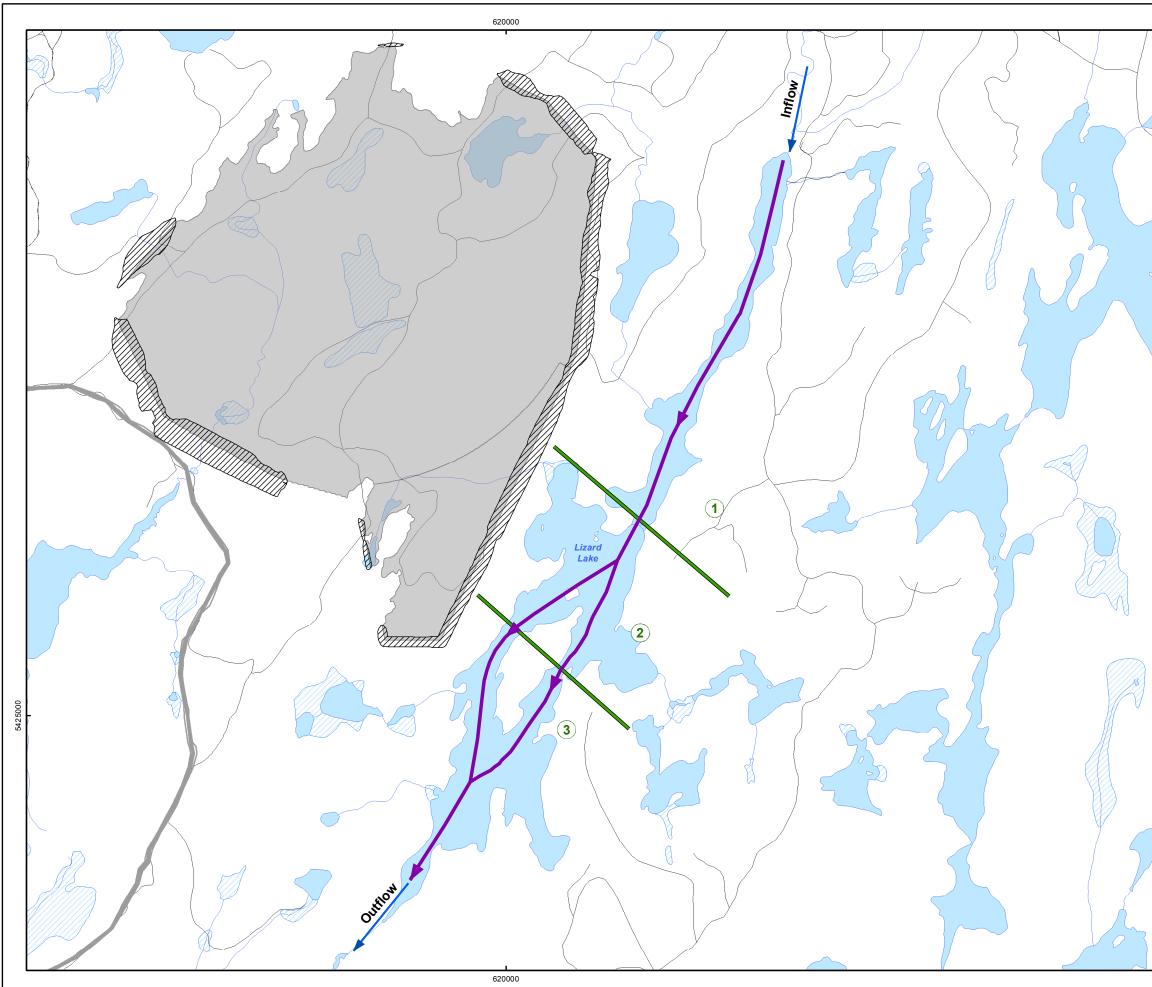
Ν

REFERENCE

Base Data - Provided by OSISKO Hammond Reef Gold Project Ltd. Base Data - MNR NRVIS, obtained 2004 Produced by Golder Associates Ltd under licence from Ontario Ministry of Natural Resources, © Queens Printer 2008

Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 15N




PROJECT

HAMMOND REEF GOLD PROJECT ATIKOKAN, ONTARIO, CANADA

TITLE

MODEL COMPARTMENTS UPPER MARMION RESERVOIR

LEGEN	ID
-	Main River Flow
	Model Compartment Boundary
	Road
	River/Stream
	Lake
	Wetland
	Tailings Management Facility
	Tailings Management Facility Dam

