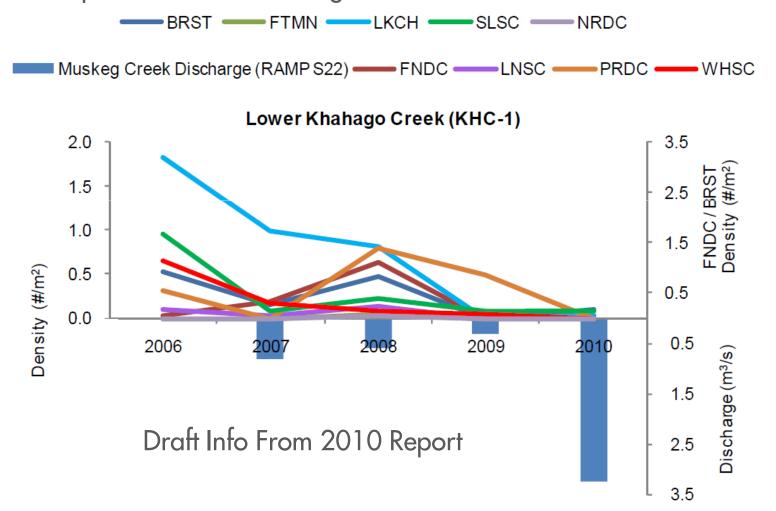
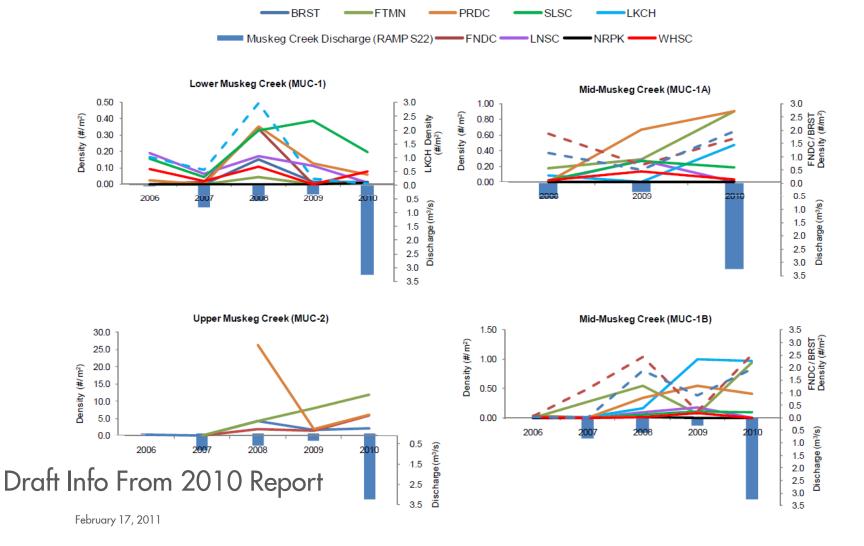
Hearing Exhibit #010-029

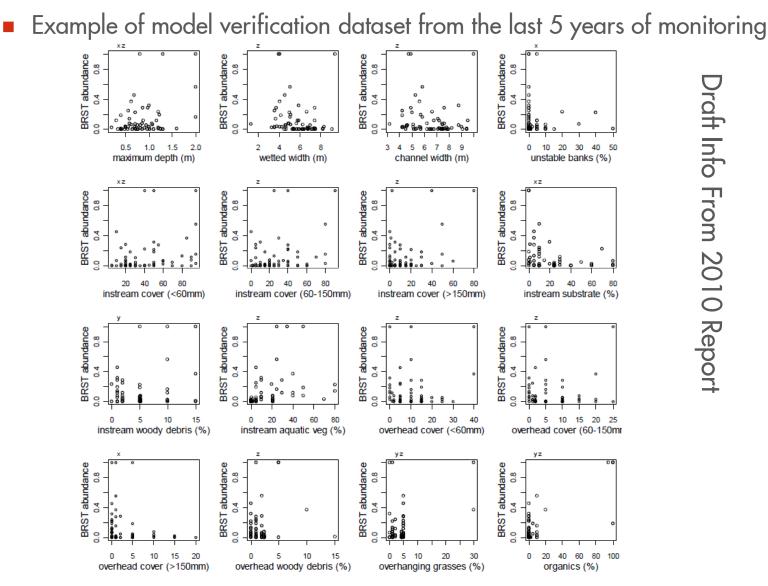
Submitted by Métis Nation of Alberta Date: November 16, 2012

Jackpine Mine Expansion/Pierre River No Net Loss Plan Consultation Meeting

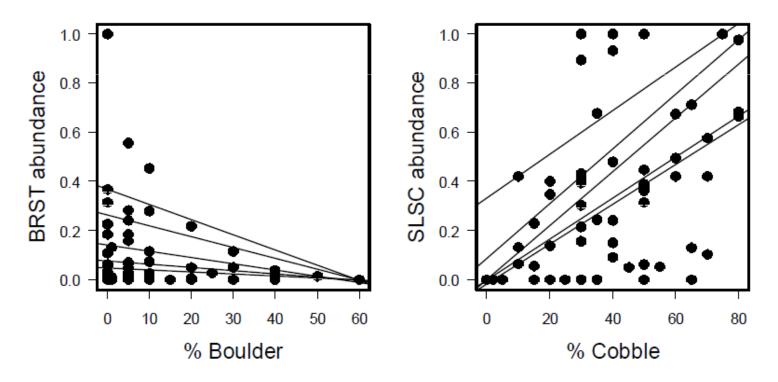

February 17, 2011


1

Fish Rescue Questions from Fort McKay First Nation

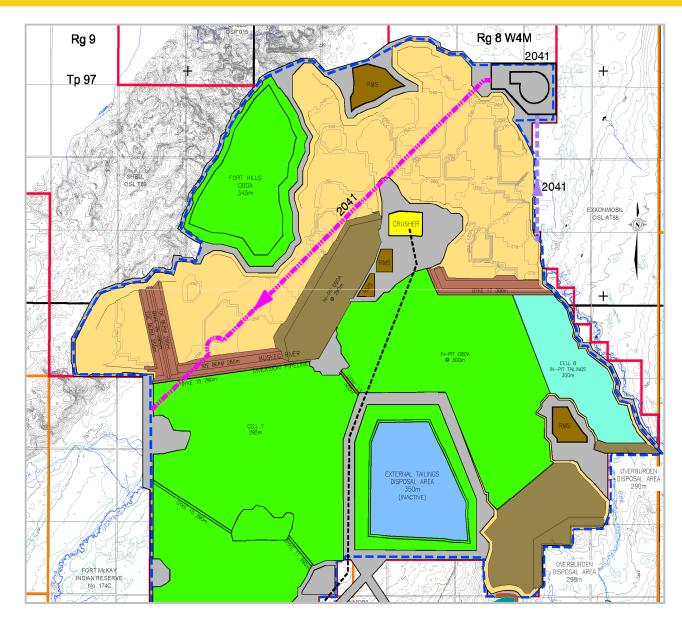

Noted differences in the species of fish found (Khahago Ck) in the EIA compared to the fish salvage

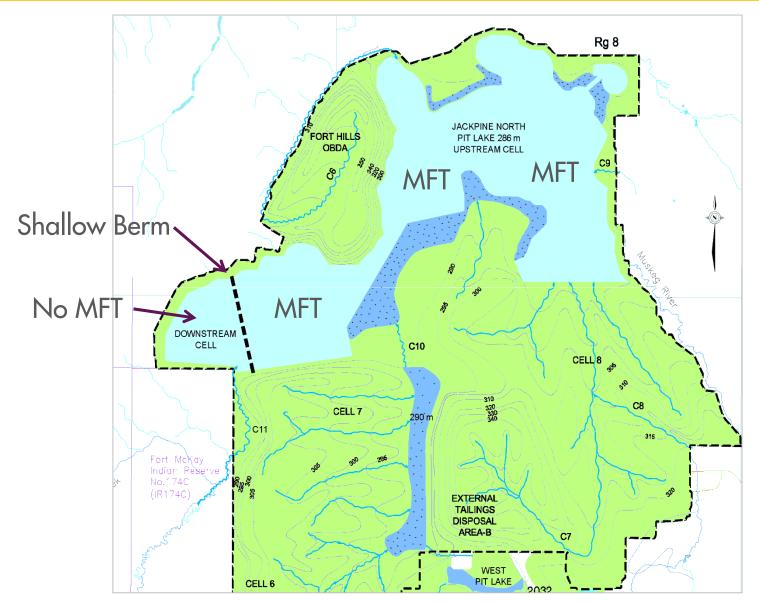
Noted differences in the species of fish found (Khahago Ck) in the EIA compared to the fish salvage


- How do the EIA predictions about fish abundance/biomass compare to the current findings? (related to their HSI/HADD calculations and ratio required for compensation) for Khahago and Sharkbite
 - We cannot convert biomass or abundance into habitat units
 - Biomass and abundance vary greatly from year to year
 - Habitat suitability also varies greatly, but theoretically we compensate to a single habitat unit value for each portion of fish habitat – the average habitat suitability for the average species assemblage times the average habitat area?
 - Don't truly know what that is for any fish habitat except perhaps those monitored for 5 years.
 - Will 1) refine models using monitoring data, 2) use the pre-disturbance and measured habitat characteristics in the models for appropriate species (from fish rescue and Environmental Setting Reports) 3) recalculate habitat units and 4) redo the habitat compensation requirements accounting
 - If habitat losses are greater or lesser than for the NNLP professional judgement modelling, we will update the compensation requirements accordingly.

February 17, 2011

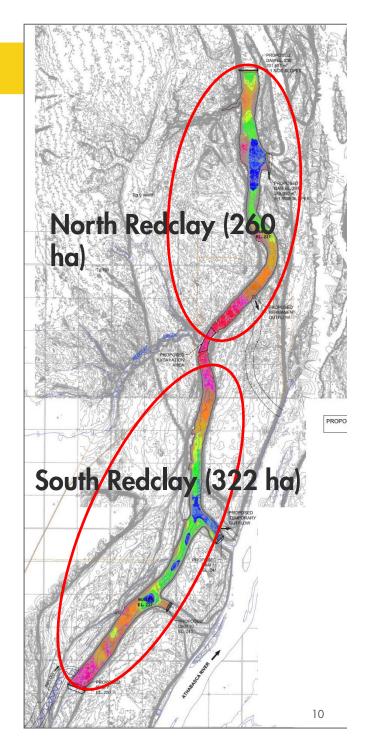
- Example of model verification dataset from the last 5 years of monitoring
- Figure 3.29 An example of quantile regression results for two species and two different habitat measures. The regression lines represent 90th, 80th, 70th, 60th and 50th quantiles, from the upper line to lower line, respectively.


Draft Info From 2010 Report

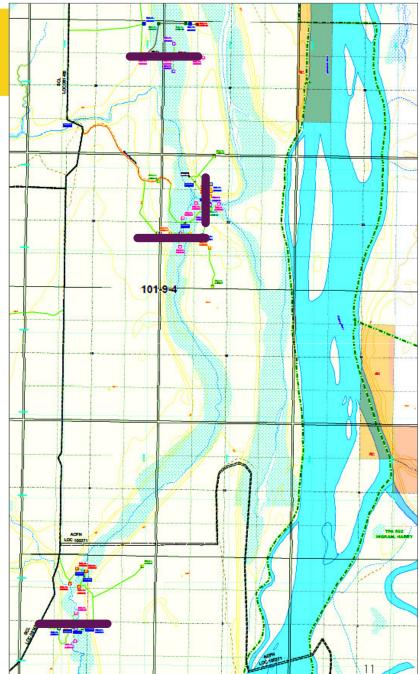

Muskeg River Diversion

- Shell is exploring alternatives to the pipeline proposed in the Application
- No decision has been made on preferred option
- HADD footprint of all alternatives is the same as the Application
 Makes no difference to NNL Plan
- Regulatory discussion concerning alternatives will be done at some future time

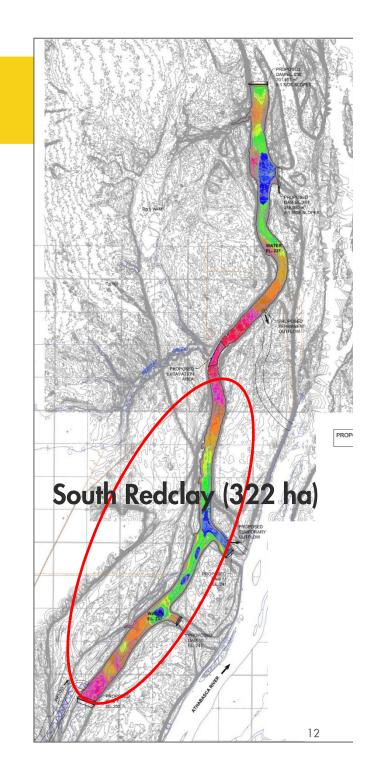
Application Case – Diversion 2041 to Closure



Application Case – Closure Landscape


Redclay Lakes – Conceptual Design

- Conceptual design shows maximum potential lake sizes
 - Actual lakes could be smaller
- Lakes naturally split into two construction phases
 - High ground results in 2 separate lakes
 - North Redclay for existing approved projects
 - South Redclay for JPME/PRM


North Redclay Lake (Update on MRME NNL Plan)

- Geotechnical studies underway
- Drilling program to evaluate the ground conditions at possible dam locations
- Will allow us to determine the financial costs of the various options so we can decide which one we should build
- Still on schedule to provide our best option at the end of Q2 2011
- Detailed design and detailed design consultation begins in late 2011
- Construction to be complete by the end of 2015 – from Authorization