REFERENCE

Base Data - Provided by OSISKO Hammond Reef Gold Project Ltd Base Data - MNR NRVIS, obtained 2004 Produced by Golder Associates Ltd under licence from Ontario Ministry of Natural Resources, © Queens Printer 2008 Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 15N

500	0		500	1,000)
SC	ALE 1:25,000		METR	RES	
PROJECT	MMOND RE	EF G	OLD PR	ROJECT	
A	tikokan, o	NTA	RIO, CA	NADA	
TITLE	NODEL CO LIZA		ARTME _AKE	INTS	
	PROJEC	CT NO. 16	56263	SCALE AS SHOWN	VERSION 1
Golde	toc	JO/PR	14 Nov. 2008 16 Jun. 2017	FIGURE	- q
	uga, Ontario REVIEW	_	16 Jun. 2017 16 Jun. 2017		

MEMORANDUM

APPENDIX A

August 2017

TABLE A1 Groundwater Model Flow Budgets

1656263

			Operations (Base Case) Post-Closure (Base Case)		Operations (Sensitivity Scenario 1)			Operations (Sensitivity Scenario 2)						
	Feature	Boundary Type	In (m³/d)	Out (m ³ /d)	Net (m ³ /d)	In (m³/d)	Out (m ³ /d)	Net (m ³ /d)	In (m³/d)	Out (m ³ /d)	Net (m ³ /d)	In (m ³ /d)	Out (m ³ /d)	Net (m ³ /d)
Internal to TMF	Tailings	Constant Head	12,778	2,669	10,109	0	0	0	32,481	1,943	30,538	32,549	12,222	20,327
	Tailings	Recharge	-	-	-	1,450	0	1,450	0	0	0	0	0	0
	Reclaim Pond	Constant Head	10,893	601	10,292	7,418	173	7,245	32,626	1,617	31,009	10,982	653	10,329
	Dams	Recharge	272	0	272	272	0	272	272	0	272	272	0	272
	Collection Ditches	Drain	0	19,978	-19,978	0	9,650	-9,650	0	58,450	-58,450	0	28,590	-28,590
External to TMF	Recharge External to TMF	Recharge	3,345	0	3,345	3,351	0	3,351	3,345	0	3,345	3,345	0	3,345
	Sawbill Bay	Constant Head	9	790	-781	9	654	-645	15	1,660	-1,645	9	879	-871
	Sawbill Bay Drainages	Drain	0	1,500	-1,500	0	701	-701	0	2,794	-2,794	0	2,534	-2,534
	Lizard Lake/Small Pond	Constant Head	51	593	-542	48	533	-485	371	1,372	-1,001	35	652	-617
	Lizard Lake Drainages	Drain	0	564	-564	0	256	-256	0	587	-587	0	1,007	-1,007
	Long Hike Lake	Constant Head	184	301	-117	183	246	-63	1,305	269	1,036	184	302	-118
	Long Hike Lake Drainages	Drain	0	536	-536	0	530	-530	0	1,722	-1,722	0	536	-536
		Total:	27,532	27,532	0	12,731	12,743	-12	70,415	70,414	1	47,375	47,376	-1
	Global Flow Budget Discrepancy (%):			-0.002			-0.093			0.001			-0.002	

Note:

1. "Drainages" include upstream feeder creeks, ponds, wetlands and peat areas.

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART H

CEAA and MOECC Comments on Groundwater Modelling of TMF and Seepage Impact Assessment

Canadian Environmental Assessment Agency

Ontario Regional Office 55 St. Clair Avenue East, Room 907 Toronto, ON M4T 1M2

November 8, 2017

d'évaluation environnementale Bureau régional de l'Ontario 55, avenue St-Clair est, bureau 907

Toronto (Ontario) M4T 1M2

Agence canadienne

ELECTRONIC MAIL

Ms. Sandra Pouliot, ing. Environment Project Leader Canadian Malartic Corporation 100, chemin du Lac Mourier Malartic, QC JOY 120

SUBJECT: Federal Comments on the August 18, 2017 Technical Memorandum to address Information Request T(3)-08 of the Federal Environmental Assessment

Dear Ms. Pouliot:

The Federal Review Team (FRT) has reviewed the August 18, 2017 technical memorandum entitled "Groundwater Modelling of Tailings Management Facility and Seepage Impact Assessment" (the Stage Two Report). The review findings are summarized in the attachment to this letter.