JPME/PRM NNL Plan South Redclay Lake – Concept

- Required size depends on many variables:
 - Is any compensation still required for JPM1 after North Redclay construction?
 - Will approval be received for Pierre River and Jackpine Mine Expansion projects?
 - What are the geotechnical conditions?
 - Location/size also dependent on water source location
- South Redclay provides a feasible alternative for Shell's JPME/PRM fish habitat compensation requirements
- HADD and compensation requirement would be several years in the future
- Shell continues to look for other options which might replace South Redclay entirely or in part

Habitat Losses – JPME Habitat Units (Preliminary)

Reach Identifier	Reach Identifier	Habitat Area (m²)	Brook Stickleback	Fathead Minnow	Finescale Dace	Lake Chub	Longnose Sucker	Northern Pike	Pearl Dace	White Sucker
Muskeg River - Reach 6b	MR-R6b	212,911	106,455	159,683	106,455	106,455	106,455	138,392	159,683	116,925
Unnamed Creek 9	UC9	3,640	1,820			910			1,820	
Unnamed Waterbody 3	WB3	313,080	78,270							
Wapasu Creek - Reach 1	WC-R1	25,125	25,125	25,125		12,563	12,563		18,844	15,211
Wapasu Creek - Reach 2	WC-R2	21,282	21,282	21,282		10,641	10,641		15,962	12,884
Wapasu Creek - Reach 3a	WC-R3a	49,379	23,825	24,689		35,553	29,627		24,689	37,664
Wapasu Creek - Reach 3b	WC-R3b	23,143	11,462	11,572		5,786	11,572		11,572	17,652
Muskeg River - Reach 6b - Minor Tributaries	MR-R6b-TX	33,829	16,915			16,915			25,372	
Unnamed Waterbody 2	WB2	84,914	63,686							
Unnamed Waterbody 17	WB17	46,450	34,838							
Muskeg River - Reach 6b - Tributary 22	MR-R6b-T22	3,495	1,747			1,747	1,747	2,272	2,621	1,919
Unnamed Waterbody 1	WB1	52,710	26,355			26,355	26,355	34,262	34,696	52,710
Unnamed Creek 12	UC12	1,116	837			558	558		558	703
Muskeg River - Reach 6b - Tributary40	MR-R6b-T40	6,709	3,355			3,355			5,032	
Muskeg River - Reach 7	MR-R7	20,248	10,124		10,124	10,124	10,124	4,050	20,248	10,451

Habitat Losses – PRM Habitat Units (Preliminary)

Watershed	Reach Identifier	Habitat Area (m²)	Arctic Grayling	Brassy Minnow	Brook Stickleba ck	Burbot	Fathead Minnow	Flathead Chub	Lake Chub	Longnos e Dace	Longnos e Sucker	Northern Pike	Northern Redbelly Dace	Pearl Dace	Slimy Sculpin	Spoonhe ad Sculpin	Spottail Shiner	Trout- Perch	Walleye	White Sucker	Yellow Perch
	PR-R1	35,419	8,855	17,710	17,090	14,345	17,710	26,564	8,855	15,053	17,710	17,710	17,090	17,710	13,282			8,855	35,419	29,822	
1 [PR-R2	78,780	19,695	78,780	78,780	26,917	78,780		39,390	985	39,390	51,207	78,780	59,085	18,710	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		19,695	39,390	46,663	
Pierre River	UC4	47,567		35,675	23,783		35,675		23,783		23,783	9,513	23,783	23,783						29,965	
Pierre River	UC4-T1	18,726		14,045	9,363		14,045		9,363		9,363	3,745	9,363	9,363						11,797	
I 1	PR-R3	27,171		27,171	27,171		27,171		13,585		13,585		27,171	20,378						16,094	
	PR-R3-TX	5,226			5,226		5,226		2,613		2,613		5,226	3,919						3,095	
	EC-R1	43,160	10,790		21,580	17,803	21,580	21,580	10,790		21,580	21,580	21,580	21,580				21,580	21,580	20,640	
1 [UC1-R1	8,910	8,910		2,228	3,742	4,076	5,101	6,148		5,631		3,386	5,101				4,455		6,606	
1 [UC1-R2	30,605			15,302	12,752	15,302	15,302	7,651		15,302		15,302	15,302						23,010	
I I	UC1-R2-TX	17,531			8,765																
1 [WB5	41,180			0																
Eymundson	EC-R2	108,373	27,093		47,684	9,031	68,275	54,187	70,443		54,187		47,684	95,369				27,093		72,800	
Creek	UC-11	83,919			41,959		41,959		20,980		41,959		41,959	20,980						51,969	
1 [EC-R2-TX	84			37										///////////////////////////////////////						
I [EC-R3	32,585	8,146		16,292		16,292	16,292	8,146		16,292		16,292	16,292						16,818	
I [EC-R4	55,001			41,250		41,250		27,500				41,250	55,001							
I I	AC-R1	39,341			19,670		19,670		9,835				19,670	19,670							
1 1	AC-R1-TX	15,814			7,907				3,954												
	BC-R1	43,444	21,722		10,861	19,079	10,861	32,583	10,861	13,576	21,722	18,072		32,583	8,146	10,861	27,587	32,583	21,722	17,250	20,325
1 [BC-R1-T1	62			15																
I [BC-R2	79,515			39,360	32,866	39,757		19,879	39,757	39,757			39,757	39,757	39,757				63,111	51,949
1 [UC7a	11,430		///////////////////////////////////////	5,715		5,715		2,858		5,715									6,614	
	UC7a-TX	1,610			805																
1 L	UC5	33,855			16,758		16,928		8,464		16,928			16,928	16,928					26,871	
[UC2	17,843			7,137		8,922		4,461		8,922			8,922	6,825					13,724	
[BC-R2-TX	56			27																
Big Creek	FC-R1	28,554			14,134		14,277		7,139		14,277			14,277	14,277					22,663	
[FC-R2	41,281			27,039		34,160		20,640		20,640			10,320						25,508	
I [WB15	259,380			64,845		0		0												
[FC-R2-TX	13,719			8,986																
[FC-R2- WBX	80,864			52,966																
[BC-R3	48,800			12,200		12,200		12,200		24,400			24,400							
1	BC-R3-T1	59,595			14,899																
Athabasca River Minor Tributaries	AR-TX	17,270 1ry 17 201			17,270		17,270		8,635				17,270	4,318							

February 17, 2011

Habitat Losses – JPME and PRM Summary (Preliminary)

Pierre River HADD Habitat Area Brook Fathead Flathead Arctic Brassy Longnose Longnose Chub Lake Chub Sucker Watershed (m2) Grayling Minnow Stickleback Burbot Minnow Dace Totals Pierre River 212,889 28,550 173,381 41,262 178,607 26,564 97,589 16,038 106,444 829,848 161,413 Eymundson Creek 476,503 54,939 222,674 43.328 228,404 112,462 165,447 154,951 982,205 **Big Creek** 86,502 720,008 21,722 275,747 51,945 142,820 32,583 53,333 152,361 817,013 Athabasca River Minor Tributaries 17,270 17,270 17,270 8,635 43,175 1,426,670 105,211 173,381 677,104 136,535 567,101 171,609 358,173 69,371 413,756 2,672,241

	Habitat Area	Northern	Northern		Slimy	Spoonhead	Spottail				Yellow	
Watershed	(m2)	Pike	Redbelly Dace	Pearl Dace	Sculpin	Sculpin	Shiner	Trout-Perch	Walleye	White Sucker	Perch	
Pierre River	212,889	82,175	161,413	134,238	31,992			28,550	74,809	137,436	0	650,613
Eymundson												
Creek	476,503	21,580	207,123	249,295				53,128	21,580	191,843	0	744,549
Big Creek	720,008	18,072		147,187	85,933	50,618	27,587	32,583	21,722	175,741	72,274	631,717
Athabasca River												
Minor												
Tributaries	17,270		17,270	4,318								21,588
Totals	1,426,670	121,827	385,806	535,038	117,925	50,618	27,587	114,261	118,111	505,020	72,274	2,048,467
										PRM Grand T	otal	4,720,708

Jackpine Mine Expansion HADD

Habitat	Brook	Fathead	Finescale		Longnose	Northern			
Area (m ²)	Stickleback	Minnow	Dace	Lake Chub	Sucker	Pike	Pearl Dace	White Sucker	Totals
256,944	128,472	159,683	106,455	128,472	108,202	140,664	192,708	118,844	1,083,500
118,929	81,694	82,668		64,543	64,403		71,067	83,411	447,786
497,154	203,149			26,355	26,355	34,262	34,696	52,710	377,527
1,116	837			558	558		558	703	3,214
3,640	1,820			910			1,820		4,550
20,248	10,124		10,124	10,124	10,124	4,050	20,248	10,451	75,245
898,031	426,096	242,351	116,579	230,962	209,642	178,976	321,097	266,119	1,991,822
	Area (m ²) 256,944 118,929 497,154 1,116 3,640 20,248	Area (m²) Stickleback 256,944 128,472 118,929 81,694 497,154 203,149 1,116 837 3,640 1,820 20,248 10,124	Area (m²)SticklebackMinnow256,944128,472159,683118,92981,69482,668497,154203,14911,11683713,6401,820120,24810,1241	Area (m²)SticklebackMinnowDace256,944128,472159,683106,455118,92981,69482,668106,455497,154203,149200,000100,0001,116837100,000100,0003,6401,820100,000100,00020,24810,124100,000100,000	Area (m²)SticklebackMinnowDaceLake Chub256,944128,472159,683106,455128,472118,92981,69482,66864,543497,154203,14926,35526,3551,116837205583,6401,82091020,24810,12410,12410,124	Area (m²)SticklebackMinnowDaceLake ChubSucker256,944128,472159,683106,455128,472108,202118,92981,69482,66864,54364,403497,154203,14926,35526,35526,3551,116837205585583,6401,820091010,12420,24810,12410,12410,12410,124	Area (m²)SticklebackMinnowDaceLake ChubSuckerPike256,944128,472159,683106,455128,472108,202140,664118,92981,69482,66864,54364,403-497,154203,149-26,35526,35534,2621,116837-558558-3,6401,820-91020,24810,12410,12410,1244,050	Area (m²)SticklebackMinnowDaceLake ChubSuckerPikePearl Dace256,944128,472159,683106,455128,472108,202140,664192,708118,92981,69482,66864,54364,40371,067497,154203,149-26,35526,35534,26234,6961,116837-5585585585583,6401,820-910-1,82020,24810,12410,12410,1244,05020,248	Area (m²)SticklebackMinnowDaceLake ChubSuckerPikePearl DaceWhite Sucker256,944128,472159,683106,455128,472108,202140,664192,708118,844118,92981,69482,66864,54364,40371,06783,411497,154203,149-26,35526,35534,26234,69652,7101,116837-5585585585587033,6401,820-910-1,82010,451

February 17, 2011

JPME Grand Total 1,991,822

Total 6,712,530

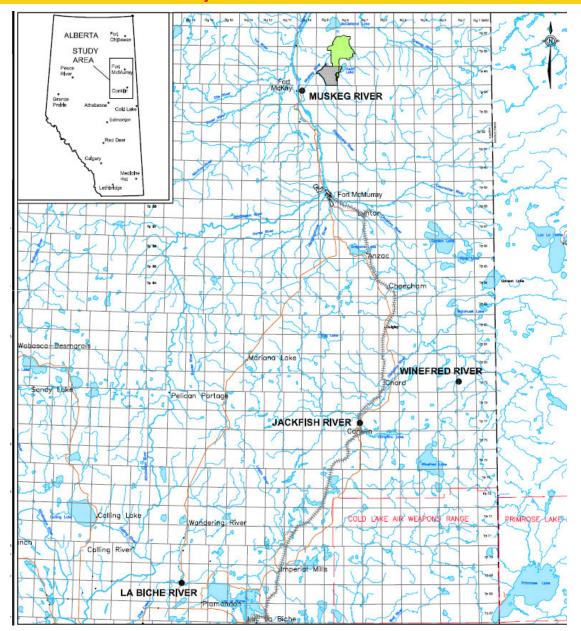
Potential Habitat Gains – Lake Habitat Suitability by Species

Species	HSI
brook stickleback	0.47
fathead minnow	0.47
finescale dace	0.47
lake chub	0.51
longnose sucker	0.50
northern pike	0.43
pearl dace	0.47
slimy sculpin	0.27
spottail shiner	0.55
walleye	0.20
white sucker	0.60