The FRT agrees to close Information Request T(3)-08, provided the Commitments Registry indicates that Canadian Malartic Corporation would:

- Implement the proposed mitigation and contingency measures described in the Stage Two Report to ensure compliance with federal guidelines or provincial objectives to protect aquatic life, as applicable;
- Collect baseline data on Long Hike Lake (water and sediment quality, fish and fish habitat, and hydrology data) for inclusion in a comprehensive, aquatic effects monitoring plan that includes all receiving waterbodies (Upper Marmion Reservoir, Lizard Lake and Long Hike Lake); and
- Submit the comprehensive aquatic effects monitoring plan reports in accordance with the requirements of the federal environmental assessment follow up and monitoring program.

Please contact me at (647) 262-8051 or <u>HammondReef@ceaa-acee.gc.ca</u> if you have questions about this letter or the attached review findings.

< Sincerely
</pre>Original signed by>

/ Lōraine Cox (

Project Manager

Attachment: Results from the Federal Review of the August 18, 2017 Technical Memorandum (two pages)

cc. Sheryl Lusk, Environment and Climate Change Canada
 Angelique Magee, Natural Resources Canada
 Sasha McLeod, Ministry of the Environment and Climate Change

Attachment: Results from the Federal Review of the August 18, 2017 Technical Memorandum

Comments 1 to 5 (Groundwater Modeling Report)

[Linked to IR T(3)-08, Parts 1 through 6]

The Federal Review Team (FRT) notes that the Stage Two Report, which includes the August 18, 2017 technical memorandum, documents the groundwater modeling and provides the requested clarifications.

Conclusion: The FRT is satisfied with the groundwater modeling as documented in the Stage Two Report.

<u>Comments 6a and 6b (Surface Water Quality Mitigation and Contingency Measures)</u> [Linked to IR T(3)-08, Parts 7 and 8]

The modeling results indicate that copper concentrations could exceed both the federal guideline and the provincial objective to protect aquatic life. However, the FRT notes that Canadian Malartic Corporation (CMC) has committed to implement mitigation (i.e., seepage collection ditches). CMC has also committed to ensure water quality in Upper Marmion Reservoir, Lizard Lake and Long Hike Lake would comply with federal guidelines or provincial objectives, where applicable, through implementation of contingency measures (e.g., deepening and extending collection ditches, using active pumping wells, and modifying mill processes and water treatment measures), as necessary.

Conclusion: Based on the groundwater modeling results, the FRT is satisfied that the proposed mitigation and contingency measures are appropriate. The FRT expects CMC to include a commitment to implementing these mitigation and contingency measures as appropriate in the Commitments Registry.

Comment 7 (Effects on Long Hike Lake)

[Linked to IR T(3)-08, Part 8]

The FRT notes that CMC would monitor water quality in Long Hike Lake and take corrective action to ensure compliance with federal or provincial water quality requirements, as applicable. Further, CMC indicated that implementation of mitigation and contingency measures would not affect access to Long Hike Lake for use by Indigenous peoples or the public.

Conclusion: The FRT expects CMC to include commitments within the Commitments Registry to collect baseline data (water and sediment quality, fish and fish habitat, as well as hydrology data) for Long Hike Lake and monitor water quality within all potential receiving waterbodies (i.e., Upper Marmion Reservoir, Lizard Lake, and Long Hike Lake) as part of a comprehensive, aquatic effects monitoring plan to ensure the water quality within the waterbodies remain protective of aquatic life. A commitment to submit aquatic effects monitoring plan reports in accordance with the requirements of the federal environmental assessment follow up monitoring program is also required.

Comment 8 (Monitoring)

[Linked to IR T(3)-08, Part 8]

As requested, CMC committed to include all parameters listed in Tables 6 through 13 in the water quality monitoring program, and indicated the commitment would be added to the Commitments Registry.

Conclusion: The FRT is satisfied with this response to Comment 8.

Comment 9 (Unclear References within the Report)

[Linked to IR T(3)-08, Part 6]

As requested, CMC made the corrections to the references for the updated, August 18, 2017 technical memorandum.

Conclusion: The FRT is satisfied with this response to Comment 9.