Fish Species Selected for Compensation Lake

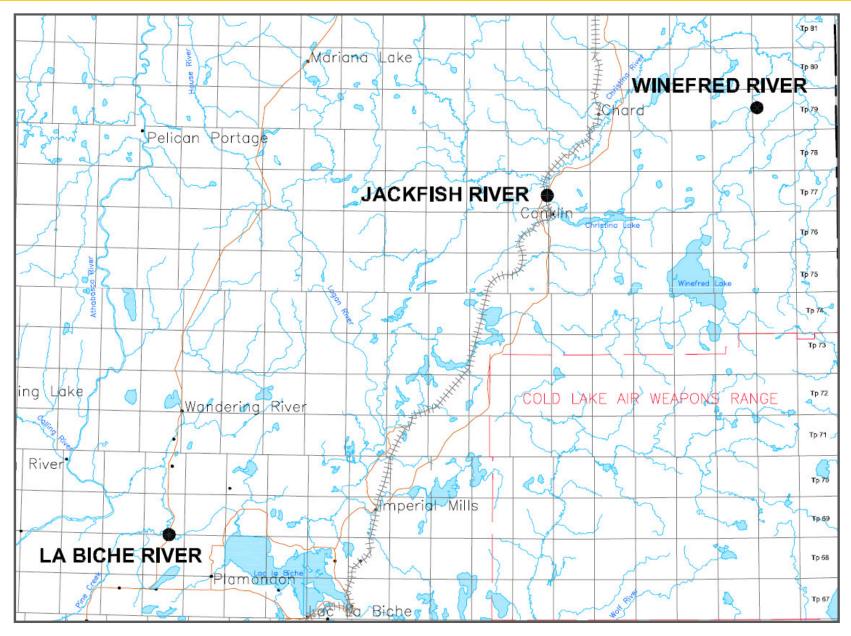
Group	Species	In Big Creek or Redclay Creek watersheds?	In Muskeg River Watershed?	In Athabasca River?	Include in Compensation Lake?	Habitat Units Created by Compensation Lake
	Arctic grayling	Redclay	Yes	Yes	Yes	?
_	burbot	Both	Yes	Yes	Yes	?
ls	cisco	No	Yes	Yes	No	
d f	goldeye	No	Yes	Yes	No	
die	lake whitefish	No	Yes	Yes	Yes	?
- bodied fish	longnose sucker	Both	Yes	Yes	Yes	2,908,168
1	mountain whitefish	No	Yes	Yes	No	
Large	northern pike	Redclay	Yes	Yes	Yes	2,501,024
ar	walleye	Redclay	Yes	Yes	Yes	1,163,267
	white sucker	Both	Yes	Yes	Yes	3,494,573
	yellow perch	Big Creek	Yes	Yes	Yes	?
	brook stickleback	Both	Yes	Yes	Yes	2,737,538
	fathead minnow	Both	Yes	Yes	Yes	2,737,538
_	flathead chub	No	Yes	Yes	No	
ist	lake chub	Both	Yes	Yes	Yes	2,966,331
đ	longnose dace	Both	Yes	Yes	Yes	?
die	pearl dace	Both	Yes	Yes	Yes	2,737,538
ŏ	slimy sculpin	Both	Yes	Yes	Yes	1,541,329
Small - bodied fish	spoonhead sculpin	Big Creek	Yes	Yes	Yes	?
all	spottail shiner	Big Creek	Yes	Yes	Yes	3,171,598
E S B	emerald shiner	No	Yes	Yes	No	
0)	trout-perch	Redclay	Yes	Yes	Yes	?
	finescale dace	Redclay	Yes	No	Yes	2,737,538
	northern redbelly dace	Redclay	Yes	No	Yes	?
					Total	28,696,442

means expected in lake, but not included in habitat gains calculations


Other Compensation Issues

- No HADD calculated for downstream effects of flow changes for the Muskeg River (reaches 1 to 5)
 - Dependent on outcome of surrogate stream and other analyses
- No HADD calculated for Athabasca River water withdrawals
 Dependent on DFO policy paper
- No HADD calculated for Athabasca River water intake at PRM
 - Very small HADD, compensation will be addressed when design and resulting footprint impacts known
- South Redclay can easily provide enough compensation for all potential outcomes of these unknowns.

Surrogate Stream Analysis - Background


- Need to define Net impact of change. No model exists to determine net impact.
 - Winter flows increase potentially positive.
 - Flood flows decrease potentially negative.
 - Higher flows during droughts potentially positive.
- Surrogate stream assessment (selected existing streams in region similar to future Muskeg River flow regime) – lake controlled hydrology – dampened hydrograph, similar size to future Muskeg River.
- Key study areas:
 - Fish species use what do these rivers support?
 - Winter habitat conditions winter flow, dissolved oxygen
 - Beaver dam density effect of reduced floods on dams and fish passage
 - Habitat Diversity and Channel morphology reduced floods and effects on channel forming processes

Surrogate Stream Analysis - Locations

February 17, 2011

Surrogate Stream Analysis - Locations

21

Surrogate Stream Analysis – Winefred River

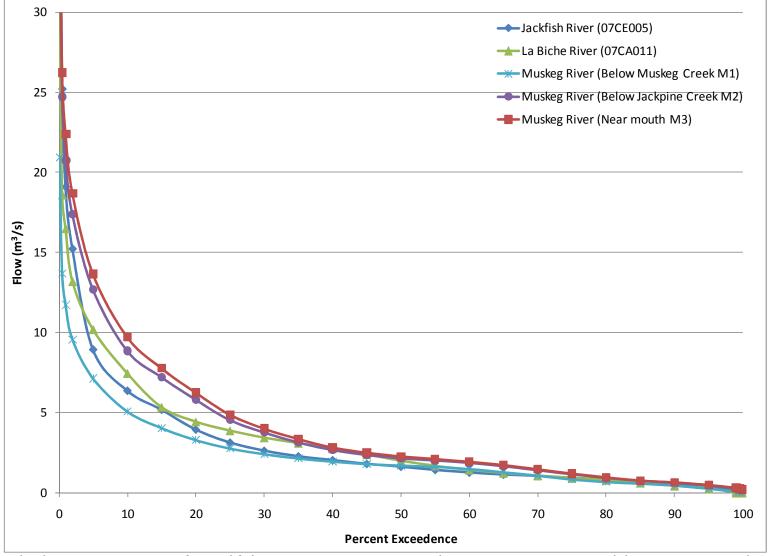
February 17, 2011

Surrogate Stream Analysis – Winefred River

Surrogate Stream Analysis – LaBiche River

February 17, 2011

Surrogate Stream Analysis – LaBiche River


Surrogate Stream Analysis – Jackfish River

Surrogate Stream Analysis – Jackfish River

Surrogate Stream Analysis - Flows

Daily Flow Duration Curves for Jackfish River (1982-1995), La Biche River (1982-1995) and the Far Future Muskeg River (simulated based on 1953-2006) February 17, 2011 28

Surrogate Stream Analysis – Channel Characteristics

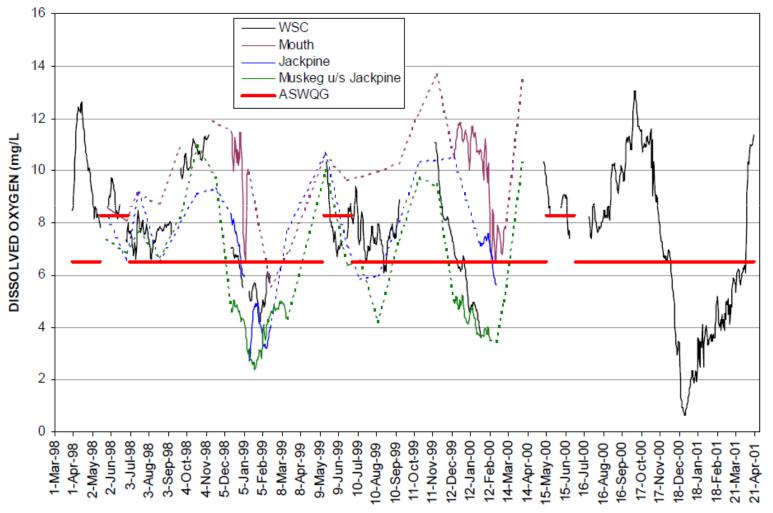
Comparison of Surrogate Stream and Muskeg River Channel Characteristics (need Reach 5)

	Winefred River	Jackfish River	Current Muskeg River (Reach 3) –	La Biche River	Current Muskeg River (Reach 4)
Measured Flow Summer 2008	5.33	2.46	5.04	1.81	4.61
Average Wetted /Channel Widths (m) **	27.8 / 28.2	29.8 / 30.4	16.9/18.5	18.8 / 19.8	16.7 / 17.1
Riparian	boreal mixedwood	boreal mixedwood	boreal mixedwood	deciduous/grass -sedge	willow/alder
% Riffle / Run / Pool	18 / 82 / 0	22 / 75 / 3	11 / 89 / 0	0 / 100 / 0	0 / 95 / 5
% Instream Cover	23.9	29.5	22.5	73.3	27.7
% Overhead Cover	14.4	5.4	6.9	10	12
Maximum Depth (m)	0.53 - 1.40	0.38 - 1.50	0.45 - 1.18	1.5	1.65 - 2.40
Substrate (dominant/sub- dominant)	Co / Bo	Co / Bo	Co / Sa	Sa / Cl / Si	Sa / Co
Surface Water Slope (%)	0.067	0.061	0.077	0.019	0.022

Surrogate Stream Analysis – Beaver Dams

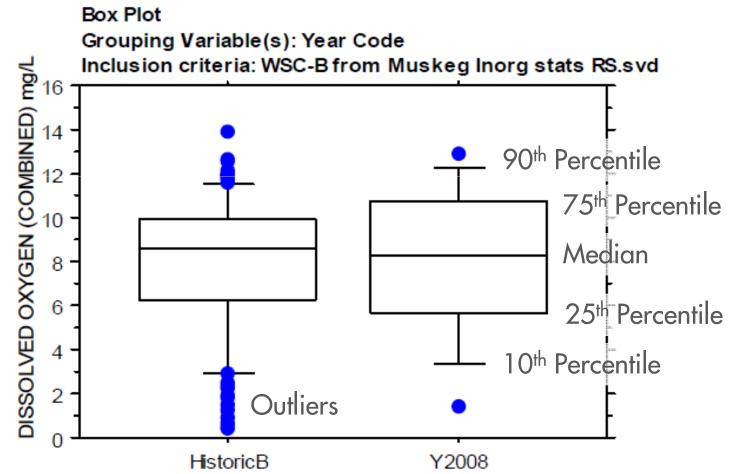
Summary of Frequency of Beaver Dams with Winefred, Jackfish, La Biche and Muskeg Rivers

	Winefred	Jackfish	La Biche	Ν	luskeg Rive	er
	River	River	River	Reach 3	Reach 4	Reach 5
Field Surveys						
Distance Surveyed (km)	1.37	1.26	0.83	-	-	-
Beaver Dams	0	1	0	-	-	-
Aerial Photography						
Distance Assessed (km)	21.62	15.78	27.13	7.8	17.55	16.31
Complete Dams	1	3	0	0	2	2
Breached Dams	0	1	0	1	0	5
Woody Debris	0	2	0	1	0	0

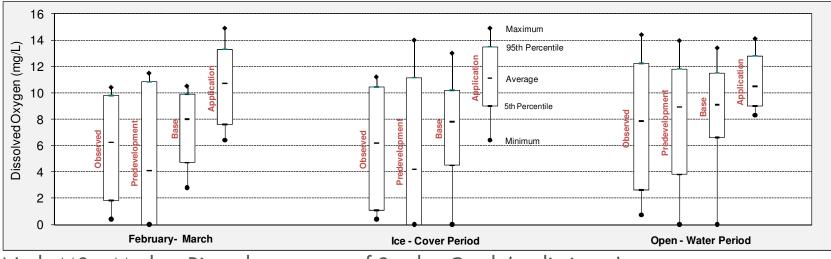

Surrogate Stream Analysis – Dissolved Oxygen

Seasonal Water Quality Parameters for the Surrogate Streams

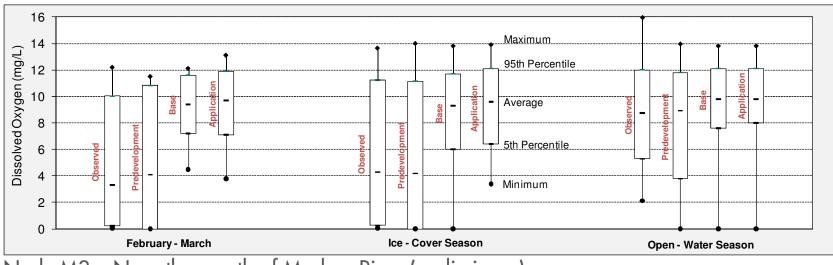
Site	Season	Temperature (°C)	YSI Dissolved Oxygen (mg/L)	Winkler DO (mg/L)	рН	Specific Conductance (µS/cm)	Total Suspended Solids (mg/L)
	30-Jul-08	19.4	8.8	8.5	8	189	6
Winefred River	28-May-09	10.6	12	10.8	8	142	-
	20-Mar-09	0.4	11.7	9.0	7	230	-
	06-Jul-08	17.4	10.4	9.5	8	132	<3
Jackfish River	28-May-09	7.9	11	11.3	8	176	-
	20-Mar-09	0.5	10.8	9.8	7	204	-
	07-Jul-08	20	10.7	9.0	9	211	6
La Biche River	29-May-09	16.3	10.4	10.0	8	287	-
	20-Mar-09	0.2	10.8	9.8	7	338	-


Muskeg River – Historical Dissolved Oxygen

Seasonal Dissolved Oxygen for the Muskeg River (to be supplemented) from McEachern and Noton 2002, Overview Of Water Quality In The Muskeg River Basin July 1972 To March 2001