Ministry of the Environment and Climate Change

199 Larch Street Suite 1201 Sudbury ON P3E 5P9 Tel.: (705) 564-3060 Fax: (705) 564-4180 Ministère de l'Environnement et de l'Action en matière de changement climatique

199, rue Larch Bureau 1201 Sudbury ON P3E 5P9 Tél. : (705) 564-3060 Téléc.: (705) 564-4180

October 20, 2017

MEMORANDUM

- TO: Sasha McLeod Special Project Officer Environmental Approvals Branch
- FROM: Debra Abbott Hydrogeologist Technical Support, Northern Region
- RE: Hammond Reef Gold Project, Groundwater Modelling of TMF and Seepage Impact Assessment, Atikokan, Ontario

As requested, I have reviewed the report *Hammond Reef Gold Project: Groundwater Modelling of Tailings Management Facility and Seepage Impact Assessment,* dated August 18, 2017, prepared by Golder Associates. I understand that this report was produced in response to comments from federal reviewers regarding the seepage potential from the proposed tailings management facility (TMF). The previous MOECC reviewer had identified shortcomings with the previous model, but had accepted that these could be addressed in future permitting.

The current model builds on the previous model that was developed for baseline conditions at the site, adding the TMF; thus, addressing the question of quantity and fate of the seepage from the TMF expected during operations and closure. This review focussed only on the TMF modelling and no review of the baseline model was undertaken.

The updated modelling indicates that the majority of the seepage from the TMF will be captured by the planned seepage collection ditches. The seepage that escapes is shown to report to Lizard Lake, Marmion Reservoir and Long Hike Lake. Seepage capture of 94% is modelled, which is integral to the impact assessment to the three lakes. This capture rate is very high and the final design of the collection trenches will need to meet this capture efficiency to mitigate adverse effects to the three receiving lakes. Monitoring and contingency measures are discussed and are acceptable at this stage.

I am satisfied with the updated groundwater modelling report. Additional field investigations and design work will be required to support future permitting. Modifications to the seepage collection system may be required should geological conditions be found to be different than modelled. I concur with the previous MOECC hydrogeological reviewer that the seepage and loading rates reported in the EA should be considered as commitments that could be

recognized as limits in the future ECA. Monitoring of the groundwater between the seepage collection system and the lakes, as described in this memorandum, will be required by the ECA to demonstrate seepage capture and determine the quality and estimate the quantity of the seepage that bypasses the collection system. Failure of the collection system to meet required performance will necessitate contingency measures to be implemented.

If you require further information or clarification, or if you wish to discuss any of these comments, please do not hesitate to contact me.

<Original signed by>

D.E. Abbott, M.Sc., P.Geo.

CC GW RR no township 05 05 Hammond Reef Gold EA (U\ABBOTTDE\Debra\REVIEWS\Mines|Hammond Reef EA TMF modelling.doc)

Ministry of the Environment and Climate Change

435 James Street South Suite 331 Thunder Bay ON P7E 6S7 Tel.: (807) 475-1794 Fax: (807) 475-1754

Ministère de l'Environnement et de l'Action en matière de changement climatique

435, rue James sud Bureau 331 Thunder Bay ON P7E 6S7 Tél. : (807) 475-1794 Téléc.: (807) 475-1754

October 20, 2017

MEMORANDUM

- TO: Sasha McLeod Special Project Officer Environmental Approvals Branch
- FROM: Amy Godwin Surface Water Specialist Technical Support, Northern Region
- RE: Hammond Reef Gold Project: Updated TMF Groundwater Modelling and Seepage Assessment, Atikokan, Ontario

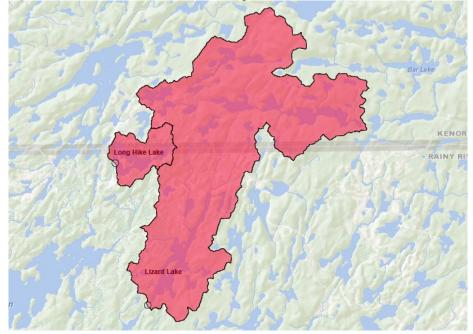
INTRODUCTION

As requested, I have reviewed the surface water related sections of the memo prepared by Golder Associates entitled *Hammond Reef Gold Project: Groundwater modelling of tailings management facility and seepage impact assessment*, dated August 18, 2017.

The purpose of my review was to assess the potential affects to surface water features in consideration of the new seepage and groundwater modelling results presented in the memo. The adequacy of the models used and the confidence in the model results is beyond the scope of my review.

DISCUSSION

The report indicates that water quality in Marmion Reservoir and Lizard Lake was evaluated using the lake-wide mixing models (i.e. boxmodel) which were developed and presented in the Lake Water Quality TSD. Baseline values used as model inputs were calculated using the <u>average</u> of the baseline data Operational period TMF seepage model input values and mine effluent discharge input values were based on steady-state (<u>average</u>) water quality predictions. MOECC guidance recommends that 75th percentile values be used for water quality modelling, rather than average values since average values may underestimate potential impacts. The use of 75th percentile water quality values provides a more conservative approach to predicting effects.


Baseline water quality data was not available for Long Hike Lake. To assess potential mixed concentrations in Long Hike Lake, a hydrologic assessment was completed to estimate the mean annual natural outflow from the lake, though no details were provided. Baseline water quality in Lizard Lake was assumed to be representative of water quality in Long Hike Lake. The proponent suggests that this assumption was considered reasonable because both Lizard Lake and Long Hike Lake are naturally occurring lakes, are of similar size and are located within the same geologic setting. This cannot be confirmed without collecting baseline data for Long Hike

Lake. To further confound these assumptions, the two lakes have quite different watershed characteristics, as shown in table 1 and figure 1 below.

Table 1: Watershed characteristics for Long Hike Lake and Lizard Lake determined with the Ontario Flow Assessment Tool.

Watershed Characteristic	Long Hike Lake	Lizard Lake
Drainage Area (km ²)	5.034	61.364
Shape Factor ()	7.632	11.258
Length of Main Channel (km)	6.198	26.286
Area Lakes/Wetlands (km ²)	1.247	8.597
Area - Lakes (km ²)	1.21	7.851
Area - Wetlands (km ²)	0.037	0.746

Figure 1: A comparison of the watershed sizes of Long Hike Lake and Lizard Lake.

The report indicates that water quality in the downstream receivers was assessed by mixing the seepage predicted to bypass the collection system (i.e., the remaining 6% or less that flows beneath the collection ditches) with the receiving water bodies. While the regional hydrogeologist can comment on this, this appears to be a very optimistic estimate of seepage collection and losses. Should this not be achievable and seepage losses actually are greater than 6%, then potential loadings to downstream receivers could be greater than predicted.

Additionally, in table 13 or the report, sulphate concentrations in Long Hike Lake are predicted to increase to 15mg/L, assuming seepage losses to the lake of only 6% (and based on Lizard Lake baseline water quality). This concentration is actually within the range of sulphate concentrations shown to increase mercury methylation rates (10-20mg/L) given the right conditions, and is a concern to the ministry.

As well, the copper concentration presented in this table is predicted to exceed the CCME and PWQO values using the current modelling inputs; copper could be even more elevated should seepage losses be underestimated.

The report indicates that the water quality assessment for Long Hike Lake considered only average conditions and assumed full mixing within the lake, due to the limited data available. It is not clear if this adequately predicts potential impacts to the lake. There is a high level of uncertainty due to the various assumptions being made.

The report continues to reference site specific water quality objectives (SSWQO) which have been discussed previously and will not be considered in this situation.

Table 13 of the report does not include the proper coding as described in the notes below the table. The predicted copper concentration in Long Hike Lake exceeds the CCME CWQG and the PWQO value; the value should be bold and underlined in the table to highlight this expected exceedance of federal and provincial guidelines.

RECOMMENDATIONS

It is recommended that the baseline condition of Long Hike Lake be characterized in terms of water quality, sediment quality, fish, and benthic community prior to any development at the site. Water quality data that is representative of the lake should be used as inputs for water quality modelling to determine potential impacts to the lake due to seepage effects. It is recommended that 75th percentile water quality values be used for modelling as these provide a more conservative approach to predicting effects than the use of average values.

Seepage loss estimates should be based on robust hydrogeological data; the current seepage collection estimates appear to be feasibly unachievable.

Like the other lakes anticipated to be impacted by the development of the proposed mine, a comprehensive monitoring program should be developed for Long Hike Lake to monitor and assess the potential impacts to the lake due to groundwater seepage from the nearby TMF associated with the mine. Trigger values should be established for the receivers and mitigation measures should be developed and employed should monitoring reveal impacts greater than those predicted through modelling. Groundwater wells should be established in order to monitor the seepage quality and quantity in order to confirm the commitments made in the EA in regards to seepage collection are being met.