Muskeg River – Historical Dissolved Oxygen

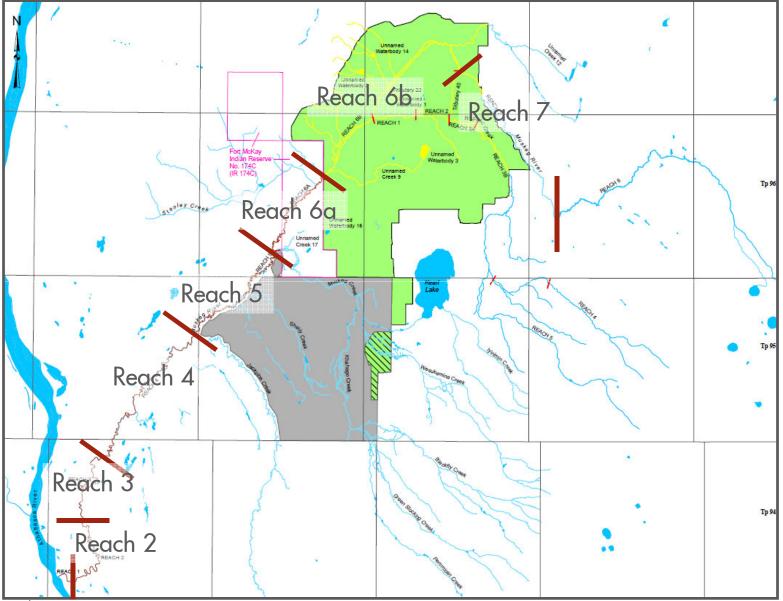

All seasons dissolved oxygen data for WSC Station on Muskeg River (to be supplemented) from AENV Muskeg River Watershed Integrated Water Quality Monitoring Program Annual Report, September 2009

Muskeg River - Dissolved Oxygen Modelling

Node M0 – Muskeg River downstream of Stanley Creek (preliminary)

Node M3 – Near the mouth of Muskeg River (preliminary)

Surrogate Stream Analysis – Fish Species Use


	S	pecies	Surr	rogate Str	ream	Muskeg River			
Category	Common Name	Scientific Name	Winefred River	Jackfish River	La Biche River	Reach 3	Reach 4 Below Jackpine Creek	Below	
Sport Fish	Burbot	Lota lota				-	-	-	
	Walleye	Sander vitreus				•	•	•	
	Mountain whitefish	Prosopium williamsoni	-	-		•	•	-	
	Goldeye	Hiodon alosoides	-	-		-	-	-	
	Northern pike	Esox lucius	-			•	•	•	
	Arctic grayling	Thymallus arcticus			-	•	•	•	
	Lake whitefish	Coregonus clupeaformis	-	-	-	-	•	-	
	Yellow perch	Perca flavescens		-	-	-	•	-	
Non-sport Fish	White sucker	Catostomus commersonii				•	•	•	
	Longnose sucker	Catostomus catostomus			-	•	•	•	
Forage Fish	Brook stickleback	Culaea inconstans		-		•	•	•	
	Lake chub	Couesius plumbeus		-	-	•	•	•	
	Spottail shiner	Notropis hudsonius		-		-	-	-	
	lowa darter	Etheostoma exile		-	-	-	-	-	
	Slimy sculpin	Cottus cognatus	-		-	•	•	•	
	Spoonhead sculpin	Cottus ricei	-	-	-	•	•	-	
	Pearl dace	Margariscus margarita	-	-	-	•	•	•	
	Fathead minnow	Pimephales promelas	-	-	-	•	•	-	
	Northern redbelly dace	Phoxinus eos		-	-	•	•	-	
	Longnose dace	Rhinichthys cataractae		-	-	•	•	-	
	Flathead chub	Platygobio gracilis	-	-		-	-	-	
	Trout-perch	Percopsis omiscomaycus	-	-		•	•	•	
	Finescale Dace	Phoxinus neogaeus		-	-	-	•	-	

■ = Surrogate stream species data from FWMIS, Rhude 1976;

▲ = Surrogate stream species captured during 2008/2009 field surveys;

• = Species documented in Muskeg River

Muskeg River IFN Modelling Results – Reach Definitions

February 17, 2011

Muskeg River IFN Modelling Results - Preliminary

			-	_	
Reach 2	2039-Base	2039-App	2065- Base	2065-App	Rev1a
Wetted Area	29.84%	31.93%	47.00%	50.59%	44.21%
NRPK-A	26.05%	27.17%	43.61%	45.51%	40.81%
NRPK-J	26.05%	27.05%	40.94%	42.25%	38.20%
WALL-A	42.43%	52.10%	101.56%	121.58%	107.40%
WALL-J	40.56%	47.42%	80.97%	95.26%	82.35%
LNSC-A	37.61%	47.70%	115.32%	137.30%	123.98%
LNSC-J	35.05%	39.55%	66.90%	76.10%	66.51%
Wetted Area (Winter)	168.57%	142.85%	308.36%	375.57%	253.99%

MEAN OF DIFFERENCES FROM NATURAL FOR ALL WEEKS

MEAN OF DIFFERENCES FROM NATURAL FOR ALL WEEKS

Reach 3					
neach s	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	29.56%	31.77%	45.80%	48.74%	42.15%
NRPK-A	29.31%	31.06%	40.13%	41.12%	35.47%
NRPK-J	29.63%	31.28%	36.48%	36.55%	32.01%
WALL-A	42.50%	53.01%	102.62%	123.64%	106.03%
WALL-J	45.68%	55.61%	96.18%	115.12%	97.75%
LNSC-A	43.38%	55.62%	116.36%	141.17%	120.74%
LNSC-J	36.71%	42.39%	71.02%	81.68%	70.08%
Wetted Area (Winter)	170.84%	146.25%	306.27%	369.63%	250.58%

MAXIMUM WEEKLY MEAN OF DIFFERENCES CHANGE FROM NATURAL

Reach 2	2039- Base	2039-App	2065- Base	2065-App	Rev1a
Wetted Area	-4.77%	-6.22%	-3.23%	-4.23%	-3.89%
NRPK-A	-8.86%	-12.11%	-4.97%	-6.37%	-5.37%
NRPK-J	-5.56%	-8.01%	-3.24%	-3.69%	-3.11%
WALL-A	0.61%	-1.93%	2.36%	3.93%	1.24%
WALL-J	1.46%	0.53%	1.01%	2.06%	0.32%
LNSC-A	-18.86%	-25.95%	-7.15%	-11.61%	-9.45%
LNSC-J	-2.42%	-4.97%	-0.10%	-0.75%	-0.57%
Wetted Area (Winter)	9.96%	2.89%	18.20%	22.73%	2.18%

MAXIMUM WEEKLY MEAN OF DIFFERENCES CHANGE FROM NATURAL

Reach 3	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	-8.25%	-10.25%	-5.68%	-7.45%	-6.85%
NRPK-A	-7.52%	-9.10%	-5.69%	-7.35%	-6.52%
NRPK-J	-3.49%	-4.15%	-3.50%	-4.51%	-4.17%
WALL-A	-9.01%	-13.95%	-3.33%	-5.47%	-5.17%
WALL-J	1.19%	-1.69%	3.57%	3.11%	-1.11%
LNSC-A	-18.12%	-24.72%	-7.35%	-12.77%	-11.41%
LNSC-J	-2.94%	-6.02%	0.09%	-0.86%	-1.33%
Wetted Area (Winter)	10.02%	3.51%	18.44%	22.26%	2.45%