CLOSURE

If you have any questions regarding the above comments and recommendations, do not hesitate to contact me. The purpose of the preceding review is to provide advice to the Ministry of the Environment and Climate Change about the response provided by CMC/Golder regarding the need for additional groundwater modelling and seepage assessment. The conclusions, opinions and recommendations of the reviewer are based on information provided by others, except where otherwise specifically noted. The ministry cannot guarantee that the information that has been provided by others is accurate or complete. A lack of specific comment by the reviewer is not to be construed as endorsing the content or views expressed in the reviewed material.

<Original signed by>

Amy Godwin Surface Water Specialist Technical Support Section, Northern Region

c.c. Todd Kondrat, Surface Water Specialist – Group Leader, Northern Region, Technical Support Section Carrie Hutchison – A/Water Resources Supervisor, Northern Region, Technical Support Section Debra Abbott, Hydrogeologist – Ground Water Group Leader, Northern Region, Technical Support Section Adam Wright, Special Project Officer, Environmental Approvals Branch

Submitted as part of the Version 3 HRGP Amended EIS/EA Documentation January 2018 - 1656263

PART I CMC Response Letters to CEAA and MOECC

November 17th, 2017

Loraine Cox Project Manager, Ontario Regional Office Canadian Environmental Assessment Agency / Government of Canada

Subject: Response to Federal Comment on the August 18, 2017 Technical Memorandum to address Information Request T(3)-08 of the Federal Environmental Assessment – Hammond Reef Gold Project

Dear Mrs Cox,

CMC has received comments from the Federal Review Team (FRT) on the response to Information Request T(3)-08 in the form of the November 8, 2017 letter from the Canadian Environmental Assessment Agency (CEAA) entitled '*Federal Comments of the August 18, 2017 Technical Memorandum to address Information Request T(3)-08 of the Federal Environment Assessment*'. The FRT indicated in their letter that the response is sufficient to close the information request, with the condition that additional commitments be added to the Commitments Registry for the Project.

In response, CMC will add the following commitments to the Commitments Registry:

- Implement mitigation measures to capture seepage emanating from the TMF as described in the *Technical Memorandum: Groundwater Modelling of Tailings Management Facility and Seepage Impact Assessment*, dated August 18, 2017 as necessary to mitigate adverse impact to water quality and aquatic health. Appropriate contingency measures, as described in the above referenced memo, will be implemented if it is determined through monitoring that water quality in Upper Marmion Reservoir, Lizard Lake or Long Hike Lake is projected to consistently exceed appropriate guidelines/objectives for the protection of aquatic life as a result of TMF seepage bypass. Appropriate guidelines/objectives include federal guidelines (CCME), provincial objectives (PWQO) or Site Specific Water Quality Objectives (SSWQO) where it can be demonstrated that the SSWQO are protective of aquatic life.
- Prior to the operations phase, collect baseline data on Long Hike Lake, including water and sediment quality, fish and fish habitat, benthic community, and hydrology data for inclusion in a comprehensive aquatic effects monitoring plan that includes all receiving waterbodies (Upper Marmion Reservoir, Lizard Lake or Long Hike Lake).

 Submit the comprehensive aquatic effects monitoring plan reports in accordance with the requirements of the federal environmental assessment follow up and monitoring program.

With these commitments, CMC now considers this information request closed. This response and the above referenced letter from CEAA will be incorporated into the T(3)-08 response document package. The updated T(3)-08 response document package and Commitments Registry will be submitted as part of the Version 3 Amended EIS/EA Report.

If you have any questions or comments on the above matter, do not hesitate to contact me by email or at (819) 856-9866.

Regards,

<Original signed by>

Sandra Pouliot Environment specialist Canadian Malartic Corporation <u>spouliot@canadianmalartic.com</u>

c. Pascal Lavoie, CMC Director Environment and Sustainability

November 17th, 2017 (Email only)

Sasha McLeod Project Officer, Environmental Approvals Branch Ministry of the Environment and Climate Change

Subject: Response to Comments received on the Groundwater Modelling of the TMF and Seepage Impact Assessment - Hammond Reef Gold Mine Project

Dear Ms. McLeod,

CMC has received two letters from the Ontario Ministry of Environment and Climate Change (MOECC) regarding the response to Federal Information Request T(3)-08. The letters are dated October 20, 2017 and include review comments from a ministry hydrogeologist and surface water specialist. In addition, the MOECC provided a letter dated November 2, 2017 with additional commitments that are requested to be included in the Commitments Registry for the Project.

Review comments from the hydrogeologist indicate the following:

- The hydrogeologist is satisfied with the groundwater modelling;
- Identified monitoring and contingency measures are acceptable at this stage;
- Additional field investigations and design work will be required to support future permitting;
- Modification to the proposed seepage collection system may be required should geological conditions be found to be different than modelled;
- Seepage and loading rates reported in the EA should be considered as commitments that could be recognized as limits in the future ECA;
- Monitoring of the groundwater between the seepage collection system and the lakes will be required by the ECA to demonstrate seepage capture and determine the quality and estimate the quantity of the seepage that bypasses the collection system;
- Failure of the collection system to meet required performance will necessitate contingency measures to be implemented.

Review comments from the surface water specialist recommend the following:

- The baseline condition of Long Hike Lake should be characterized in terms of water quality, sediment quality, fish, and benthic community prior to any development at the site;
- 75th percentile water quality values be used for future modelling;
- A comprehensive monitoring program should be developed for Long Hike Lake to monitor and assess the potential impacts to the lake due to groundwater seepage from the nearby TMF;
- Trigger values should be established for the receivers and mitigation measures should be developed and employed should monitoring reveal impacts greater than those predicted through modelling;
- Groundwater wells should be established in order to monitor the seepage quality and quantity in order to confirm the commitments made in the EA in regards to seepage collection are being met.

CMC acknowledges that additional field investigations and design work will be required to support permitting. CMC will commit to limit the quantity of seepage bypass to an appropriate level which will mitigate adverse impact to water quality in the receiving environment, as defined through appropriate follow up modelling\evaluation should monitoring trends show that water quality in Upper Marmion Reservoir, Lizard Lake or Long Hike Lake is projected to consistently exceed appropriate guidelines/objectives for the protection of aquatic life as a result of TMF seepage bypass.

CMC will add the commitments listed below to the Commitments Registry.

- Implement mitigation measures to capture seepage emanating from the TMF as described in the *Technical Memorandum: Groundwater Modelling of Tailings Management Facility and Seepage Impact Assessment*, dated August 18, 2017 as necessary to mitigate adverse impact to water quality and aquatic health. Appropriate contingency measures, as described in the above referenced memo, will be implemented if it is determined through monitoring that water quality in Upper Marmion Reservoir, Lizard Lake or Long Hike Lake is projected to consistently exceed appropriate guidelines/objectives for the protection of aquatic life as a result of TMF seepage bypass. Appropriate guidelines/objectives include federal guidelines (CCME), provincial objectives (PWQO) or Site Specific Water Quality Objectives (SSWQO) where it can be demonstrated that the SSWQO are protective of aquatic life.
- Install monitoring wells between the TMF seepage collection system and the downstream receiving lakes to monitoring seepage bypass rate and water quality.

- Prior to the operations phase, CMC will collect baseline data on Long Hike Lake, including water and sediment quality, fish and fish habitat, benthic community, and hydrology data for inclusion in a comprehensive aquatic effects monitoring plan that includes all receiving waterbodies (Upper Marmion Reservoir, Lizard Lake or Long Hike Lake). CMC will provide a proposed outline of this baseline work to MOECC for review prior to undertaking the work.
- Prior to the operations phase, CMC will re-run the models for predicting seepage water quality at Long Hike Lake using average (steady state), 75th percentile and worst case scenarios. CMC will provide the modelling results to MOECC for review, in support of future permitting and approvals applications.
- Prior to the operations phase, CMC commits to further explore options for reducing the predicted sulphate concentrations in seepage from the site and options for avoiding or minimizing the potential for mercury methylation in any waterbodies expected to receive seepage from the site.

With the commitments as added to the commitments registry, CMC now considers this information request closed. This response and the above referenced letters from MOECC will be incorporated into the T(3)-08 response document package. The updated T(3)-08 response document package and Commitments Registry will be submitted as part of the Version 3 Amended EIS/EA Report.

If you have any questions or comments on the above matter, do not hesitate to contact me by email or at (819) 856-9866.

Regards,

<Original signed by>

V

Sandra Pouliot Environment specialist Canadian Malartic Corporation <u>spouliot@canadianmalartic.com</u>

c. Pascal Lavoie, CMC Director Environment and Sustainability