Muskeg River IFN Modelling Results - Preliminary

		-		-	
Reach 4	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	29.27%	32.18%	43.67%	46.45%	39.88%
NRPK-A	29.82%	32.30%	36.99%	37.28%	32.57%
NRPK-J	25.46%	26.58%	28.08%	24.31%	22.59%
WALL-A	36.39%	41.35%	54.88%	62.33%	52.62%
WALL-J	47.55%	56.99%	59.13%	68.37%	58.57%
LNSC-A	37.55%	43.71%	61.92%	72.50%	61.14%
LNSC-J	37.82%	42.87%	51.31%	57.37%	48.87%
Wetted Area (Winter)	204.27%	177.13%	358.13%	428.64%	293.54%

MEAN OF DIFFERENCES FROM NATURAL FOR ALL WEEKS

MEAN OF DIFFEREN	CES FROM NATURAL	FOR ALL WEEKS
		FUR ALL WEEKS

D h E					
Reach 5	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	8.00%	24.19%	26.60%	42.16%	33.06%
NRPK-A	11.53%	23.51%	26.30%	38.78%	29.42%
NRPK-J	7.05%	12.15%	15.96%	25.09%	20.81%
WALL-A	27.67%	43.09%	44.35%	56.35%	44.46%
WALL-J	44.87%	55.22%	55.14%	62.83%	51.23%
LNSC-A	28.92%	52.07%	53.45%	74.67%	57.47%
LNSC-J	33.36%	42.44%	43.46%	49.26%	39.97%
Wetted Area (Winter)	129.68%	128.01%	228.51%	256.23%	164.04%

MAXIMUM WEEKLY MEAN OF DIFFERENCES CHANGE FROM NATURAL

Reach 4	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	-12.89%	-15.42%	-10.31%	-13.33%	-12.46%
NRPK-A	-6.04%	-6.99%	-6.74%	-7.43%	-7.17%
NRPK-J	-9.90%	-11.60%	-9.33%	-11.41%	-10.27%
WALL-A	0.47%	-0.42%	0.51%	0.73%	0.30%
WALL-J	13.24%	12.91%	5.89%	6.65%	0.06%
LNSC-A	-2.13%	-4.44%	-1.50%	-1.53%	-1.85%
LNSC-J	6.88%	6.18%	4.76%	5.50%	0.53%
Wetted Area (Winter)	14.88%	7.21%	24.42%	29.57%	7.06%

MAXIMUM WEEKLY MEAN OF DIFFERENCES CHANGE FROM NATURAL

Reach 5	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	-37.68%	-46.12%	-27.89%	-48.21%	-40.60%
NRPK-A	-38.26%	-44.18%	-27.38%	-44.91%	-38.88%
NRPK-J	-32.80%	-47.81%	-11.24%	-49.51%	-35.34%
WALL-A	-2.94%	-3.04%	-3.10%	-3.82%	-4.12%
WALL-J	17.93%	11.59%	16.46%	6.19%	-1.95%
LNSC-A	-5.02%	-5.94%	-5.60%	-7.19%	-7.26%
LNSC-J	9.36%	5.25%	7.55%	4.20%	-1.97%
Wetted Area (Winter)	4.52%	-4.26%	29.54%	31.32%	-17.62%

Muskeg River IFN Modelling Results - Preliminary

Reach 6a					
neach ba	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	48.16%	59.62%	66.43%	66.19%	57.46%
NRPK-A	49.00%	55.24%	63.87%	60.07%	53.10%
NRPK-J	34.45%	35.96%	39.95%	31.88%	30.58%
WALL-A	76.54%	96.59%	108.92%	119.16%	101.27%
WALL-J	74.30%	90.17%	100.49%	109.12%	93.95%
LNSC-A	82.82%	114.48%	126.68%	141.74%	118.62%
LNSC-J	67.15%	79.99%	88.72%	95.89%	82.85%
Wetted Area (Winter)	323.12%	303.55%	488.83%	551.88%	430.43%

MEAN OF DIFFERENCES FROM NATURAL FOR ALL WEEKS

MAXIMUM WEEKLY MEAN OF DIFFERENCES CHANGE FROM NATURAL

Reach 6a	2039-Base	2039-App	2065-Base	2065-App	Rev1a
Wetted Area	-12.83%	-22.70%	-9.02%	-35.58%	-28.56%
NRPK-A	-14.43%	-24.74%	-10.16%	-34.36%	-28.57%
NRPK-J	-13.89%	-26.36%	-7.98%	-37.21%	-26.35%
WALL-A	-2.37%	-9.48%	-2.58%	-16.56%	-15.36%
WALL-J	4.69%	-1.16%	2.75%	-5.44%	-5.27%
LNSC-A	-4.40%	-14.38%	-3.74%	-24.25%	-21.43%
LNSC-J	1.67%	-1.45%	0.42%	-7.55%	-7.51%
Wetted Area (Winter)	12.10%	0.96%	26.79%	36.93%	10.60%

Objective of Study - For Closure:

- characterize the geomorphic and flow characteristics of five downstream reaches of the Muskeg River (Reaches 2 to 6a);
- compare historical aerial photographs and recent satellite imagery to qualitatively characterize modes and rates of morphologic change; and
- predict potential channel responses to flow alterations.

Table E3: Modelled Changes to Peak Flows in Reach 2

	Pre- development	Max Closed-Circuit Snapshot (2049)			
Return Period (Year)	Peak Flow (m³/s)	Peak Flow (m³/s)	Change from Pre- development	Peak Flow (m³/s)	Change from Pre- development
2	22.9	12.0	-47.5%	12.7	-44.7%
10	50.8	23.1	-54.5%	27.7	-45.5%
100	85.4	35.4	-58.5%	51.7	-39.4%

Table E4: Modelled Changes to Peak Flows in Reach 6a

	Pre- development	Max Closed-Circuit Snapshot (2049)		Closure	
Return Period (Year)	Peak Flow (m³/s)	Peak Flow (m³/s)	Change from Pre- development	Peak Flow (m³/s)	Change from Pre- development
2	9.9	4.2	-57.8%	2.4	-75.3%
10	23.2	5.7	-75.2%	6.2	-73.3%
100	42.3	7.3	-82.7%	12.4	-70.7%

Table E5: Estimated Return Periods for Peak Flows in Reach 2

Peak Flow (m ³ /s)	Return Period (Year)				
	Pre-development	Closure			
12.7	1.3	2			
22.9	2	7			
39.5	5	35			
50.8	10	95			

Preliminary Conclusions

- Flows have been variable, but channel has been stable for last 52 years (from airphotos)
- Peak flows will be reduced
- Over a long time period (many decades), it is expected the channel will change to adapt to the lower peak flows
- Information is preliminary but will be presented in detail in draft NNL Plan

